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ABSTRACT

A new era of directly imaged extrasolar planets has produced a three-planet system, where the masses of the planets
have been estimated by untested cooling models. We point out that the nominal circular, face-on orbits of the
planets lead to a dynamical instability in ∼105 yr, a factor of at least 100 shorter than the estimated age of the star.
Reduced planetary masses produce stability only for unreasonably small planets (�2 MJup). Relaxing the face-on
assumption, but still requiring circular orbits while fitting the observed positions, makes the instability time even
shorter. A promising solution is that the inner two planets have a 2:1 commensurability between their periods, and
they avoid close encounters with each other through this resonance. The fact that the inner resonance has lasted
until now, in spite of the perturbations of the outer planet, leads to a limit �10 MJup on the masses unless the outer
two planets are also engaged in a 2:1 mean-motion resonance. In a double resonance, which is consistent with the
current data, the system could survive until now even if the planets have masses of ∼20 MJup. Apsidal alignment can
further enhance the stability of a mean-motion resonant system. A completely different dynamical configuration,
with large eccentricities and large mutual inclinations among the planets, is possible but finely tuned.
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1. INTRODUCTION

The method of direct imaging for the discovery of extrasolar
planets has yielded spectacular first results over the last several
years (Chauvin et al. 2004; Lafrenière et al. 2008; Marois
et al. 2008; Kalas et al. 2008; Lagrange et al. 2009). Direct
imaging is a method for discovering planets located far from
their host stars, an as-yet unexplored region of parameter space,
and it promises new opportunities to characterize the planets
using their own radiation. However, because the gravitational
influence of directly imaged planets is not measured and the
astrometric orbital arcs obtained so far are short, determining
the planetary masses and orbital architectures of these systems
is challenging.

In the newly discovered planetary system HR 8799
(=HD 218396), three planets have been imaged at projected
separations of 24, 38, and 68 AU from their host star (Marois
et al. 2008). The best current estimate of their masses is de-
rived from the planetary luminosities, measured in the infrared.
Because these planets are young and massive, they are still ra-
diating prodigiously as they contract, cool, and become more
gravitationally bound. The masses are estimated using untested
models of this contraction and cooling process. One class of such
models, the “hot-start” models, provides the largest luminosity
possible at a certain mass and age, given assumptions about
opacities in the planetary atmosphere. Hot-start models have
initially extended envelopes and a large entropy per baryon;
even hotter models converge to a common track after a few
million years (Baraffe et al. 2002). Therefore, for a given age
and luminosity, these models should provide a lower limit on the
mass. For HR 8799, the lower-limit masses are 5–11, 7–13, and
7–13 MJup for planets b, c, and d, respectively, based on a rather

1 Michelson Fellow
2 ITC Fellow

uncertain stellar age of 30–160 Myr,3 which is presumably also
roughly the age of the planets.

The following simple calculation illustrates why a lower mass
limit can be inferred from a planet’s contraction luminosity.
For HR 8799, the planetary luminosities have been measured
to be L � 10−5 L�, and radii of R � 1.2 RJup were derived
from the objects’ temperatures, measured by fitting photometry
with a variety of synthetic spectral energy distributions (Marois
et al. 2008). Because the objects are cooling, they were more
luminous in the past, so they have radiated at least Ltage �
4 × 1043 erg. Their current binding energy, which supplied this
luminosity, is � GM2R−1 � 3 × 1043(M/MJup)2 erg, where
the radius is roughly independent of the mass for Jupiter-mass
objects. Consequently, M > 1 MJup. Cooling models also take
into account that L diminishes with time, and thus arrive at a
considerably larger mass. Whether this larger calculated mass
is a robust lower limit depends on the accuracy of the model.
Recently, Dupuy et al. (2009) measured the dynamical masses
for a system of brown dwarfs (both of mass ≈ 57 MJup) and
showed that cooling models overpredict the component masses
by ∼25%.

If energy is lost during the process of planet formation, then
an even larger planet mass would be needed to generate the
currently observed luminosity. For example, in the planetary
core-accretion models of Marley et al. (2007), considerable
luminosity is radiated in the accretion stream and shock, and that
energy is not internalized by the planet. At the end of formation
the planet has less gravitational potential energy to later supply
its luminosity. The integrated luminosity since formation would
not account for the planet’s current binding energy, so the mass
needed to supply an observed luminosity at a given age may be
much bigger.

3 This estimate is given by Marois et al. (2008) based on four age indicators:
Galactic space motion, main-sequence fitting, stellar pulsations, and the
massive debris disk. The first is circumstantial but consistent with the quoted
ages; the others suggest an age �100 Myr. That the star has reached the main
sequence suggests that it is � 20 Myr old.
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Figure 1. Semimajor axis, periapse, and apoapse for the three planets as
a function of time in a numerical integration of the nominal model of the
system, which has circular, face-on orbits, and planetary masses Mb = 7 MJup,
Mc = 10 MJup, and Md = 10 MJup. An instability occurs only 3 × 105 years
into the integration, in which planets b and c suffer a close encounter, suggesting
the planetary masses or orbits of the nominal model are in error.

The HR 8799 system has survived an order of magnitude
longer than the primordial gas disk, which, if typical of disks of
A-type stars, lasted �3 Myr (Hillenbrand et al. 1993; Hernández
et al. 2005). The system has therefore had time to dynamically
evolve in the absence of gas. Though the planets orbiting HR
8799 are separated by tens of AU, the inferred minimum masses
of the planets are large enough that their mutual gravitational
interactions are important. For example, a planet with mass
Mp = 10 MJup orbiting a star of mass M∗ = 1.5 M� at
semimajor axis a = 40 AU dominates gravitational dynamics
within its Hill radius of size RH = a(Mp/3M∗)1/3 = 5 AU.
Because RH is a large fraction of the planetary separation,
gravitational interactions among the planets can substantially
modify the dynamical evolution of the system.

In fact, the nominal orbits reported in the discovery paper
(Marois et al. 2008) are unstable. We integrated the Newtonian
equations of motion of the proposed system using the Bulirsh–
Stoer (BS) algorithm of the Mercury (Chambers 1999) package
(ver. 6.2), with an accuracy parameter of 10−12. The planets
were assigned circular, face-on orbits, and we used the nominal
masses for all four bodies: 7, 10, 10 MJup for planets b, c, and d,
respectively, and 1.5 M� for the star.4 Figure 1 shows the results
for the semimajor axis and maximum radial excursion of each
planet as a function of time. A close encounter between planets
c and d at 0.298 Myr (i.e., they enter within one Hill radius
of one another) leads to a brief interval of strong scattering
which ejects planet b at 0.316 Myr (i.e., it reaches > 500 AU
with positive energy, and is removed from the simulation).
Planets c and d swap orbits and finish in a stable configuration,
with no further semimajor axis evolution, but they exhibit a
regular secular eccentricity cycle with a period of 1.5 Myr.
This evolution is not unique in its details since the orbital
evolution is chaotic. However, qualitatively similar evolutions
are common for simulated planetary systems constructed to
match the discovery data: instability usually sets in well before
the star’s age of �30 Myr.

The goal of this paper is to determine orbits that are consistent
with the astrometric data, the inferred planetary masses, and

4 For the specific initial conditions of this and other integrations herein, see
Tables 3 and 4.

with dynamical stability over the system’s age. Neglecting
stability considerations, there is a large amount of freedom in
fitting orbits to the discovery data, because (1) the measured
astrometric arcs cover only ∼2% of the middle orbit and ∼1%
of the outer orbit, (2) the velocity of the inner planet is almost
entirely unconstrained, and (3) the line-of-sight positions and
velocities of the planets relative to the star are unknown. A priori,
two classes of orbital architectures are possible—those in which
the planets occupy roughly coplanar orbits and those with large
mutual inclinations. Since planets form in disks, it is likely that
they initially occupy nearly coplanar orbits, and systems that
remain stable indefinitely are likely to stay roughly coplanar.
Alternatively, the system may not be indefinitely stable. While
old compared to the lifetime of the protoplanetary disk, the
current age of the planetary system is probably less than one-
tenth the main-sequence lifetime of the star (∼1.5 Gyr; Iben
1967). Without further analysis, it is thus possible that the
planets are in the process of scattering off of one another,
currently have large eccentricities and mutual inclinations, and
will not be stable over the lifetime of the star. In fact, current
models predict that planetary systems undergo periods of strong
mutual excitation, perhaps generically leading to the ejection of
planets (e.g., Levison et al. 1998; Goldreich et al. 2004; Scharf
& Menou 2009; Veras et al. 2009).

