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A NOVEL APPROACH TO MEASURE THE CROSS SECTION OF THE 18O(p, α)15N RESONANT REACTION IN
THE 0–200 keV ENERGY RANGE
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ABSTRACT

The 18O(p, α)15N reaction is of primary importance to pin down the uncertainties, due to nuclear physics input,
affecting present-day models of asymptotic giant branch stars. Its reaction rate can modify both fluorine nucle-
osynthesis inside such stars and oxygen and nitrogen isotopic ratios, which allow one to constrain the proposed
astrophysical scenarios. Thus, an indirect measurement of the low-energy region of the 18O(p, α)15N reaction has
been performed to access, for the first time, the range of relevance for astrophysical application. In particular, a full,
high-accuracy spectroscopic study of the 20 and 90 keV resonances has been performed and the strengths deduced
to evaluate the reaction rate and the consequences for astrophysics.
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1. INTRODUCTION

1.1. Astrophysical Background

Asymptotic giant branch (AGB) stars play a major role in
nuclear astrophysics as the site for synthesis of heavy elements,
which occurs through neutron capture reactions and beta decay
along the line of stability, the so-called s-process (Herwig
2005; Busso et al. 1999; Lugaro et al. 2004). Spectroscopic
observations show that, in these stars, fluorine is significantly
enhanced compared with its solar abundance (Jorissen et al.
1992). Because 19F is produced in the He intershell and then
dredged up to the surface together with s-process elements, its
abundance can be used to constrain AGB models as it is sensitive
to the efficiency of the dredge-up and to the physical conditions
in the deep layers of the stars (Lugaro et al. 2004). When
the abundances predicted by the current models are compared
with the observed ones, an unacceptable discrepancy shows
up even when model parameters are varied in a reasonable
range (Lugaro et al. 2004). It has been pointed out that extra-
mixing processes, such as the cool bottom process (Nollett et al.
2003), may help to provide predictions in better agreement with
observations (Lugaro et al. 2004). An alternative view claims
that the disagreement can be alleviated, at least partially, if
current observed abundances are biased by systematic errors
(blending of the spectroscopic lines not accounted for (Abia
et al. 2009)). Other observables that turn out to be very sensitive
to the mixing processes are the isotopic ratios of the abundances
of some CNO isotopes, such as 18O, 17O, 15N, and 13C to the
most abundant ones, namely 16O, 14N, and 12C (Nollett et al.
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2003). These isotopic ratios are determined with good accuracy
from the analysis of meteorite grains, that is, tiny intruders
formed in the cold, outermost layers of AGB stars, which keep
the fingerprints of the nucleosynthesis processes and of the
mixing mechanisms taking place inside these stars. In particular,
it turns out that it is hard to explain the exceedingly small
14N/15N values, which are even smaller than the solar ratio,
with AGB stars in any evolutionary model that assumes solar
elemental abundance as the initial condition. This is because any
proposed approach tends to burn 15N, thus further increasing the
14N/15N ratio (Nollett et al. 2003). A possible way to explain
the 19F abundance in AGB star envelopes and isotopic ratios
in meteorite grains without introducing additional hypotheses
might be provided by nuclear physics, more precisely by the
18O(p, α)15N reaction. Indeed, this reaction represents the main
15N production channel, both in the intershell region and at the
bottom of the convective envelope (Nollett et al. 2003; Lugaro
et al. 2004). During the thermal pulse, 15N is burnt to 19F via
the 15N(α,γ )19F reaction. Thus, a larger 18O(p, α)15N reaction
rate would lead to an increase of the 19F supply as well as to
an enrichment of 15N in the stellar surface. Moreover, a 15N
enrichment can be determined by 18O p-induced burning at the
bottom of the convective envelope and by the mixing processes
bringing the processed material to outer layers (Huss et al. 1997).

Peculiar 18O and 19F abundances have also been observed in
post-AGB stars, in particular in the so-called R Coronae Borealis
(RCB) stars (Clayton et al. 2007; Pandey et al. 2008). Indeed,
these stars show 16O/18O � 1, as measured in vibration–rotation
CO spectra, that is hundreds of times smaller than the standard
Galactic values. Two scenarios have been proposed to explain
the origin of RCB stars, namely the “final flash” model (FF)
and the “double degenerate” (DD) model. In the former, a final
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He-shell flash in a post-AGB star creates a H-poor supergiant
while in the latter the luminous star is formed by accreting
material from a He white dwarf onto a CO white dwarf in a
close binary system. It has been found (Clayton et al. 2007)
that only the DD scenario can provide a qualitative account
of 18O and 19F abundance enhancements, provided that H-rich
material, from the white-dwarf thin envelope, is admixed. In
fact, through the 18O(p, α)15N(p, α)12C chain the 16O/18O and
the C/N ratios are brought to the observed values, thus reversing
the effect of excessive He burning, while fluorine is produced
by p-radiative captures on 18O. Again, a revised 18O(p, α)15N
reaction rate can provide a clue to better understand these rare
and exotic systems.

1.2. Previous Studies

The low energy cross section of the 18O(p, α)15N reaction
has been the subject of several experimental investigations (Mak
et al. 1978; Lorentz-Wirzba et al. 1979) and many features are
known from spectroscopic studies (Yagi et al. 1962; Champagne
& M. Pitt 1986; Wiescher et al. 1980; Schmidt & Duhm 1970;
Wiescher & Kettner 1982). These studied were triggered by
the need to extend the knowledge of the cross section down to
very low energies, looking for unknown resonances that may
have interest both for astrophysics and 19F spectroscopy. For
instance, the exceedingly strong 144 keV resonance was iden-
tified in Lorentz-Wirzba et al. (1979), thus spoiling any pre-
diction in the previous paper (Mak et al. 1978). In the same
way, other low-energy resonances might drastically change the
trend of the cross section at sub-Coulomb energies as well as
subthreshold resonances, especially in the case of broad ones
(Rolfs & Rodney 1988). Despite their importance, the properties
of the resonances lying below 70 keV are known only through
indirect spectroscopic studies as the cross section drops expo-
nentially. For instance, the cross section at 20 keV is a factor
of about 1011 smaller than the one at 70 keV because of the
Coulomb barrier penetration factor, thus making any attempt of
measuring the cross section at such energies unfruitful, at least
with the present-day facilities. It is worth noting that 20 keV is
well within the range of center-of-mass (c.m.) energies of inter-
est for astrophysical applications, namely the Gamow window
(Rolfs & Rodney 1988), extending from 17 keV to 53 keV for
T = 2 107 K, which is a typical temperature characterizing burn-
ing processes at the bottom of the convective envelope (Lugaro
et al. 2004). Even though several studies have focused on the
low energy region (Lorentz-Wirzba et al. 1979; Champagne &
M. Pitt 1986; Wiescher & Kettner 1982), nevertheless the reac-
tion rate for the process is affected by a considerable uncertainty
(Angulo et al. 1999). Indeed, below 1 MeV nine resonances oc-
cur, but the reaction rate is essentially determined by the 20 keV,
144 keV, and the 656 keV resonances (Angulo et al. 1999).
Only the contribution of the 144 keV resonance is soundly es-
tablished. With regard to the 20 keV resonance, its strength
is known only from spectroscopic measurements performed
through the transfer reaction 18O(3He, d)19F (Champagne &
M. Pitt 1986) and the direct capture reaction 18O(p, γ )19F
(Wiescher et al. 1980). Though these studies represent an impor-
tant way to estimate the strength of such low-laying resonance,
the use of spectroscopic factors can severely spoil the accu-
racy of the results as they depend on the set of optical model
parameters chosen to fit the data. In addition, the poor knowl-
edge of the resonance energy makes a major contribution to
the uncertainty of the reaction rate. To summarize, the most
recent compilation, NACRE (Angulo et al. 1999), provides the

resonance-strength recommended value ωγ = 6+17
−5 10−19 eV,

where the wide range reflects both the large uncertainties that
affect the experimental values and the scatter of the data from
different measurements. In the same way, the 656 keV reso-
nance gives a sizable contribution to the low energy region for
its total width turns out to be quite large (100 keV, Yagi et al.
1962; or 342 keV, Lorentz-Wirzba et al. 1979). Though it lies
at energies where the cross section measurement is within the
reach of available nuclear physics laboratories, its width and res-
onance energy are not well determined. We have already shown
(La Cognata et al. 2008b) the large disagreement (up to a factor
three) among different estimates of the resonance width, while a
smaller difference can be found in measured resonance energies
(644 keV, Yagi et al. 1962; or 658 keV, Lorentz-Wirzba et al.
1979). These uncertainties propagate to the resonance strength,
whose recommended value is ωγ = (5.5 ± 1.0) 103 eV, com-
ing from the average of the values from Yagi et al. (1962) and
Lorentz-Wirzba et al. (1979; see Angulo et al. 1999 for a more
detailed discussion). A poor knowledge of the cross section be-
havior also comes from the lack of information on the spin and
parity of the 8.084 MeV level in 19F (corresponding to a 90 keV
resonance in the 18O(p, α)15N cross section).

