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ABSTRACT

A Bayesian network approach for short-term solar flare level prediction has been proposed based on three sequences
of photospheric magnetic field parameters extracted from Solar and Heliospheric Observatory/Michelson Doppler
Imager longitudinal magnetograms. The magnetic measures, the maximum horizontal gradient, the length of
neutral line, and the number of singular points do not have determinate relationships with solar flares, so
the solar flare level prediction is considered as an uncertainty reasoning process modeled by the Bayesian
network. The qualitative network structure which describes conditional independent relationships among magnetic
field parameters and the quantitative conditional probability tables which determine the probabilistic values
for each variable are learned from the data set. Seven sequential features—the maximum, the mean, the root
mean square, the standard deviation, the shape factor, the crest factor, and the pulse factor—are extracted to
reduce the dimensions of the raw sequences. Two Bayesian network models are built using raw sequential
data (BN_R) and feature extracted data (BN_F), respectively. The explanations of these models are consistent
with physical analyses of experts. The performances of the BN_R and the BN_F appear comparable with other
methods. More importantly, the comprehensibility of the Bayesian network models is better than other methods.
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1. INTRODUCTION

Large solar flares are associated with various effects of space
weather (Koskinen et al. 1999), so it is important to predict their
eruptions.

It is accepted that photospheric morphology of active regions
is related to a solar flare. McIntosh (1990) introduced the def-
initions of the McIntosh classification. Based on these classifi-
cations of sunspots, an expert system (Theo) was built to pre-
dict X-ray solar flares, and Bradshaw et al. (1989) constructed
a three-layer back-propagation neural network named TheoNet
to forecast flares. Bornmann & Shaw (1994) pointed out that the
McIntosh parameters act as proxies for the magnetic properties
of the active region and discussed the relationships among them.
It was concluded that the first parameter provides a measure of
the total magnetic flux within the active region, the second pa-
rameter provides a measure of the magnetic flux of the largest
spot, and the third parameter serves as a measure of the total
area of sunspots. Gallagher et al. (2002) estimated the daily flare
rate based on the McIntosh classification of the active region,
and then the probability of occurrence for one or more M class
flares was modified according to the assumption of a constant
Poisson process for the waiting-time distribution of X-ray flares.
Li et al. (2007) combined support vector machine and K-nearest
neighbors to construct a solar flare forecasting model. Qahwaji
& Colak (2007) built a hybrid system which combines a support
vector machine and a cascade-correlation neural network for
automatic short-term solar flare prediction. Colak & Qahwaji
(2008) presented a hybrid system for automatic detection and
McIntosh-based classification of sunspot groups. Based on the
work of Qahwaji & Colak (2007) and Colak & Qahwaji (2008),
Colak & Qahwaji (2009) presented an automated hybrid com-
puter platform (ASAP) for short-term prediction of significant

solar flares using Solar and Heliospheric Observatory (SOHO)/
Michelson Doppler Imager (MDI) images.

Lots of efforts have been made to directly find the rela-
tionships between magnetic field properties and flares (Leka
& Barnes 2003a, 2003b; McAteer et al. 2005; Jing et al. 2006;
Cui et al. 2006, 2007; Schrijver 2007; Georgoulis & Rust 2007).
Based on the parameters proposed by Leka & Barnes (2003a),
Leka & Barnes (2007) applied the Fisher’s linear discriminant
analysis to identify whether a flare will happen. Furthermore,
this method was extended to probabilistic prediction by Barnes
et al. (2007). Based on the parameters proposed by Cui et al.
(2006), Wang et al. (2008) trained a neural network for solar
flare prediction. Yu et al. (2009, 2010) analyzed the influence
of sequences of magnetic filed parameters on the flare level,
and then the solar flare prediction model was built under the
sequential supervised learning framework.

