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ABSTRACT

We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous
paper, we predicted how the time delay between the bright pair of images in a “fold” lens scales with the image
separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole
moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use
Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models
consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as “time delay anomalies.”
We find evidence for anomalies in close image pairs in the cusp lenses RX J1131−1231 and B1422+231. The
anomalies in RX J1131−1231 provide strong evidence for substructure in the lens potential, while at this point the
apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also
find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI
2033−4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination
of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth
models with shear to predict the time delays for all known four-image lenses.

Key words: cosmology: theory – dark matter – galaxies: structure – gravitational lensing: strong – methods:
numerical

1. INTRODUCTION

Gravitational lensing has become a valuable probe of dark
matter substructure in distant galaxies (see Section B.8 of
Kochanek et al. 2006b, and references therein). A growing
body of evidence suggests that anomalous flux ratios, which are
observed in many four-image quasar lenses (Metcalf & Zhao
2002; Keeton et al. 2003, 2005), can be explained if a few
percent of the projected mass within each lens galaxy’s Einstein
angle (which sets the spatial scale for lensing) is contained in
cold dark matter (CDM) “clumps” (Mao & Schneider 1998;
Metcalf & Madau 2001; Chiba 2002; Dalal & Kochanek 2002;
Kochanek & Dalal 2004). It is then natural to ask whether it is
possible to use lensing to measure properties beyond the mean
substructure mass fraction. Of particular interest is the clump
mass function, because the discrepancy between the observed
number of Local Group satellite galaxies and the theoretically
predicted abundance of dark matter clumps varies strongly with
mass (e.g., Klypin et al. 1999; Moore et al. 1999; Strigari et al.
2007). Unfortunately, it is difficult to constrain the mass function
with anomalous flux ratios, because there is a degeneracy such
that a small clump near a lensed image (in projected distance)
can produce the same flux perturbation as a large clump farther
away (see Dalal & Kochanek 2002).

One possible solution to this problem is to measure flux ratios
at multiple wavelengths. Quasar emission regions are believed to
have different sizes at different wavelengths. Roughly speaking,
only clumps with Einstein radii (Einstein angles translated into
units of length) larger than the size of the source can produce
flux ratio anomalies (e.g., Dobler & Keeton 2006); clumps
with small Einstein radii act collectively as a smooth mass
component. Since the Einstein radius depends on mass, the
source size effectively translates into a mass threshold. The
net effect is that multi-wavelength observations provide a way
to study clumps with different mass ranges.4 For example,

4 This is similar to the idea of “chromatic” microlensing, which is discussed

continuum (Woźniak et al. 2000) and broad-line (Richards
et al. 2004; Keeton et al. 2006) optical emission regions in
quasars can be perturbed by objects of stellar mass and larger.
Radio emission regions, by contrast, are large enough that
only objects with masses � 106M� are important (Dobler &
Keeton 2006). If a flux-ratio anomaly is observed at optical
wavelengths but not at radio wavelengths, it is likely that
microlensing by stars in the lens galaxy is the culprit. To
avoid contamination by microlensing, Dalal & Kochanek (2002)
focused on radio anomalies in their study. Infrared emission
regions are intermediate in size, so observations in this band
provide a way to probe objects with mass scales between
stars and clumps. Recent mid-IR observations with the Spitzer
(Poindexter et al. 2007a, 2007b) and Subaru (Chiba et al. 2005;
Minezaki et al. 2009) telescopes have achieved the spatial
resolution necessary for strong lensing studies. In particular,
Chiba et al. (2005) found evidence for subhalos of ∼ 104M� in
the lens system B1422+231, and possibly in PG 1115+080 as
well. In addition, Minezaki et al. (2009) recently found evidence
of a clump with mass > 105M� in the lens MG 0414+0534. A
related way to study the substructure mass function is to compare
continuum and broad-line emission in optical lenses (Moustakas
& Metcalf 2003), which originate from the central accretion disk
and an extended distribution of fast-moving clouds, respectively.
These two regions differ in length scale by a factor of ∼100,
whence their utility for substructure lensing. This technique has
been employed to study the four-image lenses HE 0435−1223
(Wisotzki et al. 2003), SDSS J0924+0219 (Keeton et al. 2006;
Eigenbrod et al. 2006), SDSS J1004+4112 (Richards et al.
2004), RX J1131−1231 (Sluse et al. 2007), and Q2237+0305
(Metcalf et al. 2004; Eigenbrod et al. 2008), along with several
two-image lenses (Burud et al. 2002; Inada et al. 2005a, 2006;
Sluse et al. 2008).

While the method of probing substructure with differential
source size effects is promising, this approach does have some

by Kochanek et al. (2007).
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limitations. For one thing, the mass threshold defined by the
source size and Einstein radius does not represent a sharp cutoff
(see Dobler & Keeton 2006), so it is difficult to obtain tight
constraints on the clump mass. In addition, it may not be possible
to measure flux ratios at enough wavelengths to sample the
mass function well. Finally, lensing constraints on the mass
function will only be as accurate as the mapping of wavelength
to source size. While the model of Shakura & Sunyaev (1973)
has been quite successful in explaining the observed properties
of accretion disks, and gives a relation between wavelength and
source size, it does not apply to the full range of wavelengths
relevant to strong lensing.

A second possible approach to constrain the substructure mass
function is to use flux ratios in combination with other lens
observables. Although they are smaller in amplitude than flux
ratio perturbations, substructure effects on both image positions
(Chen et al. 2007) and time delays (Keeton & Moustakas 2009)
should be detectable. Combining different observables will be
valuable because they depend on the lens potential in different
ways: time delays, image positions, and flux ratios depend on
the potential and its first and second derivatives, respectively.
The different observables, in other words, contain different
information about the substructure population. For example,
Keeton & Moustakas (2009) showed that time delays are
sensitive to the slope and dynamic range of the substructure mass
function, which suggests that precise time delay measurements
may provide a way to constrain these properties. Before we can
use this method, we need to determine whether observed time
delays differ from the predictions for smooth mass models in a
way that may indicate the presence of substructure. Developing
a method to identify such “time delay anomalies” is the focus
of this paper.

In particular, we wish to understand the range of time
delays that can be produced by reasonable smooth models.
We can then classify any outlier as “anomalous” and use it
as evidence of complexity in the lens potential. We must be
careful when interpreting anomalies, however, because dark
matter substructure may not be the only relevant source of
complexity in the lens galaxy. Stars also constitute complex
structure that is important when interpreting flux ratios (due to
microlensing), but they have essentially no effect on time delays
(Keeton & Moustakas 2009). This means that time delays should
not depend on wavelength, so we do not need to distinguish
between radio and optical time delays.5 Finally, extinction by
dust in the lens galaxy can perturb flux ratios, but it will not
have any effect on time delays, which are measured through
flux variability alone and do not depend on color information.

The other main source of complexity we need to consider is
the environment of the lens galaxy. Many lens galaxies lie in
groups or clusters of galaxies (e.g., Momcheva et al. 2006; Auger
et al. 2007). To lowest order, such an environment contributes
a tidal shear to the lens potential (e.g., Keeton et al. 1997), and
we therefore include shear in our analysis, but there may be
higher-order terms that are non-negligible. Extreme examples
of this situation include the lens B1608+656, which has two
galaxies inside the Einstein angle (Koopmans & Fassnacht 1999;
Koopmans et al. 2003; Suyu et al. 2009), and the lens SDSS
J1004+4112, which is produced by a cluster of galaxies (Inada

5 Strictly speaking, optical and radio emission come from different regions of
a quasar, so the optical and radio image positions of a lens, and hence the
corresponding time delays, need not be identical. This effect is naturally taken
into account by our criterion for matching observed time delays with simulated
lenses (see Section 3).

et al. 2003; Oguri et al. 2004). In general, time delay anomalies in
close pairs of images potentially provide the strongest evidence
of dark matter substructure, because environmental effects are
fairly large-scale and should not produce dramatic differences
between images separated by a distance much less than the
Einstein angle. With time delay anomalies in image pairs that
have larger separations, by contrast, we will need to take more
care to consider environmental effects as well as substructure.

Our approach follows that of Keeton et al. (2003, 2005), who
employed analytic flux-ratio relations that are generic for all
lenses with fold and cusp configurations produced by smooth
mass models. To be more specific, a fold lens contains a bright
pair of images whose fluxes FA and FB should satisfy the relation

Rfold ≡ FA − FB

FA + FB

≈ Afold d1, (1)

where d1 is the image separation and Afold depends on properties
of the lens potential. A cusp lens contains a triplet of bright
images whose fluxes should satisfy the relation

Rcusp ≡ FA − FB + FC

FA + FB + FC

≈ Acusp d2
1 , (2)

where d1 is the distance between the closest pair of images
and Acusp depends on properties of the lens potential (see, e.g.,
Congdon et al. 2008). (Note that Rfold and Rcusp vanish in the
limit d1 → 0.) If these relations are violated, we may conclude
that the mass distribution of the lens galaxy cannot be smooth
and must contain additional structure, most likely in the form of
CDM substructure or a complex lens environment. Determining
in practice that a given lens is anomalous requires some care.
Equations (1) and (2) show that Rfold and Rcusp increase with the
distance between the images, so a non-zero value for one of these
quantities does not automatically imply a flux ratio anomaly.
Making such an identification would require knowledge of Afold
and Acusp, which depend on the exact form of the lens potential.
Since these quantities are not directly observable, Keeton et al.
(2003, 2005) performed Monte Carlo simulations to determine
distributions for Rfold and Rcusp at fixed d1 using parameter
values appropriate for a realistic population of lens galaxies.
With this information, it is possible to determine the probability
that an observed lens is anomalous and hence contains small-
scale structure.

Oguri (2007) employed a method similar to that of Keeton
et al. (2003, 2005) to study time delays, although his emphasis
was different from ours. While both studies are based on time
delay distributions, Oguri’s emphasis was on determining the
Hubble constant, whereas we focus on small-scale structure in
lens galaxies. In fact, we explicitly remove the Hubble constant
from our analysis by working with scaled time delays and
time delay ratios. Another difference is that we concentrate
our attention mainly on cusp and fold lenses, which are most
relevant to the questions we seek to answer.

This paper is organized as follows. In Section 2 we consider
how the differential time delay depends on the parameters of
the lens potential, and on the shape of the associated (astroid)
caustic. The results we present there motivate our Monte Carlo
simulations, which we describe in Section 3. We apply our
formalism to the 25 known four-image lenses in Section 4.
Finally, we present our conclusions in Section 5.
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Figure 1. Values of the Taylor series coefficient |h| at various points on the caustic for a singular isothermal ellipsoid lens with different values of the ellipticity. Insets
show close-up views of the upper and right-hand cusp points. The coefficient h should vanish at a cusp point (see Congdon et al. 2008), but for computational reasons
we do not necessarily have points that lie precisely at the cusps. The axes are in units of the Einstein angle.