1.3. Electron Screening. The Need for Indirect Methods

It is worth stressing that, even if the cross section measure-
ment for 18O(p, α)15N is extended down to astrophysical ener-
gies, electron screening effects would inhibit a determination of
the cross section for the 18O−p interaction (Assenbaum et al.
1987; Fiorentini et al. 1995; Strieder et al. 2001). The presence
of atomic electrons produces an enhancement of the cross sec-
tion when the c.m. energy approaches zero, which is not related
to the nuclear interaction (e.g., subthreshold resonances) in the
18O−p channel. For instance, in the case of the 18O(p, α)15N
reaction an increase of the cross section by a factor of ∼2.4 is
expected at 20 keV (Assenbaum et al. 1987). Since the inter-
acting particles are in the form of neutral atoms, molecules or
ions in the laboratory, electron clouds partially shield nuclear
charges, thus reducing the Coulomb suppression effect. The en-
hancement factor fenh(E) (Assenbaum et al. 1987; Fiorentini
et al. 1995; Strieder et al. 2001) is given by

fenh(E) = σs(E)

σb(E)
≈ exp

(
πη

Ue

E

)
, (1)

where σs(E) and σb(E) are the screened and bare-nucleus cross
sections, namely the cross section the particles would have if
stripped of all the surrounding electrons, η is the Sommerfeld
parameter, and Ue is the electron screening potential. Clearly,
the enhancement factor depends only on a single parameter,
Ue, which in principle can be evaluated according to atomic
physics theories. The bare-nucleus cross section can be obtained
accordingly, dividing out the enhancement factor; this step is
necessary for astrophysical application since nuclei in stellar
plasma are fully stripped of their electrons because of the high
temperatures in the inner layers. Indeed, a different enhancement
factor is introduced in stellar environments to account for plasma
effects (Rolfs & Rodney 1988). It turns out that current atomic
models cannot provide Ue values, for a broad range of reactions,
which satisfactorily agree with experimental electron screening
potentials Ue (La Cognata et al. 2005a and reference therein).
This can make the bare-nucleus cross section σb(E) obtained by
correction highly inaccurate, especially at the lowest energies
where the enhancement can be as much as a factor two or larger.
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Therefore, even in those few cases in which the measurement has
been performed down to astrophysical energies, extrapolation
is required to evaluate the bare-nucleus reaction cross section.
To achieve a more accurate extrapolated trend, the astrophysical
S(E)-factor is used in place of the cross section (Rolfs & Rodney
1988):

S(E) = E exp(2πη) σ (E), (2)

where the inverse Gamow factor exp(2πη) is introduced to
compensate the steep drop of the cross section due to the
Coulomb nuclear repulsion, so as to get a smoother function.
Even so, extrapolation can miss the contribution of unknown
levels, also below the reaction threshold, especially when no
theoretical models are used to predict the behavior of the cross
section. Again, large uncertainties can be introduced into the
astrophysical predictions due to inaccurate extrapolated cross
sections, which do not match the unknown, true ones. For these
reasons, the so-called indirect methods have been introduced,
aiming at accessing the low energy cross section with no need
of extrapolations.

2. THE THM APPROACH

The indirect label is used to refer to those techniques that al-
low one to deduce the S(E)-factor of an A+x → c +C reaction
(e.g., of astrophysical importance) by measuring the cross sec-
tion of a closely related process. The S(E)-factor of the relevant
reaction is extracted by means of well-established nuclear reac-
tion models, such as direct reaction theory, including Distorted
Wave Born Approximation (DWBA), Continuum Discretized
Coupled Channel (CDCC), or Glauber approximation, for in-
stance. A number of indirect methods, such as the Coulomb
dissociation (Baur & Rebel 1994), the asymptotic normaliza-
tion coefficient (ANC; Mukhamedzhanov & Timofeyuk 1990a,
1990b; Mukhamedzhanov et al. 1997), and the Trojan horse
method (THM; Spitaleri et al. 1999, 2004; Calvi et al. 1997;
Cherubini et al. 1996; La Cognata et al. 2005a, 2005b, 2006,
2007a, 2007b, 2008a; Tumino et al. 2008; Sergi et al. 2008;
Romano et al. 2004, 2006, 2008; Tumino et al. 2007a, 2007b;
Mukhamedzhanov et al. 2007; Lamia et al. 2007; Pizzone et al.
2005, 2007a, 2007b; Gulino et al. 2007; Tumino et al. 2004a,
2004b, 2005, 2006; Rinollo et al. 2005) have been widely used
in nuclear astrophysics. In particular, the THM is an experimen-
tal indirect technique that is suited to deduce a charged-particle
binary-reaction cross section inside the Gamow window, by se-
lecting the quasi-free (QF) contribution to an appropriate Trojan
horse (TH) reaction a + A → c + C + s performed at ener-
gies well above the Coulomb barrier. According to the method,
a = x ⊕ s (the so-called TH nucleus) is used to by-pass the
Coulomb barrier bringing cluster x inside the nuclear field of
A. In this way, the A + x → c + C reaction cross section is not
Coulomb suppressed as the barrier has already been overcome
in the entrance channel. Here, we apply the THM to measure the
cross section of the 18O(p, α)15N reaction down to zero energy
to reduce the nuclear uncertainties affecting the reaction rate
estimate. In the first investigation (La Cognata et al. 2008b) of
the 18O(p, α)15N reaction via the THM, the 0–1000 keV c.m.
energy range was measured through the 2H(18O, α15N)n TH
process. For the first time, the energy region below 70 keV was
investigated. The 656 keV resonance was found to have an in-
termediate width with respect to the ones in the literature (Yagi
et al. 1962; Lorentz-Wirzba et al. 1979) and a slightly lower
resonance energy. Later, a new experiment was performed with
the aim of focusing the measurement on the range close to zero

a s

x

A F

c

C

Figure 1. Pole diagram of the a + A → s + c + C resonant QF process. Nucleus
a breaks up into fragments x and s. The former is captured by A, leading to the
formation of the compound system F, while s flies away without influencing
either the A + x → F fusion or the F → c + C decay.

energy (La Cognata et al. 2008c), to study the resonances at
20 and 90 keV. To this purpose, an improved energy resolution
was necessary to resolve the low-laying resonances. Thus the
resonance parameters and Jπ of the 8.014 and 8.084 MeV 19F
levels were deduced and the first results given by La Cognata
et al. (2008c). Here, we introduce a novel approach that has
been developed with the aim of extending the THM to the study
of reactions whose rate is dominated by narrow resonances,
such as the 18O(p, α)15N. This original formulation of the THM
represents a major step forward for the method as the effect
of distortions due to the Coulomb interaction, for instance, is
fully taken into account and the absolute value of the 2 → 3
cross section and its relation with the indirect 2 → 2 cross
section is given. According to this new approach, a reanaly-
sis of the 2H(18O, α15N)n cross section is given here, to single
out possible systematic errors and to evaluate the impact of the
model on the THM predictions, thus achieving high precision
18O(p, α)15N resonance strengths.

The pole diagram (Shapiro et al. 1965; Dolinsky et al. 1973)
demonstrating the QF reaction mechanism in the case of the
a + A → s + c + C reaction is given in Figure 1. In this figure, a
represents the TH nucleus that is used to induce the A+x → c+C
reaction at sub-Coulomb A − x relative energies, while s acts as
a spectator to the A + x → c + C sub-process. According to the
sketch, the a + A → s + c + C2 → 3 reaction can be regarded
as a two-step process, namely the stripping a + A → s + F to a
resonant state in the compound system F, which later decays to
the c + C channel. Correspondingly, the cross section of such a
2 → 3 process can be factorized and the resonance parameters
can be deduced from the comparison with the experimental TH
data. In what follows, we use the system of units in which
h̄ = c = 1. The TH reaction amplitude in the case of the
a +A → s +c +C TH reaction populating an isolated resonance
in the subsystem F = A+x = c+C can be written as (Dolinsky
et al. 1973)

MT H
MA Ma;Ms Mc MC

(ksF , kcC, kaA)

=
∑

MF
M

MF

McMC
(kcC) MMsMF ;MAMa

(ksF , kaA)

EcC − ERcC
+ i Γ(EcC )

2

. (3)

Here,

M
MF

McMC
(kcC) = 2 π√

μcC kcC

∑
Sf MSf

lf mlf〈
Sf MSf

lf mlf

∣∣JF MF

〉〈
JCMC JcMc|Sf MSf

〉
× [ΓcC(Sf lf )(EcC)]1/2 e

i δSf lf Ylf mlf
(k̂cC) (4)
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is the amplitude for the resonance decay F → c + C, Ji and
Mi are the spin of particle i and its projection respectively,
JF and MF are the spin and its projection of resonance F, Sf
and MSf

are the channel spin and its projection in the exit
channel c + C, lf and mlf are the relative orbital momentum
and its projection of fragments c and C in the resonance
state F; kij = (mj ki − mi kj )/mij is the relative momentum
of particles i and j and Eij = k2

ij /(2 μij ) is their relative
kinetic energy, ki and mi are momentum and the mass of
the ith particle, μij = mi mj/mij is the reduced mass of
particles i and j, with mij = mi + mj ; Γ(EcC) = ΓcC(EcC) +
ΓxA(ExA) is the total width, ΓcC(EcC) = ∑

Sf lf
ΓcC(Sf lf )(EcC)

and ΓxA(ExA) = ∑
Si li

ΓxA(Si li )(ExA) total observable widths in
the final (cC) and initial (xA) channels, correspondingly, where
ΓcC(Sf lf )(EcC) and ΓxA(Si li )(ExA) are the observable partial
widths in the final channel (cC)(Sf lf ) and the initial channel
(xA)(Sili), respectively. Because of the energy conservation law,
ExA + Q2 = EcC , where Q2 = mx + mA − mc − mC , and
ERxA

+ Q2 = ERcC
, and ERij

is the resonance energy in the
channel i + j . δSf lf is the nonresonant scattering phase shift
of the fragments c and C in the channel with given Sf and
lf ; Ylf mlf

(k̂cC) are spherical harmonics and k̂ = k/k. Note
that MMsMF ;MAMa

(ksF , kaA) is the exact amplitude of the direct
transfer reaction a + A → s + F populating the resonance state
F = x + A = c + C. In the case under consideration, it is the
direct transfer reaction d + 18O → n + 19F.