To explore these possibilities systematically, we take the
following approach. We start with restrictive assumptions about
the orbital architecture of the system, and we then progressively
relax those assumptions. At each stage, we find parameters that
maximize the stability, and we finally argue that a resonant
configuration is most likely for the system to have survived to
its current age. In Sections 2–6.3, we assume that the orbits
of the planets are close to coplanar. In Section 2, we discuss
astrometric constraints on the orbits and show that, although
the data are consistent with circular and coplanar orbits, the
system orientations that fit the data best do not generate stable
orbits. In Section 3, we determine what planetary masses
would be needed for circular, coplanar orbits to be stable and
argue that they are too low given the observed luminosities.
Having thus ruled out circular, coplanar solutions, we next allow
the planetary eccentricities to vary. Since the inner planet’s
eccentricity is unconstrained by the data, we first scan over
non-circular orbits for the inner planet while keeping the outer
two planets on circular orbits (Section 4). The suggestive results
of this experiment lead us to our preferred configuration for the
planetary system: a mean-motion resonance between the inner
two planets (Section 5). An initial exploration of the parameter
space of possible resonant orbits shows that if the outer two
planets are also in a mean-motion resonance, the system could
be stable even if the companion masses are twice as large as the
nominal masses. In Section 6, we allow all the orbital parameters
to vary via a Monte Carlo method. We confirm that mean-motion
resonance is the most likely reason the planetary system has
survived. We also find a scattering-type configuration that is
stable for 30 Myr, but we argue that it is unlikely. In Section 7,
we discuss our conclusions.

2. ASTROMETRIC CONSTRAINTS

In Figure 2, we plot the sky-projected position and velocity
vectors (Table 1) of the three planets, at the epoch 2008 August
12, as determined by least-squares fit to the astrometry in Table 1
of Marois et al. (2008). The distance to the star is 39.4 ± 1.1 pc,
based on the Hipparchos parallax (van Leeuwen 2007). We use
this nominal distance to convert observed angular separations
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Table 1
Astrometric Constraints

Planet [xE , xN ] (AU) s (AU) [vE , vN ] (10−3 AU day−1) vp (10−3 AU day−1)

b [60.16(6), 31.50(6)] 67.91(6) [1.49(0.14),−2.18(0.14)] 2.64(0.14)
c [−25.90(6), 27.76(6)] 37.97(6) [2.15(0.14), 2.47(0.14)] 3.27(0.14)
d [−8.45(6),-22.93(6)] 24.44(6) [−3.5(2.7), 0.0(2.7)] · · ·

Notes. Sky-projected positions and velocities of each planet relative to the star, found by a rectilinear least-squares fit
to the astrometry of Table 1 of Marois et al. (2008). Positions are at the epoch of 2008 August 12, velocities assume
no detectable orbital acceleration. Errors are given in parentheses, referring to the final digit(s).

Figure 2. Observed sky-projected positions and velocities for the three planets,
along with the velocities of face-on, circular orbits for M� = 1.5 M� (the
nominal model; model A of Tables 2 and 4). The circles represent 1σ and 2σ

errors on the measured velocities. The inner planet, d, has a barely detected
velocity due to a short time baseline. Errors on the positions lie within the
circles marking the locations of the planets.

to AU. The 3% error thus introduced into the distances and
velocities does not change our qualitative conclusions; in
Section 6 we take this error into account.

The impression given by Figure 2 is that we are seeing
the planetary system face-on, with counterclockwise, nearly
circular orbits. This is what we call the “nominal model,” and
we plot the implied orbits and velocity vectors for a 1.5 M�
star, also in Figure 2. If all of the orbits are truly face-on and
circular, their sky-projected separation s ≡

√
x2

E + x2
N = a, and

their sky-projected velocity vp ≡
√

v2
E + v2

N = vorb, the orbital
velocity. Since all of the planets are bound mostly by the mass
of the star, they should follow circular orbits at semimajor axis
a with velocities vorb = 2π AU yr−1 (M�/M�)1/2(a/AU)−1/2.
For the outer two planets, s and vp are measured with high
precision (Table 1), providing two independent measurements
of the stellar mass. Given this nominal model, the stellar mass
binding planet b is M�b = 1.60 ± 0.17 M� and the stellar mass
binding planet c is M�c = 1.38±0.12 M�. These values bracket
the value of M� = 1.47 ± 0.30 M� preferred by combining
parallax, magnitude, and spectroscopic information (Gray &
Kaye 1999) and are in reasonable agreement: ΔM� ≡ M�b −
M�c = 0.22 ± 0.21 M�. However, there is some tension

in the observed velocities. For both planets b and c, the
observed velocity vector is ∼2σ away from perpendicular to the
separation vector (from the star to the planet). The instability
reported in the introduction is, however, the main failing of the
nominal model.

To address this failing, we first search for another model in
which the planets are still coplanar and circular, but the system
plane is inclined by an angle i to the plane of the sky, with
an ascending node Ω measured east of north, and a to-be-
determined consistent mass M�. The sky projection changes
the magnitudes and directions of the velocity vectors and the
inferred spacings of the planets, and taking it into account could
lead us to infer a wider-spaced, more stable system. We focus
only on circular and coplanar models in this section, saving more
complicated direct fits to the data for Section 6. The velocity
field on the sky due to this model is

(
vE

vN

)
= n(xE, xN )

(−α sin Ω cos i − β cos Ω(cos i)−1

α cos Ω cos i − β sin Ω(cos i)−1

)
,

(1)
where (

α

β

)
=

(
cos Ω sin Ω

− sin Ω cos Ω

)(
xE

xN

)
, (2)

and
n(xE, xN ) = (GM�)1/2(α2 + β2(cos i)−2)−3/4 (3)

is the mean motion as a function5 of position.
We solve for the three parameters, i, Ω, and M�, assuming

that the planets are on non-interacting Keplerian orbits, each
of which only feels the mass of the central star. We calculate
χ2 values using vE and vN , and their associated measurement
errors, for all three planets (Table 1; six data points)—we neglect
the errors on xE and xN , which are too small to affect our results.

Solutions are reported in Table 2. In model A, which is the
nominal model, we fix the parameters to their nominal values
to serve as a baseline. In model B, we require face-on orbits,
but let M� float, the result being not far from the nominal
stellar mass. In model C, we fix M� = 1.5 M�, but let the
orientation float. The orbits depart from face-on by ∼20◦, and χ2

improves a little. In model D, we let all three parameters float, but
respect the independently measured stellar mass by including
[(M�/M� − 1.5)/0.3]2 in χ2. In model E, all three parameters
float with no such mass constraint. The orientation dependence
of χ2 is shown in Figure 3, and the mass dependence is shown in
Figure 4. Interestingly, the best fits are for M� much larger than
the nominal value 1.5±0.3 M�. This is not surprising given the
good agreement of circular orbits because we are introducing
line-of-sight offsets and velocities, so a more massive star is
needed to make such orbits circular. Figure 5 shows how the
velocity vectors of model D falls into the 1σ error ellipse for

5 Here, we neglect the few-percent contribution of the planetary mass.
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Table 2
Solutions of Circular, Coplanar Systems

Solution M� (M�) i Ω χ2 dof α ab (AU), λb ac (AU), λc ad (AU), λd

A ≡1.5 ≡0◦ ≡0◦ 12.63 6 0.049 67.91, 62.◦36 37.97, 316.◦99 24.44, 200.◦23
B 1.44 ≡0◦ ≡0◦ 12.19 5 0.032 67.91, 62.◦36 37.97, 316.◦99 24.44, 200.◦23
C ≡1.5 21.◦3 151.◦5 9.07 4 0.059 72.89, 62.◦30 38.15, 315.◦97 25.47, 202.◦23
D 1.86 33.◦2 145.◦9 5.67 4 0.225 81.04, 61.◦30 38.16, 315.◦29 27.69, 204.◦92
E 2.28 41.◦4 143.◦6 2.77 3 0.429 90.02, 60.◦20 38.16, 314.◦81 30.33, 207.◦30

Notes. The symbol “≡” denotes values among the parameters M�, i, Ω that are held fixed for this solution. The
inclination i is the angle between the planetary system’s orbital angular momentum vector and the vector toward the
observer, and the ascending node Ω is measured east of north (so the position angle of a planet as it passes through the
plane of the sky, toward the observer, is Ω). α is the significance value of χ2 being this high using a χ2-test, given a
certain number of degrees of freedom (dof), under the null hypothesis that the circular coplanar model with the given
orientation and stellar mass is correct. For instance, the probability of observing these velocities given the nominal
model is <5%.

