
The Astrophysical Journal, 709:749–758, 2010 February 1 doi:10.1088/0004-637X/709/2/749
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

MAGNETIC ROSSBY WAVES IN THE SOLAR TACHOCLINE AND RIEGER-TYPE PERIODICITIES

Teimuraz V. Zaqarashvili
1,3

, Marc Carbonell
2
, Ramón Oliver

3
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ABSTRACT

Apart from the eleven-year solar cycle, another periodicity around 155–160 days was discovered during solar cycle
21 in high-energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported.
This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar
cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it
is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where a
strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence
of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves
are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal
differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout
the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline around the
maximum of the solar cycle. This harmonic is symmetric with respect to the equator and has a period of 155–
160 days. A rapid increase of the wave amplitude could give rise to a magnetic flux emergence leading to observed
periodicities in solar activity indicators related to magnetic flux.
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1. INTRODUCTION

During solar cycle 21, a short periodicity between 152 and
158 days was discovered in γ -ray flares (Rieger et al. 1984),
X-ray flares (Rieger et al. 1984; Dennis 1985; Bai & Sturrock
1987; Kile & Cliver 1991; Dimitropoulou et al. 2008), flares
producing energetic interplanetary electrons (Dröge et al. 1990),
type II and IV radio bursts (Verma et al. 1991), and microwave
flares (Bogart & Bai 1985; Kile & Cliver 1991). However, this
periodicity was absent during solar cycle 22 (Kile & Cliver
1991; Bai 1992; Özgüç & Ataç 1994).

The periodicity has also been detected in indicators of solar
activity (sunspot blocking function, sunspot areas, “active”
sunspot groups, group sunspot numbers), which suggest that it is
associated preferentially with photospheric regions of compact
magnetic field structures (Lean & Brueckner 1989; Lean 1990;
Pap et al. 1990; Carbonell & Ballester 1990; Bouwer 1992;
Carbonell & Ballester 1992; Verma et al. 1992; Oliver et al.
1998; Ballester et al. 1999; Krivova & Solanki 2002). Probably,
the most important, and enigmatic, feature of the periodicity is
that it appears during epochs of maximum activity and that it
occurs in episodes of 1–3 years.

Rabin et al. (1991) performed a study of the magnetic flux
variations during solar cycle 21 which reveals the existence
of quasi-periodic pulses or episodes of enhanced magnetic
activity. The duration of the pulses is ≈5 rotations during the
years around maximum activity, the epoch in which the flare
periodicity appears, and the comparison with magnetic field
maps indicates that those pulses of activity correspond to the
occurrence of complex active regions containing large sunspots
(Bai 1987a).

Ballester et al. (2002, 2004) analyzed several data sets of,
or strongly related to, photospheric magnetic flux to point out

that the appearance of the near 160 day periodicity in different
manifestations of solar activity during solar cycle 21 has its
underlying cause in the appearance of the periodicity in the
magnetic flux linked to regions of the strong magnetic field.
They also showed that during solar cycle 22 the periodicity
does not appear in the photospheric magnetic flux records and,
as a consequence, the periodicity did not appear in other solar
activity indicators, while during solar cycle 23 it appeared in
the photospheric magnetic flux but not in other solar activity
indicators.

Several mechanisms have been put forward in order to explain
the existence of this periodicity. Wolff (1983) linked it to the
interaction of rotating features (active longitude bands) resulting
from g-modes with l = 2 and l = 3. Bai (1987b) suggested
that the cause of this periodicity must be a mechanism that
causes active regions to be more flare productive. Later, Bai
& Sturrock (1987) concluded that it cannot be due to the
interaction of “hot spots,” i.e., regions where flare activity is
higher than elsewhere (Bai 1987a, 1988), rotating at different
rates and that the cause must be a mechanism involving the
whole Sun. Ichimoto et al. (1985) suggested that it is related to
the timescale for storage and/or escape of magnetic fields in the
solar convection zone. Bai & Cliver (1990), taking into account
the possible intermittency of the periodicity, suggested that
this behavior could be simulated with a damped, periodically
forced nonlinear oscillator, which shows periodic behavior
for some values of the parameters and chaotic behavior for
other values. Wolff (1992) argued that such periodicity can be
understood in terms of the normal modes of oscillation of a
nearly spherical, slowly rotating star, when two r-modes (inertial
modes) couple with an interior g-mode beat. This suggestion
seems to agree qualitatively with the fact that the periodicity is
stronger around the activity maximum. Bai & Sturrock (1991)
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and Sturrock & Bai (1992) proposed that the Sun contains
a “clock,” modeled by an oblique rotator or oscillator, with
a period of 25.8 days and suggested that the periodicity of
154 days is just a subharmonic of that fundamental period.
Later, Bai & Sturrock (1993) modified the earlier period to the
value 25.50 days, but that model seems to be very constrained by
helioseismological data about the rotation of the Sun’s interior.
Lou (2000) suggested that such periodicities can be related to
large-scale equatorially trapped Rossby-type waves showing
that, for typical solar parameters, the periods of these waves
(with n = 1 and m even) are in good agreement with the
observed ones. Moreover, Lou (2000) has also pointed out that
such waves can give rise to detectable features, such as surface
elevations in the photosphere. Coincidently, Kuhn et al. (2000)
have reported observations made with Michelson Doppler
Imager (MDI) on board the Solar and Heliospheric Observatory
(SOHO) and claim to have detected a regular structure of 100 m
“hills,” uniformly spaced over the surface of the Sun with
a characteristic separation of 90,000 km. They suggest that
this structure is the surface manifestation of Rossby waves, or
r-modes oscillations. Finally, Dimitropoulou et al. (2008) have
linked the found periodicities in different classes (B, C, M,
X) of X-ray flares with the theoretical periods derived by Lou
(2000), pointing out that odd m periodicities are also frequent
and significant.