Assuming that flares obey Poisson distribution in time and
power-law distribution in size, Wheatland (2001) presented a
method of solar flare prediction using the observed flare statis-
tics. According to these phenomenological rules and the flar-
ing records, Wheatland (2004) proposed a Bayesian approach
to flare prediction. The prior probability of the prediction was
given, and then the flaring records together with phenomeno-
logical rules of flare statistics were used to refine the initial
prediction. It was stated that this method is simple, objective,
and makes few ad hoc assumptions (Wheatland 2005). How-
ever, this method ignores the valuable information contained in
the magnetic field of active regions. Here, the Bayesian network
encoded the conditional independent relationships among the
magnetic field properties of the active region to predict the flare
level. In the hybrid solar flare prediction system proposed by
Qahwaji & Colak (2007), the whole prediction of solar flares
contained two main parts: flare occurrence prediction and flare
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Table 1
Values of Parameters in Boltzmann Functions

Threshold Forward-looking Period Predictor A1 A2 X0 W

Itot = 10 48 hr |∇hBz|m 0.164 0.738 0.360 0.066
L 0.062 0.848 763.08 382.97
η −0.196 0.730 9.343 22.663

level prediction. Flare occurrence prediction is used to forecast
whether an active region will produce a flare, and if so, flare
level prediction is used to forecast whether the flare is going
to be above a certain threshold. The present work focuses on
the flare level prediction. In the process of flare level predic-
tion, seven features are extracted from the sequences of mag-
netic field properties. Furthermore, the temporal variations of
these features are related with the eruption of flares. The phys-
ical explanations of the Bayesian network models are given
and the performances of these models are compared with other
methods.

The rest of this paper is organized as follows. The data are
introduced in Section 2. The sequential features and their va-
rieties with the eruption of flares are analyzed in Section 3.
The Bayesian network and the generated prediction model are
described in Section 4. The experimental results and compar-
isons are presented in Section 5. Finally, the conclusions and
discussions are given in Section 6.

2. DATA

2.1. Original Data

The maximum horizontal gradient (|∇hBz|m), the length of
neural line (L), and the number of singular points (η) of the
photospheric magnetic field in active regions are calculated as
preflare signatures called predictors in the flare prediction model
(Cui et al. 2006). They are extracted from SOHO/MDI full disk
longitudinal magnetograms with a pixel size of 2′′ and noise
level of 20 G from 1996 April 15 to 2004 January 10. The
interval between the successive magnetograms is 96 minutes.

Active region location data associated with the solar flare
events are obtained from Solar Geophysical Data (SGD) solar
event reports (http://www.solarmonitor.org/index.php). Active
regions are selected using the following two criteria:

1. At least one X-ray flare whose magnitude � C1.0 is
produced in these active regions.

2. The location of active regions is within 30◦ of the solar disk
center.

Generally the large flares are paid more attention. Therefore,
criterion one is proposed to focus on the active regions above
the certain threshold. Criterion two is used to reduce the impact
of projection effects. The active regions are extracted by hand.
A rectangular patch is used to select the active region. When
two active regions are in the same patch, they are considered as
one active region.

Flare data are downloaded from http://www.ngdc.noaa.gov/
stp/SOLAR/ftpsolarflares.html#xray. The importance of a solar
flare is conventionally described by its index, for example, C,
M, or X. Within the forecasting period, more than one flare
may happen. The importance of these flares is summed up with
weights. The total importance of flares is computed as follows:

Itot =
∑

C + 10 ×
∑

M + 100 ×
∑

X. (1)

Equation (1) considers the influence of all the flares within
the forward-looking period. For example, if an active region
produces C1.2, C2.3, M4.1, and X1.2 flares within 48 hr, we
have Itot = (1.2 + 2.3) + 10 × 4.1 + 100 × 1.2 = 164.5 (Wang
et al. 2008). A forecasting model usually pays attention to
the production of flares with significance above a threshold.
Here, the threshold of Itot was chosen to be 10. Thus, the
non-flaring sample is defined to have a total importance less
than 10.

The predictors are pre-processed to incorporate prior infor-
mation into machine learning algorithms. The prior information
is the known relationships between the inputs and the outputs
of a system. For the flare prediction system, it is the known re-
lationships between the predictors and the flare level. Cui et al.
(2006) point out that the relationships between the predictors
and the flare productivity obey the sigmoid function in Boltz-
mann style shown in Equation (2). So the predictors are mapped
by this function, and then the Bayesian network is used to obtain
the other relationships between the predictors and the flare level
from the data set.

Y = A2 +
A1 − A2

1 + exp[(X − X0)/W ]
, (2)

where Y is the flare productivity defined by the ratio of the
number of flare-productive samples to the number of total
samples, and X is the value of the predictor. A1, A2, X0, and
W are estimated with the curve-fitting process. In this process,
parameters A1, A2, X0, and W are optimized to minimize the sum
of the squares of the deviations between the observed data and
the expected data (Marko 2003). The values of these parameters
are given in Table 1.