2. DEPENDENCE OF TIME DELAY ON LENS
POTENTIAL AND POSITION ALONG CAUSTIC

In Congdon et al. (2008), we showed that the time delay
between a close pair of images in a fold lens scales with the
cube of the image separation, d1, i.e., Δτ/τ0 ≈ |h|d3

1/2 (see
Equation (25) of Congdon et al. 2008, and pp. 190–191 of
Schneider et al. 1992), where τ0 is a cosmology-dependent scale
factor (see Equation (6) below). The coefficient h comes from
a Taylor expansion of the lens potential, ψ , and can be written
as a particular third derivative: h ≡ ψ222/6, where the subscript
“2” indicates differentiation with respect to the coordinate in
the image plane that corresponds to the direction perpendicular
to the caustic in the source plane, and is evaluated at the point
on the critical curve that serves as the coordinate origin (see
Section 3.2 of Congdon et al. 2008). In this section, we study
how the time delay for a fold pair depends on the lens potential
and the distance between the fold point and the nearest cusp
point. This is equivalent to studying the variation of h along the
caustic, since, for fixed d1, the time delay is given solely in terms
of this coefficient. Because h < 0, we find it more convenient
to work with its absolute value.

Most lens galaxies are of early type and have density profiles
close to isothermal, i.e., the three-dimensional density scales
with radius as ρ ∝ r−2 (e.g., Treu & Koopmans 2004; Rusin
& Kochanek 2005; Treu et al. 2006), so we compute |h| for
a singular isothermal ellipsoid (SIE) lens. To determine an
appropriate value for the ellipticity parameter e ≡ 1 − q, where
q is the minor-to-major axis ratio, we turn to the observed
galaxy samples of Bender et al. (1989), Jørgensen et al. (1995),
and Saglia et al. (1993). These samples have mean ellipticities
and dispersions of (ē, σe) = (0.28, 0.15), (0.31, 0.18), and
(0.30, 0.16), respectively. Note that these values measure the
distribution of light rather than mass, so it is possible that the
dark matter halo in which the galaxy presumably resides is
rounder or flatter than the observed isophotes.

Figure 1 shows |h| at various points on the caustic, for
ellipticities of 0.1, 0.3, and 0.5. We see that |h| remains roughly
constant along the caustic for points away from the cusps.
This suggests that lenses whose fold pairs have comparable
separations will have similar time delays as well, at least
for galaxies with similar ellipticities. Testing this prediction
will require large samples of fold lenses, for which both the
differential time delay between the fold pair and the ellipticity of
the lens galaxy are known. For points near a cusp, |h| decreases
rapidly and vanishes right at the cusp point (as it must; see

Section 2 of Congdon et al. 2008). Finally, we see that |h|
depends on the size of the caustic. It is not yet clear whether
this merely reflects a simple correlation between |h| and e or
is indicative of a more subtle relationship between caustic size
and the time delay for a fold pair.

In addition to ellipticity, Bender et al. (1989) and Saglia et al.
(1993) find that many early-type galaxies have small departures
from elliptical symmetry. “Disky” or “boxy” isophotes can be
represented by an m = 4 multipole mode, with coefficient
a4 > 0 for disky isophotes and a4 < 0 for boxy isophotes. In
terms of the (two-dimensional) lens potential, the m = 4 mode
for an isothermal galaxy can be written as (e.g., Keeton 2001)

ψ(r, θ ) = −A4r cos 4θ. (3)

The coefficient a4 is defined in terms of surface brightness rather
than potential, so we must convert from A4 to a4:

a4 = 15A4

√
1 − ε , (4)

where ε ≡ (1−q2)/(1 +q2). For typical values of a4 =-0.01, 0,
0.01, and 0.02 (e.g., Bender et al. 1989) and ellipticity e = 0.3,
we find maximum |h|-values of 0.07, 0.07, 0.08, and 0.09, re-
spectively. We therefore conclude that m = 4 multipole terms
have fairly small effects on the time delay for a fold pair, regard-
less of whether the isophote is disky or boxy. We nevertheless
include m = 4 modes in our simulations (Section 3) given that
this is both simple and observationally motivated.

Since many lens galaxies lie within groups or clusters (e.g.,
Momcheva et al. 2006; Auger et al. 2007), a nonzero tidal
shear is common. Using numerical simulations and semianalytic
models of galaxy formation, Holder & Schechter (2003) find
that shear can be described by a lognormal distribution with
median γ = 0.05 and dispersion σγ = 0.2 dex.6 For such
shear amplitudes, the caustic structure is qualitatively similar to
what is seen in Figure 1, so we do not show it explicitly. We
return to shear when we consider realistic lens populations in
the following section.

3. CONSTRUCTING TIME DELAY DISTRIBUTIONS FOR
A REALISTIC LENS POPULATION

For any given lens galaxy, we could estimate h (or more
generally the smooth model time delays) directly, by fitting a

6 Following Keeton et al. (2005), we do not quote the final shear distribution
of Holder & Schechter (2003), but rather the raw distribution before effects
such as magnification bias are applied.
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Figure 2. Examples of mock lenses that potentially match the cusp lens B2045+265. Specifically, the distances d1 (between images A and B) and d2 (between images
B and C) match the corresponding distances in 2045 within a tolerance of ±0.05. Filled squares denote minima, while open squares denote saddles. The lensing critical
curves are shown, and the axes are labeled in units of the Einstein angle, θE . The major axis of the lens galaxy is oriented vertically, so the mock lenses in the top row
are long-axis cusps, while the mock lenses in the bottom row are short-axis cusps. When the parity cut is applied, only the top panels match 2045.

lens model and inferring the lens potential. However, we would
like to avoid any dependence on models and modeling as much
as possible. We therefore elect to examine the full probability
distributions for time delays given a realistic population of lens
galaxies, using Monte Carlo methods to construct the time delay
distributions.

We follow the approach of Keeton et al. (2003, 2005) and
create lens galaxies with model parameters drawn from the
galaxy samples of Bender et al. (1989), Jørgensen et al. (1995),
and Saglia et al. (1993). Although the mean ellipticities and
dispersions are similar for the three samples, the underlying
galaxy populations are not the same. Jørgensen et al. (1995)
and Saglia et al. (1993) include galaxies within clusters, while
Bender et al. (1989) use bright, nearby galaxies to construct their
sample. In addition, Bender et al. (1989) and Saglia et al. (1993)
report a4 measurements, while Jørgensen et al. (1995) do not. In
order to determine the extent to which our conclusions depend
on the input data, we carry out the numerical method described
below separately for each of the three galaxy samples. To model
the environment of a lens galaxy, we add tidal shear based on the
simulations of Holder & Schechter (2003) that we discussed at
the end of the previous section. For the sample of Jørgensen
et al. (1995) we pick 2000 ellipticities from their observed
distribution, and assign a random shear to each. For the samples
of Bender et al. (1989) and Saglia et al. (1993), we use the actual
(e, a4) pairs for the observed galaxies (87 in the Bender et al.
1989 sample, and 54 in the Saglia et al. 1993 sample) in order
to retain any correlation between the parameters; and for each
galaxy we use 100 different realizations of the shear.

For each model lens potential, we use an updated version
of the GRAVLENS software7 (Keeton 2001) to solve the lens
equation numerically and obtain the image positions and time
delays for a large set of random source positions that are
uniformly distributed in the four-image region. Using a uniform

7 See http://redfive.rutgers.edu/∼keeton/gravlens.

distribution has several consequences. First, it means that each
model lens potential is automatically weighted by its four-image
cross section, which seems like the proper statistical approach.8

Second, it means that we neglect magnification bias. While
lensing magnification bias is quite important when comparing
statistical samples of four-image and two-image lenses, it is
less dramatic within a sample of four-image lenses, and still
less so within the subset of four-image lenses that have a
particular image configuration. Generally speaking, including
magnification bias would give more weight to sources that lie
closer to the lensing caustic, which tend to produce shorter time
delays, so it would shift the time delay distributions we derive
to somewhat shorter values. The effect is not strong, however,
and we checked that it does not change any of our conclusions
about time delay anomalies. All told, our simulations based on
the galaxy samples from Bender et al. (1989), Jørgensen et al.
(1995), and Saglia et al. (1993) contain 1,267,555, 2,205,515,
and 851,261 mock four-image lens systems, respectively.

The time delay of an image at angular position θ relative to
an unlensed light ray from the true source with position β is
given by

τ (θ) = τ0

[
1

2
|θ − β|2 − ψ(θ)

]
, (5)

where the time scale is

τ0 = 1 + zL

c

DLDS

DLS
. (6)

Here DL,DS , and DLS are the angular-diameter distances from
the observer to lens, observer to source, and lens to source,
respectively. For our mock lenses we focus on the dimensionless,

8 The mass of the lens galaxy factors out when we work with scaled time
delays and time delay ratios, but the angular structure of the lens potential
remains important.

http://redfive.rutgers.edu/~keeton/gravlens
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Table 1
Data for Four-image Lenses

Lens Name zS zL θE (arcsec) τ0 (days arcsec−2)

B0128+437 3.12 ? 0.20 ?
HE 0230−2130 2.16 0.52 0.82 85.7
MG 0414+0534 2.64 0.96 1.08 193.2
B0712+472 1.34 0.41 0.68 72.9
HS 0810+2554 1.50 ? 0.51 ?
SDSS 0924+0219 1.52 0.39 0.87 64.8
SDSS J1004+4112 1.73 0.68 6.91 140.7
PG 1115+080 1.74 0.31 1.03 46.5
SDSS J1330+1810 1.39 0.37 0.97 62.8
B1555+375 ? ? 0.24 ?
B1608+656 1.39 0.63 0.77 143.7
B1933+503 2.63 0.76 0.49 135.8
WFI 2026−4536 2.23 ? 0.65 ?
WFI 2033−4723 1.66 0.66 1.06 137.6

RX J0911+0551 2.80 0.77 0.95 134.8
RX J1131−1231 0.66 0.30 1.81 65.0
SDSS J1251+2935 0.80 0.41 0.88 102.8
B1422+231 3.62 0.34 0.76 46.1
B2045+265 1.28 0.87 1.13 342.1

HE 0435−1223 1.69 0.46 1.18 75.0
HST 12531−2914 ? 0.69 0.55 ?
HST 14113+5211 2.81 0.46 0.83 68.8
H1413+117 2.55 ? 0.56 ?
HST 14176+5226 3.40 0.81 1.33 135.7
Q2237+030 1.69 0.04 0.85 4.9

Notes. Data for the known four-image lenses with point-like images.
All data are given by Oguri (2007) and the CASTLES Web site
(http://www.cfa.harvard.edu/castles/), except for SDSS J1330+1810 (Oguri
et al. 2008) and SDSS J1251+2935 (Kayo et al. 2007). Question marks in-
dicate quantities for which no measured value is available. Einstein angles θE

are computed from lens models, either our own or others’ (CASTLES; Keeton
et al. 2003, 2005; Kayo et al. 2007; Oguri et al. 2008). The timescale τ0 depends
on zL and zS . We assume cosmological parameters ΩM = 0.3, ΩΛ = 0.7, and
H0 = 70 km s−1 Mpc−1. The table is divided into three sections: fold lenses
(top), cusp lenses (middle), and cross lenses (bottom).

scaled time delay

τ̂ ≡ τ

τ0θ
2
E

, (7)

where θE is the Einstein angle.9 The advantage of working with
the scaled time delay is that our analysis of the mock lenses is
independent of cosmology, and of the lens and source redshifts.
It does mean that we need to convert all observed time delays
from physical to dimensionless units before we can compare
them to our mock lens catalog (see Section 4). For convenience,
we quote distances (e.g., d1 and d2 below) in units of the Einstein
angle as well.