On the other hand, most of the proposed mechanisms to
explain solar flares, specially the most energetic ones, accept
as a prerequisite the emergence of magnetic flux (Priest 1990;
Forbes 1991) which, by reconnection with the ambient field,
triggers the destabilization of active regions. Based on this
mechanism, Carbonell & Ballester (1990, 1992) suggested
that the periodic increase in the occurrence rate of energetic
flares is related to a periodic emergence of magnetic flux
through the photosphere. Later, Oliver et al. (1998) showed
that during solar cycle 21 there was a perfect time correlation
between the intervals of occurrence of the periodicity in sunspot
areas and energetic flares, and Ballester et al. (2002) clearly
pointed out that in cycle 21, and during the time interval in
which the periodicity appeared, there was a perfect time and
frequency coincidence between the impulses of high-energy
flares and those corresponding to strong photospheric magnetic
flux. The efficiency of the reconnection mechanism depends on
the geometry of the two flux systems (Galsgaard et al. 2007) and
recent high-resolution observations performed by Zuccarello
et al. (2008) have confirmed the suitability of the mentioned
mechanism for flare production.

Emerged magnetic flux is probably connected to deeper
regions, namely to the tachocline, which is a thin, transition
layer between differentially rotating convection zone and rigidly
rotating radiative envelope. The tachocline may prevent the
spreading of the solar angular momentum from the convection
zone to the interior (Spiegel & Zahn 1992; Gough et al. 1998;
Gough 2007; Garaud 2007) and it is probably the place where
the large-scale magnetic field which governs the solar activity
is generated/amplified.

The observed periodicity of 155–160 days in the emerging
flux is in the range of Rossby wave spectrum. Therefore, we sug-
gest that the periodicity is connected to the Rossby wave activity
in the tachocline. Rossby waves are well studied in the geo-
physical context (Gill 1982; Pedlosky 1987); however, the pres-
ence of magnetic fields significantly modifies their dynamics
(Zaqarashvili et al. 2007, 2009). On the other hand, the dif-
ferential rotation, which is inevitably present in the tachocline,

may lead to the instability of particular harmonics of magnetic
Rossby waves. It has been shown that the joint action of the
toroidal magnetic field and the differential rotation generally
leads to tachocline instabilities (Gilman & Fox 1997; Cally
2003; Dikpati & Gilman 2005; Gilman & Cally 2007; Gilman
et al. 2007). However, the stability analysis usually has been
performed in an inertial frame, which complicates the extrac-
tion of information about unstable Rossby modes. Therefore, it
is of paramount importance to perform the stability analysis in a
rotating frame. Another important point is that the consideration
of a rotating frame may tighten the stability criteria as it has been
suggested by Hughes & Tobias (2001). The difference between
the present analysis and that by Hughes & Tobias (2001) is the
inclusion of rotation which allows us to obtain Rossby wave
solutions.

In this paper, we use a rotating spherical coordinate sys-
tem to study the linear stability of magnetic Rossby waves in
the solar tachocline taking into account the latitudinal differ-
ential rotation and the toroidal magnetic field. We perform a
two-dimensional analysis, which can be followed in the future
by more sophisticated shallow water considerations (Gilman
2000). We first derive the analytical conditions of instabil-
ity similar to Dahlburg et al. (1998) and Hughes & Tobias
(2001). Then, we perform a detailed stability analysis using
Legendre polynomial expansions (Longuet-Higgins 1968) to
obtain the spectrum of unstable harmonics of magnetic Rossby
waves.

2. MAGNETIC ROSSBY WAVE EQUATIONS IN THE
PRESENCE OF DIFFERENTIAL ROTATION AND THE

TOROIDAL MAGNETIC FIELD

Since the Rossby wave spectrum is clearly seen in the rotating
frame, in the following we use a spherical coordinate system
(r, θ, φ) rotating with the solar equator, where r is the radial
coordinate, θ is the co-latitude, and φ is the longitude.

The solar differential rotation law in general is

Ω = Ω0 + Ω1(θ ), (1)

with
Ω1(θ ) = −Ω0(s2 cos2 θ + s4 cos4 θ ), (2)

where Ω0 is the equatorial angular velocity, and s2, s4 are
constant parameters determined by observations.

Rossby waves are mainly polarized in the plane perpendicular
to gravity, then a two-dimensional (θ, φ) analysis is a good
approximation (Gill 1982). The two-dimensional analysis is
also justified by Squire’s theorem which states that for each
unstable three-dimensional disturbance there is a corresponding
unstable two-dimensional disturbance with stronger growth rate
(Squire 1933).

The magnetic field is predominantly toroidal, �B = Ξêφ , in
the solar tachocline, and we take Ξ = Bφ(θ ) sin θ , where Bφ is
in general a function of co-latitude. Then, the incompressible
magnetohydrodynamic (MHD) equations in the frame rotating
with Ω0 are (see Appendix A):

∂uθ

∂t
+ Ω1(θ )

∂uθ

∂φ
− 2[Ω0 + Ω1(θ )] cos θuφ

= − 1

ρR0

∂pt

∂θ
+

Bφ

4πρR0

∂bθ

∂φ
− 2

Bφ cos θ

4πρR0
bφ, (3)
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∂uφ

∂t
+ Ω1(θ )

∂uφ

∂φ
+ 2Ω0 cos θuθ + Ω1(θ ) cos θuθ

+ uθ

∂

∂θ
[sin θΩ1(θ )] = − 1

R0 sin θ

∂pt

∂φ
+

Bφ

4πρR0

∂bφ

∂φ

+
bθ

4πρR0 sin θ

∂

∂θ
(Bφ sin2 θ ), (4)

∂bθ

∂t
+ Ω1(θ )

∂bθ

∂φ
= Bφ

R0

∂uθ

∂φ
,

∂

∂θ
(sin θbθ ) +

∂bφ

∂φ
= 0, (5)

∂

∂θ
(sin θuθ ) +

∂uφ

∂φ
= 0, (6)

where uθ , uφ , bθ , and bφ are the velocity and magnetic
field perturbations, pt is the total pressure (hydrodynamic plus
magnetic), ρ is the density, and R0 is the distance from the solar
center to the tachocline.

We consider the stream functions for velocity and magnetic
field

uθ = 1

sin θ

∂Ψ
∂φ

, uφ = −∂Ψ
∂θ

, bθ = 1

sin θ

∂Φ
∂φ

, bφ = −∂Φ
∂θ

.