Figure 3. Model χ2 as a function of orbit orientation of circular, coplanar
models at stellar mass of M� = 1.86 M�. Note the degeneracy Ω → Ω + 180◦,
which arises because we are modeling an unobserved z and vz (the direction ẑ is
away from the observer) for each planet, but due to the sky-projection inherent
in the observations, these values could just as well be −z and −vz, switching
the ascending and descending nodes at z = 0. A face-on orientation lies at the
origin.

each planet. However, the inner two orbits are closer spaced
than the nominal model, and the instability is even more rapid:
in an integration a close encounter occurred between c and d on
their second conjunction (see Table 3 for initial conditions).

This integration and all those in Sections 2–4 were performed
using the HYBRID integrator of Mercury with a time step of
100 days. Each integration was terminated when any two plan-
ets passed within one Hill radius of each other, one was ejected
(distance to the star >500 AU with positive energy), or the sys-
tem lasted 160 Myr. Before the onset of close encounters, energy
was conserved to one part in ∼105 and angular momentum was
conserved to one part in ∼1012. Though we used the HYBRID
integrator, because the integrations were halted at the first close
encounter, the integrator’s treatment of close encounters did not
affect our results. In Section 6.1, we verify that after a close
encounter, at least one planet is quickly ejected.

Figure 4. Model χ2 as a function of stellar mass, minimizing over system
orientation (i and Ω) of circular, coplanar models. Masses above the nominal
mass 1.5 M� are preferred. The different crosses, each assigned a letter, are
different solutions as given in Table 2.

Similarly, we fit the best orientation for M� values between
1.1 and 3.0 M�, spaced by 0.01 M�, and integrated those orbits.
No three-planet systems generated in this way were stable for
more than 1.5 × 105 yr. Therefore, we find that more careful fits
to the data, under the hypothesis of circular coplanar orbits, do
not simply lead to a stable solution.

3. MUCH LOWER PLANETARY MASSES?

Before relaxing the assumption that the planets’ orbits are
circular and coplanar, we ask how low the planets’ masses must
be for the nominal orbits to be stable. Intuitively, if their masses
are very small, the planets will not significantly perturb each
other on the timescale of 30–160 Myr. There is a well-developed
framework for quantifying long-term stability in systems with
only two planets. In three-body systems, conservation of total
energy and angular momentum constrains the possible motions
(Marchal & Bozis 1982). Applied to a system of a star and two
planets, we may define Hill stability as a constraint that the
planet that is initially closer to the star stays closer to the star for
all time. When the criterion for Hill stability is satisfied, a close
encounter between the planets is prohibited (although escape of
the outer planet to infinity, or the collision of the inner planet
with the star, is not forbidden). Qualitatively, stability requires



1412 FABRYCKY & MURRAY-CLAY Vol. 710

Figure 5. Observed sky-projected positions and velocities for the three planets,
along with the velocity predictions of model D (Tables 2 and 4) of a circular,
coplanar system.

that the planets be separated by more than a few mutual Hill
radii: RH ≡ 1

2 (ain + aout)ε, with ε ≡ [(Min + Mout)/(3M�)]1/3.
Define Δ as the planets’ difference in semimajor axes in terms
of RH . Gladman (1993) gave the Hill stability criterion as

Δ > Δcrit ≡ 2
√

3

[
1 + 31/2ε

−
(

11Min + 7Mout

18M�

)
3−2/3ε−2 + · · ·

]
.

(4)

Evaluating these numbers using the nominal system with nom-
inal masses 7, 10, 10 MJup, we have Δcd = 2.68 and Δcrit,cd =
4.03 for the inner two, and Δbc = 3.69 and Δcrit,bc = 3.98 for
the outer two. Apparently both subsystems fail to satisfy the Hill
stability criterion.

We performed numerical simulations to find just how small
the planets would need to be to remain stable. We are helped
by the long orbital periods and short system age (only ∼106

dynamical times), which allows suites of integrations to be
rather inexpensive. First, we surveyed the instability near the
nominal orbits (“A”), as the search of Section 2 did not reveal
any more stable starting points. Let us focus on the inner
subsystem (c–d), as it is further from stability, and ask the
question: by what factor must we multiply the nominal masses
for stability over 30 Myr? In Figure 6, we plot the time to
instability—when the first Hill-sphere entry occurs—versus
this common mass scaling. Vertical lines represent two-planet
systems consisting of planets c and d on circular, face-on orbits.
We note that below Mp = 0.33Mnominal, where Hill’s stability
criterion is satisfied, all of the two-planet systems last for
160 Myr, when the integrations were stopped. Gladman (1993)
found that if the planets initially have small eccentricity (radial
excursions comparable or less than a Hill radius) and are not in
resonance, then the timescale for instability drops rapidly after
this boundary (Equation (4)) is crossed. However, instability

Figure 6. Time to instability vs. scaling of planetary masses. In each simulation,
the planets are given circular, coplanar orbits (model A), but all of their masses
are scaled down by a common factor from their nominal values (see Table 4).
Solid vertical lines: results for the inner two planets, in the absence of planet b.
Dark gray region: results for all three planets. Light gray region: the stellar age
as given by Marois et al. (2008). Dashed line: time at which hot-start models of
planets from Baraffe et al. (2003) reach luminosities of 10−4.7 L� for masses
scaled to Mnominal = 10 MJup. Given the system age estimate from Marois et al.
(2008), stability requires planet masses �2 MJup. Cooling models allow for
stability of planets up to ∼3.5 MJup at the cost of an uncomfortably low system
age: ∼10 Myr.

does not appear on timescales relevant for the c-d subsystem
until Mp � 0.5Mnominal. In a separate suite of integrations (not
plotted), we found that the nominal orbits and masses of the
outer pair of planets can be stable for 160 Myr. We also plot
the instability timescale of the three-planet system (dark gray
region), with each of the three planetary masses scaled by a
common factor. The masses must be lower than about 1/5 of
the nominal masses to remain stable 30 Myr, the lower limit on
the stellar age (depicted by the light gray stripe).

When considering three or more planets, there are no
sharp stability boundaries, but there are well-established em-
pirical scaling relations between semimajor axis separation
and instability timescale (Chambers et al. 1996; Zhou et al.
2007). Applying the scaling relation of Chatterjee et al. (2008,
Appendix A, fit 1) to the HR 8799 system implies Δ � 4.4 if the
system is to remain stable �30 Myr. Let us assume the instability
between the inner two planets is dominant, so this limit applies
to Δcd ; then the masses must be �1/4 of the nominal masses, in
good agreement with the non-resonant systems of Figure 6. We
note, however, that none of the published scaling relations ex-
tend to planetary-to-stellar mass ratios of 5 × 10−3, nor do they
strictly apply if adjacent planets are unequally spaced in Hill
radii (Δcd �= Δbc), both of which are relevant for HR 8799. For
masses > 1/4 of the nominal masses, our results give a longer
lifetime than the scaling of Chatterjee et al. (2008), sometimes
orders of magnitude longer. Regardless, we confirm that insta-
bility can occur even if the subsystems are initially Hill stable.
In circular, face-on orbits, the implied upper limits of masses –
1.5, 2, and 2 MJup—are incompatible with any cooling model at
ages greater than 30 Myr, even extreme hot-start models.

4. NON-CIRCULAR INNER ORBIT?

In the previous section, we found that face-on, circular orbits,
consistent with the astrometric constraints, could only be stable
if the planetary masses were implausibly low. In this section,
we choose the lowest planetary masses that are compatible with
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Figure 7. Instability time of coplanar systems, with planets b and c on circular
face-on orbits and planet d on a non-circular orbit, with masses of 5, 7, and 7
MJup for b, c, and d, respectively (see Table 4). Lines: based on planets c and d
(in the absence of planet b) from the nominal model, but choosing a non-zero
eccentricity for planet d to satisfy its currently observed distance from the star.
Dark gray region: same as before, but in the presence of planet b with its nominal
parameters. Light gray region: the stellar age as given by Marois et al. (2008).
A few three-planet systems last the stellar age, and these correspond to a 2:1
mean-motion resonance between planets c and d. Current separations between
the star and the planets are labeled sd and sc.

hot-start models, and we choose a non-circular orbit for planet
d (its orbit is currently unconstrained by observations). We seek
systems that remain stable until the lower limit on the stellar age
of 30 Myr.