Our analytic time delay relation (Equation (25) of Congdon
et al. 2008) specifically applies to fold image pairs, so they are
the most obvious targets for anomaly searches. However, we do
not actually use the analytic relation to make predictions for our
mock lenses, so it is reasonable to consider non-fold image pairs,
as well as cusp and cross lenses, in our comparisons between

9 The Einstein angles we use come from lens modeling, either by ourselves
or others (see Table 1). Although there is no unique definition for the Einstein
angle of an elliptical lens, different definitions result in values consistent to
within a factor of order unity. In practice, such concerns are rendered moot by
the 5% astrometric uncertainties we allow for when comparing observed
lenses with our mock catalog (see text for details).

observed lenses and Monte Carlo simulations. There are six
distinct image pairs in a four-image lens. We are interested in the
subset of pairs that contain one image of positive parity (which
lies at a minimum of the time delay surface) and one of negative
parity (which lies at a saddle point). In this way, we consider
only adjacent images. The effect is to make our analysis local10

rather than global, which is appropriate for studying small-scale
structure. There are four such mixed-parity image pairs in each
four-image lens.

We characterize each image pair by the separation between
the two images, d1. We also use the distance to the next-nearest
image, d2,11 because it helps specify the lens morphology: a
fold lens has d1 
 d2 ∼ 1; a cusp lens has d1 ∼ d2 
 1; a
cross lens has d1 ∼ d2 ∼ 1. Another reason to use d2 is that
it allows us to take ratios of time delays (see below). While d1
and d2 technically define an image triplet, we will use the term
“pair” to refer to the two images defined by d1, since this is the
image pair of primary interest.

We seek to understand the full range of time delays that can
be produced by smooth lens models that are consistent with
the positions of an observed image pair. We consider a mock
lens image pair to “match” an observed pair if two conditions
are satisfied. First, we require that the d1 and d2 values of the
mock and observed pairs agree within a tolerance of ±0.05. This
criterion is conservative in the sense that we are using minimal
information from quantities that are observable and local; using
additional information would only narrow the range of smooth
models that are considered to be consistent with an observed
image pair. The distance-based matching criterion does have
one limitation, which is illustrated in Figure 2: it may allow not
only mock pairs with the same parities as the observed images,
but also pairs with the opposite parities. We could avoid this
problem by adding information about the fourth image. We do
not want to do that, however, because the fourth image is always
“far” from the pair in question (i.e., 1–2 Einstein angles away);
including it would make our analysis more sensitive to global
properties of the lens potential and countermand our goal of
using a local analysis to search for substructure. Instead, we add
the image parities to the matching criterion.12 Specifically, we
insist that the parities of the three images defined by d1 and d2
are the same for an observed lens and its simulated counterpart.
This is straightforward to do since the image parities are known
for the mock lenses, and they can be determined unambiguously
for observed lenses (by measuring time delays or just analyzing
the image configuration; see, e.g., Saha & Williams 2003). Since
the two images in each pair we consider have opposite parities
(by construction), the parity cut represents only one additional
bit of information.

For each image pair we compute the differential scaled time
delay between the two images, which we call Δt1. For the second
differential time delay we use the image pair characterized by
the distance d2, and we call this Δt2. We then adopt the following
sign convention. By construction, any image pair we consider
will consist of a minimum image (positive parity, labeled M1)

10 It would perhaps be better to say that our analysis is quasi-local. It is indeed
local for close pairs of images (as in fold pairs and cusp triplets), but it is not
strictly local for image pairs whose image separation d1 approaches order
unity.
11 To obtain d2 we consider the distance between each image of a given pair
and its next-nearest image of opposite parity. We define d2 to be the smaller of
these two distances.
12 The parity cut was not used by Keeton et al. (2003, 2005), but we introduce
it here in part because Keeton & Moustakas (2009) note the importance of
parity in the context of time delays.

http://www.cfa.harvard.edu/castles/
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Figure 3. Time delay histograms for the known fold lenses. The horizontal axes show the scaled time delay in units of τ0θ
2
E ; the range is chosen to span three standard

deviations above and below the mean of the predicted time delay distribution, and further expanded if necessary to encompass the observed value. The vertical axes
are in arbitrary units, with each panel scaled to the maximum value of its three histograms. From top to bottom, lenses are arranged in order of increasing d ∗

1 ; the
abbreviated lens name appears at the far left. (See Table 1 for the full names.) From left to right, the panels correspond to image pairs with increasing values of d1.
The solid, dotted, and dashed curves show histograms corresponding to the data of Bender et al. (1989), Jørgensen et al. (1995), and Saglia et al. (1993), respectively.
For image pairs with observed time delays, vertical dashed lines show the measured values. The error bars show 3σ measurement uncertainties (see Table 2). In cases
where measurement uncertainty formally allows for time delays whose signs are disallowed by the parity cut (see Section 3), error bars are truncated at vanishing
abscissa.

and a saddle image (negative parity, labeled S1). If the next-
nearest image is a minimum (labeled M2), we have a triplet
consisting of a saddle flanked by two minima. We define the
two differential time delays to be

Δt1 = τ̂ (M1) − τ̂ (S1) and Δt2 = τ̂ (M2) − τ̂ (S1). (8)

Since saddles have larger time delays than minima, both Δt1
and Δt2 are negative. In the case that the next-nearest image is a

saddle (labeled S2), we have a triplet consisting of a minimum
flanked by two saddles. We then define the differential time
delays to be

Δt1 = τ̂ (S1) − τ̂ (M1) and Δt2 = τ̂ (S2) − τ̂ (M1). (9)

Now both Δt1 and Δt2 are positive.
It is also useful to compute the ratio of the differential time

delays for two image pairs. Time delay ratios are attractive
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Figure 4. Time delay histograms for fold lenses (continued).

because they do not depend on cosmology (τ0 factors out),
and they are largely immune to the radial-profile degeneracy
(e.g., Kochanek 2002; Keeton & Moustakas 2009). Our sign
convention ensures that Δt1/Δt2 is always positive since Δt1 and
Δt2 have the same sign.

To reprise, we define the two time delays relative to the
“middle” of the three images we use to determine d1 and d2.
This means the scaled time delays can be either positive or
negative, but the time delay ratio is always positive. Note that
regardless of the sign, when labeling image pairs we always list
the minimum first.

From the set of mock lenses that match an observed image
pair, we construct histograms of the scaled time delay and the
time delay ratio. These represent the range of values that can be

produced by realistic smooth mass distributions. We can then
use these predicted distributions to assess whether observed time
delays are or are not consistent with lensing by a smooth mass
distribution.

4. RESULTS FOR OBSERVED LENSES

The number of observed four-image lenses has been steadily
increasing in recent years. We focus on the 25 lens systems
for which the lensed images are point-like (see Table 1). This
restriction prevents us from using the system Q0047−2808
(Warren et al. 1996, 1999), as well as lenses from the SLACS
survey13 (Bolton et al. 2006, 2008). However, this condition is

13 See http://www.slacs.org/

http://www.slacs.org/
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Figure 5. Same as Figure 3, but for the known cusp lenses.

Figure 6. Same as Figure 3, but for the known cross lenses.
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Figure 7. Histograms of time delay ratios for the known fold lenses. The horizontal axes show the (dimensionless) time delay ratio. The vertical axes are in arbitrary
units, with each panel scaled to the maximum value of its three histograms. From top to bottom, lenses are arranged in order of increasing d ∗

1 ; the abbreviated lens
name appears at far left. (See Table 1 for the full names.) From left to right, the panels correspond to image pairs with increasing values of d1. The solid, dotted, and
dashed curves show histograms corresponding to the data of Bender et al. (1989), Jørgensen et al. (1995), and Saglia et al. (1993), respectively. For image pairs where
it is possible to construct time delay ratios from observational data, vertical dashed lines show these values. The error bars show 3σ measurement uncertainties (see
Table 3). Truncated error bars have the same meaning as in Figure 3.

necessary to ensure that the lensed source is compact, so that
the variability timescale is short enough to make time delay
measurements practical.

As noted above (see Equation (7)), we compute scaled time
delays for our mock lenses, so we must scale each observed time
delay by τ0θ

2
E in order to compare it with the mock lens sample.

The Einstein angles and lens and source redshifts are listed
in Table 1. We compute the angular diameter distances in τ0
assuming cosmological parameters ΩM = 0.3, ΩΛ = 0.7, and

H0 = 70 km s−1 Mpc−1. The benefit of working with scaled
time delays in our mock lens analysis is that we can present
results for all observed lenses, regardless of whether any of
their time delays are currently known. As more time delays
are measured, it will be a simple matter to compare them with
our compilation of predicted scaled time delays. In addition,
it is possible to consider different cosmological models simply
by recomputing the scale factor τ0 and retranslating between
observed and scaled time delays.
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Figure 8. Histograms of time delay ratios for fold lenses (continued).

4.1. Time Delay Histograms

To get a sense of the range of time delays that can be produced
by smooth lens models, we show histograms of the scaled time
delay (Figures 3–6) and time delay ratio (Figures 7–10) for
each image pair in the 25 known four-image lenses. There are
many lenses whose time delays have not yet been measured,
but the histograms for those cases are still pedagogically useful
and provide a way to predict what the time delay should be if
the lens in question is not anomalous. In this subsection, we
discuss the general features of the histograms. In the following
subsections, we analyze the lenses with known time delays and
make predictions for the remainder.

We divide the observed lenses into three groups: folds
(Figures 3, 4, 7, and 8), cusps (Figures 5 and 9), and crosses
(Figures 6 and 10). We assign one of these canonical lens
morphologies to each observed four-image lens according to
the classification scheme of Keeton et al. (2003, 2005). For
each lens, we define d ∗

1 to be the smallest value of the pairwise
image separations. The lenses in each figure are arranged in
rows such that d ∗

1 increases from top to bottom. Within each
row, the panels are arranged such that d1 increases from left to
right. As a check for systematic effects, we plot histograms of
the time delays and time delay ratios produced by Monte Carlo
simulations using galaxy samples from Bender et al. (1989),
Jørgensen et al. (1995), and Saglia et al. (1993; see Section 3).
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Figure 9. Same as Figure 7, but for the known cusp lenses.

We first consider histograms of the scaled time delays, which
are shown in Figures 3–6. A negative time delay indicates
that the middle image in the triplet defined by d1 and d2 has
negative parity (Equation (8)), while a positive time delay
indicates a middle image with positive parity (Equation (9)). The
histograms are not highly sensitive to the input galaxy sample,
especially in the tails (which are most important for identifying
anomalies). The histograms are somewhat asymmetric with a
longer tail on the side away from zero, which presumably reflects
the fact that the histograms are bounded by zero by construction.
Many of the histograms have a large width relative to the mean/
median, which is not too surprising because we have been quite
generous in matching mock lenses to observed lenses on the
basis of minimal information (just d1, d2, and parity). This is
consistent with our goal of being conservative in identifying
time delay anomalies.

Next, we consider histograms of the time delay ratios, which
are shown in Figures 7–10. These histograms are skewed to the
right, presumably because the time delay ratios are positive
and hence the histograms are bounded by zero on the left
but unbounded on the right. The overall structure of the time
delay ratio histograms does not vary much from one lens to
another, or between image pairs of a given lens. This suggests
that conclusions drawn from time delay ratios are not terribly
sensitive to the lens morphology (fold, cusp, or cross), which
may prove quite useful.

4.2. Identifying Time Delay Anomalies in Observed Lenses

Eight of the 25 known four-image lenses have at least one
image pair with an observed time delay (see Tables 2 and 3).
We can use our simulations to determine whether these lenses
are consistent with lensing by an ellipsoidal mass distribution
with tidal shear. Specifically, we compare the observed value
of the time delay and (if available)14 the time delay ratio with
our predicted distributions. If the observed value lies outside of
the predicted range, we classify the time delay as anomalous
and interpret it as strong evidence that the lens galaxy cannot be
described as a simple, relatively smooth mass distribution with
shear.