The triple differential cross section of the TH reaction in the
c.m. system is given by Dolinsky et al. (1973)

d3σT H

dΩk̂sF
dΩk̂cC

dEcC

= μcC μsF μaA

2π5

kcC ksF

kaA

1

Ĵa ĴA

×
∑

Ms MC Mc MA Ma

∣∣MT H
MA Ma;Ms Mc MC

(ksF , kcC, kaA)
∣∣2

, (5)

where Ĵ = 2 J + 1. Inserting Equations (3) and (4), integrating
Equation (5) over dΩk̂cC

, and using the orthogonality properties
of the spherical functions and the Clebsch–Gordan coefficients,
we obtain the TH double differential cross section:

d2σT H

dΩk̂sF
dEcC

= 1

2π

ΓcC (EcC)

(EcC − ERcC
)2 + 1

4 Γ2(EcC)

× dσ(a+A→s+F )

dΩk̂sF

, (6)

where dσ(a+A→s+F )/dΩk̂sF
is the differential cross section for the

stripping A(a, s)F to the resonant state F

dσ(a+A→s+F )

dΩk̂sF

= μsF μaA

4 π2

ksF

kaA

1

ĴA Ĵa

×
∑

MF Ms MA Ma

|MMF Ms ;MA Ma
(ksF , kaA)|2.

(7)

Equation (6) is basic and all the other equations can be obtained
from it. This equation explains the advantage of the THM for
resonant reactions. To understand it, we compare the TH double
differential cross section with the free resonant reaction cross
section (all the particles in the initial and exit channels are on-
the-energy shell, OES):

σR
(x+A→c+C) = π

k2
xA

ĴF

ĴA Ĵa

ΓcC(EcC) ΓxA(ExA)

(EcC − ERcC
)2 + 1

4 Γ2
cC(EcC)

. (8)

It is the expression for the total cross section of the reaction pro-
ceeding through an isolated resonance in the R matrix approach,
the 18O(p, α)15N reaction in the case under consideration.

We note that in the R matrix approach all the widths depend
on the energy, while in the Breit–Wigner expression they are
constants taken at the resonance energy. The resonant cross sec-
tion depends on the entry resonance width, which in the R ma-
trix method can be written as ΓxA(ExA) = 2 Pli (ExA, r0) γ 2

xA,
where Pli (ExA, r0) is the Coulomb-centrifugal barrier penetra-
bility factor in the channel x + A with relative orbital angular li,
depending on ExA and channel radius r0, and γxA is the observ-
able partial reduced width in the channel x + A.

Due to the presence of the penetration factor, the measurement
of the resonant cross section at ExA → 0 becomes very difficult
or often impossible. The TH double differential cross section

d2σT H

dΩk̂sF
dEcC

has a structure similar to the R matrix resonant cross

section (Equation (8)). The only difference is that the former
contains the transfer reaction cross section dσ(a+A→s+F )

dΩk̂sF

rather than

the entry width ΓxA(ExA). The transfer cross section does not
go to zero when ExA → 0. Moreover, because in the THM the
EaA energy in the entry channel of the TH reaction is chosen to
be above the Coulomb barrier, dσ(a+A→s+F )

dΩk̂sF

is not small making it

possible to measure the TH reaction cross section at any small
ExA, including ExA = 0 and even ExA < 0. In the THM, absolute
cross sections are not measured, nevertheless the free resonant
cross section can be obtained by normalization of the TH cross
section to the available direct measurements at higher energies
assuming that ΓxA(ERxA

) is known. Such normalization, given
by

σR
(x+A→c+C) = d2σT H

dΩk̂sF
dEcC

ΓxA(ExA)
dσ(a+A→s+F )

dΩk̂sF

2 π2

k2
xA

ĴF

ĴA Ĵx

, (9)

provides the resonant cross section (or astrophysical factor)
down to energies relevant to astrophysics where direct data are
not available or, if available, may be distorted by the electron
screening, low-lying unknown resonances or even subthreshold
resonances. When two isolated resonances are present, only
one of which is known from direct measurements, one can
deduce the strength and the astrophysical factor of the unknown
resonance by comparing the cross sections of the two resonances
observed via the TH reaction.

The two crucial achievements of the resonant THM theory
are the possibility of including the effect of distortion due
to, for instance, the Coulomb interaction and of calculating
the normalization constant needed to compare the direct with
the THM data. In turn, these have important consequences as the
deduced cross sections or resonance strengths can be calculated
with unprecedented accuracy and a further cross check of the
method is at hand. In fact, the trend of direct and indirect data
can be compared to assess not only the method but also the
absolute values of the cross sections.

Here, we use the TH reaction 2H(18O, α15N)n to determine
the reaction rates for the 18O(p, α)15N resonant astrophysical
process. The deuteron is used as a TH particle to bring the
proton inside the nuclear field of 18O. With reference to Figure 1,
a ≡ 2H, A ≡ 18O, c ≡ 4He, C ≡ 15N, and x ≡ p, s ≡ n are the
participant and the spectator particles, respectively. Therefore,
the 2H(18O, α15N)n 2 → 3 reaction can be regarded as the
stripping to a resonant state in 19F, later decaying into α + 15N.
To measure the energy dependence of d2σT H

dΩk̂sF
dEsF

enforcing the
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QF kinematics (knp = 0) requires a continuous change of beam
energy. In the practical realization of the THM, the beam energy
is fixed but knp is allowed to vary in the interval of a few tens
of MeV/c to span the energy interval relevant for astrophysics
(La Cognata et al. 2007b). The chosen 18O beam energy of
54 MeV (La Cognata et al. 2008c) is above the Coulomb barrier
allowing for the deuteron to penetrate into the close proximity
of 18O. Besides, at this energy the 18O-d relative wavelength
λ = k−1 = h̄c/

√
2mc2E = 1.5 fm, which is about three times

smaller than the deuteron radius. This means that the incident
18O nucleus interacts only with the proton, leaving the second
fragment (neutron) as a spectator to the 18O(p, α)15N binary
sub-process (the one of astrophysical relevance).

3. THE EXPERIMENT

3.1. Experimental Setup

The experiment was performed at Laboratori Nazionali del
Sud, Catania (Italy), and represents the continuation of the
one carried out at the Cyclotron Institute, Texas A&M Uni-
versity, Texas (USA) (La Cognata et al. 2008b). The SMP
Tandem Van de Graaf accelerator provided a 54 MeV 18O beam,
which was accurately collimated in order to achieve a beam
spot on the target of about 1 mm diameter, while the maximum
beam divergence was 0.◦08. The intensity was 5 enA on the av-
erage and the relative beam energy spread was about 10−4.
Thin self-supported deuterated polyethylene (CD2) targets,
�100 μg cm−2 thick, were adopted in order to minimize energy
and angular straggling (about 0.◦06) and were placed at 90◦ with
respect to the beam direction. The detection setup, sketched
in Figure 2, consisted of a telescope (A), devoted to 15N de-
tection, made up of an ionization chamber (IC) and a silicon
position sensitive detector (PSD A) on one side with respect
to the beam direction. The telescope was placed at a distance
of about 47 cm from the target (upper part of Figure 2). The
ionization chamber was used to discriminate nitrogen nuclei by
means of the standard ΔE − E technique. In order to minimize
the angular straggling in PSD A, a 0.9 μm thick Mylar foil
was used as the entrance window; the opposite side was closed
by a 1.5 μm thick Mylar foil. The IC was filled with 50 mbar
butane gas that provided an energy resolution of about 10%,
which was enough to discriminate the impinging particles ac-
cording to their nuclear charge but not their mass. No threshold
was introduced in the 15N detection by the ionization chamber.
Three additional silicon PSDs (B, C, and D) were placed on
the opposite side with respect to the beam direction, at a dis-
tance of about 37 cm from the target (lower part of Figure 2).
The distances were chosen to keep the intrinsic angular reso-
lution better than 0.◦08, allowing at the same time to cover the
relevant angular regions for the subsequent analysis. Angular
conditions were selected in order to maximize the expected QF
contribution. Indeed, they were chosen to cover momentum val-
ues of the undetected neutron ranging from 0 to 150 MeV/c.
Thus, the bulk of the QF contribution for deuteron breakup fell
inside the investigated region because the momentum distribu-
tion for the n − p system has a maximum at ps = 0 MeV/c. The
angles corresponding to this condition are known as QF angles.
The wide explored momentum range allows for a cross check of
the method inside and outside the phase-space regions where the
QF contribution is expected. To decrease detection thresholds,
no ΔE detectors were put in front of PSDs B, C, and D. There-
fore α-particle identification was done from the kinematics of
the events. A similar procedure was employed to single out the

PSD A

IC

PSD B

PSD C

PSD D

CD2 target

18O beam

Figure 2. Sketch of the experimental setup. A 54 MeV 18O beam impinges onto a
∼100 μg cm−2 CD2 target and the reaction products are detected in coincidence
by means of a ΔE − E telescope (made up of an ionization chamber IC and a
silicon position sensitive detector PSDA) and three additional silicon position
sensitive detectors PSDB-D.

(A color version of this figure is available in the online journal.)

different nitrogen isotopes detected in telescope A. Energy and
emission angle of the detected α’s and the emission angle of
15N nuclei were used in the subsequent analysis to enhance en-
ergy resolution. Three kinds of events were triggered by using a
time-to-amplitude converter (TAC): A–B, A–C and A–D coinci-
dences. Energy and position signals of the PSDs were processed
by standard electronics together with the TAC signal for each
coincidence event and sent to the acquisition system for on-line
monitoring and data storage for off-line processing.

At the initial stage of the measurement, masks with a number
of equally spaced slits were placed in front of each PSD
to perform position calibration. The angle of each slit with
respect to the beam direction was measured by means of an
optical system, making it possible to establish a correspondence
between position signal from the PSDs and detection angle of
the impinging particles. Energy calibration was performed by
means of a standard three-peak α-source (239Pu, 241Am, and
244Cm) and by using the α particles from the 2H(18O,α)16N
reaction at 54 MeV, feeding a large number of 16N excited
states. Additional runs were performed using a 14N beam at
energies ranging between 20 and 50 MeV to measure the elastic
and inelastic scattering on gold and carbon targets. This allowed
an accurate calibration of PSD A, optimized for nitrogen nuclei
detection, and of the IC, by difference in the residual energy
measured by PSD A when the IC is empty and filled with
butane at the working pressure. The total kinetic energy of the
detected particles was reconstructed off-line, taking into account
the energy loss in the target and in the entrance and exit windows
of the ionization chamber and in the other dead layers.