2.2. Sequences of Predictors

Yu et al. (2009) introduced the evolutionary information
of predictors by the sliding window method and analyzed its
influence on the flare level. The sequence of the predictors is
represented as

x (t) x (t − Δt) · · · x (t − WΔt) Itot (t + F ) , (3)

where x(t) is the vector of predictors at time t. x =
{|∇hBZ|m ,L, η}. Δt is the interval between two observations.
W is the length of the sequences. F is the forecasting time.
Itot (t + F ) is the total importance of flares within the interval F.

The evolutionary information is contained in the sequence of
predictors. Yu et al. (2009) pointed out that the appropriate value
of W is 45 for each predictor. There are not enough data for the
sliding window at the beginning of the observation of an active
region. So the first observational value is repeated W times to
provide the initial values. For the missing magnetogram, the
previous magnetogram is repeated instead of the missing one.

http://www.solarmonitor.org/index.php
http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarflares.html#xray
http://www.ngdc.noaa.gov/stp/SOLAR/ftpsolarflares.html#xray
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Table 2
Definitions of Sequential Features

Feature Definition Characteristics

Maximum Max(y) = {yi |yi � yj ,∀yj ∈ y} Sensitive
Crest factor Crest(y) = Max(y)

rms(y) Sensitive

Pulse factor Pulse(y) = Max(y)
Mean(y) Sensitive

Mean Mean(y) = 1
W

W∑
i=1

yi Robust

Root mean square rms(y) =
√

1
W

W∑
i=1

y2
i Robust

Standard deviation Std(y) =
√

1
W

W∑
i=1

(yi − mean(y))2 Robust

Shape factor Shape(y) = rms(y)
Mean(y) Robust

3. FEATURE EXTRACTION FOR THE SEQUENCES
OF PREDICTORS

For each type of predictor x (x stands for |∇hBZ|m, L or η),
its sequence is noted as

y = {x(t), x(t − Δt), . . . , x(t − WΔt)}. (4)

Seven features—the maximum, the mean, the root mean square,
the standard deviation, the shape factor, the crest factor, and
the pulse factor—are extracted from the sequences of |∇hBZ|m,
L, and η, respectively. Their definitions are listed in Table 2.
Because the maximum of a sequence is easily influenced by a
single point with the large value, the maximum and its related
features are sensitive to changes in a single measurement. The
other predictors are robust for the variation of a single point.

The variations of the features of maximum horizontal gradient
are shown in Figures 1 and 2. Three active regions (AR 7978,

AR 9373, and AR 9494) are selected. At the beginning of these
active regions, the observational samples are non-flaring and at
the end of these active regions, the observational samples are
flaring, the boundary is plotted as the first vertical solid line. The
forecasting time is 48 hr indicated by the second vertical solid
line. During the forecasting time, several flares happened. The
eruption of a C or M level flare is indicated by the dash-dotted
line or dashed line, respectively. The corresponding flare level
is labeled beside these vertical lines. As shown in Figure 1,
the maximum, the pulse factor, and the crest factor undergo
abrupt changes, so they are sensitive to changes in a single
measurement. In Figure 2, the mean, the root mean square, the
standard deviation, and the shape factor vary smoothly. They
are robust to changes in a single measurement.

4. BAYESIAN NETWORK APPROACH

Bayesian reasoning provides a probabilistic approach to
inference (Mitchell 1997). A prior probability of a hypothesis
provides its initial knowledge, and then the observed data are
used to refine the reasoning process. Bayes’ formula is as
follows:

P (y|X) = P (X|y)P (y)

P (X)
, (5)

where y is the decision and X = {x1, x2, . . . , xn} is the set of
predictors.

Using the chain rule of probability, the joint distribution
P (X|y) is factored as

P (X|y) =
n∏

i=1

P (xi |y, x1, x2, . . . , xi−1). (6)
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Figure 1. Sensitive changes for a single measurement in AR 7978, AR 9373, and AR 9494 (left to right). The sampling interval is 96 minutes. The first vertical solid
line indicates where Itot crosses the specified threshold of 10. The forecasting time is indicated by the second vertical solid line. The dash-dotted lines indicate the
eruption of C level flare, and the dashed lines indicate the eruption of M level flare. The corresponding flare level is labeled beside these vertical lines.

(A color version of this figure is available in the online journal.)
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Figure 2. Robust changes for a single measurement in AR 7978, AR 9373, and AR 9494 (left to right). The sampling interval is 96 minutes. The definitions of the
vertical lines are the same as that in Figure 1.