(7)
The substitution of Equations (7) into Equations (3)–(6) and
Fourier analysis with exp[im(φ − ct)] gives

(c − Ω1)

[
∂

∂θ
sin θ

∂

∂θ
− m2

sin θ

]
Ψ − 2Ω0 sin θΨ

+
d

dθ

(
1

sin θ

d

dθ
(Ω1 sin2 θ )

)
Ψ

= − Bφ

4πρR0

[
∂

∂θ
sin θ

∂

∂θ
− m2

sin θ

]
Φ

+
1

4πρR0

d

dθ

(
1

sin θ

d

dθ
(Bφ sin2 θ )

)
Φ, (8)

(c − Ω1)Φ = −Bφ

R0
Ψ. (9)

Let us now make the transformation of variables μ = cos θ ,
then we obtain (Ψ and Φ are normalized by Ω0R0 and B0,
respectively, where B0 is the value of Bφ at θ = 0)

(Ωd − ω)LΨ +

(
2 − d2

dμ2
[Ωd (1 − μ2)]

)
Ψ − β2BLΦ

+ β2 d2

dμ2
[B(1 − μ2)]Φ = 0 (10)

(Ωd − ω)Φ = BΨ, (11)

where

L = ∂

∂μ
(1 − μ2)

∂

∂μ
− m2

1 − μ2

is the Legendre operator and

Ωd (μ) = Ω1(μ)

Ω0
, ω = c

Ω0
, β2 = B2

0

4πρΩ2
0R

2
0

, B(μ) = Bφ(μ)

B0
.

Equations (10) and (11) govern the two-dimensional dynamics
of magnetic Rossby waves in the presence of differential rotation
and toroidal magnetic field. The equations are analogous to
Equations (17) and (18) of Gilman & Fox (1997), but are written
in the rotating frame instead of in the inertial one.

3. ANALYTICAL CONDITIONS OF MAGNETIC ROSSBY
WAVE INSTABILITY

In this section, we derive the analytical instability bounds
using a well-known technique (Howard 1961; Drazin & Reid
1981; Watson 1981; Gilman & Fox 1997; Dahlburg et al. 1998;
Hughes & Tobias 2001).

Let us define a new function H

Ψ = (Ωd − ω)H, Φ = BH.

Then Equations (10) and (11) can be cast in the following form:

∂

∂μ
(1 − μ2)P (μ)

∂H

∂μ
− m2

1 − μ2
P (μ)H + 2(Ωd − ω)

× [1 + (μΩd )′]H − 2β2B(μB)′H = 0, (12)

where
P (μ) = (Ωd − ω)2 − β2B2

and ′ means differentiation with respect to μ.
Now, multiplying Equation (12) by H ∗, integrating from −1

to 1 and using the boundary conditions H (μ = ±1) = 0, we
get

∫ 1

−1
P (μ)Qdμ −

∫ 1

−1
2(Ωd − ω)[1 + (μΩd )′]|H |2dμ

+
∫ 1

−1
2β2B(μB)′|H |2dμ = 0, (13)

where

Q = (1 − μ2)

∣∣∣∣∂H

∂μ

∣∣∣∣
2

+
m2

1 − μ2
|H |2 > 0.

Considering ω = ωr + iωi in Equation (13) we obtain two
different conditions for instability (see detailed derivations in
Appendix B). The first condition states that the instability takes
place when

ω2
r + ω2

i � R2
1, (14)

with
R2

1 = [(s2μ
2 + s4μ

4)2 − β2μ2]max. (15)

In the remaining “max” and “min” mean maximal and minimal
values.

This means that the frequencies of unstable harmonics (actu-
ally phase speeds, while frequencies can be obtained by multi-
plying by m) lay inside the upper semicircle of complex ω-plane
with center at the origin and radius R1 (see Figure 1).

The second instability condition is the semicircle theorem
similar to Howard (1961). The MHD generalization of Howard’s
semicircle theorem in rectangular coordinates has been done by
Dahlburg et al. (1998) and Hughes & Tobias (2001). Here the
theorem is derived in the rotating spherical coordinate system as
the second condition of instability (see details in Appendix B),
obtaining

(
ωr − Ωdmin + Ωdmax

2

)2

+ ω2
i −

(
Ωdmin + Ωdmax

2

)2

+ ΩdminΩdmax − Amax � 0, (16)
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Figure 1. Semicircles of unstable harmonics in the complex (ωr , ωi ) plane
corresponding to the two instability conditions, Equations (14) and (18).
Instability occurs when these two semicircles overlap. ωr , ωi , R1, and R2 are
normalized with respect to Ω0.

where

A(μ) = 1 − μ2

m2
(Ωdmin + Ωdmax − 2Ωd )[1 + (μΩd )′]

+
1 − μ2

m2
2β2B(μB)′ − β2B2. (17)

We observe that Ωdmax = 0 and Ωdmin = −ε, where ε = s2 + s4,
therefore we can write

(
ωr +

ε

2

)2
+ ω2

i � ε2

4
+ Amax. (18)

Due to this condition the frequencies of unstable modes lay
inside the semicircle of the complex ω-plane with center(

−ε

2
, 0

)
(19)

and radius (see Figure 1)

R2 =
√

ε2

4
+ Amax. (20)

Equations (14) and (18) are two necessary conditions of in-
stability. They define two different semicircles in the complex
ω-plane, and the instability occurs when the two semicircles
overlap (see Hughes & Tobias 2001 for the same statement in
the rectangular case). If the radius of one semicircle tends to
zero, the instability disappears.