3.2. Reaction Channel Selection

Since different reactions can be induced by the 18O beam
on the measurement target, the reaction channel selection is
mandatory. This is accomplished by gating on the coincidence
peak in the TAC spectrum for each coincidence couple and by
carrying out a careful investigation of the reaction kinematics.
This is required to disentangle the events corresponding to the
2H(18O, α15N)n reaction since only a partial particle identifica-
tion was permitted by the experimental setup, as pointed out in
the previous section. Figure 3 displays the particle-identification
two-dimensional spectrum provided by telescope A, where the
different reaction products are well distinguished in Z but not
in A. In detail, the channel selection procedure begins with the
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Figure 3. ΔE − E two-dimensional spectrum from telescope A for particle
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(A color version of this figure is available in the online journal.)

(MeV)AE

30 40 50

(M
e

V
)

C
E

0

10

20

30 A

B

Figure 4. EA −EC two-dimensional spectrum with selection of nitrogen nuclei
(Z = 7) on the ΔE − E two-dimensional spectrum in Figure 3. A and B mark
two loci corresponding to two-body background reactions.

(A color version of this figure is available in the online journal.)

separation of the nitrogen locus in the ΔE −E two-dimensional
plot by means of a graphical cut. It is well known that particles
from a reactions with three nuclei in the exit channel have kinetic
energies that are correlated (bound by energy and momentum
conservation equations). Therefore, EA versus EB, EA versus
EC and EA versus ED (EI, I = A,B,C,D, being the energy
measured in the Ith detector) correlation plots were drawn for
those events belonging to the nitrogen locus in Figure 3. As an
example, the EA versus EC energy correlation plot is given in
Figure 4. Three different kinematic loci show up in the picture.

The events corresponding to the 2H(18O, α15N)n TH reaction
were singled out by comparison with a Monte Carlo simulation
of that process, taking into account detection thresholds, energy
losses and the kinematics of the TH reaction. The two addi-
tional spots located in the upper part of Figure 4 (marked with
A and B) correspond to binary reactions that constitute an easily
removable background to the TH reaction. Indeed, to rule out
these additional channels contributing to the experimental kine-
matical loci, a graphical cut is introduced in Figure 4 leaving
outside of the kinematical regions of interest the contaminant
events. A similar approach is pursued for the two A–B and A–D
coincidences. In the present experiment, only two of the three
emitted particles were detected. This leaves the system under-
determined due to the overlapping of different kinematic loci in
the same phase-space region, corresponding to reactions having
different undetected particles. To identify the mass of the un-
detected particle s, the procedure discussed by Costanzo et al.
(1990) was applied on the events extracted with the procedure
followed until now. Since its momentum is deduced from the
energies and emission angles of particles c and C by applying
the momentum conservation equation, the variable X = p2

s /2u
is independent of the mass of the undetected fragment s (u being
the unit mass in a.m.u.). If we define Y = Ebeam −Ec −EC , the
energy conservation equation can be cast in the form:

Y = 1

As

X − Q2→3, (10)

thus the mass of particle s can be inferred by fitting the line
that best reproduces the experimental data. Therefore, this test
allows for a comparison of the expected locus (a straight line)
with the experimental one, and it establishes the mass of s
with no need of a measurement. Indeed, events from reactions
where a bad identification of the detected ejectiles is carried out
do not gather along a straight line as Equation (10) does not
apply. Its application is demonstrated in Figure 5 for the actual
2H(18O, α15N)n reaction and the A–C coincidence detectors.
Clearly, events gather along a straight line whose slope is 1,
allowing us to assert that no contaminating kinematics overlap,
namely no additional channels contribute to the experimental
kinematic locus. This result was supported by the experimental
Q-value spectrum where a single peak is apparent, centered at
an energy of about 1.75 MeV. The Q-value spectrum for these
events is given in Figure 6. The good agreement between the
experimental and the theoretical Q-values (indicated by an arrow
in Figure 6) confirms not only the identification of the reaction
channel but also the accuracy of the performed calibration.
Similar results are deduced from the A–B and A–D pairs. In
the following, data analysis is restricted to such events.

3.3. Selection of the QF Reaction Mechanism

A further study on reaction dynamics was necessary to select
those kinematical regions where QF is dominant and can be
separated from possible direct breakup (DBU) or sequential
decay (SD) reaction mechanisms. This is an essential step
because the equations we have derived are valid only under the
assumption that particle s, namely the neutron, acts as a spectator
to the A–x interaction. This is accomplished by a thorough study
of the reaction dynamics to disentangle the different processes
feeding the exit channel, in the same way a study of the reactions
kinematics was demanded to figure out the contribution from
contaminant reaction channels.

To carry out this study, relative energies for the α−n, 15N−n,
and 15N − α systems were deduced from the measured energies
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Figure 6. Reconstructed Q-value spectrum. The Q-value for the 2H(18O, α15N)n
is marked by an arrow. No additional process takes place as a single peak shows
up in the spectrum.

and emission angles. In the case of the neutron, these quantities
were deduced from the reaction kinematics. Of course, the
relative energy spectra represent the excitation energy spectra
for 5He, 16N, and 19F nuclei, respectively, above the threshold
for neutron or α decay. It means that if any state in such
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Figure 7. Energy correlation two-dimensional spectra. E15N−n, Eα−15N, and
Eα−n are the 15N − n, 15N − α, and α − n relative energies, respectively.
Horizontal loci in the lower panel correspond to 19F excited states. No additional
loci are apparent, i.e., no sequential decay process is contributing.

(A color version of this figure is available in the online journal.)

compound systems has been fed in the investigated phase-
space region, a bump in the reaction yield should show up
at the energy corresponding to the populated excited level.
To point out the occurrence of different levels in the same
phase-space interval, two-dimensional plots for any two of
the three final particles were reconstructed. Relative energies
E15N−n and Eα−15N are given in Figure 7 as a function of
Eα−n relative energy for the A–C coincidence (upper and lower
panels, respectively). No vertical loci show up, corresponding to
resonances in the 5He compound nucleus, making us confident
that the 2H(18O, α15N)n reaction does not proceed through
the 2H + 18O → 5He + 15N → 4He + 15N + n two-step
(5He-SD) process. Similarly, the 2H + 18O → 4He + 16N →
4He + 15N + n two-step reaction would lead to the formation
of an intermediate 16N excited system (SD mechanism). Since
no horizontal loci are apparent in the upper panel of Figure 7,
we can conclude that in the examined phase-space region the
16N sequential decay is a less favored process. We can state
that such sequential processes (through 5He and 16N) give a
negligible contribution to the coincidence yield at α − 15N
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Figure 8. Normalized reaction yield for different ps ranges. The reaction yield
monotonically decreases moving to high ps values, as expected for a QF reaction
using deuteron as TH nucleus. This represent a first test of the occurrence of the
QF mechanism in the 2H(18O, α15N)n reaction.

relative energies corresponding to the region of interest for
astrophysics, i.e. around Eα−15N = 4 MeV. Similar results
are obtained from A–B and A–D coincidences. On the other
hand, a large number of 19F excited states are fed in the
experiment. This is demonstrated by the lower panel of Figure 7,
where several horizontal loci are apparent. These levels can be
formed either through the QF reaction mechanism, sketched in
Figure 1, following deuteron direct breakup, or via a two-step
SD process. Thus, the occurrence of sequential mechanisms in
the α − 15N channel cannot be ruled out by studying the relative
energy correlation plots only, because the same excited states

of the α − 15N system can be formed through a QF or SD
process.

A way to discriminate between SD and QF events is through
the study of the reaction yield as a function of the neutron
momentum ps. Indeed, an enhancement of the cross section
close to zero neutron momentum is a necessary condition for
the occurrence of the QF mechanism, marking the presence of a
modulation of the TH cross section by the neutron momentum
distribution inside the deuteron. This feature is expected for a QF
reaction because the momentum distribution of the n − p system
inside the deuteron has a maximum for ps = 0 MeV/c. Since the
experimental range of the spectator particle momentum extends
well beyond the interval where the QF contribution is supposed
to be dominant, namely outside the full width at half maximum
of the Hulthén momentum distribution (FWHM = 72 MeV/c),
a comparison of the coincidence yield for small ps (say,
� FWHM/2 = 36 MeV/c) and larger ps can be performed. For
this purpose, the behavior of the coincidence yield spectra as a
function of Ec.m. was reconstructed for all coincidence events,
for different neutron momentum ranges. Ec.m. is the 18O − p
relative kinetic energy related to Eα15N relative energy by the
energy conservation law:

Ec.m. = Eα15N − Q2, (11)

where Q2 = 3.981 MeV is the Q-value of the 18O(p, α)15N
reaction (see, e.g., Spitaleri et al. 2004 and references therein).
In detail, these spectra, given in Figure 8, were obtained by
selecting the |ps | < 20 MeV/c (upper panel), 20 < |ps | <
40 MeV/c (middle panel), and 40 < |ps | < 60 MeV/c (lower
panel) intervals of the neutron momentum ps. Furthermore,
such spectra were divided by the phase-space contribution to
remove the pure kinematical effects due to the phase-space
selection. In the picture, only the Ec.m. range of interest for
astrophysics is displayed, namely Ec.m. < 250 keV; in this
range, the resonances corresponding to the 8.014, 8.084, and
8.138 MeV states in the 19F compound nucleus (Tilley et al.
1995) show up. It is important to stress that the Ec.m. spectra
given in Figure 8 are not corrected for the modulation given
by the angular dependence in Equation (5). Therefore, the
distinguishing pattern due to the ps dependence can be unveiled
only in the case of isotropic resonances. Since this condition
is satisfied only for the 8.138 MeV state in 19F (Tilley et al.
1995; Lorentz-Wirzba et al. 1979), we will focus on this level,
corresponding to a resonance at Ec.m. = 144 keV that is clearly
visible in Figure 8. Such a picture clearly demonstrates that in
the energy region around 144 keV, the coincidence yield is much
higher for |ps | < 20 MeV/c than what is obtained at larger ps
momenta. Indeed, at higher momenta (20 < |ps | < 40 MeV/c
and 40 < |ps | < 60 MeV/c) it drastically decreases and the
resonance becomes barely visible compared to the background.
These data provide strong evidence of a clear correlation
between coincidence yield and spectator momentum ps, which
is a necessary condition for the occurrence of the QF reaction
mechanism.