We first simulate the inner two planets, each of 7 MJup, in
the absence of planet b. They are given coplanar orbits, with
planet c on a circular orbit at ac = sc = 37.97 AU. The
initial longitudinal separation is given by the observed positions,
assuming face-on orbits (λc−λd ≈ 117◦). We scan over a grid of
semimajor axes for the inner planet. For ad < sd = 24.44 AU, ed
is chosen so that apastron is at 24.44 AU, and for ad > 24.44 AU,
ed is chosen so that periastron is at 24.44 AU (see Table 4 for how
the initial conditions are generated). These choices maximize the
chance that the two-planet system will be stable, while matching
the constraint of the currently observed separations from the star.
We plot the instability times in Figure 7 as vertical lines. We
repeat this calculation with planet b present with its nominal
orbital elements (see Table 4) and with mass 5 MJup, and plot
those instability timescales in Figure 7 as a gray region.

We observe that a very narrow range of ad is compatible with
both the observed astrometry of the planets and with dynamical
stability. The presence of the third planet narrows this range
still further. The center of this range corresponds with the 2:1
mean-motion resonance between planets c and d. (The position
is offset from the location ad = (1/2)2/3ac because the large
mass ratios induce fast precession.) In Figure 8, we show how
this resonance protects the planets from close encounters.

We ran identical simulations with planetary masses of 7, 10,
and 10 MJup, and found qualitatively similar results, except the
most stable three-planet simulation lasted only 10 Myr. In the
next section, we examine this resonant protection mechanism
and find initial conditions that produce acceptably long survival
times even for these and even higher masses.

5. MEAN-MOTION RESONANCE

Inspired by the fact that Figure 7 shows a region of greater
stability in the vicinity of the 2:1 resonance between c and d, we
search for a face-on system near the center of the resonance. We

Figure 8. Positions of the planets, every ∼3×105 yr, in the numerical integration
with ad = 0.95 × 24.44 AU = 23.22 AU from Figure 7 (see also Table 4).
The rotating coordinates are centered on the star with planet c on the positive
horizontal axis. The circle is a distance from the star of 24.44 AU. When the
inner planet lags the middle planet by � 117◦ (its current position), its distance
from the star is � 24.44 AU, but when it reaches the middle planet’s longitude,
it is always closer to the star. Planets are labeled near their currently observed
positions relative to one another. The 2:1 mean-motion resonance protects the
two planets from close encounters and adds coherence to the long-term transfer
of energy and angular momentum during encounters.

use the BS integrator throughout this section. We find a solution
in the absence of planet b in which the resonance angle,

φd = 2λc − λd − �d, (5)

librates with small amplitude around 0◦. When evaluating reso-
nant angles, we compute the orbital elements with astrocentric
coordinates. Resonance requires that ad is low enough for planet
d’s period to be commensurate with planet c’s, and the obser-
vations require that ed is high enough for planet d to reach its
currently observed separation from the star. Currently, we ob-
serve λc − λd ≈ 117◦, so φd ≈ 0◦ implies λd − �d ≈ 126◦.
Integration with these initial conditions for planets c and d, in the
absence of b, indeed shows libration and long-term stability (at
least 160 Myr), for initial ad and ed values that place the planets
in resonance (e.g., the system labeled “two-planet resonance”
in Table 3).

In such solutions, the resonance angle for planet c, φc,in =
2λc − λd − �c usually does not librate. The resonance involves
only the eccentricity of planet d. When planet b is added,
planets b and c excite each other’s eccentricities and cause
the libration amplitude of φd to fluctuate. Sometimes these
excited eccentricities cause an encounter between b and c;
sometimes the loss of libration in φd allows an encounter
between c and d. In Figure 9, we show an example of this
instability, where planets b and c start in their nominal orbits,
ad = 23.32 AU, ed = 0.09, φd = 0◦, and all bodies have
their nominal masses (see Table 3). Panel (a) shows the range
of motion of each orbit versus time, panel (b) shows the
resonance angle versus time, and the bottom panels show
brief segments (3 × 104 yr, at times labeled above panel b)
of the motion of the resonance angle through phase space.
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Figure 9. Simulation of the nominal masses, which is initially protected from
close encounters by the 2:1 resonance between planets c and d, but it is destroyed
after 35.6 Myr due to interactions between planets b and c (see Table 3 for initial
conditions). Panel (a): semimajor axis, periapse, and apoapse for the three
planets as a function of time; panel (b)—dots: resonance angle every ∼105 yr
(libration is rapid, on nearly orbital timescales, and is not well-sampled) and
lines: its running envelope, as a function of time; panels (t1)–(t4) phase plot of
the resonance angle, over short durations, as labeled above panel (b).

Over such brief intervals, the libration amplitude holds rather
steady, except at the very end of the integration. In this example,
the instability causes an encounter between planets c and d at
35.6 Myr.

Compared to the non-resonant cases, this system showed
considerable longevity: it lasts long enough to be a plausible
model for the observed system. We have found a way to calm
the strongest interactions, those that cause instability after a
few thousand orbits: a resonance between planets c and d that
protects them from close encounters. This resonance protects
the system until the somewhat longer timescale interactions
between b and c cause an instability. But those interactions can
also be suppressed by postulating yet another resonance. We
integrated the nominal masses with initial conditions as above
except ad = 23.42 AU instead of 23.32 AU (Table 3). The
resulting system showed resonance protection between planets
b and c. The 2:1 resonance is active, which is possible far from
its nominal location because the pericenters are precessing on
nearly orbital timescales. In Figure 10, we show this system
lasting for 160 Myr. In this example, the resonance angle φd

is librating with small amplitude the whole time (panels (b)
and (c)), and the resonance angle φc,out = 2λb − λc − �c

spends more time near 0◦ (panels (d) and (e)), indicating the
system is protected by both resonances. Even after 160 Myr
of evolution, we have verified that there are epochs at which
this solution fits the astrometric data of Table 1. We found

Figure 10. Simulation of the nominal masses, lasting for 160 Myr with no
signs of imminent instability, due to a double resonance (see Table 3 for initial
conditions). Panels are as in Figure 9. The resonance angles are defined as
φd = 2λc − λd − �d and φc,out = 2λb − λc − �c .

printouts for which a rotation in the plane of the sky matched
the simulated to the observed positions within a fractional error
of 1% (more printouts would likely find a closer match), and
then we calculated χ2 based on the velocities of Table 1. The
resulting χ2 = 11.4 was both acceptable and quite competitive
with the models of Section 2.

The next step is to understand how these resonances protect
the system as a function of planetary mass. For instance, Figure 7
shows four integrations in which the resonance allows planets of
masses Mb = 5, and Mc = Md = 7 MJup to be stable for 30 Myr,
which is consistent with the observed system. But can the system
survive at the nominal masses with only one resonance? How
high can the masses go in the double resonance? In Figure 11,
we plot the time to instability for a wide range of planetary mass
scalings. We use initial conditions corresponding to the nominal
face-on, circular orbits (non-resonant), the initial conditions for
Figure 9 (singly resonant), and parameters chosen to maximize
stability of the double resonance for massive planets. All are
listed in Table 3. Because the resonant locations shift with
increasing planetary mass, the ideal orbital parameters for stable
resonance depend on the masses. In a suite of integrations, we
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Figure 11. Time to instability of three-planet systems as a function of a common
mass scaling for the planets relative to their nominal masses. Plusses: face-on,
circular orbits; diamonds: orbits in which the 2:1 resonance between planets
c and d is active initially; crosses: orbits in which both the 2:1 resonance
between planets c and d and the 2:1 resonance between planets b and c are
active initially; gray region: the stellar age as given by Marois et al. (2008).
See Table 3 for initial conditions. To test the sensitivity of our results to small
changes in initial conditions, for each mass scaling, we calculate the time to
instability for the stated orbital parameters and for five additional sets of orbital
parameters generated as follows. For each orbital element, we draw a random
number from a normal distribution with mean 0 and a standard deviation of 1.
We then multiply the result by a scaling factor and add it to the initial value
of that element. The scaling factors are 10−4 AU for the semimajor axis, 10−4

for the eccentricity, and 0.◦01 for the inclination, ascending node, longitude of
pericenter, and mean anomaly.

slightly vary the initial conditions (see Table 3) to sample the
chaotic outcomes.