In the remaining we use a magnetic field

Bφ = B0μ, (21)

which changes sign at the equator (Gilman & Fox 1997).
Now, we may estimate the instability bounds under tachocline

conditions. An important step is to choose the parameters of
differential rotation, s2 and s4. These parameters are deter-
mined by observations and their values at the solar surface
are s2 ≈ s4 ≈ 0.14. Helioseismology shows that the transi-
tion between the differentially rotating convective zone and the
rigidly rotating radiative interior is described by the function
Φ(r, rc, w) = 0.5(1 + erf[2(r − rc)/w]), where erf is the error
function, rc is the radius of the central point of the tachocline, and
w is the characteristic thickness of the tachocline corresponding
to a variation of Φ(r) from 0.08, at the bottom of the tachocline,
to 0.92, at the tachocline’s upper surface (Kosovichev 1996). In
order to calculate the parameters of the differential rotation at

the upper part of the tachocline, the solar surface values must be
multiplied by 0.92, then, we obtain s2 ≈ s4 ≈ 0.13. However, it
must be mentioned that the real values of these parameters can
be different in the tachocline (Charbonneau et al. 1999) and also
can change through the solar cycle due to torsional oscillations
(LaBonte & Howard 1982; Komm et al. 1993; Antia & Basu
2000; Howe et al. 2000; Howe 2009). Therefore, these values
are tentative and further observations are needed to infer the
correct parameters and their cycle dependence.

The typical values of equatorial angular velocity, radius,
and density in the tachocline are Ω0 = 2.7 × 10−6 s−1,
R0 = 5 × 1010 cm, and ρ = 0.2 g cm−3, respectively. Then, the
parameter β2 is much smaller than unity being ≈0.0022 for a
magnetic field strength of 104 G. Using these parameters we get
R1 = 0.256 and R2 = 0.154 for azimuthal wave number m = 1.
Then, the conditions (14) and (18) give that the minimum period
of the m = 1 unstable modes in the tachocline is

Tmin ≈ 105 days. (22)

Therefore, only the magnetic Rossby modes with periods longer
than 105 days may grow in time. However, Equation (22) only
gives a lower bound for oscillation periods. A more detailed
analysis is required to reveal the spectrum of possible unstable
harmonics.

4. SPECTRUM OF UNSTABLE MAGNETIC ROSSBY
MODES

In this section, we use the general technique of Legendre poly-
nomial expansion (Longuet-Higgins 1968). Using the magnetic
field profile (21), Equations (10) and (11) are rewritten as

(Ωd−ω)LΨ+

(
2− d2

dμ2
[Ωd (1−μ2)]

)
Ψ−μβ2LΦ−6μβ2Φ = 0,

(23)

(Ωd − ω)Φ = μΨ. (24)

Let us expand Ψ and Φ in infinite series of associated Legendre
polynomials

Ψ =
∞∑

n=m

anP
m
n (μ), Φ =

∞∑
n=m

bnP
m
n (μ), (25)

which satisfy the boundary conditions Ψ = Φ = 0 at μ = ±1.
The latitude-dependent part of the differential rotation has the

form
Ωd = −s2μ

2 − s4μ
4. (26)

We substitute Equation (25) into Equations (23) and (24)
and, using a recurrence relation of Legendre polynomials, we
obtain algebraic equations as infinite series (details of the
calculations can be found in Appendix C for the case when
the differential rotation has only second-order dependence on μ
in Equation (26)). The dispersion relation for the infinite number
of harmonics can be obtained when the infinite determinant of
the system is set to zero. In order to solve the determinant, we
truncate the series at n = 75 and solve the resulting polynomial
in ω numerically. The frequencies of different harmonics can
be real or complex giving the stable or unstable character of a
particular harmonic. It turns out that m = 1 harmonics are more
unstable such as it has been systematically shown by previous
works in many different occasions (Watson 1981; Gilman &
Fox 1997; Dikpati & Gilman 2005; Gilman & Cally 2007).
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Figure 2. Real (mcr ) vs. imaginary (mci ) parts of unstable harmonic frequencies for different combinations of differential rotation parameters s2, s4 and magnetic
field strengths (frequency is normalized by equatorial angular velocity, Ω0). Note that the difference between equatorial and polar angular velocities s2 + s4 = 0.26
remains the same for all panels. The toroidal wave number m equals 1. Blue, green, yellow, and red colors correspond to magnetic field strengths of 2 ×103 G,
6 ×103 G, 2 ×104 G, and 4 ×104 G, respectively. Asterisks denote the symmetric harmonics with respect to the equator, while circles denote the antisymmetric ones.
The frequencies are normalized by equatorial angular velocity, Ω0; for example, mcr = 0.18 corresponds to the period of ∼150 days.

(A color version of this figure is available in the online journal.)

Figure 2 shows the real, mcr, and imaginary, mci, frequencies
of all m = 1 unstable harmonics for different combinations of
differential rotation parameters and magnetic field strength. In
order to show the dependence on the parameters s2, s4, we vary
these parameters for different values of magnetic field strength
so that the sum s2 + s4 (which is the difference in equatorial and
polar angular velocities) remains 0.26. In Figure 2, the upper
left panel corresponds to the case considered in Appendix C
(i.e., s4 = 0). Blue, green, yellow, and red colors correspond to
magnetic field strengths of 2×103 G, 6×103 G, 2×104 G, and
4×104 G, respectively. Asterisks (circles) denote the symmetric
(antisymmetric) harmonics with respect to the equator. The
results show that the s4μ

4 term in the differential rotation
(Equation (26)) significantly affects the behavior of unstable
harmonics (Charbonneau et al. 1999). For each combination
of s2, s4 and the magnetic field strength, there is a particular
unstable harmonic with a growth rate much stronger than for
the other harmonics. This harmonic is symmetric with respect
to the equator and has the frequency of 0.17–0.18 Ω0 (yielding
periods of 150–160 days) for the magnetic field strength of
�2 × 104 G. The frequency decreases for stronger magnetic
fields (red colors); therefore, Rieger-type periodicities arise as
symmetric unstable harmonics for relatively weaker magnetic
field strength.

Thus, the appearance of a strong oscillation with a particular
frequency needs a suitable combination of differential rotation
parameters (s2, s4) and magnetic field strength. However, the
differential rotation parameters used in Figure 2 are probably
too high for the solar tachocline. Therefore, we study the

dependence of unstable harmonics on more realistic differential
rotation rates.