The previous discussion can be made more quantitative as
the neutron momentum distribution inside the deuteron can be
measured by means of the 2H(18O, α15N)n QF reaction. Indeed,
only if the deuteron breakup process is direct, the neutron
momentum distribution keeps the same shape as inside d. Thus,
the agreement between the shape of the deuteron momentum
distribution and the experimental one is a compelling evidence
of the occurrence of the QF mechanism (Spitaleri et al. 1999,
2004; La Cognata et al. 2007b). To establish the momentum
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dependence of the coincidence yield, the modulation due to the
feeding of states in 19F (compare Figure 8) has to be removed,
which otherwise would conceal the trend that is much weaker
than the resonant structure. This is accomplished by fixing
the Eα−15N relative energy at the top of the resonant peak at
Ec.m. = 144 keV, corresponding to the 8.138 MeV state in 19F,
which is clearly visible in Figure 8. Phase-space effects were
divided out as in the previous case, by performing a Monte
Carlo simulation of the experimental setup, accounting for the
covered angular ranges in the experiment and for the detection
thresholds. Furthermore, no angular distribution modulation
is expected as the 19F decay from such a state is isotropic,
as observed before. Thus, the experimental ps momentum
distribution is obtained in arbitrary units and displayed in
Figure 9 by solid dots. This result is compared with the square of
a Hulthèn wave function in momentum space (Zadro et al. 1989;
Spitaleri et al. 2004; La Cognata et al. 2007b), representing the
shape of the n − p momentum distribution in the plane-wave
impulse approximation (PWIA):

Φ(ps) = 1

π

√
ab(a + b)

(a − b)2

[
1

a2 + p2
s

− 1

b2 + p2
s

]
(12)

with parameters a = 0.2317 fm−1 and b = 1.202 fm−1

(Spitaleri et al. 2004; La Cognata et al. 2007b) for the deuteron.
Since the experimental momentum distribution is known in ar-
bitrary units only, the theoretical one has been scaled to the
experimental maximum (Figure 9), for comparison (χ̃2 = 1.4).
This is given in Figure 9 as a black solid line. As regards the
width, the experimental FWHM should coincide with the pre-
dicted one, about 72 MeV/c (Zadro et al. 1989) because of the
large transferred momentum. Distortions, if any, should influ-
ence only the tails of the distribution (Spitaleri et al. 2004),
beyond the range of interest, corresponding to short n − p rela-
tive distances, as only the nuclear interaction can influence the
p–18O interaction. To check whether the simple PWIA approach
gives an accurate description of the n − p momentum distribu-
tion, in Figure 9 the DWBA distribution, evaluated by means
of the FRESCO computer code (Thompson 1987), is also given
by a red dotted line. Again, the theoretical DWBA momentum
distribution has been scaled to the experimental maximum for
easier comparison (χ̃2 = 0.71). In the calculation, optical po-
tential parameters extrapolated from the Perey & Perey (1976)
compilation have been adopted. From the comparison we can
state that a good agreement between the two is present for a
neutron momentum ps < 50 MeV/c, which is within the ex-
perimental uncertainties (including only the statistical error, in
the case of Figure 9). This demonstrates that the PWIA ap-
proach constitutes a viable approach to extract the resonance
parameters for the 18O(p, α)15N reaction. In fact, according to
the resonant THM outlined in the beginning, the 2 → 3 cross
section used to extract the resonance strengths is integrated over
ps; thus, distortions would provide a contribution as small as 4%
to the overall error budget. The DWBA momentum distribution
accounts for the shape of the experimental distribution, which is
slightly narrower than expected from the PWIA prediction. This
effect has been systematically observed in several works (Piz-
zone et al. 2009) and finds a natural and simple explanation in the
present approach. Moreover, such an agreement means that the
QF mechanism is present and dominant in the ps < 50 MeV/c
neutron momentum range. For these reasons, in the following
analysis, only the phase-space region where ps < 50 MeV/c
is taken into account, allowing us to apply the PWIA in the
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Figure 9. Experimental momentum distribution (full dots) compared with
theoretical ones, given by the square of the Hulthén wave function in momentum
space (black solid line) and by the DWBA momentum distribution evaluated
by means of the FRESCO code (red dotter lines). Normalization was left as a
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(A color version of this figure is available in the online journal.)

following calculations without introducing significant system-
atic uncertainties. Together with the previous tests, the good
agreement between the theoretical and experimental distribu-
tions makes us confident that the QF mechanism gives the main
contribution to the 18O+d reaction at an energy of 54 MeV in the
experimental kinematical regions. Moreover, it proves that the
QF mechanism can be selected without significant contribution
from contaminant SD processes and the analysis in PWIA is
sufficient to describe the process.

4. RESULTS

4.1. Angular Distributions and Spin-parity Assignment

According to La Cognata et al. (2007b), Spitaleri et al.
(2004), and La Cognata et al. (2008c), the comparison be-
tween the angular distribution of the fragments α and 15N,
measured from the 2H(18O, α15N)n TH reaction, and those
expected from the OES resonant 18O(p, α)15N reaction, pro-
vides another validity test for the THM because it would mean
that no distortions are induced by the emitted neutron. In this
work, the angular distributions of the final fragments coming
from the 18O(p, α)15N subreaction are extracted not only to
validate the THM approach but also to evaluate spin and par-
ity of the low-laying resonances. Note that in the case of the
144 keV resonance corresponding to the 8.138 MeV state in
19F, the angular distribution was directly measured by Lorentz-
Wirzba et al. (1979). Conversely, since the spin–parity of the
90 keV resonance (namely the 8.084 MeV excited state of 19F)
is not well established (Tilley et al. 1995), a close examination
of the angular distribution should allow to pin down the correct
values. The invariant scattering angle in direct measurements is
determined as the angle between the relative momenta of the
final and initial particles. In the c.m. system of the subreaction,
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such an angle is the one between the momentum of any of the
two fragments (α or 15N) and the beam direction. The emission
angle for the 15N nucleus is given by

θc.m. = arccos(k̂p 18O · k̂α 15N), (13)

where the relative momenta k̂ij = kij /kij are invariant under
Galilean transformations, i.e., they remain the same in any
coordinate system. Hence, they can be calculated using the
momenta in the laboratory system, where the momentum of
the transferred proton is equal and opposite to that of neutron
in the QF kinematics (Jain et al. 1970; La Cognata et al. 2007b;
Spitaleri et al. 2004).

The general expression for the angular distribution of the
fragments for the resonance reaction has been obtained by Blatt
& Biedenharn (1952). In the case of an isolated resonance with
only one value of li , lf , Si , and Sf , it takes the form

dσ

dΩ
(θc.m.) = K (−1)Sf −Si

×
∑
L

(l̂i)(l̂f )(ĴF )2(−1)L
(

li JF Si

JF li L

)

× 〈li mli li mli |L ML〉
(

lf JF Sf

JF lf L

)
× 〈lf mlf lf mlf |LML〉PL(cos θc.m.). (14)

In this equation,

(
li JF Si

JF li L

)
and

(
lf JF Sf

JF lf L

)
are Wigner

6j-symbols (Messiah 1962a), 〈li mli li mli |L ML〉 and
〈lf mlf lf mlf |LML〉 Clebsch–Gordan coefficients (Messiah
1962b). K is a normalization constant, which in general is a
function of the c.m. energy Ec.m..

Because of the different phase-space regions explored in
the present experiment, the θc.m. ranges for the A–B, A–C,
and A–D detector coincidences were about θc.m. = 0◦–60◦,
θc.m. = 40◦–110◦, and θc.m. = 90◦–150◦, respectively. The
presence of the overlap regions allowed to normalize the cross
sections deduced from each couple to one another. Angular
distributions were extracted for several energies, focusing in
particular on the 0–250 keV energy region, where the 20 keV,
90 keV, and 144 keV resonances occur. As discussed below, the
experimental energy resolution was about 17 keV. Therefore, the
extraction of the angular distributions for each resonance cannot
be accomplished at fixed energy. Moreover, the 90 keV and the
144 keV resonances partially overlap; thus, care has to be taken
to disentangle contributions from different peaks. Consequently,
the excitation functions were deduced in 10 degree bins for
the whole explored angular range, following the technique
extensively discussed by Spitaleri et al. (2004) and La Cognata
et al. (2007b). The half-off-energy-shell (HOES) cross section
(dσ/dΩc.m.)

HOES for the 18O(p, α)15N reaction, as a function
of energy and for a fixed θc.m. angle, was derived by dividing
the selected coincidence yield by the result of a Monte Carlo
calculation, which was carried out to evaluate the KF |Φ(ps)|2
product. The momentum distribution in the calculation is shown
in Figure 9 and a cutoff ps < 50 MeV/c neutron momentum
range was introduced to single out the QF kinematic region.
The HOES label is used as the transferred proton is off-the-
energy-shell while the other particles are real. As reported by
Spitaleri et al. (2004) and La Cognata et al. (2007b), the HOES
nature of the measured cross section has no influence on the
angular distributions since they are extracted for fixed energies
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Figure 10. HOES excitation function (in arbitrary units) for the 18O(p, α)15N
reaction obtained for a fixed θc.m. = 55◦ angle, in the 0–250 keV energy range.
A Gaussian fit (red lines) is used to disentangle the contribution of each peak
to the overall normalized coincidence yield. The black solid line is the sum of
the obtained Gaussian functions and of a straight line (not shown) to provide
for the nonresonant contribution (see text for details).