(A color version of this figure is available in the online journal.)

The Bayesian network represents the conditional independent
relationships of P (X|y) as a directed acyclic graph together
with the corresponding conditional probability tables. The
nodes in the network represent predictors and the decision.
The arcs between nodes represent the probabilistic dependant
relationships, that is, the probability of a node is only dependent
on its parent nodes as shown as follows:

n∏
i=1

P (xi |y, x1, x2, . . . , xi−1) =
n∏

i=1

P (xi |Pai), (7)

where Pai is the parent nodes of xi. These dependencies are
used to simplify the estimation of the probability distribution.
The probability values of each node are represented in the
conditional probability table.

Generally speaking, the Bayesian network consists of the
probabilistic network structure and the conditional probabil-
ity tables. The probabilistic network structure represents the
qualitative-dependent relationships among the predictors, and
the conditional probability tables determine the quantitative de-
pendence between the node and its parents.

4.1. Learning Probabilistic Network Structure

The structure of the Bayesian network is learned from data to
represent the probabilistic dependences among the predictors.
We wish to learn the network structure that is most likely to
reflect the relationships between predictors in the data set. This

can be stated as follows:

BSmax = arg max
BS

(P (BS |D))

= arg max
BS

(P (D|BS)P (BS)), (8)

where D is the observed data, BS stands for a network structure,
and BSmax is the BS that maximizes the P (BS |D).

In order to efficiently compute P (D|BS)P (BS) in
Equation (8), the following four assumptions are introduced
(Cooper & Herskovits 1992). (1) The predictors are discrete.
(2) Given a network, the samples occur independently. (3) The
predictors are not missing values. (4) Before observing the data
set, we are indifferent to the numerical probabilities to place on
the network structure. Under these assumptions, we obtain the
following formula (Cooper & Herskovits 1992):

P (D|BS)P (BS) = P (BS)
n∏

i=0

qi∏
j=1

(ri − 1)!

(ri − 1 + Nij )!

ri∏
k=1

Nijk!,

(9)
where P (BS) is the prior probability of BS. ri is the number
of possible values for a predictor xi in the network BS. Each
predictor xi in BS has a set of parents Pa(xi), qi is the number
of different values to which Pa(xi) can be instantiated. n is the
number of predictors in the data set D. Nijk is the number of
cases in data set D in which predictor xi has the kth value and
its jth parent node is selected. Nij =

∑ri
k=1 Nijk.
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Figure 3. Process of network generation. Algorithm starts with the network having no arcs (a). At each stage, arc that most dramatically increases the probability of
the network is added ((b) and (c)). When there is no node that could be added, this process is finished (d).

It is computationally intractable that finding the best BS
in all the combinations of predictors, so the heuristic search
strategy is used to find a proper network structure. We can
begin with the unconnected network as shown in Figure 3(a).
At each stage, the arc that results in the best structure is
added. The respective metrics which determines how adequately
a probability distribution captures the dependencies between
predictors in the data set is defined as

ScoreK2(BS,D) = P (BS,D) = P (D|BS)P (BS). (10)

The process of adding arcs recurs, until the stop criterion is
reached. It is shown in Figures 3(b)–3(d). Finally, an approxi-
mate solution of BSmax is found.

Theoretically, a best-fitted structure of the Bayesian network
can be found by the K2 metrics. However, the number of possible
structures exponentially grows with the number of nodes in the
Bayesian network. It is hard to exhaustively enumerate all the
structures, so a heuristic search method is used to find the proper
structure, but it is not guaranteed that the searched structure is
the global optimization. Greedy search algorithm is one of the
heuristic search methods. It makes the locally optimal choice
at each stage to approach the global optimum solution. When
there are too many nodes in the Bayesian network, this search
algorithm is applied to find a proper network structure quickly.
For each node, the search procedure is used to find its set of
parent nodes with iteratively adding a parent node with the
largest increases of the K2 score, until the number of parent
nodes exceeds the settled value or the K2 score is not increased
any more. Given that all the input parameters are independent,
the Bayesian network is simplified as the naive Bayes model.
When a suitable network structure is learned, the conditional
probability tables of nodes in the Bayesian network should be
estimated.