We find that systems with the nominal masses rarely survive
30 Myr with a single resonance, but can easily survive at least
160 Myr with a double resonance. In fact, our integrations show
that a doubly resonant system can be stable for 160 Myr, even for
planetary masses a factor of 2 larger than the nominal values.
That is, if this doubly resonant configuration is correct, the
planets could even have the masses of brown dwarfs. We find
it remarkable that a double-2:1 resonance can allow planetary
masses an order of magnitude larger than the ∼2 MJup allowed
in a stable, non-resonant system.

In some of these integrations, we have found the three-
body Laplace resonance, with angle φL = λd − 3λc + 2λb,
librating temporarily (see also Section 6.2). Such solutions are
also consistent with the astrometric data. The Laplace angle was
first observed to librate in the satellites of Jupiter (e.g., Murray &
Dermott 1999). Besides HR 8799, two other extrasolar planetary
systems have been proposed to inhabit the Laplace resonance.
Extra peaks in the periodogram of radial-velocity residuals of
the GJ 876 system (Rivera et al. 2005) and the HD 82943 system
(Beaugé et al. 2008) could correspond to planets in the Laplace
resonance with the known planets. Although each of these three
extrasolar systems taken separately is merely suggestive of 4:2:1
and Laplace resonances, taken together they are quite intriguing.
They may point to a new area of research in multiplanet systems
that has been explored rather little so far, both theoretically and
observationally.

6. MONTE CARLO SEARCH

In the integrations so far, we have systematically varied a
few parameters, concluding that a mean-motion resonance is
a promising solution to stabilize the system. Now we seek
alternatives by allowing all the other orbital parameters to vary.
The objective is to survey what orbits are allowed when the

age of the system and the planetary masses are presumed to be
robust. To be conservative, we adopt the youngest system age
(30 Myr), corresponding to the least massive planets (5, 7, 7)
MJup, as in Section 4. We select all the other variables with
a Monte Carlo method. We draw the stellar mass from a
normal distribution with mean 1.47 M� and standard deviation
0.30 M� (Gray & Kaye 1999), and we draw the system distance
from a normal distribution with mean 39.4 pc and standard
deviation 1.1 pc (van Leeuwen 2007). The planetary sky-
projected positions and velocities are drawn from normal
distributions according to the observed parameters of Table 1.
Note that these parameters are derived from the discovery
observations of Marois et al. (2008) only; in Section 6.6
we check which systems are consistent with the important
precovery observation of planet d by Metchev et al. (2009).
What remains is to draw z and vz for each planet, which are not
constrained by the observations; we make that choice in various
ways in the following subsections.

In this section, we follow some planets with very high eccen-
tricities and in some cases integrate through close approaches
between planets. We use the BS integrator as before, and we fol-
low the integration until one planet is ejected or collides with the
star. Over 30 Myr, energy is typically conserved to better than
one part in 106, and angular momentum is typically conserved
to better than one part in 107.

6.1. From Crossing Orbits to Ejection

First, we wish to verify that once planets’ orbits begin
crossing, at least one of them is ejected in a timescale much
shorter than the age of the system. To do so, note that the
expression for orbital energy of a single planet around a star
is a monotonically increasing function of |z| or |vz|. Therefore,
selecting non-zero values for those parameters will lead to a
planet that is less bound than in the case of a face-on orbit.
If vz = 0, there is a maximum value of |z|, called |z|max,
that permits a bound orbit. If z is given, then there is a
maximum value of |vz|, called |vz|max, that permits a bound
orbit. We wish to find how long it takes for planets on crossing
orbits that are not marginally bound to be ejected by each
other, so we first selected z from a distribution uniform in the
interval [−|z|max/3, |z|max/3], after which we selected vz from a
distribution uniform in the interval [−|vz|max/3, |vz|max/3]. This
choice of distribution has the advantage of being connected to
the observables (actually, complementary to them), being easy
to implement, and being tuned to answer the question. It has the
disadvantage of not corresponding to a simple distribution in
orbital element space; nevertheless, a very wide range of orbital
elements are sampled.

We ran 1530 systems generated in this way, integrating to
an ejection of one component (defined as reaching an orbital
distance >500 AU with positive energy). The median time to
ejection was 0.22 Myr, and the maximum time was 7.7 Myr.
These timescales are longer than the ∼0.02 Myr scattering phase
of Figure 1 due to significant mutual inclinations. In any case,
the scattering phase will not contribute significant longevity to
the system, and we are justified in stopping integrations at the
first close approach in other sections of this paper. Veras et al.
(2009) have also reached this conclusion for the planets of HR
8799.

6.2. Moderately Eccentric, Coplanar Planets

Next, we extend the analysis of Section 4 to the case in which
all three planets have non-zero eccentricities. For simplicity, and
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Table 3
Log book of Integrations: (I) Orbital Elements

Integration M� (M�) Mp (M�) a (AU) e i ω Ω Ma

Section 2, D 1.86 0.0067 81.04 0.0 0◦ 0◦ 0◦ 61.◦30
Figure 5 0.0095 38.16 0.0 0◦ 0◦ 0◦ 315.◦29

0.0095 27.69 0.0 0◦ 0◦ 0◦ 204.◦92

Section 5 1.5 0.0095 37.97 0.0 0◦ 0◦ 0◦ 226.◦99
Two-planet resonance 0.0095 23.32 0.09 0◦ 344.◦0 0◦ 126.◦00

Section 5 1.5 0.0067 67.91 0.0 0◦ 0◦ 0◦ 332.◦36
Figure 9 0.0095 37.97 0.0 0◦ 0◦ 0◦ 226.◦99

0.0095 23.32 0.09 0◦ 344.◦0 0◦ 126.◦00

Section 5 1.5 0.0067 67.91 0.0 0◦ 0◦ 0◦ 332.◦36
Figure 10 0.0095 37.97 0.0 0◦ 0◦ 0◦ 226.◦99

0.0095 23.42 0.09 0◦ 344.◦0 0◦ 126.◦00

Section 5b 1.5 0.0067x 67.91 0.0 0◦ 0◦ 0◦ 332.◦36
Figure 11 0.0095x 37.97 0.0 0◦ 0◦ 0◦ 226.◦99
Non-resonant 0.0095x 24.44 0.0 0◦ 344.◦0 0◦ 126.◦00

±10−4 ±10−4 ±0.◦01 ±0.◦01 ±0.◦01 ±0.◦01

Section 5b 1.5 0.0067x 67.91 0.0 0◦ 0◦ 0◦ 332.◦36
Figure 11 0.0095x 37.97 0.0 0◦ 0◦ 0◦ 226.◦99
Single resonance 0.0095x 23.32 0.09 0◦ 344.◦0 0◦ 126.◦00

±10−4 ±10−4 ±0.◦01 ±0.◦01 ±0.◦01 ±0.◦01

Section 5b 1.5 0.0067x 67.91 0.002 0◦ 180◦ 0◦ 180◦
Figure 11 0.0095x 37.97 0.005 0◦ 0◦ 0◦ 0◦
Double resonance 0.0095x 23.52 0.083 0◦ 180◦ 0◦ 0◦

±10−4 ±10−4 ±0.◦01 ±0.◦01 ±0.◦01 ±0.◦01

Section 6.4c 1.5 0.0048 67.91 0.0 i 0◦ Ωb 62.◦36
Figure 13 0.0067 37.97 0.0 0◦ 0◦ 0◦ 316.◦99

0.0067 24.44 0.0 i 0◦ Ωd 200.◦23

Notes. For each integration or suite of integrations listed, the three lines specify the initial conditions for planets b, c,
and d, respectively. These are the values we input to the integrator Mercury (Chambers 1999).
a Mean anomaly.
b In this series of integrations the planetary masses were scaled by various factors (x). To generate Figure 11,
small, random (Gaussian) components with the indicated standard deviation were added to the orbital elements for a
statistical sample of the chaotic outcomes.
c This series of integrations spanned a grid of three orientation parameters, i (common to planets b and d), Ωb , and
Ωd . The values were i ∈ [0◦, 2◦, 4◦, . . . , 20◦, 30◦, 40◦, . . . , 180◦]; Ωb and Ωd ∈ [0◦, 60◦, 120◦, . . . , 300◦].

acknowledging that the planets probably formed in a common,
flattened disk, we first investigate coplanar systems. There are
several steps to generating a (z, vz) pair for each planet:

1. draw stellar mass, distance, and planetary sky-projected
positions and velocities, as described above;

2. draw a vector uniformly from the unit sphere, which serves
as the direction of all the planets’ angular momenta;

3. compute z and vz for each planet, consistent with the already
chosen spatial variables;

4. discard the system if x, a number drawn from a uniform
distribution in [0, 1], is greater than L/LML, where

L ≡
∏

j=b,c,d

ej exp[−(ej /σ )2/2] (6)

and
LML ≡ (σ exp[−1/2])3 (7)

with σ = 0.05.