This statement is quantified by the statistical P-value, which
gives the fraction of matching mock lenses whose time delays
(or ratios) are smaller than the observed value; either P > 0.995
or P < 0.005, for example, would indicate that a time delay
is anomalous at more than 99% confidence. We consider
P > 0.995 or P < 0.005 to indicate a strong anomaly, and
0.975 < P < 0.995 or 0.005 < P < 0.025 to indicate a
marginal anomaly. Given the relatively small number of known
four-image lenses, we should not read too deeply into marginal
anomalies since a few outliers are only to be expected. The
extreme P-values required of strong anomalies, however, would
be difficult to interpret as statistical flukes, so conclusions based

14 Recall that to construct the time delay ratio we must know not only the time
delay for the image pair, but also the time delay to the next nearest image.
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Figure 10. Same as Figure 7, but for the known cross lenses.

on such systems should be robust. The choice of input galaxy
sample for the Monte Carlo simulations has no significant
effect on our conclusions; so for simplicity we report P-values
computed using only the sample of Bender et al. (1989), which
is the larger of the two samples that include a4 measurements.

To assess whether measurement errors in observed time
delays affect our results, we compute P-values for the endpoints
of the observed 3σ error interval. This is a simple task for time
delays, but for time delay ratios we first need to propagate errors
from the time delays into the ratios. For time delay errors that
are symmetric, we assume they are Gaussian and propagate
them using the standard formula for a quotient. If the error bars
are asymmetric, we conservatively take the larger error bar as
the Gaussian standard deviation, σ . While this approach is not
strictly correct, it is the best we can do without knowing the
full error distribution, and it is conservative in the sense that it
should overestimate the uncertainties in the time delay ratio. It
turns out that our identifications of anomalies are not affected
by the observational errors in most cases (see Tables 2 and 3,
and the following discussions of individual lenses). This does

not mean, however, that there is no need to measure time delays
more precisely. Rather, it reflects the fact that our predicted time
delay distributions are quite broad because we have deliberately
chosen to be generous in matching observed and mock lenses.
When it comes to analyzing time delay anomalies to extract
physical information (about the substructure mass function,
for example), it will be necessary to do detailed modeling for
which precise image positions and time delays will be vital (see
Keeton & Moustakas 2009 and Moustakas et al. 2009 for more
discussion).

We now discuss all of the lenses with at least one observed
time delay in the order in which they appear in Figures 3–6.

PG 1115+080. All of the differential time delays in the fold
lens 1115 are known (Schechter et al. 1997; Barkana 1997;
Chartas et al. 2004). The flux ratio between the close images
A1 and A2 is anomalous at optical and X-ray wavelengths (see
Pooley et al. 2007, and references therein). The mid-IR flux
ratios are not anomalous, however, which suggests that the X-
ray/optical anomaly is caused by microlensing (Chiba et al.
2005). Since microlensing does not affect time delays (Keeton
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Table 2
P-values for Scaled Time Delays

Lens Image Rank Obs. Δt1 Error P-Value P-Values for
Name Pair (days) Interval for Δt1 Err. Interval

1004 BA 1 40.6 (35.2, 46.0) 0.114 (0.0630, 0.170)
1004 CA 3 −822. (−828., −815.) 0.917 (0.914, 0.919)
1115 A1A2 1 0.149 (0.131, 0.167) 0.109 (0.0670, 0.154)
1115 A1B 2 11.7 (8.10, 15.3) 0.292 (0.121, 0.487)
1115 CB 3 −25.0 (−29.8, −20.2) 0.983 (0.922, 0.996)
1115 CA2 4 −13.3 (−16.3, −10.3) 0.991 (0.971, 0.998)
1608 AC 1 −4.50 (−9.00, 0) 1.00 (0.995, 1.00)
1608 BC 2 −36.0 (−40.5, −31.5) 0.921 (0.849, 0.965)
1608 AD 3 45.5 (41.0, 50.0) 0 (0, 0)
1608 BD 4 77.0 (71.0, 83.0) . . . (–, –)
2033 A1C 2 27.1 (14.2, 40.0) 0.469 (0.0882, 0.791)
2033 BA2 3 −35.5 (−39.7, −31.3) 0.903 (0.843, 0.945)
2033 BC 4 −62.6 (−74.9, −50.3) 0.998 (0.995, 1.00)
0911 BA 1 6.00 (−24.0, 36.0) 1.00 (0, 1.00)
0911 BC 2 5.00 (−48.7, 58.7) 1.00 (0, 1.00)
0911 DC 3 −154. (−202., −106.) 1.00 (1.00, 1.00)
0911 DA 4 −143. (−161., −125.) 1.00 (1.00, 1.00)
1131 BA 1 −12.0 (−16.5, −7.50) 0 (0, 0)
1131 CA 2 −9.60 (−15.6, −3.60) 0 (0, 0.00601)
1131 BD 3 99.0 (75.0, 123.) 0.455 (0.266, 0.632)
1131 CD 4 96.6 (72.6, 121.) 0.376 (0.206, 0.548)
1422 AB 1 −1.50 (−5.70, 2.70) 0 (0, 1.00)
1422 CB 2 −8.20 (−14.2, −2.20) 0 (0, 0.000361)
0435 CB 1 −5.90 (−8.30, −3.50) 0.931 (0.773, 0.991)
0435 AB 2 −8.00 (−10.4, −5.60) 0.862 (0.676, 0.963)
0435 CD 3 12.3 (9.90, 14.7) 0.0489 (0.0205, 0.0907)
0435 AD 4 14.4 (11.7, 17.1) 0.0668 (0.0307, 0.119)

Notes. Column 1 gives abridged lens names (see Table 1 for the corresponding full names). Image pairs contain one minimum and one saddle. The labels
in Column 2 list the minimum image first. We rank image pairs according to their separation in Column 3, with smaller numbers corresponding to smaller
separations. Columns 4 and 5 list the observed time delays, along with their 3σ error bars. In cases where the measurement uncertainties are asymmetric about
the observed value, we create symmetric error bars with uncertainty σ , where σ refers to the larger of the two measurement uncertainties. Note that the parity
cut described in Section 3 specifies the sign of the time delay in a given image pair, so time delays with the opposite sign are unphysical even if such values
are formally allowed by the measurement uncertainties. The observational time delay data used here can be found in Table 1 of Oguri (2007), except for the
lenses 1004 (Fohlmeister et al. 2008) and 2033 (Vuissoz et al. 2008). Columns 6 and 7 give P-values for the time delays shown in Columns 4 and 5, using the
galaxy sample of Bender et al. (1989).

& Moustakas 2009), we might expect the time delays not to be
anomalous. Indeed, Figure 3 and Tables 2 and 3 show that
the A1A2 time delay is not anomalous. We now turn to the time
delays between the “distant” image pairs. The P-values of the
pairs CA2 and CB would be anomalous if we considered only
the 1σ error bars, but they fall below the threshold when we use
3σ error bars. Since there are no time delay anomalies in 1115,
we conclude that the observed optical flux anomalies are indeed
due to microlensing.

SDSS J1004+4112. The fold lens 1004 is produced by a
cluster of galaxies and contains five lensed images whose
temporal ordering is C-B-A-D-E (Fohlmeister et al. 2008).
Images C and B are minima, A and D are saddles, and E is a
maximum (Inada et al. 2005b). This is the only quad lens whose
maximum (doubly negative parity) image has been observed,
so we have not included maxima in our analysis. The time
delays are known for the image pairs BA and CA, so we can
examine the corresponding scaled time delays and also the time
delay ratio for the pair CA; but the other time delays and ratios
have not yet been determined. The P-values for the known
time delays do not indicate anomalies (according to our 95%
confidence criterion). This seems surprising, because the actual
lens potential is presumably very different from our assumed
model of an isothermal galaxy with shear: clusters are not

expected to have isothermal profiles (e.g., Navarro et al. 1997),
and the galaxies in the cluster create significant complexity in
the potential. We believe the results for 1004 indicate that our
method for finding time delay anomalies is conservative.

WFI 2033−4723. For the fold lens 2033, Vuissoz et al. (2008)
report the time delays between images B and C and between B
and the combination of the close images A1 and A2. The time
delay between A1 and A2 was too small to be measured; it is
expected to be short enough that we can assume A1 and A2
have effectively the same light travel time for the purpose of
determining the time delays for the image pairs A1C and BA2.
Among the distant image pairs, the BC pair has the largest
separation and also a strong time delay anomaly, while the two
pairs with smaller distances are not anomalous. The nominal
value of the time delay ratio for the BC pair does not indicate
an anomaly, although the uncertainties are large enough that the
situation is not conclusive at present.

The time delay in BC may be affected by the group of
galaxies of which the main lens is a member (Morgan et al.
2004; Vuissoz et al. 2008). We find two lines of evidence
supporting this hypothesis. First, the time delays become more
anomalous as the image separation increases. Second, our
predicted time delays are longer than the observed time delays;
adding environmental effects to the lens model would generally
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Table 3
P-Palues for Time Delay Ratios

Lens Image Rank Observed Error P-Value P-Values for
Name Pair Δt1/Δt2 Interval for Δt1/Δt2 Err. Interval

1004 CA 3 20.2 (17.5, 22.9) 0.0646 (0.0139, 0.161)
1115 A1A2 1 0.0127 (0.00853, 0.0169) 0.178 (0.0253, 0.445)
1115 A1B 2 78.5 (52.6, 104.) 0.751 (0.364, 0.916)
1115 CB 3 2.14 (1.36, 2.91) 0.755 (0.0543, 0.962)
1115 CA2 4 89.3 (66.4, 112.) 0.344 (0.130, 0.527)
1608 AC 1 0.125 (−0.000973, 0.251) 0 (0, 0.696)
1608 BC 2 8.00 (−0.0623, 16.1) 0.706 (0, 0.987)
1608 AD 3 10.1 (−0.0493, 20.3) 0.177 (0, 0.967)
1608 BD 4 2.14 (1.82, 2.45) . . . (–, –)
2033 BC 4 2.31 (1.12, 3.50) 0.193 (0, 0.746)
0911 BA 1 1.20 (−13.0, 15.4) 0.992 (0, 1.00)
0911 BC 2 0.833 (−9.04, 10.7) 0.00753 (0, 1.00)
0911 DC 3 30.8 (−300., 362.) 0 (0, 0.987)
0911 DA 4 23.8 (−95.4, 143.) 0 (0, 0.0200)
1131 BA 1 1.25 (0.339, 2.16) 0.976 (0, 1.00)
1131 CA 2 0.800 (0.217, 1.38) 0.0240 (0, 0.785)
1131 BD 3 8.25 (4.57, 11.9) 0.000404 (0, 0.00623)
1131 CD 4 10.1 (3.29, 16.8) 0.00388 (0, 0.0589)
1422 AB 1 0.183 (−0.346, 0.712) 0.0350 (0, 1.00)
1422 CB 2 5.47 (−10.4, 21.3) 0.965 (0, 1.00)
0435 CB 1 0.738 (0.365, 1.11) 0.157 (0.000215, 0.861)
0435 AB 2 1.36 (0.671, 2.04) 0.843 (0.00951, 0.996)
0435 CD 3 2.08 (1.14, 3.03) 0.378 (0.0151, 0.826)
0435 AD 4 1.80 (1.16, 2.44) 0.275 (0.0216, 0.635)

Notes. Columns 1–3 have the same meaning as in Table 2. Columns 4 and 5 list time delay ratios and their corresponding error intervals. Errors on time delay
ratios are computed by propagating errors from observed time delays (see Section 4.2 for details). Note that negative values in Column 5 are unphysical and
have only formal meaning (see Table 2). Columns 6 and 7 give P-values for the time delay ratios shown in Columns 4 and 5, using the galaxy sample of Bender
et al. (1989).

reduce the predicted time delays. A group would contribute
a non-negative convergence κenv to the lens potential, which
would rescale the predicted time delays by a factor 1−κenv < 1,
and it could also create higher-order effects that may be more
complicated (Keeton & Zabludoff 2004). This and alternative
hypotheses that the time delays are affected by a change in
the radial profile of the lens galaxy or even the global value of
the Hubble constant are discussed below.