Figure 3 displays the dependence of the most unstable
symmetric harmonic (this harmonic can be identified in Figure 2
as the blue, green, yellow, and red asterisks at the top of each
panel) on the differential rotation parameters for two different
values of the magnetic field. Left panels correspond to the
field strength of 2 × 103 G and right panels correspond to the
strength of 104 G. Real and imaginary parts of the harmonic
versus s4 are plotted for different values of s2. The values
of s2 vary from 0.14 (blue color) to 0.09 (yellow color). We
can observe that the frequency, mcr , of this harmonic is only
slightly dependent on the differential rotation parameters and
takes values between 0.16 and 0.18 Ω0 which correspond to
oscillation periods of 150–170 days. This is the range where
the Rieger-type periodicity has been observed. On the contrary,
the growth rate, mci , of this harmonic strongly depends on
the differential rotation parameters. The growth rate becomes
stronger when both s2 and s4, are increased.

The frequency and growth rate of this harmonic have no
significant dependence on the magnetic field when its strength
is smaller than 104 G. Figure 4 shows the dependence of the
harmonic calculated for three different profiles of the differential
rotation (blue line corresponds to s2 = 0.13, s4 = 0.1; the red
line to s2 = 0.11, s4 = 0.12, and green line to s2 = 0.11, s4 =
0.1). We can observe that the stronger growth rate occurs for the
red line, which means that s4 is more important for the instability.

When the magnetic energy becomes comparable to the energy
of differential rotation, then the frequency of the symmetric
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Figure 3. Real (lower panels) and imaginary (upper panels) parts of the frequency of the most unstable symmetric harmonic vs. s4 for different values of s2. Dark blue,
green, red, blue, magenta, and yellow colors correspond to 0.14, 0.13, 0.12, 0.11, 0.10, and 0.09 s2 values, respectively. The magnetic field strength equals 2 ×103 G
(left panels) and 104 G (right panel), respectively.

(A color version of this figure is available in the online journal.)
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Figure 4. Dependence of real (lower panel) and imaginary (upper panel) parts
of the frequency of the most unstable symmetric harmonic on the magnetic field
strength for three different combinations of differential rotation parameters. The
blue, green, and red lines correspond to (s2 = 0.13, s4 = 0.1), (s2 = 0.11, s4 =
0.1), and (s2 = 0.11, s4 = 0.12) respectively.

(A color version of this figure is available in the online journal.)

harmonic is significantly reduced (see red asterisks in Figure 2).
The critical magnetic field strength, i.e., when the magnetic
energy is comparable to the flow energy, is ∼5 × 104 G
for the differential rotation parameters s2, s4 = 0.13. In this
case, (s2 + s4)2 ∼ β2, the radius of first semicircle R1 (see
Equation (15)) tends to zero and the growth of symmetric
unstable harmonics is suppressed.

5. DISCUSSION

The periodicity of 155–160 days was discovered almost
three decades ago; however, the reason of its appearance/
disappearance is still unknown. The most striking feature,
perhaps, is its appearance only at certain times, which normally
coincide with the maximum of the cycle (Figure 5). This
coincidence naturally suggests that the magnetic field and the
differential rotation at the solar cycle maximum provide suitable
conditions for the appearance of this periodicity.

Figure 5. Top panel: plot of the daily (black) and monthly averaged (red) sunspot
areas for solar cycles –23. Bottom panel: time/period diagram calculated using
the Morlet wavelet (Torrence & Compo 1998) with k0 = 20. Vertical solid white
lines mark the epochs of minimum solar activity, while the two dashed lines
correspond to the maximum of cycles 19 and 21. Large power values around
160 days can be seen in cycles 19, 20, 21, and 23, peaking at cycle 19. Power is
given in arbitrary units.

(A color version of this figure is available in the online journal.)

Here we show that the periodicity can be connected to the
dynamics of magnetic Rossby waves in the tachocline, since, in
this layer, they are unstable due to the presence of the toroidal
magnetic field and latitudinal differential rotation. First, we have
derived the analytical bounds of instability, which state that
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m = 1 unstable modes have periods >105 days. Next, we have
calculated the detailed spectrum of unstable harmonics using the
method of Legendre polynomial expansion. We have found that
the behavior of unstable harmonics is very sensitive to the com-
bination of magnetic field strength and the differential rotation
parameters (s2, s4). Each combination of the parameters favors a
particular harmonic, which has stronger growth rate compared to
other unstable harmonics. Therefore, this harmonic may quickly
dominate over the others and may lead to a detectable oscillation,
if the parameters remain more or less unchanged during some
time. Unstable harmonics have two types of symmetry with re-
spect to the equator: symmetric and antisymmetric. The growth
rates of symmetric modes are higher than the antisymmetric
ones and they depend on the differential rotation parameters;
the growth becomes stronger for stronger shear.

Frequencies of symmetric unstable modes are in the range
0.16–0.18 Ω0 (Figure 3), which yield the periods of 150–
170 days. In the case of strong differential rotation, their growth
rate may reach up to 0.015 Ω0, i.e., the growth time is ∼280
days. Therefore, they may quickly dominate over the rest. The
growth of the magnetic Rossby wave amplitude leads to an
enhanced magnetic buoyancy at the tachocline which causes
the periodic eruption of magnetic flux toward the solar surface.
Therefore, the periodicity is observed in the emerged magnetic
flux and consequently in many indicators of solar activity (see
references in Section 1).

The question why the periodicities appear only at particular
times (mostly just after solar maximum; see Figure 5) needs
additional explanation. A possible reason is that the growth
of symmetric harmonics strongly depends on the differential
rotation parameters (s2, s4). It is known that the solar differential
rotation is changing through the solar cycle. The pattern known
as the torsional oscillation has been first observed at the solar
surface in full disk velocity measurements (LaBonte & Howard
1982) and later in surface magnetic features as well (Komm
et al. 1993). Helioseismology shows that the torsional oscillation
is not only a surface phenomenon but may penetrate deeper
into the solar interior (Antia & Basu 2000; Howe et al. 2000;
Howe 2009). Then, the parameters s2, s4 may vary through the
solar cycle in the tachocline, which permits the strong growth
of symmetric magnetic Rossby waves only at particular times.
This time should coincide with the solar maximum. We think
that additional helioseismic estimations are needed to study this
phenomenon.

One of the significant simplifications in our approach is the
linear stability analysis. The growth of perturbation amplitudes
probably leads to nonlinear effects. On the other hand, the pro-
cess would be accompanied by increased magnetic buoyancy,
which causes the eruption of magnetic flux upward and conse-
quently may stop further growth of amplitudes. These processes
should be studied with sophisticated numerical simulations in
the future.