(A color version of this figure is available in the online journal.)

and in arbitrary units. The K factor in Equation (14), which
reflects the HOES nature of the differential cross section when
Equation (14) is used for the HOES angular distributions, is
taken as a constant.

The resulting excitation function corresponding to θc.m. = 55◦
is given in Figure 10 (solid dots) as an example. Clearly, three
peaks show up corresponding to the cited resonances; these were
fitted simultaneously with three Gaussian curves to separate
the contribution to the normalized yield of each resonance.
The fitting curves are shown by red solid lines in Figure 10,
while the sum of these resonant terms with the nonresonant
contribution (which, for the sake of simplicity, is not displayed
in Figure 10) is displayed by a black solid line. The same
fitting procedure has been repeated for each θc.m. angle to
determine the relative population of each resonance depending
on the angle. The resulting angular distributions are displayed in
Figure 11, where the experimental data are given by filled circles
(20 keV), squares (90 keV), and triangles (144 keV). Errors
on (dσ/dΩc.m.)

HOES account for statistics (∼10%, ∼15%, and
∼5% for the 20, 90, and 144 keV resonances, respectively) and
for the deconvolution of the single resonance contributions. This
error source is dominant for the 90 keV resonance, as a strong
tail from the more intense 144 keV peak makes it more difficult
to disentangle the two contributions (see Figure 10). This is
especially evident above ∼100◦, where the two resonances are
less resolved due to the slightly poorer resolution of detector D
with respect to the other PSDs. The error on θc.m. represents the
width of each bin (chosen in order to have enough statistics
per bin, namely 10◦ in this case). Angular distributions in
Figure 11 are given in arbitrary units; in principle, from
Equation (6) it would be possible to provide the absolute
cross section by simple calculations, but it would require the
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Figure 11. Experimental angular distributions for the 18O(p, α)15N reaction
for the three resonances in the 0–250 keV energy range. The full lines are
the theoretical angular distributions for the free OES 18O(p, α)15N reaction,
calculated according to the equations of Blatt & Biedenharn (1952).

evaluation of the
dσ(18O+d→19F+n)

dΩk̂
n19F

differential cross section for the

18O+d → 19F+n stripping process leading to the resonant state
of the excited 19F nucleus. This, in turn, requires an estimate
of the suited spectroscopic factors, which can introduce large
uncertainties in the predicted cross section. For these reasons,
a different normalization procedure has been devised, which
greatly reduces the uncertainty on the cross section obtained
by means of the THM. Accordingly, K is taken as an arbitrary
normalization constant in Figure 11.

From Figure 11 it turns out that the Jπ = 1
2

+
assignment for

the 144 keV resonance is confirmed, the angular distribution for
that level being isotropic (the best fit being given by a straight
line, see Figure 11). This result represents a cross check of the
method, since we are able to reproduce the angular distribution
for a well-known resonance (the differential cross section for
it being given by Lorentz-Wirzba et al. 1979). Assuming that
the spin–parity assignments of La Cognata et al. (2008c) hold,
using Equation (14) we have calculated the angular behavior
of the HOES differential cross section for the resonance at 20–
90 keV. With respect to the calculation by La Cognata et al.
(2008c), the only fitting constant is the K factor, which has been
determined by minimizing the χ2. This allows us not only to
further check the spin–parity assignment given by La Cognata
et al. (2008c) but also to quantitatively determine any deviation
from the expected angular distribution for a resonant state, and
then to pin down any distortion. This test is feasible since no
fitting, except for normalization, is needed (while in the La
Cognata et al. 2008c paper the fitting with a simple cosine
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Figure 12. Cross section of the TH reaction (full circles). The full line represents
the result of a fit including three Gaussian curves (short-dashed, dotted, and
short-dashed dotted lines) and a first-order polynomial (long-dashed dotted
line) to take into account the three resonances at 20, 90, and 144 keV and
background, respectively.

polynomial was used). The calculated angular distributions are
given by solid black lines in Figure 11. Good agreement between
the THM data and the theoretical angular distributions makes
us confident that 3

2
+

and 5
2

+
spin–parity assignments for the

90 and 20 keV states, respectively, are confirmed. Moreover,
the QF conditions are well satisfied since no neutron distortion
is apparent. This means that we can proceed to the extraction
of the resonance strength for all the requirements of the THM
theory are clearly fulfilled.

4.2. Cross Section of the 2H(18O, α15N)n Reaction. Extraction
of Resonance Strengths

In order to obtain the cross section for 2H(18O, α15N)n, we use
the double differential TH cross section given by Equation (6),
which was obtained by integration over the solid angle Ωα−15N.
Given the good agreement between the experimental and the-
oretical angular distributions (Figure 11) throughout the range
covered here, the angular integration was performed assuming
that the trend of the angular distributions is given by the theoret-
ical one outside the range where our measurements are present.
The resulting 2H(18O, α15N)n reaction cross section is shown in
Figure 12 (full circles). Here, the error bars arise from statistical
uncertainty (about 5%, on the average) and angular distribution
integration. This last error accounts for the uncertainties com-
ing from the adopted procedure to disentangle the contribution
of each resonance to the reaction yield, as shown in the pre-
vious section. From the inspection of Figure 12 (and, clearly,
from Figure 10), it turns out that the experimental resolution
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is much larger than the natural width of 1 keV or less typical
of 19F resonances in the 18O(p, α)15N reaction at c.m. energies
below 1 MeV (Tilley et al. 1995). Indeed, from the Gaussian
fit of the total cross section for the 2H(18O, α15N)n QF process,
Figure 12, a resonance FWHM of about 40 keV is obtained for
all the resonances (σ ∼ 17 keV). Just for comparison, the well
known 144 keV resonance has a natural width Γ � 0.3 keV;
thus, the experimental width coincides with the energy resolu-
tion, which can be considered constant in the 0–250 keV energy
range as it is the same for all the observed resonances. This
experimental value of the energy resolution is corroborated by
Monte Carlo simulations, which take into account beam emit-
tance through the collimating system, and energy and angular
straggling in the target, ΔE detector and the dead layers along
the particle flight path. Such a calculation is of primary impor-
tance as the Ec.m. energy is not measured, but rather is indirectly
deduced from the kinematics of the 2 → 3 reaction. The main
result is that because of the effect of energy resolution, the theo-
retical 2 → 3 QF cross section as deduced in the THM approach
(see Equation (6), assuming that nonresonant contributions are
negligible), namely

d2σ

dEc.m. dΩn

= 1

2 π

Γ(α15N)i (Ec.m.)

(Ec.m. − ERi
)2 + Γ2

i (Ec.m.)/4

× dσ[d(18O,19Fi )n]

dΩn

, (15)

is not directly observable. More precisely, even though the ideal
resolution resonance shape cannot be observed, the effect of
energy resolution will enable us to directly extract the strengths

of the low-energy resonances. In Equation (15),
dσ[d(18O,19Fi )n]

dΩn
is

the differential cross section for the transfer reaction 18O + d →
19Fi+n populating the ith resonant state in 19F with the resonance
energy ERi

, Γ(α15N)i (Ec.m.) is the partial resonance width for the
decay 19Fi → α + 15N and Γi is the total resonance width
of the ith resonance in the 19F compound nucleus (La Cognata
et al. 2007b; Mukhamedzhanov et al. 2008). It is worth stressing
that Γ(p18O)i (Ec.m.) does not appear in Equation (15), where the

transfer reaction cross section
dσ[d(18O,19Fi )n]

dΩn
shows up instead. The

great advantage is that Coulomb barrier penetrability factor is
missing; thus, it is possible to extend the measurement down to
zero Ec.m. energy. This is the reason why the THM has been
developed. However, this is also a drawback of the method, as
there is no sensitivity on the entrance channel partial width,
which has to be calculated, for instance, by means of the usual
formula (Champagne & M. Pitt 1986) (for the 18O +p channel):

Γ(p18O)i = 3h̄2

μp18Or2
Plp18O

θ2
p18O, (16)

as described in the introduction. The total cross section, as given
in Figure 12, clearly represents the convolution of the TH cross
section given by Equation (15) with the finite resolution. As
it is demonstrated in the Appendix, the experimental THM
cross section for the 2H(18O, α15N)n QF process is given by
Equation (A5), which we report here:

d2σ

dEc.m. dΩn

=
3∑

i=1

Ni

× exp

[
−1

2

(
Ec.m. − ERi

σ

)2
]

+ a0 + a1 Ec.m..

According to Equation (A4), the Ni parameters represent the
TH resonance strengths. In what follows, the sum is extended
to the three non-interfering resonances in the 0–250 keV Ec.m.

range, corresponding to the 8.014, 8.084, and 8.138 MeV states
in the 19F compound nucleus (Tilley et al. 1995). These levels
are marked in Figure 12 by arrows. A first-order polynomial
has been added to account for nonresonant contributions.
Equation (A5) has been adopted to fit the experimental data, with
the aim of extracting the Ni parameters that bear a fundamental
physical meaning. In fact, they are easily connected to the
resonance strengths (ωγ )i for the ith 19F level (Rolfs & Rodney
1988), which are the key parameters to evaluate the reaction
rate for the astrophysical application in the case of narrow
resonances. Since the TH cross section is given in arbitrary
units in Figure 12, the Ni parameters need to be normalized to
get the resonance strengths, as we will discuss later. Following
(Rolfs & Rodney 1988), we define the resonance strength for
the ith state as follows:

(ωγ )i = Ĵi

ĴpĴ18O

Γ(p18O)i (ERi
) Γ(α15N)i (ERi

)

Γi(ERi
)

, (17)

where the first fraction on the right-hand side is the statistical
factor ωi , Ĵm = 2Jm + 1, J18O, Jp, and Ji being the spin of
the 18O nucleus, of the proton and of the intermediate 19F
resonance through which the reaction proceeds. In the second
fraction on the right-hand side of Equation (17), Γ(p18O)i (ERi

),
and Γ(α15N)i (ERi

) are the partial widths for the p + 18O → 19Fi

and 19Fi → α + 15N channel, leading to the population of the
ith excited state in 19F or following its decay, respectively.
Finally, Γi(ERi