4.2. Learning Conditional Probability Tables

Conditional probability tables reflect the quantitative rela-
tionships between a node and its parents in the Bayesian net-
work. The conditional probability of a node is determined

by its parent nodes only. For example, the conditional prob-
ability table of node Mean(η) in Figure 4 is calculated as
P (Mean(η)|pa(Mean(η))) = P (Mean(η)|flare). The continu-
ous variables can be discretized by an entropy-based discretiza-
tion method (Jin et al. 2009). This method does not simply divide
the continuous predictor into equal-width or equal-frequency
bins. The bins with proper width are selected to maximize the
flare information provided by the predictor which has been dis-
cretized with these bins. Each value in the conditional probabil-
ity table is estimated by the Bayesian method. Bayesian parame-
ter estimation provides a distribution of the parameter. Usually,
the mathematical expectation of the parameter (E(θijk|D) =
Nijk+1
Nij +ri

) is used to estimate the real value of the parameter. So,
the conditional probabilities are estimated as follows (Cooper &
Herskovits 1992):

P (xi = k|pa(xi) = j ) = Nijk + 1

Nij + ri

. (11)

Once the conditional probability tables of each nodes are
calculated, a complete Bayesian network is built. It can be used
to capture the probabilistic relationships among predictors and
automatically construct a probabilistic expert system.

4.3. Bayesian Networks for Flare Level Prediction

Two Bayesian networks are trained by the feature extracted
data (BN_F) and the raw sequential data (BN_R), respectively.

The Bayesian network trained by the feature extracted data
is shown in Figure 4. Only the features of the sequence η are
drawn in this figure to clearly reflect the relationships among the
features. Some reasonable conclusions are given: the standard
deviation of the sequence is influenced by its maximum and
mean. The root mean square of the sequence is influenced by its
mean and maximum. The pulse factor of the sequence ( Max

Mean ) is
influenced by the shape factor ( rms

Mean ) and the crest factor ( Max
rms ).

However, the structure of the Bayesian network is not the global
optimum. For example, the pulse factor is not directly influenced
by the mean, except in that the mean enters into the shape factor
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Figure 4. Bayesian network model of solar flare level prediction trained by
feature extracted data. Only network structure of features of η and conditional
probability table of node Mean(η) are drawn.

which influences the pulse factor. The heuristic method is used
to search the proper network structure to avoid the exponential
growth of the number of possible structures with the increase
of the number of nodes. For a greedy algorithm, the searched
network structure is just an approximation of the global optimal
solution.

The Bayesian network learned from the raw sequential data
is shown in Figure 5, and two main conclusions are given as
follows:

1. Most predictors are dependent on their previous two pre-
dictors. For example, given η(t − 2Δt) and η(t − Δt), η(t)
is independent of other predictors.

2. L(t − 45Δt) is influenced by η(t − 45Δt), and |∇hBz|m
(t − 45Δt) is influenced by η(t − 45Δt) and L(t − 44Δt).
In fact, the influences among the parameters are more gen-
erally true at other times. However, the Bayesian network
algorithm encodes these influences at t − 45Δt because it
is not a global optimal algorithm. This means that not all
the influences can be expressed exactly. The relationships
among the predictors expressed by the learned Bayesian
network are consistent with the physical explanations in
Wang et al. (2009). From a geometrical point of view,
the number of singular points describes the topological
complexity of photospheric magnetic fields with the sur-
face scale, the length of neutral line is the line scale,
and the maximum horizontal gradient is a point function
with the local scale. The measure of the line scale is influ-
enced by the measure of the surface scale, and the measure
of the local scale is influenced by the measure of the surface
scale and line scale simultaneously.

5. EXPERIMENTAL RESULTS AND ANALYSES

5.1. Performance Evaluation

We treat solar flare level prediction as a binary classification
task. The flaring sample is considered as positive class, and the
non-flaring sample is considered as negative class. Therefore,
there are four possible outcomes shown in Table 3. As shown
in Table 3, samples correctly classified as “Positive” are defined

Figure 5. Bayesian network model of solar flare level prediction trained by raw
sequential data.

Table 3
Different Outcomes of Two-class Prediction

Class of Samples Predicted Positive Class Predicted Negative Class

Actual positive class True positive False negative
Actual negative class False positive True negative

as true positive (TP), while the samples correctly classified as
“Negative” are defined as true negative (TN). On the other hand,
samples wrongly predicted as “Positive” are defined as false
positive (FP), and samples wrongly predicted as “Negative” are
defined as false negative (FN). Prediction performance can be
measured using TP rate and TN rate.