It should be mentioned here that numerous previous papers
have studied the tachocline instabilities (Gilman & Fox 1997;
Cally 2003; Dikpati & Gilman 2005; Gilman & Cally 2007;
Gilman et al. 2007). However, all the calculations have been
performed in an inertial frame, while the Rossby wave dynamics
is more clearly seen in a rotating frame. Another important
difference between inertial and rotating frames is that the
instability conditions may be tightened in the moving frame
as suggested by Hughes & Tobias (2001).

The solar tachocline may consist of two parts: the inner radia-
tive layer with a strongly stable stratification and the outer over-

shoot layer with a weakly stable stratification (Gilman 2000).
The latitudinal differential rotation should be stronger in the up-
per tachocline and weaker in the lower one. On the contrary, the
magnetic field strength should be higher in the lower part and
smaller in the upper one. Therefore, the upper tachocline may
favor the better conditions for the growth of symmetric unstable
harmonics, which trigger the Rieger-type periodicities.

6. CONCLUSIONS

In summary, we have shown that the destabilization of
magnetic Rossby waves in the solar tachocline is produced
by the joint effect of the latitudinal differential rotation and
the toroidal magnetic field. The frequencies and growth rates
of unstable harmonics depend on the combination of the
differential rotation parameters and the magnetic field strength.
The possible increase of latitudinal differential rotation at
the solar maximum may trigger the instability of symmetric
harmonic with period of 155–160 days in the upper part of
the tachocline. This instability has a direct correlation with
magnetic flux emergence; therefore, the periodicity also appears
in solar activity indicators related with magnetic flux. Later
on, and probably via reconnection, this periodic magnetic flux
emergence triggers the observed periodicity in solar flares.
The magnetic Rossby wave theory opens a new research area
about the activity on the Sun and other stars, and magnetic
Rossby waves can be of paramount importance for observed
intermediate periodicities in solar and stellar activity (Massi
et al. 1998, 2005).
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ernment of the Balearic Islands is gratefully acknowledged for
the funding provided under grant PCTIB2005GC3-03. T.V.Z.
acknowledges financial support from the Austrian Fond zur
Förderung der wissenschaftlichen Forschung (under project
P21197-N16), the Georgian National Science Foundation (un-
der grant GNSF/ST06/4-098), and the Universitat de les Illes
Balears. Wavelet software was provided by C. Torrence and G.
Compo.4

APPENDIX A

MHD EQUATIONS IN A ROTATING FRAME

In the case of rigid rotation it is straightforward to transform
equations from inertial into the rotational frame, but the presence
of differential rotation slightly complicates the considerations
as different parts of the Sun rotate with different angular veloc-
ity. The best way to overcome the difficulty is to consider the
frame rotating with the equator. Then the latitudinal differential
rotation can be considered as the unperturbed shearing motion
in this frame. Two-dimensional incompressible linearized MHD
equations (θ, φ-plane) in the frame rotating with angular veloc-
ity of the equator, Ω0, are

∂uθ

∂t
+

Uφ

R0 sin θ

∂uθ

∂φ
− 2Ω0 cos θuφ − 2

cos θ

R0 sin θ
Uφuφ

= − 1

ρR0

∂pt

∂θ
+

Ξ
4πρR0 sin θ

∂bθ

∂φ
− 2

Ξ
4πρR0

cos θ

sin θ
bφ,

(A1)

4 The software is available at http://paos.colorado.edu/research/wavelets.

http://paos.colorado.edu/research/wavelets
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∂uφ

∂t
+

Uφ

R0 sin θ

∂uφ

∂φ
+

uθ

R0

∂Uφ

∂θ
+ 2Ω0 cos θuθ +

cos θ

R0 sin θ
uθUφ

= − 1

R0 sin θ

∂pt

∂φ
+

Ξ
4πρR0 sin θ

∂bφ

∂φ

+
bθ

4πρR0 sin θ

∂

∂θ
(Ξ sin θ ), (A2)

∂bθ

∂t
+

Uφ

R0 sin θ

∂bθ

∂φ
= Ξ

R0 sin θ

∂uθ

∂φ
, (A3)

∂

∂θ
(sin θuθ ) +

∂uφ

∂φ
= 0, (A4)

∂

∂θ
(sin θbθ ) +

∂bφ

∂φ
= 0, (A5)

where uθ , uφ , bθ and bφ are the velocity and magnetic field per-
turbations, Ξ and Uφ are azimuthal components of unperturbed
magnetic field and velocity in the rotating frame, and pt is the
perturbation in total (hydrodynamic plus magnetic) pressure.

We consider Uφ as the differential rotation with respect to the
equator, i.e.,

Uφ = R0 sin θΩ1(θ ). (A6)

The substitution of this expression into Equations (A1)–(A5)
gives Equations (3)–(6).

APPENDIX B

DERIVATION OF ANALYTICAL INSTABILITY
CONDITIONS

The real and imaginary parts of Equation (13) with ω =
ωr + iωi are∫ 1

−1

[
(Ωd − ωr )2 − ω2

i − β2B2
]
Qdμ −

∫ 1

−1
2(Ωd − ωr )

× [1 + (μΩd )′]|H |2dμ +
∫ 1

−1
2β2B(μB)′|H |2dμ = 0

(B1)

and

2iωi

[∫ 1

−1
(Ωd − ωr )Qdμ −

∫ 1

−1
[1 + (μΩd )′]|H |2dμ

]
= 0.

(B2)

Unstable harmonics should have non-zero ωi , therefore,
Equation (B2) requires∫ 1

−1
(Ωd − ωr )Qdμ =

∫ 1

−1
[1 + (μΩd )′]|H |2dμ.