B1608+656. All of the differential time delays are known for
the fold lens 1608 (Fassnacht et al. 2002). Because there are two
galaxies inside the Einstein angle, this lens is not necessarily
expected to be well described by our models. Indeed, it is
extremely hard for single-galaxy models (even with shear) to
reproduce the d1 and d2 values for the image pair BD: we find
only one mock image pair that matches the observed values. We
are therefore unable to compute P-values for the BD time delay
(cf. Table 2).

Among the other image pairs, the fold pair AC and the distant
pair AD are anomalous in terms of their scaled time delays.
All of these anomalies are very strong; in fact, the AD scaled
time delay and its 3σ values have P-values that are strictly zero,
meaning there are no matching mock lenses whose time delays
are more extreme than the observed values. We note that these
anomalies do not necessarily reveal CDM substructure, because
the presence of two lens galaxies makes the lens potential more
complicated than we have allowed for here. Inferences about
substructure need to be done in the context of models that treat
this complex lens in more detail (e.g., Koopmans et al. 2003;
Suyu et al. 2009).

RX J0911+0551. We now turn to the cusp lenses. Hjorth et al.
(2002) report the time delays between each of the three cusp im-

ages (A, B, and C) and the fourth image (D) for 0911. We find
clear evidence of time delay anomalies in the DC and DA image
pairs, which are the two pairs with the largest separations. Since
the lens galaxy in 0911 is part of a cluster (Kneib et al. 2000), it is
possible that these anomalies are due to environmental effects.
Pinning down the origin of the anomalies (i.e., the environ-
ment of the lens, or substructure) will require that the time de-
lays among the cusp images be precisely measured.15 Although
the close time delays can be inferred from current data, the
P-values they predict span the range (0, 1) when 3σ measure-
ment uncertainties are included. At this point we conclude that
the 0911 time delays are very intriguing and warrant further
study.

RX J1131−1231. Morgan et al. (2006) report the time delays
among the close images A, B, and C for the cusp lens 1131,
along with an estimate of the time delay to the distant image
D. They note that the time delays among the close images are
much longer than expected for a smooth mass distribution, and
suggest that the time delays indicate the presence of a massive(∼ 5 × 1010M�

)
clump near image A. Keeton & Moustakas

(2009) highlight a second peculiarity of the 1131 time delays,
namely that the minimum image B is observed to lead the
minimum image C, whereas smooth models predict the reverse.
They suggest that a population of clumps could reverse the
temporal ordering of the two minimum images in a cusp lens.

We cannot directly address the issue of the temporal ordering
of images B and C, because we do not consider the time delay

15 Chartas et al. (2001) and Morgan et al. (2006) have measured time delays
among close images in other lens systems, so we are hopeful that it will be
possible to do so in 0911.
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Table 4
Median Values and Confidence Intervals for Scaled Time Delays

Lens Image d1 Median 95% Conf. 99% Conf.
Name Pair (arcsec) Δt1 Interval Interval

0128 AB[D] 0.14 0.0164 (0.00598, 0.0403) (0.00386, 0.0483)
0128 AD[B] 0.27 0.152 (0.0527, 0.332) (0.0333, 0.394)
0128 CD[A] 0.42 −1.02 (−1.22, −0.800) (−1.26, −0.716)
0128 CB[A] 0.5 −1.43 (−1.72, −1.14) (−1.78, −1.03)
0230 AB[D] 0.74 0.0745 (0.0583, 0.0954) (0.0547, 0.104)
0230 CD[A] 1.46 −0.654 (−0.806, −0.537) (−0.848, −0.507)
0230 AD[B] 1.64 1.56 (0.728, 1.99) (0.436, 2.05)
0230 CB[A] 1.65 −0.583 (−0.792, −0.349) (−0.858, −0.271)
0414 A1A2[B] 0.41 −0.00223 (−0.00471, −0.000827) (−0.00553, −0.000520)
0414 BA2[A1] 1.71 −0.129 (−0.212, −0.0560) (−0.248, −0.0383)
0414 A1C[A2] 1.96 0.635 (0.178, 1.50) (0.112, 1.66)
0414 BC[A2] 2.13 1.10 (0.668, 1.69) (0.536, 1.97)
0712 AB[C] 0.17 −0.000571 (−0.00136, −0.000185) (−0.00161, −0.000148)
0712 CB[A] 0.91 −0.0627 (−0.101, −0.0272) (−0.113, −0.0203)
0712 CD[B] 1.18 0.484 (0.177, 0.911) (0.118, 1.12)
0712 AD[B] 1.25 0.697 (0.177, 1.66) (0.105, 1.77)
0810 AB[C] 0.18 −0.00195 (−0.00407, −0.000712) (−0.00474, −0.000503)
0810 CB[A] 0.69 −0.0868 (−0.144, −0.0377) (−0.160, −0.0274)
0810 AD[B] 0.84 0.494 (0.147, 1.19) (0.0950, 1.46)
0810 CD[B] 0.85 0.498 (0.188, 0.920) (0.128, 1.13)
0924 AD[C] 0.69 0.0297 (0.0108, 0.0688) (0.00737, 0.0816)
0924 AC[D] 1.18 0.141 (0.0494, 0.303) (0.0332, 0.353)
0924 BD[A] 1.46 −0.170 (−0.298, −0.0738) (−0.334, −0.0506)
0924 BC[A] 1.53 −0.370 (−0.549, −0.160) (−0.597, −0.108)
1004 BA[D] 3.73 0.0104 (0.00424, 0.0225) (0.00307, 0.0254)
1004 BD[A] 11.44 0.367 (0.115, 0.839) (0.0748, 1.10)
1004 CA[B] 11.84 −0.203 (−0.344, −0.0912) (−0.383, −0.0629)
1004 CD[B] 14.38 −1.04 (−1.40, −0.797) (−1.55, −0.698)
1115 A1A2[B] 0.48 0.00559 (0.00195, 0.0147) (0.00136, 0.0170)
1115 A1B[A2] 1.67 0.316 (0.0995, 0.730) (0.0657, 0.976)
1115 CB[A1] 1.99 −0.783 (−1.04, −0.529) (−1.19, −0.437)
1115 CA2[A1] 2.16 −0.525 (−0.716, −0.325) (−0.794, −0.249)
1330 AB[C] 0.43 −0.00355 (−0.00739, −0.00129) (−0.00867, −0.000872)
1330 CB[A] 1.53 −0.135 (−0.222, −0.0595) (−0.259, −0.0419)
1330 CD[B] 1.64 0.454 (0.175, 0.718) (0.117, 0.823)
1330 AD[B] 1.65 0.428 (0.130, 1.01) (0.0815, 1.26)
1555 AB[C] 0.09 −0.00188 (−0.00397, −0.000676) (−0.00451, −0.000449)
1555 CB[A] 0.35 −0.0933 (−0.155, −0.0410) (−0.171, −0.0301)
1555 AD[B] 0.4 0.406 (0.124, 0.975) (0.0785, 1.23)
1555 CD[B] 0.42 0.525 (0.204, 0.951) (0.135, 1.17)
1608 AC[B] 0.87 −0.142 (−0.184, −0.111) (−0.202, −0.106)
1608 BC[A] 1.51 −0.598 (−0.789, −0.351) (−0.856, −0.267)
1608 AD[C] 1.69 1.91 (1.23, 2.21) (1.10, 2.27)
1608 BD[C] 2.00 1.19 · · · · · ·
1933 4_3[6] 0.46 0.0407 (0.0144, 0.0888) (0.00911, 0.104)
1933 4_6[3] 0.63 0.119 (0.0413, 0.252) (0.0271, 0.294)
1933 1_3[4] 0.9 −0.364 (−0.559, −0.171) (−0.618, −0.120)
1933 1_6[4] 0.91 −0.488 (−0.672, −0.238) (−0.732, −0.167)
2026 A1A2[C] 0.33 0.00601 (0.00198, 0.0154) (0.00137, 0.0198)
2026 A1C[A2] 0.83 0.0929 (0.0308, 0.218) (0.0200, 0.258)
2026 BC[A1] 1.19 −0.424 (−0.609, −0.195) (−0.664, −0.135)
2026 BA2[A1] 1.28 −0.372 (−0.561, −0.188) (−0.624, −0.127)
2033 A1A2[C] 0.72 0.0155 (0.00572, 0.0392) (0.00372, 0.0469)
2033 A1C[A2] 1.54 0.182 (0.0623, 0.392) (0.0421, 0.463)
2033 BA2[A1] 2.01 −0.348 (−0.537, −0.172) (−0.586, −0.116)
2033 BC[A1] 2.13 −0.806 (−1.00, −0.579) (−1.07, −0.494)
0911 BA[C] - A2A1[A3] 0.48 0.00401 (0.00128, 0.0104) (0.000726, 0.0134)
0911 BC[A] - A2A3[A1] 0.62 0.00776 (0.00243, 0.0208) (0.00178, 0.0281)
0911 DC[B] - BA3[A2] 2.96 −2.70 (−2.88, −2.38) (−2.90, −2.24)
0911 DA[B] - BA1[A2] 3.08 −2.93 (−3.11, −2.56) (−3.12, −2.47)
1131 BA[C] 1.19 −0.00680 (−0.0130, −0.00271) (−0.0150, −0.00185)
1131 CA[B] 1.26 −0.00813 (−0.0148, −0.00331) (−0.0171, −0.00230)
1131 BD[A] 3.14 0.492 (0.152, 1.09) (0.0971, 1.33)
1131 CD[A] 3.18 0.533 (0.162, 1.17) (0.0991, 1.40)
1251 BA[C] 0.44 0.00435 (0.00139, 0.0109) (0.000879, 0.0131)
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Table 4
(Continued)

Lens Image d1 Median 95% Conf. 99% Conf.
Name Pair (arcsec) Δt1 Interval Interval