TP rate is defined as the ratio of the number of positive class
samples predicted as positive to the number of actual positive
class samples:

TP rate = TP

TP + FN
. (12)

TN rate is defined as the ratio of the number of negative class
samples predicted as negative to the number of actual negative
class samples:

TN rate = TN

TN + FP
. (13)

TP rate and TN rate are used to evaluate the flaring and
non-flaring accuracy, respectively. When the occurrence of
events is very rare, TP rate and TN rate could avoid the drawback
of success rate. Taking into account the frequency of events, the
Heidke skill score (HSS) defined in Equation (14) is used to
quantify the performance of a forecasting method (Balch 2008).

HSS =
TP+TN

N
− (TP+FP)(TP+FN)+(TN+FN)(TN+FP)

N2

1 − (TP+FP)(TP+FN)+(TN+FN)(TN+FP)
N2

, (14)

where N is the total number of samples in the testing set.
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Table 4
Values in Contingency Table for the Testing Process of NB_R, NB_F, BN_R, and BN_F

Number of Samples NB_R NB_F BN_R BN_F

PP PN PP PN PP PN PP PN

AP 604 ± 7 248 ± 7 552 ± 8 299 ± 8 725 ± 4 126 ± 4 726 ± 8 125 ± 8
AN 472 ± 6 1793 ± 6 434 ± 6 1832 ± 6 351 ± 8 1915 ± 8 283 ± 9 1982 ± 9

Notes. PP stands for predicted positive class, PN stands for predicted negative class, AP stands for actual positive class,
and AN stands for actual negative class.

Table 5
Performance Comparisons of NB_R, NB_F, BN_R, and BN_F

Performance Evaluation NB_R NB_F BN_R BN_F

TP rate (%) 70.9 ± 0.8 64.9 ± 0.9 85.2 ± 0.5 85.3 ± 0.9
TN rate (%) 79.2 ± 0.3 80.9 ± 0.3 84.5 ± 0.4 87.5 ± 0.4
HSS 0.463 ± 0.007 0.436 ± 0.006 0.644 ± 0.006 0.688 ± 0.011

Note. Uncertainty of performances is estimated by standard deviation.

HSS can range from −1 to +1, where −1 stands for no
correct predictions, +1 stands for all correct predictions, and
0 indicates that the predictions have been generated mainly by
chance.

5.2. Performance of Bayesian Network Models

The present model is applied to analyze sampling intervals
for regions which produced at least a C1.0 flare within the
48 hr window following the sampling interval. The data set that
contained 8510 flaring samples and 22654 non-flaring samples
from 1996 April 15 to 2004 January 10 is used to build the
solar flare level prediction model. The number of non-flaring
samples is more than the number of flaring samples in the data
set. This is the class imbalance problem in the data mining
community (Japkowicz & Stephen 2002). The model learned
from the imbalanced data set could bias the majority class in
the data set. However, we generally paid more attention to
the samples in the minority class, so undersample technique
is used to overcome this problem. In the undersample process,
the training set is randomly undersampled until it is balanced,
and then the model is learned from the balanced training data
set. Finally, the performance of the model is evaluated using
the imbalanced testing set. The data set is divided into tenfolds,
therein ninefolds are used for training and the remaining onefold
for testing. This process is repeated 10 times, and the average
value of test accuracies is considered as the estimation of the
prediction performance. The uncertainty of the performance is
evaluated by the standard deviation of 10 times experiments.
The algorithms of the Bayesian network are implemented in
Waikato Environment for Knowledge Analysis (WEKA) which
is a data mining software in JAVA (Witten & Frank 2005).
The testing values of the contingency table are shown in
Table 4.

The performances of the Bayesian networks model trained
with the raw sequential data (BN_R) or the feature extracted
data (BN_F) and the naive Bayes model trained with the raw
sequential data (NB_R) or the feature extracted data (NB_F) are
listed in Table 5. In order to present the influence of the learned
dependent relationships on the flare level prediction, the per-
formances between the Bayesian network and the naive Bayes
model which assumes that all the predictors are conditionally
independent are compared. The performance of the Bayesian

Table 6
Performance Comparisons of LVQ, C4.5, BN_R, and BN_F

Performance Evaluation LVQ C4.5 BN_R BN_F

TP rate (%) 82.6 81.7 85.2 85.3
TN rate (%) 84.1 83.4 84.5 87.5
Number of nodes Black-box 1899 139 22
Comprehensibility Bad Medium Good Excellent

network model is higher than the performance of the naive
Bayes model. Because the Bayesian network model relaxes the
strong assumption of the naive Bayes model, the performances
of two Bayesian network models are improved. In order to re-
duce the dimension of the sequential predictors, for each type of
measurement, seven features are extracted to reflect the varia-
tion of the raw sequences. The performance of BN_F is slightly
higher than the performance of BN_R. Furthermore, the fea-
ture extraction based method with the lower dimension is more
rapid to learn and forecast, and its network structure is more
compact.