The substitution of
∫ 1
−1 ΩdQdμ from this equation into

Equation (B1) leads to the equation∫ 1

−1

[
Ω2

d − ω2
r − ω2

i − β2B2
]
Qdμ −

∫ 1

−1
2Ωd [1 + (μΩd )′]

× |H |2dμ +
∫ 1

−1
2β2B(μB)′|H |2dμ = 0, (B3)

which then can be rewritten as∫ 1

−1

[
Ω2

d − ω2
r − ω2

i − β2B2
]
(1 − μ2)

∣∣∂H

∂μ

∣∣2
dμ

+
∫ 1

−1

[
Ω2

d − ω2
r − ω2

i − β2B2 − 2Ωd [1 + (μΩd )′]
1 − μ2

m2

+ 2β2B(μB)′
1 − μ2

m2

]
m2

1 − μ2
|H |2dμ = 0.

This equation will be satisfied if both integrals are zero, which
requires(

Ω2
d − β2B2)

min � ω2
r + ω2

i � (Ω2
d − β2B2)max (B4)

and(
Ω2

d − β2B2 − 2Ωd [1 + (μΩd )′]
1 − μ2

m2
+ 2β2B(μB)′

1 − μ2

m2

)
min

� ω2
r + ω2

i �
(

Ω2
d − β2B2 − 2Ωd [1 + (μΩd )′]

1 − μ2

m2

+ 2β2B(μB)′
1 − μ2

m2

)
max

.

(B5)

Inequality (B5) is similar to inequality (B4), but with two
additional terms in the left- and right-hand sides. Both additional
terms are positive, therefore, inequality (B4) determines a
condition of instability. Using the profiles of magnetic field
(Equation (21)) and the differential rotation (Equation (2)),
Equation (B4) leads to Equation (14) in the main text.

In order to obtain the semicircle theorem let us observe that∫ 1

−1
(Ωd − Ωdmin)(Ωd − Ωdmax)Qdμ � 0. (B6)

Then the substitution of
∫ 1
−1 Ω2

dQdμ from Equation (B3) into
Equation (B6) gives

∫ 1

−1

[
ω2

r + ω2
i + β2B2 − (Ωdmin + Ωdmax)ωr + ΩdminΩdmax

]
Qdμ

�
∫ 1

−1
(Ωdmin + Ωdmax − 2Ωd )[1 + (μΩd )′]|H |2dμ

+
∫ 1

−1
2β2B(μB)′|H |2dμ.

This inequality can be rewritten as

∫ 1

−1

[(
ωr − Ωdmin + Ωdmax

2

)2

+ ω2
i + β2B2 −

(
Ωdmin + Ωdmax

2

)2

+ ΩdminΩdmax

]
(1 − μ2)

∣∣∣∣∂H

∂μ

∣∣∣∣
2

dμ +
∫ 1

−1

[(
ωr − Ωdmin + Ωdmax

2

)2

+ ω2
i + β2B2 −

(
Ωdmin + Ωdmax

2

)2

+ ΩdminΩdmax − 1 − μ2

m2

× (Ωdmin + Ωdmax − 2Ωd )[1 + (μΩd )′] − 1 − μ2

m2
2β2B(μB)′

]

× m2

1 − μ2
|H |2dμ � 0. (B7)
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At least, one of the two integrals should have negative sign,
therefore(

ωr − Ωdmin + Ωdmax

2

)2

+ ω2
i + (β2B2)min −

(
Ωdmin + Ωdmax

2

)2

+ ΩdminΩdmax � 0 (B8)

and/or

(
ωr − Ωdmin + Ωdmax

2

)2

+ ω2
i −

(
Ωdmin + Ωdmax

2

)2

+ ΩdminΩdmax − Amax � 0, (B9)

where

A(μ) = 1 − μ2

m2
(Ωdmin + Ωdmax − 2Ωd )[1 + (μΩd )′]

+
1 − μ2

m2
2β2B(μB)′ − β2B2. (B10)

Inequality (B9) is wider than inequality (B8). Therefore, it
determines the second condition of instability (Equation (16)
in the main text).

APPENDIX C

DERIVATION OF DISPERSION EQUATIONS USING
LEGENDRE POLYNOMIAL EXPANSION

The substitution of Equation (25) into Equations (23) and (24)
and using the Legendre equation LP m

n + n(n + 1)P m
n = 0 leads

to

− (Ωd − ω)
∞∑

n=m

n(n + 1)anP
m
n +

(
2 − d2

dμ2
[Ωd (1 − μ2)]

)

×
∞∑

n=m

anP
m
n + μβ2

∞∑
n=m

n(n+1)bnP
m
n − 6μβ2

∞∑
n=m

bnP
m
n = 0,

(C1)

(Ωd − ω)
∞∑

n=m

bnP
m
n = μ

∞∑
n=m

anP
m
n . (C2)

Now we take the explicit form of Ωd = −εμ2, then

∞∑
n=m

[ωn(n + 1) + 2 + 2ε]anP
m
n + ε

∞∑
n=m

[n(n + 1) − 12]anμ
2P m

n

+ β2
∞∑

n=m

[n(n + 1) − 6]bnμP m
n = 0, (C3)

∞∑
n=m

anμP m
n +

∞∑
n=m

ωbnP
m
n + ε

∞∑
n=m

bnμ
2P m

n = 0. (C4)

We use the recurrence relations between Legendre polynomials,
namely:

μ2P m
n = AnP

m
n−2 +BnP

m
n +CnP

m
n+2, μP m

n = DnP
m
n−1 +EnP

m
n+1,

where

An = (n + m)(n + m − 1)

(2n + 1)(2n − 1)
,

Bn = (n − m)(n + m)

(2n + 1)(2n − 1)
+

(n − m + 1)(n + m + 1)

(2n + 1)(2n + 3)
,

Cn = (n − m + 1)(n − m + 2)

(2n + 1)(2n + 3)
, Dn = n + m

2n + 1
,

En = n − m + 1

2n + 1
.

The substitution of these relations into Equations (C3)
and (C4) gives

∞∑
n=m

[ωn(n + 1) + 2 + 2ε]anP
m
n + ε

∞∑
n=m

[n(n + 1) − 12]AnanP
m
n−2

+ ε

∞∑
n=m

[n(n + 1) − 12]BnanP
m
n + ε

∞∑
n=m

[n(n + 1) − 12]CnanP
m
n+2

+ β2
∞∑

n=m

[n(n + 1) − 6]DnbnP
m
n−1 + β2

∞∑
n=m

[n(n + 1) − 6]EnbnP
m
n+1,

= 0
∞∑

n=m

anDnP
m
n−1 +

∞∑
n=m

anEnP
m
n+1 +

∞∑
n=m

ωbnP
m
n

+ ε

∞∑
n=m

AnbnP
m
n−2 + ε

∞∑
n=m

BnbnP
m
n + ε

∞∑
n=m

CnbnP
m
n+2 = 0.