1251 BC[A] 0.7 0.0153 (0.00510, 0.0388) (0.00339, 0.0532)
1251 DA[B] 1.72 −0.366 (−0.553, −0.182) (−0.619, −0.122)
1251 DC[B] 1.77 −0.519 (−0.728, −0.291) (−0.802, −0.220)
1422 AB[C] 0.5 −0.00981 (−0.0181, −0.00374) (−0.0204, −0.00261)
1422 CB[A] 0.82 −0.0381 (−0.0655, −0.0153) (−0.0726, −0.0103)
1422 AD[B] 1.25 0.360 (0.118, 0.808) (0.0767, 1.07)
1422 CD[B] 1.29 0.413 (0.145, 0.830) (0.0947, 1.05)
2045 AB[C] 0.28 −0.000236 (−0.000611, −0.0000811) (−0.000745, −0.0000684)
2045 CB[A] 0.56 −0.00151 (−0.00294, −0.000679) (−0.00339, −0.000554)
2045 AD[B] 1.91 0.398 (0.112, 1.00) (0.0693, 1.24)
2045 CD[B] 1.93 0.443 (0.134, 1.02) (0.0804, 1.26)
0435 CB[A] 1.53 −0.107 (−0.202, −0.0437) (−0.227, −0.0289)
0435 AB[C] 1.59 −0.119 (−0.224, −0.0484) (−0.251, −0.0329)
0435 CD[B] 1.85 0.261 (0.0997, 0.519) (0.0667, 0.598)
0435 AD[B] 1.88 0.277 (0.106, 0.544) (0.0718, 0.623)
12531 BC[A] 0.77 −0.156 (−0.269, −0.0696) (−0.297, −0.0466)
12531 AC[B] 0.78 −0.160 (−0.283, −0.0688) (−0.318, −0.0460)
12531 BD[C] 0.91 0.330 (0.128, 0.634) (0.0856, 0.726)
12531 AD[C] 1.02 0.749 (0.297, 1.30) (0.201, 1.58)
14113 CD[B] 1.13 0.248 (0.169, 0.341) (0.135, 0.376)
14113 CB[D] 1.38 0.344 (0.129, 0.661) (0.0869, 0.762)
14113 AD[C] 1.41 −0.311 (−0.486, −0.133) (−0.538, −0.0898)
14113 AB[C] 1.42 −0.461 (−0.641, −0.192) (−0.729, −0.133)
1413 AB[C] 0.76 0.208 (0.118, 0.330) (0.0870, 0.361)
1413 AC[B] 0.87 0.239 (0.0941, 0.478) (0.0620, 0.547)
1413 DC[A] 0.91 −0.354 (−0.473, −0.165) (−0.509, −0.107)
1413 DB[A] 0.96 −0.320 (−0.498, −0.135) (−0.547, −0.0924)
14176 CB[A] 1.73 −0.186 (−0.254, −0.119) (−0.273, −0.0913)
14176 AB[C] 2.09 −0.226 (−0.382, −0.0955) (−0.426, −0.0649)
14176 CD[B] 2.13 0.292 (0.109, 0.573) (0.0753, 0.661)
14176 AD[B] 2.13 0.409 (0.200, 0.597) (0.126, 0.649)
2237 AD[B] 1.01 −0.0801 (−0.155, −0.0318) (−0.174, −0.0220)
2237 BD[A] 1.18 −0.128 (−0.239, −0.0527) (−0.264, −0.0369)
2237 AC[D] 1.37 0.297 (0.108, 0.586) (0.0729, 0.682)
2237 BC[D] 1.4 0.316 (0.122, 0.607) (0.0820, 0.704)

Notes. The first column gives the abbreviated lens name (the full names appear in the first column of Table 1). The next two columns list the
image pair label and the separation between the images in arcseconds. The letter in brackets in Column 2 indicates the third image needed to
compute time delay ratios. The last three columns present data computed from our numerical simulations, using the galaxy sample of Bender
et al. (1989). The fourth column gives the median value of the differential time delay in units τ0θ

2
E (cf. Table 2), and the fifth and sixth columns

give the 95% and 99% confidence intervals of this same quantity.

between images with the same parity. However, we can offer a
more model-independent assessment of the time delays for the
other image pairs. We find that the time delays for the cusp pairs
BA and CA are anomalous: accounting for 3σ error bars, the
P-value for BA is strictly zero, while the pair CA falls just short
of a strong anomaly (0.006 compared with the threshold of
0.005). This strengthens the conclusion by Morgan et al. (2006)
that the observed time delays are not at all consistent with lensing
by a reasonable smooth mass distribution. Interestingly, we also
find that the distant image pair BD has an (almost strongly)
anomalous time delay ratio, even though its scaled time delay
is not anomalous. We note that this anomaly is caused by the
observed value being smaller than most of the predicted values;
this might be understood in terms of the BA time delay, which
appears in the denominator of the BD time delay ratio, being
anomalously longer (in absolute value) than expected. Our main
conclusion is that the 1131 time delays are highly anomalous,
and this general conclusion together with the specific analyses of
Morgan et al. (2006) and Keeton & Moustakas (2009) strongly
suggests that this lens contains significant substructure. We also

note, however, that we must be careful when interpreting time
delay ratios, since an anomaly may result from the denominator
being anomalous rather than the pair of interest.

B1422+231. For 1422, the nominal values of the time delays
(Patnaik & Narasimha 2001) among the three cusp images A,
B, and C indicate strong anomalies. However, the uncertainties
in the claimed time delays are not much smaller than the time
delays themselves, so conclusive statements are impossible at
this point. (Note, for example, that the range of P-values for the
AB pair spans 0 to 1.00 given the uncertainties.) The system
clearly warrants further study, especially since it is well known
to have anomalous flux ratios (Mao & Schneider 1998; Bradač
et al. 2002).

HE 0435−1223. Finally, we consider the cross lens 0435,
whose time delays were measured by Kochanek et al. (2006a).
The cross image configuration features no close pairs of images,
so all the time delays could be affected by substructure or
large-scale complexity in the lens potential, or both. We do
not find anomalies in any of the image pairs, suggesting that the
anomalous fluxes at the ∼0.2 mag level in images A and C are
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Table 5
Median Values and Confidence Intervals for Time Delay Ratios

Lens Image d1 Median 95% Conf. 99% Conf.
Name Pair (arcsec) Δt1/Δt2 Interval Interval

0128 AB 0.14 0.107 (0.0631, 0.230) (0.0499, 0.334)
0128 AD 0.27 9.31 (4.34, 15.9) (2.99, 20.0)
0128 CD 0.42 3.82 (2.48, 7.73) (2.13, 10.4)
0128 CB 0.5 41.7 (27.1, 101.) (25.2, 160.)
0230 AB 0.74 0.0477 (0.0330, 0.0942) (0.0310, 0.124)
0230 CD 1.46 0.818 (0.667, 1.17) (0.633, 1.29)
0230 AD 1.64 22.9 (11.3, 47.5) (8.58, 70.0)
0230 CB 1.65 13.9 (7.41, 33.7) (6.46, 46.0)
0414 A1A2 0.41 0.0175 (0.00996, 0.0288) (0.00794, 0.0318)
0414 BA2 1.71 57.2 (34.6, 100.) (31.4, 126.)
0414 A1C 1.96 261. (92.7, 997.) (70.2, 1650.)
0414 BC 2.13 3.08 (1.57, 7.38) (1.25, 9.64)
0712 AB 0.17 0.00961 (0.00448, 0.0170) (0.00359, 0.0193)
0712 CB 0.91 104. (58.4, 220.) (50.9, 269.)
0712 CD 1.18 4.12 (1.83, 10.7) (1.43, 14.0)
0712 AD 1.25 996. (310., 4170.) (215., 6910.)
0810 AB 0.18 0.0230 (0.0132, 0.0360) (0.0111, 0.0408)
0810 CB 0.69 43.5 (27.7, 75.7) (24.4, 89.9)
0810 AD 0.84 205. (76.9, 761.) (57.6, 1370)
0810 CD 0.85 3.38 (1.59, 8.43) (1.27, 11.1)
0924 AD 0.69 0.210 (0.128, 0.422) (0.105, 0.564)
0924 AC 1.18 4.77 (2.37, 7.84) (1.77, 9.52)
0924 BD 1.46 6.22 (4.12, 9.90) (3.56, 12.0)
0924 BC 1.53 2.50 (1.61, 4.41) (1.40, 5.45)
1004 BA 3.73 0.0256 (0.0123, 0.0533) (0.00918, 0.0683)
1004 BD 11.44 46.8 (20.8, 121.) (16.3, 213.)
1004 CA 11.84 29.4 (18.3, 51.5) (15.7, 63.0)
1004 CD 14.38 2.03 (1.38, 3.30) (1.23, 4.03)
1115 A1A2 0.48 0.0179 (0.00849, 0.0397) (0.00650, 0.0514)
1115 A1B 1.67 60.2 (26.4, 141.) (20.1, 232.)
1115 CB 1.99 1.83 (1.28, 3.08) (1.12, 3.83)
1115 CA2 2.16 108. (51.1, 323.) (44.2, 494.)
1330 AB 0.43 0.0267 (0.0155, 0.0426) (0.0135, 0.0474)
1330 CB 1.53 37.5 (23.5, 64.4) (21.0, 74.2)
1330 CD 1.64 2.29 (0.937, 4.89) (0.766, 6.72)
1330 AD 1.65 102. (41.8, 323.) (30.5, 591.)
1555 AB 0.09 0.0202 (0.0116, 0.0327) (0.00928, 0.0361)
1555 CB 0.35 49.4 (30.6, 86.2) (27.6, 107.)
1555 AD 0.4 168. (66.3, 553.) (51.7, 1030.)
1555 CD 0.42 3.21 (1.52, 7.86) (1.21, 10.2)
1608 AC 0.87 0.229 (0.175, 0.320) (0.162, 0.351)
1608 BC 1.51 6.48 (3.69, 14.3) (3.20, 19.0)
1608 AD 1.69 13.1 (7.29, 20.8) (6.72, 23.2)
1608 BD 2.00 2.21 · · · · · ·
1933 4_3 0.46 0.340 (0.207, 0.638) (0.166, 0.829)
1933 4_6 0.63 2.94 (1.57, 4.83) (1.20, 5.99)
1933 1_3 0.9 8.93 (5.41, 17.4) (4.67, 22.6)
1933 1_6 0.91 3.67 (2.21, 7.20) (1.89, 9.26)
2026 A1A2 0.33 0.0640 (0.0350, 0.156) (0.0280, 0.230)
2026 A1C 0.83 15.6 (6.41, 28.5) (4.27, 35.4)
2026 BC 1.19 3.64 (2.22, 6.94) (1.89, 8.77)
2026 BA2 1.28 64.0 (34.4, 143.) (29.8, 208.)
2033 A1A2 0.72 0.0856 (0.0484, 0.187) (0.0384, 0.247)
2033 A1C 1.54 11.7 (5.34, 20.7) (4.04, 26.0)
2033 BA2 2.01 23.9 (13.9, 47.8) (12.2, 65.7)
2033 BC 2.13 2.86 (1.84, 5.49) (1.60, 6.88)
0911 BA 0.48 0.495 (0.262, 0.956) (0.171, 1.23)
0911 BC 0.62 2.01 (1.03, 3.70) (0.754, 5.73)
0911 DC 2.96 118. (73.6, 292.) (55.1, 551.)
0911 DA 3.08 292. (156., 741.) (126., 912.)
1131 BA 1.19 0.856 (0.589, 1.25) (0.548, 1.42)
1131 CA 1.26 1.17 (0.800, 1.70) (0.696, 1.82)
1131 BD 3.14 37.5 (15.2, 120.) (11.4, 199.)
1131 CD 3.18 35.2 (14.1, 112.) (10.5, 170.)
1251 BA 0.44 0.278 (0.148, 0.558) (0.114, 0.824)
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Table 5
(Continued)

Lens Image d1 Median 95% Conf. 99% Conf.
Name Pair (arcsec) Δt1/Δt2 Interval Interval