If a system is discarded at steps 3 and 4, the process
begins anew with step 1. Step 4 is a technique called rejection
sampling, and its purpose is to impose a prior distribution on
the selected orbital elements eb, ec, and ed. We sought planetary

orbits with low to moderate eccentricity, using the Rayleigh
distribution (Equation (6)), as recommended by recent work on
the generation of eccentricities by planetary perturbations (Zhou
et al. 2007; Jurić & Tremaine 2008). We chose σ consistent
with the dynamically “inactive” population of Jurić & Tremaine
(2008).

We ran 16,581 systems generated this way, until a close
approach or 30 Myr elapsed. The median time until close
approach was 3100 yr, and only 49 survived 30 Myr. Of the
surviving systems, we checked for 2:1 resonances, the two
resonant arguments φd and φc,in for the inner pair and the
arguments φc,out and φb = 2λb − λc − �b for the outer pair.
We considered the resonance to be dynamically significant if
h ≡ e cos φ had a non-zero average value (as in Figure 10, panel
(e)): |〈h〉| > 2.5

√
〈h2/n〉, where the averages were performed

over n (∼100) printouts of astrocentric orbital elements. In
calculating h, ed is paired with φd , ec with φc,in and φc,out, and
eb with φb. This criterion is considerably looser than traditional
definitions of being “in a resonance,” either libration of a
resonant angle or lying interior to a separatrix in phase space.
Nevertheless, this criterion indicates (1) protection against
close encounters in the sense of Figure 8 and (2) enhanced
coherency to energy and angular momentum transfers during
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Table 4
Log book of Integrations: (II) State Vectors

Integration M� Mp xN xE xZ vN vE vZ

(M�) (AU) (10−3 AU day−1)

Section 1, nominal 1.5 0.0067 60.16 31.50 0.0 1.186 −2.265 0.0
Section 2, A 0.0095 −25.90 27.76 0.0 2.500 2.332 0.0
Figures 1 and 2 0.0095 −8.45 −22.93 0.0 −3.998 1.473 0.0

Section 3 1.5 0.0067x 60.16 31.50 0.0 1.186 −2.265 0.0
Figure 6a 0.0095x −25.90 27.76 0.0 2.496 2.329 0.0

0.0095x −8.45 −22.93 0.0 −3.996 1.473 0.0

Section 4b 1.5 0.00435 60.16 31.50 0.0 1.186 −2.265 0.0
Figures 7 and 8 0.0062 −25.90 27.76 0.0 2.496 2.329 0.0

0.0062 −8.45 −22.93 0.0 −3.996γ 1.473γ 0.0

Section 6.2 1.60905 0.0048 60.18 31.47 27.21 1.464 −2.244 0.4295
Figure 12 0.0067 −25.94 27.89 −8.527 2.398 2.460 1.178

0.0067 −8.601 −22.90 −5.311 −3.577 1.891 −1.327

Section 6.5 1.54796 0.0048 57.54 30.22 9.765 1.293 −2.034 0.2204
Figure 14 0.0067 −24.74 26.61 −23.15 2.228 2.327 1.334

0.0067 −8.084 −22.00 −9.609 −3.490 1.518 0.2634

Notes.
a In this series of integrations the planetary masses were scaled by various factors (x). Some reported integrations had
only two planets: they were missing either the first planet listed (b) or the last planet listed (d).
b In this series of integrations the innermost planet had a non-zero eccentricity. This was implemented by multiplying
its initial velocity from the face-on, coplanar model by γ ≡ √

2 − 24.44 AU/ad . Two series were performed, one
with all three planets and one without the first planet listed (b).

conjunction, as conjunctions occur at preferential phases of
the orbit. All 49 survivors had at least one of the four angles
fulfilling this criterion: for 26 only the inner pair were engaged
in the resonance, for two only the outer pair were engaged
in the resonance, for 21 both resonances were active. We
expect that most of these 49 survivors will eventually be
disrupted by mutual perturbations; in no case was the motion as
periodic as in Figure 10. Even systems stable for 160 Myr may
become unstable over the main-sequence lifetime of the star
(Goździewski & Migaszewski 2009). Although 21 integrations
displayed the 4:2:1 double resonance, in only one case did
the Laplace angle φL librate the entire time (about 180◦), and
that system shows the strongest inner and outer resonances of
the entire set. It is unclear if or how libration of φL enhances
stability, over and above each pair of 2:1 resonances.

One surviving system showed only a very weak inner 2:1
mean-motion resonance. We examined the first 1.6 Myr of this
integration in detail, finding that Pc/Pd fluctuated in the range
2.30–2.45 and Pb/Pc fluctuated in the range 2.7–3.0. With thou-
sands of printouts, we determined that h associated with φd had
a non-zero average of +0.012. However, its large range −0.078
to +0.105 suggests weaker protection by the 2:1 resonance than
that enjoyed by the other stable systems. The outer two planets
occupied the 3:1 mean-motion resonance associated with the
angle φ3:1 = 3λb − λc − 2�c at a similarly weak level. Most
strikingly, all three planets of this system maintained apsidal
alignment with one another throughout the integration: their
relative apsidal angle Δ� librated around 0◦. Apsidal lock-
ing apparently provides additional protection against close ap-
proaches: an inner planet only comes to apocenter at the same
spatial location where an outer planet is at apocenter, so the two
bodies do not come too close together. This system6 is illus-
trated in Figure 12, which gives a pictorial representation of the
apsidal protection mechanism. We also searched all of the stable

6 Initial conditions are given in Table 4.
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Figure 12. Simulation lasting for 109 Myr with weak mean-motion resonance,
but with strong apsidal locking (see Table 4 for initial conditions). Small crosses
correspond to the apoapse position of each planet, at snapshots spaced by
1.1 Myr, in a frame centered on the star with planet c’s apoapse on the negative
horizontal axis. The straight lines from the star are the current lines of apoapse,
the ellipses are the current orbits of the planets, and the black dots with white
rims are the current positions of the planets. All three apsidal lines advance with
the same average period of 1.5 Myr. The azimuthal distribution of the crosses
indicates the variation in Δ� , the radial distribution of the crosses indicates
the variation in eccentricity (until the very end, the semimajor axis change is
negligible). For each pair taken separately, the inner planet’s apocenter tends
to be co-located with the outer planet’s apocenter, so close approaches are
forbidden. Note that at the current time planets b and c are near pericenter and
planet d is near apocenter, enhancing their dynamically packed appearance.
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systems for a tendency toward apsidal alignment, as quantified
by |〈cos Δ� 〉| being non-zero in the same way as h above. We
found that apsidal alignment was also common for systems with
strong mean-motion resonance; in the set of 49 survivors it oc-
curred 3 times between the inner planets only, 12 times between
the outer planets only, and 10 times among all three planets.