Rearranging terms we obtain

∞∑
n=m

[ωn(n + 1) + 2 + 2ε]anP
m
n + ε

∞∑
n=m

[(n + 2)(n + 3) − 12]An+2an+2P
m
n

+ ε

∞∑
n=m

[n(n + 1) − 12]BnanP
m
n + ε

∞∑
n=m

[(n − 2)(n − 1) − 12]

× Cn−2an−2P
m
n + β2

∞∑
n=m

[(n + 1)(n + 2) − 6]bn+1Dn+1P
m
n

+ β2
∞∑

n=m

[n(n − 1) − 6]bn−1En−1P
m
n = 0,

∞∑
n=m

an+1Dn+1P
m
n +

∞∑
n=m

an−1En−1P
m
n +

∞∑
n=m

ωbnP
m
n

+ ε
∑∞

n=mAn+2bn+2P
m
n + ε

∞∑
n=m

BnbnP
m
n + ε

∞∑
n=m

Cn−2bn−2P
m
n = 0.

Now the coefficients of P m
n give the equations

Snan + Fnan+2 + Gnan−2 + Hnbn+1 + Inbn−1 = 0, (C5)

Jnan+1 + Knan−1 + Qnbn + Pnbn+2 + Mnbn−2 = 0, (C6)

where

Sn = ωn(n + 1) + 2 + 2ε + ε[n(n + 1) − 12]
(n − m)(n + m)

(2n + 1)(2n − 1)

+ ε[n(n + 1) − 12]
(n − m + 1)(n + m + 1)

(2n + 1)(2n + 3)
,

Fn = ε[(n + 2)(n + 3) − 12]
(n + m + 2)(n + m + 1)

(2n + 5)(2n + 3)
,
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Gn = ε[(n − 2)(n − 1) − 12]
(n − m − 1)(n − m)

(2n − 3)(2n − 1)
,

Hn = β2[(n + 1)(n + 2) − 6]
n + m + 1

2n + 3
,

In = β2[n(n − 1) − 6]
n − m

2n − 1
, Jn = n + m + 1

2n + 3
,

Kn = n − m

2n − 1
,

Qn = ω + ε
(n − m)(n + m)

(2n + 1)(2n − 1)
+ ε

(n − m + 1)(n + m + 1)

(2n + 1)(2n + 3)
,

Pn = ε
(n + m + 2)(n + m + 1)

(2n + 5)(2n + 3)
, Mn = ε

(n − m − 1)(n − m)

(2n − 3)(2n − 1)
.

Expressions (C5) and (C6) are infinite series and the dispersion
relation for the infinite number of harmonics can be obtained
when the infinite determinant of the system is zero. In order to
solve the determinant, we cut the series at n = 75 and solve the
resulting polynomial in ω numerically.
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Dröge, W., Gibbs, K., Grunsfeld, J. M., Meyer, P., Newport, B. J., Evenson, P.,

& Moses, D. 1990, ApJS, 73, 279
Forbes, T. G. 1991, Geophys. Astrophys. Fluid Dyn., 62, 15
Galsgaard, K., Archontis, V., Moreno-Insertis, F., & Hood, A. W. 2007, ApJ,

666, 516

Garaud, P. 2007, in The Solar Tachocline, ed. D. W. Hughes, R. Rosner, & N. O.
Weiss (Cambridge: Cambridge Univ. Press), 147

Gill, A. E. 1982, Atmosphere–Ocean Dynamics (San Diego: Academic)
Gilman, P. A., & Fox, P. A. 1997, ApJ, 484, 439
Gilman, P. A. 2000, ApJ, 484, 439
Gilman, P. A., & Cally, P. S. 2007, in The Solar Tachocline, ed. D. W. Hughes,

R. Rosner, & N. O. Weiss (Cambridge: Cambridge Univ. Press), 243
Gilman, P. A., Dikpati, M., & Miesch, M. S. 2007, ApJS, 170, 203
Gough, D. 2007, in The Solar Tachocline, ed. D. W. Hughes, R. Rosner, & N. O.

Weiss (Cambridge: Cambridge Univ. Press), 3
Gough, D. O., & McIntyre, M. E. 1998, Nature, 394, 755
Howard, L. N. 1961, J. Fluid. Mech., 13, 158
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R. W., Larsen, R. M.,

Schou, J., Thompson, M. J., & Toomre, J. 2000, ApJ, 533, L163
Howe, R. 2009, Living Rev. Solar Phys., 6, 1
Hughes, D. W., & Tobias, S. M. 2001, Proc. R. Soc. A, 457, 1365
Ichimoto, K., Kubota, J., Suzuki, M., Tohmura, I., & Kurokawa, H. 1985, Nature,

316, 422
Kile, J. N., & Cliver, E. W. 1990, ApJ, 370, 442
Komm, R. W., Howard, R. F., & Harvey, J. W. 1993, Solar Phys., 143, 19
Kosovichev, A. G. 1996, ApJ, 469, L61
Krivova, N. A., & Solanki, S. 2002, A&A, 701
Kuhn, J., Armstrong, J. D., Bush, R. I., & Scherrer, P. 2000, Nature, 405, 544
LaBonte, B. J., & Howard, R. 1982, Solar Phys., 75, 16
Lean, J. L. 1990, ApJ, 363, 718
Lean, J., & Brueckner, G. E. 1989, ApJ, 337, 568
Longuet-Higgins, M. S. 1968, Proc. R. Soc. A, 262, 511
Lou, Y. Q. 2000, ApJ, 540, 1102
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Massi, M., Neidhöfer, J., Torricelli-Ciamponi, G., & Chiuderi-Drago, F. 1998,

A&A, 332, 149
Oliver, R., Ballester, J. L., & Baudin, F. 1998, Nature, 394, 552
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