1251 BC 0.7 3.59 (1.79, 6.73) (1.18, 8.75)
1251 DA 1.72 64.9 (34.8, 147.) (30.4, 211.)
1251 DC 1.77 20.7 (11.0, 50.3) (9.43, 68.9)
1422 AB 0.5 0.261 (0.177, 0.376) (0.157, 0.412)
1422 CB 0.82 3.83 (2.65, 5.64) (2.42, 6.31)
1422 AD 1.25 25.3 (11.1, 62.4) (8.60, 106.)
1422 CD 1.29 7.02 (3.13, 18.1) (2.48, 29.7)
2045 AB 0.28 0.155 (0.0809, 0.293) (0.0735, 0.323)
2045 CB 0.56 6.34 (3.29, 12.2) (3.02, 12.8)
2045 AD 1.91 508. (185., 1890.) (130., 3580.)
2045 CD 1.93 75.6 (30.4, 234.) (23.1, 406.)
0435 CB 1.53 0.899 (0.604, 1.34) (0.502, 1.62)
0435 AB 1.59 1.11 (0.744, 1.66) (0.618, 2.00)
0435 CD 1.85 2.30 (1.23, 4.08) (0.997, 5.02)
0435 AD 1.88 2.19 (1.18, 3.99) (0.982, 5.03)
12531 BC 0.77 0.967 (0.670, 1.42) (0.587, 1.69)
12531 AC 0.78 1.09 (0.754, 1.63) (0.638, 1.99)
12531 BD 0.91 2.42 (1.28, 5.12) (1.04, 7.47)
12531 AD 1.02 3.83 (1.80, 10.0) (1.44, 13.4)
14113 CD 1.13 0.515 (0.285, 0.968) (0.221, 1.23)
14113 CB 1.38 2.79 (1.41, 6.07) (1.15, 8.95)
14113 AD 1.41 2.19 (1.45, 3.63) (1.25, 4.41)
14113 AB 1.42 1.54 (0.887, 2.27) (0.777, 2.64)
1413 AB 0.76 0.702 (0.389, 1.18) (0.314, 1.50)
1413 AC 0.87 1.77 (1.00, 3.08) (0.832, 3.77)
1413 DC 0.91 1.41 (0.896, 2.07) (0.790, 2.47)
1413 DB 0.96 2.21 (1.46, 3.67) (1.26, 4.47)
14176 CB 1.73 0.625 (0.431, 0.959) (0.366, 1.17)
14176 AB 2.09 1.86 (1.23, 2.95) (1.04, 3.56)
14176 CD 2.13 2.56 (1.34, 4.82) (1.08, 6.27)
14176 AD 2.13 1.37 (0.693, 2.75) (0.564, 3.65)
2237 AD 1.01 0.627 (0.417, 0.922) (0.350, 1.07)
2237 BD 1.18 1.60 (1.09, 2.41) (0.935, 2.88)
2237 AC 1.37 3.55 (1.80, 6.69) (1.45, 8.74)
2237 BC 1.4 2.31 (1.25, 4.72) (1.02, 6.70)

Notes. The first three columns are the same as those in Table 4. The last three columns present data computed from our numerical simulations,
using the galaxy sample of Bender et al. (1989). The fourth column gives the median value of the time delay ratio Δt1/Δt2. The subscripts on Δt

refer to the time delay of the labeled image pair (Δt1) and that for the closest neighboring pair (Δt2). The fifth and sixth columns give the 95%
and 99% confidence intervals of the time delay ratio.

most likely due to microlensing (Kochanek et al. 2006a) rather
than substructure (Morgan et al. 2005). Given our goal of being
conservative, it is reassuring to find that a cross lens like 0435
has perfectly reasonable time delays.

In the preceding discussion of individual lenses we have inter-
preted time delay anomalies as evidence for complex structure
in the lens potential. Here we briefly consider three alterna-
tive interpretations. One possibility is that the Hubble constant,
which is needed to compare observed and predicted time delays,
differs from our assumed value of H0 = 70 km s−1 Mpc−1. A
second possibility is that a lens has a mass sheet, or external
convergence κext, whose effects we have neglected (Keeton &
Zabludoff 2004). The apparent anomalies in 2033 and 0911 arise
because the model predictions are longer than the observed time
delays. Since predicted time delays scale as Δt ∝ (1−κext)H

−1
0 ,

we would need either to have a strong negative mass sheet or to
increase H0 in order to eliminate the anomalies. Focusing on the
H0 possibility, in order to reduce the predicted time delays such
that the 95% confidence intervals overlap the observed values
in 2033 and 0911, we would require an H0 value in excess of
100 km s−1 Mpc−1, which does not seem like a viable option.

The lens 1131 is a bit different, because the predicted time de-
lays are shorter than the observed values, which would imply a
positive mass sheet or a smaller Hubble constant than we have
assumed. Regardless of whether the required mass sheet or H0
value is reasonable, however, the existing evidence strongly im-
plies that 1131 does contain substructure (Morgan et al. 2006;
Keeton & Moustakas 2009).

A third possibility is that the radial density profiles of the lens
galaxies differ from the isothermal profile we have assumed.
Changing the radial profile has more complicated effects on
the predicted time delays, but Kochanek (2002) argues that
to leading order the changes can be approximated with the
scaling Δt ∝ (1 − 〈κ〉), where 〈κ〉 is the mean convergence
in the vicinity of the Einstein angle (specifically, in the annulus
spanned by the images). Using this scaling, we can estimate the
radial profile that would be required if we wanted to reduce the
predicted time delays so the 95% confidence intervals overlap
the observed values. (This analysis only yields an estimate,
because the scaling is only approximate and does not include
the full complexity of ellipsoidal mass distributions; but it is still
instructive.) If we write the three-dimensional density profile as
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ρ ∝ r−η, we estimate that we would need η ≈ 1.7 for 2033,
and η ≈ 1.5 for 0911, compared to η = 2 for an isothermal
distribution. For comparison, Koopmans et al. (2006) find that
lens galaxies have a mean power-law index of 〈η〉 = 2.01+0.02

−0.03,
with an rms scatter of 0.12. Again, the simple analysis here
needs to be interpreted with some care, but it does suggest
that changing the radial profile does not provide a compelling
explanation for the apparent time delay anomalies.

4.3. Predictions for the Remaining Lenses

To complete our analysis, we present predictions of the
scaled time delays (Table 4) and time delay ratios (Table 5)
for all mixed-parity image pairs in all 25 known four-image
lenses. Specifically, we use the simulations based on the galaxy
sample of Bender et al. (1989) to compute the median value,
95% confidence interval, and 99% confidence interval for each
quantity for each image pair. These results give a sense of what
the time delays should be for lenses that are adequately described
as ellipsoidal mass distributions with tidal shear. (See Saha et al.
2006 for a complementary approach based on fitting pixellated
mass models to individual lenses.) There is currently great
interest in lens monitoring (e.g., Courbin 2003; Eigenbrod et al.
2005; Kochanek et al. 2007; Moustakas et al. 2008, 2009), and
we hope our predictions will be useful in planning observational
campaigns to measure time delays. Furthermore, as new time
delays are measured, it will be a simple matter to compare them
with our predictions to determine whether the time delays are
anomalous in a way that indicates a complex lens potential (due
either to substructure or to the lens environment).

5. CONCLUSIONS

We have introduced a new method to use gravitational lens
time delays to detect complex structure in the lens potential.
The complexity may be associated with CDM substructure, in
which case time delays offer the chance to learn more about the
substructure population than is possible with lens flux ratios; or
it may be associated with the lens environment, such as a group
or cluster of galaxies surrounding the lens. The basic approach
is to determine the range of time delays that can be produced by
reasonable smooth lens models, so that we can identify outliers
as being anomalous. To get a sense of how this could work, we
first studied the dependence of the time delay between the close
pair of images in a fold lens on the position of the source and
the form of the lens potential. For a source near a fold point, we
have found that the time delay remains approximately constant
as the source moves along the caustic. For a lens modeled by an
elliptical galaxy with m = 4 multipole perturbations and tidal
shear, the time delay increases with ellipticity and shear, but is
not very sensitive to m = 4 modes.

Using Monte Carlo simulations, we then constructed distribu-
tions of the time delays in four-image lenses. This approach can
handle fold, cusp, and cross lenses, which comprise the three
canonical four-image lens morphologies. By constructing a cat-
alog of mock lenses based on observed populations of elliptical
galaxies, we computed the range of time delays and time delay
ratios that would be expected for a smooth lens potential (i.e.,
one with ellipticity, shear, and m = 4 multipoles). By compar-
ing observed time delays with the predicted ranges, we have
found time delay anomalies in the systems RX J0911+0551,
RX J1131−1231, B1422+231, B1608+656, and WFI 2033−
4723. It is unlikely that these anomalies can be explained by

errors in our assumed values of the Hubble constant or the slope
of the density profile: the Hubble constant would have to be
unreasonably high or the density profile surprisingly shallow
in order to explain some of the apparent anomalies (we specif-
ically discussed RX J0911+0551 and WFI 2033−4723), and
neither possibility could explain RX J1131−1231. It is possible
to further reduce sensitivity to the Hubble constant and density
profile by working with time delay ratios, although in general
we have found that time delay ratios have less power to re-
veal anomalies. Part of the problem is that there are fewer time
delay ratios known than time delays themselves, and a large
uncertainty in a given time delay will lead to a correspondingly
large uncertainty in the ratio, making definitive conclusions
difficult.

In general, anomalies between close pairs of images in
fold and cusp lenses should provide the cleanest evidence of
substructure. The cusp lens RX J1131−1231 contains such
anomalies, which is consistent with conclusions based on
more detailed modeling by Morgan et al. (2006) and Kee-
ton & Moustakas (2009). The cusp lenses B1422+231 and
RX J0911+0551 show evidence of time delay anomalies in the
cusp triplet, but the large uncertainties in the measured time
delays prevent firm conclusions at present. The only fold pair
that is clearly anomalous is in B1608+656, but the peculiar
nature of this system (with two lens galaxies inside the Ein-
stein angle) makes it difficult to draw a definitive conclusion
about substructure from our analysis. Among larger-separation
image pairs we have found time delay anomalies in the fold
lens WFI 2033−4723 and the cusp lens RX J0911+0551. Both
lenses show evidence of a complex environment, but in order
to distinguish between that and substructure as the origin of the
time delay anomalies it will be necessary to precisely measure
the time delays between the close images (the fold pair in WFI
2033−4723, and the cusp triplet in RX J0911+0551).

In the hope that the sample of observed precision time delays
will continue to grow, we have predicted the time delays for
all mixed-parity image pairs in all 25 known four-image lenses.
As new time delays are measured, it will be a simple matter
to compare them with our predicted confidence intervals to
determine whether they are anomalous. If a lens galaxy contains
complex structure, time delays should help reveal it. Flux ratios
provide a powerful way to find small-scale structure, but they
are not unique in this; time delays hold great promise for
contributing to our understanding of the role played by dark
matter in the universe, especially when combined with other
lensing observables.
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Sluse, D., Claeskens, J.-F., Hutsemékers, D., & Surdej, J. 2007, A&A, 468, 885
Sluse, D., Courbin, F., Eigenbrod, A., & Meylan, G. 2008, A&A, 492, L39
Strigari, L. E., Bullock, J. S., Kaplinghat, M., Diemand, J., Kuhlen, M., &

Madau, P. 2007, ApJ, 669, 676
Suyu, S. H., Marshall, P. J., Blandford, R. D., Fassnacht, C. D., Koopmans,

L. V. E., McKean, J. P., & Treu, T. 2009, ApJ, 691, 277
Treu, T., & Koopmans, L. V. E. 2004, ApJ, 611, 739
Treu, T., Koopmans, L. V., Bolton, A. S., Burles, S., & Moustakas, L. A.