) is the total width of the ith resonance in the
19F compound nucleus. The latter ratio represents the so-called
γi of the resonance. From Equations (A4) and (17), a simple
connection between the Ni terms, experimentally determined
by means of the THM, and the resonance strength (ωγ )i of the
ith resonance, can be established:

(ωγ )i = 1

2π
ωiNi

Γ(p18O)i
dσ[d(18O,19Fi )n]

dΩn

(18)

taking Γ(p18O)i (ERi
) = Γ(p18O)i for short. This result repre-

sents the main achievement of the present work; the resonance
strengths can be deduced with no need of introducing spectro-
scopic factors, thus greatly reducing the uncertainties affecting
resonance strengths when indirectly established. As we have
described in the introduction, this is the sole possibility when-
ever the resonance under study occurs well below the Coulomb
barrier, where barrier penetration strongly suppresses the reac-
tion cross section (compare, for instance, Champagne & M. Pitt
1986; Wiescher & Kettner 1982). In Equation (18), the spec-
troscopic factor for the ith resonance does not appear because
it cancels out in the Γ(p18O)i /(dσ[d(18O,19Fi )n]/dΩn) ratio. In fact,
from Champagne & M. Pitt (1986), for instance, it turns out that
Γ(p18O)i , defined in Equation (16), is proportional to the spec-
troscopic factor Si of the configuration 18O + p in 19Fi , through
the θ2

p18O factor, which is the dimensionless reduced width that
is given by

θ2
p18O = 1

3
Sir

3 |R(r)|2 , (19)

where r is the nuclear interaction radius and R(r) is the ra-
dial form factor. The transfer reaction differential cross section
dσ[d(18O,19Fi )n]/dΩn taken in the DWBA form is also proportional
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to the spectroscopic factor Si. Here, we use the PWIA to estimate
this differential cross section. First of all, the PWIA provides a
very reasonable description of the angular distributions of the
stripping reactions A(d, p)F populating the resonance states
(Dolinsky et al. 1973). It is well known that the PWIA overesti-
mates the absolute value of the differential cross section, but we
need to know only the ratio of the differential cross section for
the transfer reactions populating two different resonant states
rather than the absolute value of the individual transfer cross
sections, which makes the PWIA a good approximation. The
reaction amplitude in Equation (7) for the population of the ith
resonance in 19F in the prior form of the PWIA is given by (for
simplicity, we drop the spins of the particles):

Mi ≈ ϕd (ppn) W
19Fi

p18O(pp18O), (20)

where ϕd (pnp) is the Fourier transform of the s-wave radial p − n
bound-state wave function, ppn is the p − n relative momentum,
which is equal to the neutron momentum ps in the system where
deuteron is at rest, while

W
19Fi

p18O(pp18O) = 〈
I

19Fi

p18O

∣∣Vp18O|pp18O
〉

(21)

is the form factor for the synthesis 18O + p → 19Fi , leading to
the ith excited state in 19F, I

19Fi

p18O is the overlap function of the

wave functions of the 18O − p system with the resonance wave
function of 19Fi , pp18O is the 18O + p relative momentum and
Vp18O(pp18O) is the 18O−p interaction potential, which depends
on the distance between p and c.m. of 18O. In the calculation
we approximated I

19Fi

p18O by S
1/2
i ϕ(18O−p)i , where ϕ(18O−p)i is the

single-particle bound-state type wave function describing the
19Fi resonance state. Since we consider the (p, α) resonant
reaction, the dominant contribution comes from the nuclear
interior where proton and alpha channels are coupled. That is
why for the ϕ(18O−p)i wave functions we used an approach similar
to the R matrix: these wave functions are taken to be real and
calculated as the level wave functions in the nuclear interior. As
(W

19Fi

p18O)2 is proportional to the spectroscopic factor Si as well,
the Γ(p18O)i /dσ[d(18O,19Fi )n]/dΩn ratio is an easily calculable and
non-ambiguous quantity.

To determine the Ni parameters, which are needed to evaluate
the resonance strengths, the TH cross section (in arbitrary units,
see Figure 12) has been fit by means of Equation (A5). The
resulting best fit curve is given as a solid black line in Figure 12
while the contribution of the 20 keV, 90 keV, and 144 keV
resonances is given by a dashed, dotted, and dot-dashed line,
respectively. The nonresonant contribution is also shown by a
dot-long-dashed line. This fit yielded the following resonance
energies: ER1 = 19.5 ± 1.1 keV, ER2 = 96.6 ± 2.2 keV,
and ER3 = 145.5 ± 0.6 keV (in fair agreement with the ones
reported in the literature; Angulo et al. 1999) and the peak values
Ni of each resonance: N1 = 138 ± 8, N2 = 82 ± 9, and N3 =
347±8 (arbitrary units). It is worth stressing that the good quality
of the fit with the Gaussian curves proves that our assumption of
a Gaussian detector response function is well justified, as clearly
demonstrated by Figure 12. The error affecting the Ni parameters
accounts for the errors on the measured TH cross section and
for the uncertainty on the nonresonant term, which has been
determined in a simplified approach. The contribution to the
error budget of the nonresonant term is estimated by scaling
the fitted polynomial until the resulting curve passes through the
top and bottom edges of the error bars given in Figure 12. This

provides the maximum and minimum values of the nonresonant
contribution allowed by the TH cross section, respectively.

Apart from the Γ(p18O)i /dσ[d(18O,19Fi )n]/dΩn ratio that is needed
to link them to the OES strengths, a normalization constant
is required since the TH data are given in arbitrary units.
Normalization has been performed by scaling the strengths of
the 20 and 90 keV resonances (i = 1 and 2, respectively) to one
of the 144 keV (i = 3), which is well known from the literature,
as already discussed. Quantitatively, from Equation (18), we
obtain

(ωγ )i = ωi

ω3

Γ(p18O)i

dσ[d(18O,19Fi )n](ERi
)/dΩn

× dσ[d(18O,19Fi )n](ER3 )/dΩn

Γ(p18O)3

Ni

N3
(ωγ )3, i = 1, 2.

(22)

By using (ωγ )3 = 0.167 ± 0.012 eV from Becker et al. (1995)
in Equation (22), one gets (ωγ )1 = 8.3+3.8

−2.6 × 10−19 eV, which
is well within the upper and lower limits given by NACRE,
6+17

−5 × 10−19 eV (Angulo et al. 1999). The largest contribution
to the error is due to the uncertainty of the resonance energy,
while statistical, systematic, and normalization errors add up
to 9.5%. In detail, systematic errors are related to the model
adopted to calculate the single particle partial width and the
transfer cross section entering the Γ(p18O)i /dσ[d(18O,19Fi )n]/dΩn

ratio, while the normalization error is due to the uncertainty
affecting the (ωγ )3 from Becker et al. (1995). With a similar
approach, we have obtained (ωγ )2 = (1.76 ± 0.33) × 10−7 eV
(statistical and normalization errors ∼13%) for the 90 keV res-
onance, in good agreement with the strength given by NACRE,
(1.6 ± 0.5) × 10−7 eV (Angulo et al. 1999). The adopted nor-
malization procedure has two sizeable advantages. (1) Since
the 144 keV resonance is well known, the error on it, which
propagates onto the uncertainty affecting the 20 and 90 keV
resonances, is smaller than the one coming from the usual nor-
malization procedures, which rely on the measurement of the
collected charge, on the thickness of the target, and on solid
angles and dead time, for instance, which can be very criti-
cal. For this reason, it does not present systematic effects. In-
deed, these are difficult to estimate and often constitute the main
concern in the determination of cross sections of astrophysical
importance. (2) The double ratio compensates for possible sys-
tematic errors implied by the experimental procedure, namely
those coming from the model assumptions used to calculate
the Γ(p18O)i /dσ[d(18O,19Fi )n]/dΩn ratio. Thanks to the double ratio
in Equation (22), where the Γ(p18O)i /dσ[d(18O,19Fi )n]/dΩn is cal-
culated for two close resonances, the normalized (ωγ )i turns
out to depend very weekly on the model and the parameters
(single particle wave functions, potential wells, etc.). Usually,
to calculate a direct transfer reaction amplitude, the DWBA is
used, but to estimate the ratio of two direct reaction ampli-
tudes, it is sufficient to use the plane-wave approximation. In
fact, the plane-wave approximation has a similar angular and
energy dependence as the DWBA but it significantly overesti-
mates the absolute value of the cross section, so this issue is
definitely by-passed if normalization is achieved by scaling to
the known 144 keV resonance strength. Therefore, the plane-
wave assumption turns out to be fully justified as no absolute
values are required.

For the first time, thanks to the novel approach developed
here, which allows one to fully account for distortions in the
entrance and exit channel, the uncertainty due to the theoretical
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Figure 13. Decimal logarithm of total reaction rate of the 18O(p, α)15N reaction
(solid line), together with the contributions of the 20 keV and 90 keV resonances
(dashed and dot-dashed lines, respectively).

calculation has been evaluated. In the DWBA framework, it has
been found that it contributes to the overall error budget with a
∼10% additional error, which contains a 4% contribution from
the chosen wave functions and a 5% due to the possible choice of
the interaction radius. This figure represents an upper limit since
the errors partially compensate as they appear in a ratio. This is
a key result both for astrophysics and for THM application, as
it shows the accuracy of the extracted ωγ and the robustness of
the method.

Finally, we underscore that the electron screening effect
gives a negligible contribution around 144 keV (4% maximum;
Assenbaum et al. 1987); thus, no systematic uncertainty is
introduced by normalizing to the third resonance due to the
shielding of atomic nuclei. This is to confirm what we stated
in the initial sections, namely the THM provides an electron-
screening-free astrophysical S(E) factor.