5.3. Comparisons with Other Methods

Many solar flare forecasting approaches have been proposed
(Barnes & Leka 2008; Colak & Qahwaji 2009). However, it
is difficult to quantitatively compare the performance of this
method with the performance of other methods, because of the
different definitions of the flare level and the selection criteria
of active regions.

With the same definition of the flare level, the threshold, the
forecasting time, and the selection criteria of active regions,
this method is quantitatively compared with the methods pro-
posed by Yu et al. (2009). As shown in Table 6, the performance
of Bayesian network models is compared according to both
their accuracies and the comprehensibility. The accuracies of
BN_R and BN_F are slightly higher than the accuracies of the
LVQ and C4.5 decision tree. Furthermore, the Bayesian net-
work models are more understandable than the LVQ and C4.5
decision tree. More importantly, the models of the decision tree
and Bayesian network can be presented as a graph, so we can
quantitatively compare their comprehensibility. The complexity
of these models can be measured by their number of nodes,
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Figure 6. Schematic diagram of whole prediction for short-term solar flare prediction.

(A color version of this figure is available in the online journal.)

and the more complex the model is, the less comprehensible the
model is. As shown in Table 6, the LVQ network is a black-box
model whose results cannot be understood. According to in-
formation theory, each predictor of the C4.5 decision tree is
divided into several intervals, and each node represents the se-
lected predictor divided the samples into different subsets by
the certain interval. Each predictor may be used several times
with their different intervals, that is, there are lots of nodes
in the decision tree model. For a complex problem, although
the C4.5 decision tree can be transformed to comprehensible
if-then rules, the scale of the rules obtained from the decision
tree is too large to understand. The comprehensible information
of the Bayesian network model is represented by its structure.
The number of nodes in the structure is equal to the number
of predictors used in this model. So, the relationships among
predictors are more clear in the Bayesian network. The num-
ber of nodes of C4.5 decision tree is 10 times more than the
number of nodes of BN_R, and 80 times more than the number
of nodes of BN_F. So the comprehensibility of Bayesian net-
work models of solar flare level prediction is greatly improved
over the C4.5 decision tree model of solar flare level prediction.
Furthermore, the rules generated by the C4.5 decision tree are
determinate, however, the relationships between the predictors
and the flare are not determinate. The Bayesian network is an
approach for reasoning under uncertainty. It can capture the
probabilistic relationships among predictors and these relation-
ships are explicable. So it is reasonable to build the short-term
solar flare level prediction model using the Bayesian network
approach.

6. CONCLUSIONS AND DISCUSSION

The uncertainty between magnetic field parameters and flare
urges the Bayesian network to be used to build the probabilistic
reasoning model. The Bayesian network approach encodes the
conditional independent relationships among predictors. Com-
paring the performance of the Bayesian network model with
the naive Bayes model, the importance of these relationships to
flare level prediction is shown, and the relationships of predic-
tors are consistent with the physical explanations in Wang et al.
(2009). So, this implies that the physical rules can be obtained
from the observational records, and the understandability of the
Bayesian network can help researchers to analyze the problem
domain better.

The dimension is reduced by extracting the features from
the sequences. Meanwhile, it provides a method to construct
new predictors. The accuracies of the Bayesian network models
trained with the raw sequential data and the feature extracted

data are slightly higher than the accuracies of the methods
proposed by Yu et al. (2009). Because of its uncertainty
reasoning ability and comprehensibility, the Bayesian network
is recommended to be used to forecast flares.

In the future, more features better reflecting the physical
nature should be extracted from the observational sequences,
and this method can be improved by considering the previous
flare records like the method of Wheatland (2004). As the
Qahwaji & Colak (2007) system did, the whole solar flare
prediction system shown in Figure 6 will be built by adding
the module of flare occurrence prediction.
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