2006, ApJ, 640, 662
Vuissoz, C., et al. 2008, A&A, 488, 481
Warren, S. J., Hewett, P. C., Lewis, G. F., Moller, P., Iovino, A., & Shaver, P. A.

1996, MNRAS, 278, 139
Warren, S. J., Lewis, G. F., Hewett, P. C., Møller, P., Shaver, P., & Iovino, A.

1999, A&A, 343, L35
Wisotzki, L., Becker, T., Christensen, L., Helms, A., Jahnke, K., Kelz, A., Roth,

M. M., & Sanchez, S. F. 2003, A&A, 408, 455
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G., & Zebruń, K. 2000, ApJ, 529, 88

http://dx.doi.org/10.1086/589327
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...682..964B
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...682..964B
http://dx.doi.org/10.1086/498884
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...638..703B
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...638..703B
http://dx.doi.org/10.1051/0004-6361:20020559
http://adsabs.harvard.edu/cgi-bin/bib_query?2002A&A...388..373B
http://adsabs.harvard.edu/cgi-bin/bib_query?2002A&A...388..373B
http://dx.doi.org/10.1051/0004-6361:20011731
http://adsabs.harvard.edu/cgi-bin/bib_query?2002A&A...383...71B
http://adsabs.harvard.edu/cgi-bin/bib_query?2002A&A...383...71B
http://dx.doi.org/10.1086/322453
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...558..119C
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...558..119C
http://www.ociw.edu/ociw/symposia/series/symposium2/proceedings.html
http://dx.doi.org/10.1086/512002
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...659...52C
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...659...52C
http://dx.doi.org/10.1086/324493
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...565...17C
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...565...17C
http://dx.doi.org/10.1086/430403
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...627...53C
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...627...53C
http://dx.doi.org/10.1111/j.1365-2966.2008.13604.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.389..398C
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.389..398C
http://www.arxiv.org/abs/astro-ph/0304497
http://dx.doi.org/10.1086/340303
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...572...25D
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...572...25D
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.365.1243D
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.365.1243D
http://dx.doi.org/10.1051/0004-6361:20054423
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...451..747E
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...451..747E
http://dx.doi.org/10.1051/0004-6361:20078703
http://adsabs.harvard.edu/cgi-bin/bib_query?2008A&A...480..647E
http://adsabs.harvard.edu/cgi-bin/bib_query?2008A&A...480..647E
http://dx.doi.org/10.1051/0004-6361:20042422
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...436...25E
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...436...25E
http://dx.doi.org/10.1086/344368
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...581..823F
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...581..823F
http://dx.doi.org/10.1086/528789
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...676..761F
http://adsabs.harvard.edu/cgi-bin/bib_query?2008ApJ...676..761F
http://dx.doi.org/10.1086/341603
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...572L..11H
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...572L..11H
http://dx.doi.org/10.1086/374688
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...589..688H
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...589..688H
http://dx.doi.org/10.1038/nature02153
http://adsabs.harvard.edu/cgi-bin/bib_query?2003Natur.426..810I
http://adsabs.harvard.edu/cgi-bin/bib_query?2003Natur.426..810I
http://dx.doi.org/10.1086/432930
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AJ....130.1967I
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AJ....130.1967I
http://adsabs.harvard.edu/cgi-bin/bib_query?2005PASJ...57L...7I
http://adsabs.harvard.edu/cgi-bin/bib_query?2005PASJ...57L...7I
http://dx.doi.org/10.1086/500591
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....131.1934I
http://adsabs.harvard.edu/cgi-bin/bib_query?2006AJ....131.1934I
http://dx.doi.org/10.1086/521652
http://adsabs.harvard.edu/cgi-bin/bib_query?2007AJ....134.1515K
http://adsabs.harvard.edu/cgi-bin/bib_query?2007AJ....134.1515K
http://www.arxiv.org/abs/astro-ph/0102340
http://dx.doi.org/10.1086/499264
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...639....1K
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...639....1K
http://dx.doi.org/10.1086/378934
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...598..138K
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...598..138K
http://dx.doi.org/10.1086/497324
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...635...35K
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...635...35K
http://dx.doi.org/10.1086/304172
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...482..604K
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...482..604K
http://dx.doi.org/10.1088/0004-637X/699/2/1720
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...699.1720K
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...699.1720K
http://dx.doi.org/10.1086/422745
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...612..660K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...612..660K
http://dx.doi.org/10.1086/307643
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...522...82K
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...522...82K
http://dx.doi.org/10.1086/317285
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...544L..35K
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...544L..35K
http://dx.doi.org/10.1086/342476
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...578...25K
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...578...25K
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ASPC..371...43K
http://dx.doi.org/10.1086/421436
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...610...69K
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...610...69K
http://dx.doi.org/10.1086/499766
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...640...47K
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...640...47K
http://dx.doi.org/10.1086/308120
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...527..513K
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...527..513K
http://dx.doi.org/10.1086/505696
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...649..599K
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...649..599K
http://dx.doi.org/10.1086/379226
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...599...70K
http://adsabs.harvard.edu/cgi-bin/bib_query?2003ApJ...599...70K
http://dx.doi.org/10.1046/j.1365-8711.1998.01319.x
http://adsabs.harvard.edu/cgi-bin/bib_query?1998MNRAS.295..587M
http://adsabs.harvard.edu/cgi-bin/bib_query?1998MNRAS.295..587M
http://dx.doi.org/10.1086/323695
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...563....9M
http://adsabs.harvard.edu/cgi-bin/bib_query?2001ApJ...563....9M
http://dx.doi.org/10.1086/383243
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...607...43M
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...607...43M
http://dx.doi.org/10.1086/339798
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...567L...5M
http://adsabs.harvard.edu/cgi-bin/bib_query?2002ApJ...567L...5M
http://dx.doi.org/10.1088/0004-637X/697/1/610
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...697..610M
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...697..610M
http://dx.doi.org/10.1086/500382
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...641..169M
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...641..169M
http://dx.doi.org/10.1086/312287
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...524L..19M
http://adsabs.harvard.edu/cgi-bin/bib_query?1999ApJ...524L..19M
http://dx.doi.org/10.1086/383295
http://adsabs.harvard.edu/cgi-bin/bib_query?2004AJ....127.2617M
http://adsabs.harvard.edu/cgi-bin/bib_query?2004AJ....127.2617M
http://www.arxiv.org/abs/astro-ph/0605321
http://dx.doi.org/10.1086/430145
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AJ....129.2531M
http://adsabs.harvard.edu/cgi-bin/bib_query?2005AJ....129.2531M
http://dx.doi.org/10.1046/j.1365-8711.2003.06055.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.339..607M
http://adsabs.harvard.edu/cgi-bin/bib_query?2003MNRAS.339..607M
http://www.arxiv.org/abs/0902.3219
http://dx.doi.org/10.1086/304888
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...490..493N
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...490..493N
http://dx.doi.org/10.1086/513093
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...660....1O
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...660....1O
http://dx.doi.org/10.1111/j.1365-2966.2008.14032.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.391.1973O
http://adsabs.harvard.edu/cgi-bin/bib_query?2008MNRAS.391.1973O
http://dx.doi.org/10.1086/382221
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...605...78O
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...605...78O
http://dx.doi.org/10.1111/j.1365-2966.2001.04711.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2001MNRAS.326.1403P
http://adsabs.harvard.edu/cgi-bin/bib_query?2001MNRAS.326.1403P
http://dx.doi.org/10.1086/520506
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...667..644P
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...667..644P
http://dx.doi.org/10.1086/512773
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...660..146P
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...660..146P
http://dx.doi.org/10.1086/512115
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...661...19P
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...661...19P
http://dx.doi.org/10.1086/421868
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...610..679R
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...610..679R
http://dx.doi.org/10.1086/427908
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...623..666R
http://adsabs.harvard.edu/cgi-bin/bib_query?2005ApJ...623..666R
http://adsabs.harvard.edu/cgi-bin/bib_query?1993A&A...279...75S
http://adsabs.harvard.edu/cgi-bin/bib_query?1993A&A...279...75S
http://dx.doi.org/10.1051/0004-6361:20052929
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...450..461S
http://adsabs.harvard.edu/cgi-bin/bib_query?2006A&A...450..461S
http://dx.doi.org/10.1086/375204
http://adsabs.harvard.edu/cgi-bin/bib_query?2003AJ....125.2769S
http://adsabs.harvard.edu/cgi-bin/bib_query?2003AJ....125.2769S
http://dx.doi.org/10.1086/310478
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...475L..85S
http://adsabs.harvard.edu/cgi-bin/bib_query?1997ApJ...475L..85S
http://adsabs.harvard.edu/cgi-bin/bib_query?1973A&A....24..337S
http://adsabs.harvard.edu/cgi-bin/bib_query?1973A&A....24..337S
http://dx.doi.org/10.1051/0004-6361:20066821
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...468..885S
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...468..885S
http://dx.doi.org/10.1051/0004-6361:200810977
http://adsabs.harvard.edu/cgi-bin/bib_query?2008A&A...492L..39S
http://adsabs.harvard.edu/cgi-bin/bib_query?2008A&A...492L..39S
http://dx.doi.org/10.1086/521914
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...669..676S
http://adsabs.harvard.edu/cgi-bin/bib_query?2007ApJ...669..676S
http://dx.doi.org/10.1088/0004-637X/691/1/277
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...691..277S
http://adsabs.harvard.edu/cgi-bin/bib_query?2009ApJ...691..277S
http://dx.doi.org/10.1086/422245
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...611..739T
http://adsabs.harvard.edu/cgi-bin/bib_query?2004ApJ...611..739T
http://dx.doi.org/10.1086/500124
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...640..662T
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...640..662T
http://dx.doi.org/10.1051/0004-6361:200809866
http://adsabs.harvard.edu/cgi-bin/bib_query?2008A&A...488..481V
http://adsabs.harvard.edu/cgi-bin/bib_query?2008A&A...488..481V
http://adsabs.harvard.edu/cgi-bin/bib_query?1996MNRAS.278..139W
http://adsabs.harvard.edu/cgi-bin/bib_query?1996MNRAS.278..139W
http://adsabs.harvard.edu/cgi-bin/bib_query?1999A&A...343L..35W
http://adsabs.harvard.edu/cgi-bin/bib_query?1999A&A...343L..35W
http://dx.doi.org/10.1051/0004-6361:20031004
http://adsabs.harvard.edu/cgi-bin/bib_query?2003A&A...408..455W
http://adsabs.harvard.edu/cgi-bin/bib_query?2003A&A...408..455W
http://dx.doi.org/10.1086/308258
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...529...88W
http://adsabs.harvard.edu/cgi-bin/bib_query?2000ApJ...529...88W

	1. INTRODUCTION
	2. DEPENDENCE OF TIME DELAY ON LENS POTENTIAL AND POSITION ALONG CAUSTIC
	3. CONSTRUCTING TIME DELAY DISTRIBUTIONS FOR A REALISTIC LENS POPULATION
	4. RESULTS FOR OBSERVED LENSES
	4.1. Time Delay Histograms
	4.2. Identifying Time Delay Anomalies in Observed Lenses
	4.3. Predictions for the Remaining Lenses

	5. CONCLUSIONS
	REFERENCES