4.3. Evaluation of the Reaction Rate

To calculate the reaction rate for the 18O(p, α)15N reaction,
we have applied the narrow resonance approximation (see, e.g.,
Angulo et al. 1999; Rolfs & Rodney 1988), which is fulfilled
for the resonances under investigation, the width of the studied
resonances being typically about 1 keV or less. According to this
approximation, the contribution to the rate of the ith resonance
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Figure 14. Comparison of the THM reaction rate of the 18O(p, α)15N reaction
with the NACRE one (Angulo et al. 1999). The full red line is the reference
NACRE rate, while the full black line is the THM rate. The dot-dashed and dotted
lines give the upper and lower limits allowed by uncertainties, respectively.
Again, red and black lines denote the NACRE and THM results, respectively.

(A color version of this figure is available in the online journal.)

is determined as follows:

Ri
18O(p,α)15N = NA 〈σv〉Ri

= NA

(
2π

μkB

)3/2

h̄2(ωγ )iT
−3/2 exp(−ERi

/kBT ),

(23)

where μ is the reduced mass for the projectile-target system, T
is the temperature of the astrophysical site, and Ri

18O(p,α)15N is

measured in cm3 mol−1 sec−1. The contributions to the overall
18O(p, α)15N reaction rate of the 20 keV and 90 keV resonances
are given by dashed and dot-dashed lines, respectively, in
Figure 13, as a function of T9 = T/109 K. In the same figure, the
total reaction rate is displayed by a solid line for comparison. The
contribution to the total rate of higher energy resonances in the
18O(p, α)15N spectrum, as well as the nonresonant component
of the cross section, is taken the same as in the NACRE
compilation (Angulo et al. 1999). Figure 13 clearly shows that
the 20 keV resonance provides a critical contribution at the
lowest temperatures, where it dominates the reaction rate. On
the other hand, the role of the 90 keV resonance turns out to
be negligible over the whole temperature range. Because of
the steep descent of R18O(p,α)15N with decreasing temperature
(for a factor 10 change in the temperature, the reaction rate
drops by about 30 orders of magnitude), the modification in
the reaction rate due to the resonance strengths determined here
cannot be appreciated. To compare the present results with the
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one reported in the NACRE compilation (Angulo et al. 1999),
the ratio of the TH reaction rate to the NACRE one for the
18O(p, α)15N reaction has been evaluated. The result is shown
in Figure 14 by a full black line. The dot-dashed and dotted
black lines represent the upper and lower limits, respectively,
allowed by the experimental uncertainties for the TH reaction
rate. In this representation, the NACRE rate is given by a full
red line, equal to 1 in the plotted temperature range. As before,
the dot-dashed and dotted red lines represent the range allowed
by the uncertainties affecting the NACRE rate. In particular, to
make the comparison consistent, only the uncertainty due to the
20 keV and 90 keV resonance contributions to the reaction rate
is taken into account. In the lower temperature region (below
T9 = 0.03, Figure 14(a)), the reaction rate can be up to ∼35%
larger than the one given by NACRE, while the uncertainty
is greatly reduced with respect to the NACRE one. Indeed,
the present approach has reduced the error due to the poor
knowledge of the parameters of the 20 keV resonance in the
18O(p, α)15N reaction by a factor ∼8.5. These temperatures
are typical of the bottom of the convective envelope. Thus, an
increase of this reaction rate might have important consequences
on extra mixing mechanisms (Nollett et al. 2003) and, in turn, on
the surface abundances and isotopic ratios in AGB stars. In the
higher temperature region (above T9 = 0.03, Figure 14(b)), an
increase of less than 1% is obtained due to the TH measurement
of the low-laying-level resonance strengths. This is because the
8.084 MeV excited state of 19F (corresponding to the 90 keV
resonance) provides a negligible contribution to the reaction
rate, in agreement with the previous estimate by Champagne &
M. Pitt (1986).

5. CONCLUDING REMARKS

In this work, a reanalysis of the 18O(p, α)15N reaction, in-
vestigated by means of the THM applied to the 2H(18O, α15N)n
process, is presented. A novel approach, suited to extract the res-
onance strength for narrow resonances, is discussed and used
to extract the strength of the low-lying 8.014 MeV resonance
in 19F and to evaluate the contribution of possible sources of
systematic errors, deriving from the theoretical framework as-
sumed in the THM data analysis. Thanks to this novel approach,
such a resonance strength has been experimentally determined
with high accuracy, while the same measurements have proved
elusive or highly uncertain for any direct and indirect approach
(Champagne & M. Pitt 1986; Mak et al. 1978; Lorentz-Wirzba
et al. 1979; Wiescher et al. 1980; Wiescher & Kettner 1982;
Yagi et al. 1962; Becker et al. 1995). A higher accuracy is
also achieved with respect to the previous preliminary results of
La Cognata et al. (2008c), where a simplified approach was used
that did not account for distortions and the eventual dependence
on the theoretical analysis. In particular, we have evaluated the
impact of the new improved measurement of the 20 keV reso-
nance on the rate of the 18O(p, α)15N reaction. The present result
turns out to be about 35% larger than the NACRE rate (Angulo
et al. 1999) in the region where the effect of the presence of the
20 keV resonance is more important. On the other hand, the
accuracy of the data has been improved by a factor ≈8.5.
These changes reflect on the reaction rate, while no significant
change is produced by the THM measurement of the strength
of the 8.084 MeV state in 19F. The correct reproduction of the
strength of the 90 keV resonance, which has been determined
more accurately than the 20 keV one by previous experiments,
represents a benchmark of the present approach, making us con-
fident of its validity. The main reason of the dramatic reduction

of the error affecting the strength of the 20 keV resonance is
that the approach developed here is based solely on experimental
data in contrast to previous results that rely on some assump-
tions and estimates. Indeed, the THM leads to the determination
of the strength of the unknown resonance avoiding information
about the spectroscopic factors, which are a primary source of
systematic errors. Moreover, in Equation (22) only the ratio of
the model dependent functions shows up; thus, systematic un-
certainties cancel out. Finally, our results are not affected by
electron screening, which can enhance the cross section by a
factor larger than about 2.4 at 20 keV (Assenbaum et al. 1987),
thus spoiling any direct measurement of this resonance, even if
it were possible.

As a next step, the astrophysical consequences of the present
work are to be evaluated, both on the scenarios sketched in
the introduction and on different environments. These results
have to be linked with the recent developments in astrophysical
models, such as Abia et al. (2009), to provide an up-to-
date and consistent picture of AGB star nucleosynthesis. In
addition, at higher temperatures, higher energy resonances in
the 18O(p, α)15N reaction can play a role. These studies will be
the subject of forthcoming publications.
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Amendment A004, and NSF grant PHY-0852653. The authors
thank Prof. Geoffrey C. Clayton for stimulating astrophysical
discussions.

APPENDIX

THE THM RESONANCE STRENGTH

In THM measurements, energy resolution constitutes a key
point that has to be carefully addressed when resonant reactions
are examined (see La Cognata et al. 2009 for a detailed
discussion). The total cross section, as given in Figure 12, is
the convolution of the ideal TH cross section with the finite
resolution. This is obtained by folding the ideal resolution THM
cross section, Equation (15), with the detector response function
that can be approximated by a Gaussian function whose width
is fixed by the experimental standard deviation, σ = 17 keV, as
deduced from the fit or by means of the Monte Carlo calculation:

d2σ

dEc.m.d Ωn

=
∑

i

Ni

∫ +∞

−∞
dx exp

[
−1

2

(
x − Ec.m.

σ

)2
]

× Γ(α15N)i (x)(
x − ERi

)2
+ Γ2

i (x)/4

dσ[d(18O,19Fi )n]

dΩn

,

(A1)

where Ni = 1/
√

2πσi is the Gaussian normalization constant.
This factor generally depends on the considered resonance but,
since the energy resolution is constant, we can take σi = σ .
According to the previous discussion on the energy resolution,
we can take the limit Γi → 0 since Γi  σ (a factor 17 at least;
Tilley et al. 1995). Taking into account that

δ
(
x − ERi

) = lim
Γi→0

1

2 π

Γi(
x − ERi

)2
+

(
Γi

2

)2 (A2)
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and Γi(x) ∼ Γi(ERi
) = Γi for narrow resonances,

Equation (A1) reduces to

d2σ

dEc.m. dΩn

=
∑

i

2πNi

dσ[d(18O,19Fi )n]

dΩn

Γ(α15N)i

(
ERi

)
Γi

(
ERi

)
× exp

[
−1

2

(
Ec.m. − ERi

σ

)2
]

. (A3)

Thus, the effect of the energy resolution is to change the resonant
part of the cross section from a sum of Lorentz functions,
as given by the simplified Breit–Wigner approach, into the
sum of Gaussian functions whose width is fixed by the energy
resolution. This justifies the use of the Gaussian fit that has been
employed for disentangling the contribution of each resonance
to the excitation functions, angle by angle, in the procedure to
determine the angular distributions (compare Figure 10), as well
as to experimentally evaluate the expected energy resolution (as
shown in Figure 12). Finally, taking

Ni = 2πNi

dσ[d(18O,19Fi )n]

dΩn

Γ(α15N)i

(
ERi

)
Γi

(
ERi

) , (A4)

the measured THM cross section for the 2H(18O, α15N)n QF
process can be written in the form:

d2σ

dEc.m. dΩn

=
3∑

i=1

Ni

× exp

[
−1

2

(
Ec.m. − ERi

σ

)2
]

+ a0 + a1 Ec.m.,

(A5)

where a first-order polynomial has been added to account
for nonresonant contributions. Though this is a very simple
approximation, it is well justified as we consider a very narrow
E15N−α energy range (250 keV), so no dramatic change in the
nonresonant contribution is expected. The sum is extended to
the three non-interfering resonances occurring in the 0–250 keV
Ec.m. range, corresponding to the 8.014, 8.084, and 8.138 MeV
states in the 19F compound nucleus (Tilley et al. 1995). The Ni
parameters represent the TH resonance strengths because they
are closely connected to the resonance strengths (ωγ )i for the
ith 19F level (Rolfs & Rodney 1988).
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