6.3. Arbitrarily Eccentric, Coplanar Planets

We repeated the procedure of Section 6.2 without step 4,
imposing no prior on the eccentricities. However, to ensure
that close encounters were not already happening, we only
accepted each system if ad (1 + ed ) < 0.85ac(1 − ec) and
ac(1 + ec) < 0.85ab(1 − eb). We integrated 25,280 systems,
of which only five lasted 30 Myr, and the median time to a
close approach was 37,000 yr. Of the five survivors, one had
the 2:1 mean-motion resonance active and secular alignment
between the inner two planets. In the other four, all three planets
tended toward alignment, and two of these had the 2:1 mean-
motion resonance active between the outer two planets. In three
cases, the inner planet had ed > 0.95 and a current position
near apocenter, and the apsidal alignment between d and c was
rather tight: |�c − �d | � 45◦. These systems may correspond
to the nonlinear secular resonance identified by Michtchenko
& Malhotra (2004). We consider it unlikely that configurations
with strong apsidal alignment but no mean-motion resonance
correspond to the true system, as explained below (Section 6.6).

If all three planets’ orbit in the same plane, one may wonder
whether the debris disk and the stellar equator share it as well.
From the observed positions and velocities, we can use this
Monte Carlo study to constrain the orientation of the planets.
Coplanar systems that fit the observed positions and velocities
with arbitrary eccentricities, but non-crossing orbits, have line-
of-sight inclinations less than 45◦. The subset of stable systems
obeys this same limit. Note that this is not substantially different
from the limit for circular orbits, cf. Figure 3. Constraints on the
stellar spin orientation—an expected rotational velocity v and
a measured v sin i—led Reidemeister et al. (2009) to derive a
stellar inclination of 13◦–30◦, consistent with this limit.

6.4. Circular, Non-coplanar Orbits

Next, we investigate whether moderately non-coplanar orbits
are substantially more stable, even in the absence of any
resonance. If not, we expect the conclusion that a resonance
is needed applies to any roughly coplanar systems, not just
strictly coplanar ones. The following series of integrations is not
intended to match the currently observed positions, but to be a
parametric study of mutual inclination. Relative to the nominal
case (A), but now with lower-limit masses, we varied the initial
inclination and node of planets b and d (see initial conditions
in Table 3). Both planets b and d are given the same inclination
(relative to c, which always starts at ic = 0). However,
they are given different nodes, to sample the same inclination
36 times, so that the spread of chaotic outcomes is represented.
The systems were integrated until a close approach or 160 Myr.

In Figure 13, we plot the resulting times of instability. At
low inclination, the spread of these times is several orders of
magnitude. Varying the initial orientation angles, which also
control the initial longitude of each planet, causes some systems
to have a close approach within a few tens of orbits and causes
other systems to last > 1 Myr due to the protection afforded
by the 2:1 resonance between planets d and c. As the initial
inclination increases, one might expect Hill-sphere encounters

Figure 13. Inclination dependence of instability times. Planet b and planet d are
both initially inclined relative to planet c by the indicated inclination, and a 6×6
grid of initial conditions for Ωb and Ωd in [0◦, 60◦,..., 300◦] was performed—
see Table 3. Increased mutual inclinations do not increase stability times for
prograde orbits.

will be delayed, as the motion out of the plane exceeds a Hill
radius at i � 6◦ for these masses. Nevertheless, we observe
that the median instability time modestly decreases until 40◦,
is constant between 50◦ and 140◦, and increases dramatically
from 150◦ to 180◦, perfectly retrograde. The shorter instability
timescale for substantially non-planar systems is likely due to
the Kozai (1962) effect, which causes inclination to decrease and
eccentricity to increase on a secular timescale of ∼105 years.

We conclude that we can likely extend our conclusions
from strictly coplanar systems to systems with large prograde
inclinations. Systems with adjacent planets orbiting in the
opposite sense can avoid instability; i.e., retrograde systems
are inherently more stable than prograde systems, as has been
shown in other contexts (Nesvorný et al. 2003; Gayon & Bois
2008). No mean-motion resonance or apsidal locking appears
to be active in protecting retrograde systems from instability,
but the brief timescales of conjunction may be responsible. We
do not expect a retrograde configuration for planet d, nor is it
consistent with the data (see Section 6.6).

6.5. Arbitrary Orbits

In this subsection, we remove all restrictions on individual
eccentricity and orbital orientation, to have a completely data-
driven sampling of orbits. We expect that not many systems
generated this way are realistic, as planet d’s orbit is so
poorly constrained. Nevertheless, after drawing the stellar and
observable planetary parameters, we drew each z uniformly
from the interval [−|z|max, |z|max] and then drew each vz

uniformly from the interval [−|vz|max, |vz|max]. We rejected the
resulting system if either:

1. any of the planets initially had positive energy (despite
trying to avoid this case by construction of the osculating
orbital elements); or

2. planetary orbits crossed, i.e., ad (1 + ed ) > ac(1 − ec) or
ac(1 + ec) > ab(1 − eb).

We integrated 3010 systems until the first ejection (not
stopping at close approaches), or until 30 Myr elapsed. Of
these, 13 systems survived the entire time. Three cases had
inner apsidal alignment, and another two cases had outer apsidal
alignment. A common characteristic is that planet d has a
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Figure 14. Non-coplanar system lasting 110 Myr before a close approach,
shown at the current epoch. See Table 4 for initial conditions. The front view
(left panel, observer’s prospective) and right-side view (right panel) are given.
The parts of the orbit on the observer’s side of the sky plane are solid, parts on
the far side of the sky plane are dashed. The apocenter lines are drawn, showing
that planet d is currently near apocenter, and planets b and c are currently near
pericenter, which is usually required of models that do not rely on protection
from a mean-motion resonance.

moderate-to-large eccentricity and comes to apocenter at its
currently observed position. Thus, the period ratio Pc/Pd can be
quite large, and the system rather hierarchical. In fact, we found
that using the full formulation of Hill stability (Marchal & Bozis
1982), the Star-d-c subsystem (neglecting planet b) was usually
Hill stable if planet d is prograde with respect to the others.
With only small perturbations from planet b, the system remains
stable for 30 Myr, with the inner subsystem fulfilling Hill’s
stability criterion for most of that time. In contrast, as mentioned
above, no particular protection mechanism was apparent for the
retrograde systems. The greater stability of retrograde orbits
is not seen in Hill’s stability calculations, just as the greater
stability of retrograde satellites is not reflected in the usual
Jacobi constant in the circular restricted three-body problem
(Hamilton & Krivov 1997).

A common attribute is that in all 13 stable systems, planet b
is in a very wide orbit, but it comes to pericenter at its currently
observed location. One way to quantify this is to note that, in all
cases, the mean anomaly of b at the present epoch is within 10◦
of 0◦, which would happen only 1/18 of the time for randomly
phased orbits. In such an orbit, it perturbs the inner two planets
minimally, contributing to the system stability. The orbit of
one of these 13 systems at the current epoch is displayed in
Figure 14.

We regard these systems, with very large mutual inclinations
and eccentricities, to be a possible, but not plausible, explanation
of the observational data. The outer orbit being very near
periastron seems finely tuned, because it does not spend much
time there. It is as if it is swooping in from several hundred
AU, just in time to have its picture taken by Marois et al.
(2008). We also note that orbits like those of Figure 14 are
currently consistent with circular, coplanar orbits, but they do
not fulfill this condition at most other orbital phases. Since the
observed velocities are consistent with circular and coplanar,
we can quantify the likelihood that the true system actually
has very non-coplanar orbits, as follows. We produced outputs
for the system displayed in Figure 14 at every ∼3500 years
of a 108 year integration, during which the semimajor axes
and eccentricities showed no qualitative long-term changes. For
each of the outputs, we found the χ2 of the best-fitting circular,
coplanar model, minimizing over (M�, i, Ω) as in Section 2,

with M� in the range [1, 2] × M� with no penalty for being
far from the nominal value. We assign the observed error bars
on velocities to the sky-projected velocities in the simulation,
then compare them to the best-fitting velocities that come
from a circular, coplanar hypothesis. With the current snapshot
(Figure 14), the system fits a circular, coplanar model with
χ2 = 2.18. In only 639 of the 28,996 snapshots was χ2 better
than this value. So we conclude that the current phase of this
particular non-coplanar system is fine-tuned to the ∼2.2% level.
We thus prefer models that actually are close to circular and
coplanar.

Another consideration disfavors these solutions with large
mutual inclination and large eccentricities. Fits to the infrared
spectral energy distribution of HR 8799 suggest a population
of colliding, dust-forming bodies with a semimajor axis of
∼100 AU, though this distance is still uncertain (Williams &
Andrews 2006; Su et al. 2009; Reidemeister et al. 2009). It is
unlikely that planet b’s orbit actually crosses this belt of bodies,
which may constrain eb to less than a few tenths. This constraint
will be observationally accessible in the near future.

6.6. Comparison to New Data

The foregoing analysis was based solely on the astromet-
ric measurements reported in the discovery paper. Between the
original submission of this work and now, several new measure-
ments were reported based on careful analysis of previously
collected images (Lafrenière et al. 2009; Fukagawa et al. 2009;
Metchev et al. 2009). In particular, the measurement by Metchev
et al. (2009) of positions of planet d over a one-year baseline
determines its sky velocity to be

[vE, vN ] = [−4.5 ± 0.8, 0.7 ± 0.8] × 10−3 AU day−1. (8)

These values come from a regression of position versus time,
in combination with the Marois et al. (2008) data, as in
Table 1. For the purposes of this section, that value eliminates
some of the previously possible dynamical configurations, as
follows. In Figure 15, we plot the 1σ and 2σ contours of the
measured velocity of planet b, and overlay the orbits from the
preceding sections. We find that solutions with a retrograde
planet d, and those for which planet d is at apastron of an very
eccentric orbit, are now ruled out. However, the 2:1 resonant
solutions are still quite consistent with the new data, including
the weakly resonant, apsidally locked system (Figure 12) and
some of the very non-coplanar (yet non-resonant) solutions (e.g.,
Figure 14). Although these latter solutions fit the data, recall that
we are seeing these systems at a special time, so we doubt they
correspond to the true system.

7. DISCUSSION

We have investigated the orbital stability of the newly imaged
planetary system HR 8799. The nominal orbital model and
masses are not stable. In fact, no model with circular, coplanar
orbits that also fits the astrometry well is stable, regardless of
the inclination and orientation of the system on the sky.

To overcome this problem by reducing the planetary masses,
values �2 MJup are required. This can happen if the cooling
models underpredict the luminosity, though that is difficult
to understand, as even hot-start models cannot produce the
observed luminosity at such low masses (see Section 1). Such
masses would be plausible if the system is considerably younger
than expected, yet the star has reached the main sequence
(Marois et al. 2008).
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Figure 15. Sky-projected velocity of planet d from various stable systems
that fit the discovery data (Marois et al. 2008), from Sections 6.2, 6.3,
and 6.5. The shaded regions are the 1σ (dark gray) and 2σ (light gray) regions
allowed by the precovery observation by Metchev et al. (2009). The open circle
is the nominal (circular, face-on, M� = 1.5 M�) solution. Small dots are the
solutions with 2:1 mean-motion resonance between either adjacent pair or a 4:2:1
double resonance. Crosses are coplanar solutions for which no 2:1 mean-motion
resonance was active, but apsidal alignment was preserved among the inner two
planets. Asterisks are solutions with arbitrary eccentricity and inclination from
Section 6.5.

Our favored solution is that a 2:1 resonance between the
inner two planets preserves stability. Assuming that the inner
pair of planets are in resonance, two qualitatively different
configurations are possible.

1. The outer two planets are not in resonance. This configu-
ration remains stable in the perturbing presence of planet b
only if the planetary masses are �10 MJup (Figure 11). (It
is also possible, given a less likely system orientation, that
only the outer resonance is active. This configuration leads
to a similar mass limit.)

2. The outer pair of planets are also in 2:1 resonance. This
solution fits all the current data for the system. At the
nominal masses, the system can easily survive for the
age of the star. In fact, the planetary masses could be up
to ∼1.9 times bigger than their nominal values without
violating stability constraints (Figure 11). This value is
similar to the maximum planetary masses that can stably
exist at the fixed point of the 2:1 resonance (Beaugé et al.
2003, Figure 8). It will be very interesting to find a test of
this hypothesis. The Laplace angle can also librate in this
system, though this is not a requirement for stability.

Strong apsidal alignment, while unnecessary for system
stability, allows planetary survival in a weaker 2:1 mean-motion
resonance.

One final type of system architecture is, in principle, con-
sistent with stability of the HR 8799 system. The planets may
be hierarchically spaced, with large eccentricities and mutual
inclinations, but inhabit phases of their orbits that look closely
packed at the moment. Such systems fit the current data but are
finely tuned both in their orbital parameters and in the time at
which we are viewing the system.

It is possible that other stabilizing resonant configurations
exist, but were missed because they occupy small regions of
phase space. The 2:1 mean-motion resonance dominates our

randomly generated stable systems and would naturally yield
the observations without fine tuning, so we consider it to be the
most likely stabilizing mechanism.

This study brings up several issues for future observations of
HR 8799, and directly imaged multiplanet systems in general,
as follows.

First, it serves as the first test of hot-start cooling models for
exoplanets. They barely pass the test if only planets d and c are in
resonance, and they comfortably pass the test if all three planets
are in resonance. We hope more detailed dynamical studies of
this system will sharpen this test as more data are collected. If
the doubly resonant configuration can somehow be verified, it
would considerably weaken this test. We have not yet directly
used dust observations as a dynamical constraint. The spectral
energy distribution reveals a massive debris disk surrounding the
planetary system, with an orbital radius of �66 AU (Williams &
Andrews 2006). Given that planet b is observed at ab � 68 AU,
we expect that the inner edge of the debris disk must be �90 AU,
and that future measurements and modeling will find that orbital
radius to be plausible and even preferred. Such a model could
in turn serve as a complementary test of planet b’s mass, in
analogy to the test of the mass of Fomalhaut b (Chiang et al.
2009). Perhaps other directly imaged systems will fortuitously
arrange for complementary tests.

Second, we found evidence of a mean-motion resonance at
very large orbital separations, much farther than those found
by the radial-velocity technique, of which there are many (e.g.,
Marcy et al. 2001; Mayor et al. 2004). Sometimes resonant
identification is based on stability arguments in those systems
(e.g., Correia et al. 2005), as it is here. The most commonly
invoked evolutionary mechanism for trapping planets into reso-
nance with one another is convergent migration in the protoplan-
etary disk. The properties of migration in a disk with multiple
massive planets deserve further investigation to determine the
conditions under which convergent migration and resonance
capture are possible at the locations of the HR 8799 planets. We
verified that if planets d and c were initially placed in circular
orbits exterior to the 2:1 resonance, they are stable to collisions
or ejections for �30 Myr, so getting into the resonance with-
out first becoming unstable is not a problem in this case. One
difficulty with differential migration is that any additional mi-
gration, after the resonance is reached, efficiently increases the
eccentricities. That this requires implausible fine-tuning in the
absence of eccentricity damping by the gas disk has been dis-
cussed for the 2:1-resonant GJ876 system (Lee & Peale 2002).
In a trial integration, we introduced a force to simulate outward
migration of the inner planet, following Lee & Peale (2002),
with a timescale a/(da/dt) = 107 yr and no eccentricity damp-
ing, starting from double-2:1 resonance at the nominal masses
(Figure 10, Table 3). The planetary eccentricities rapidly in-
creased and the system began scattering after a semimajor axis
change of ∼15%, illustrating its fragility. We expect calcula-
tions of migration into resonance will be very interesting for
this system. We also showed how perturbations by a third planet
tend to disrupt a mean-motion resonance (when only the inner
subsystem is in resonance). This mechanism adds to a growing
list of ways to disrupt resonances among planets, including tur-
bulent fluctuations in a protoplanetary disk (Adams et al. 2008),
tidal dissipation (Terquem & Papaloizou 2007), and scattering
of planetesimals (Murray-Clay & Chiang 2006; Morbidelli et al.
2007).

Third, it may seem surprising that dynamical stability argu-
ments are needed to correctly solve the orbits of the first directly



No. 2, 2010 MULTIPLANET SYSTEM HR 8799 1421

imaged multiplanet system. However, this situation is also com-
mon for multiplanet systems discovered by radial velocity. For
instance, Vogt et al. (2005) and Lee et al. (2006) have found
that dynamical stability can constrain orbital parameters more
tightly than radial-velocity data alone. Furthermore, planets that
are discovered by direct imaging of their self-luminosity are bi-
ased to have high masses, making stability less assured. The
bias of direct imaging toward large angular separation implies
that very long orbital periods will be common for such discov-
eries, so we foresee many stability analyses predicated on only
the sky-projected positions and velocity vectors of planets. We
hope this paper proves to be a useful example of how to conduct
such an analysis.
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