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ABSTRACT

Galaxy-scale strong gravitational lenses with measured stellar velocity dispersions allow a test of the weak-field
metric on kiloparsec scales and a geometric measurement of the cosmological distance–redshift relation, provided
that the mass-dynamical structure of the lensing galaxies can be independently constrained to a sufficient degree.
We combine data on 53 galaxy-scale strong lenses from the Sloan Lens ACS Survey with a well-motivated fiducial
set of lens-galaxy parameters to find (1) a constraint on the post-Newtonian parameter γ = 1.01 ± 0.05, and
(2) a determination of ΩΛ = 0.75 ± 0.17 under the assumption of a flat universe. These constraints assume that
the underlying observations and priors are free of systematic error. We evaluate the sensitivity of these results
to systematic uncertainties in (1) total mass-profile shape, (2) velocity anisotropy, (3) light-profile shape, and (4)
stellar velocity dispersion. Based on these sensitivities, we conclude that while such strong-lens samples can,
in principle, provide an important tool for testing general relativity and cosmology, they are unlikely to yield
precision measurements of γ and ΩΛ unless the properties of the lensing galaxies are independently constrained
with substantially greater accuracy than at present.
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1. INTRODUCTION

Einstein’s theory of general relativity (GR) has been an
extremely successful description of gravity. It has passed all
current experimental tests, most famously Eddington’s measure-
ment of light deflection during the solar eclipse of 1919 (Dyson
et al. 1920); observation of the gravitational redshift by Pound &
Rebka (1960); the successful operation of the Global Position-
ing Satellites (Ashby 2002); measurements of the Shapiro delay
(Shapiro 1964; Bertotti et al. 2003); and extensive studies of
relativistic effects in binary radio pulsar systems, including ver-
ification of energy loss via gravitational waves as observed in the
Hulse–Taylor pulsar (Taylor et al. 1979). Tests of gravity at ever
higher precisions continue to be pursued through techniques
such as lunar laser ranging, where the Earth–Moon separation is
precisely measured as a function of time (Williams et al. 2004).
The parameterized post-Newtonian (PPN) framework (Thorne
& Will 1971) provides a systematic, quantitative way in which
to formulate and interpret tests of gravity. The post-Newtonian
parameter traditionally denoted by γ —a measure of the amount
of spatial curvature per unit mass—is currently constrained to
be γ = 1 + (2.1 ± 2.3) × 10−5 (Bertotti et al. 2003) on solar
system length scales. Within the post-Newtonian parameteriza-
tion of GR, γ has no scale dependence, and thus constraints on
deviations from γ = 1 on significantly larger length scales can
provide further tests of the theory.

GR has had further success in its application to physical cos-
mology. From assumptions of homogeneity and isotropy, the
evolution of the universe as a function of time can be predicted
from the knowledge of the densities of its constituents. While
it was initially assumed that the density of the universe was

∗ Based on observations made with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by AURA,
Inc., under NASA contract NAS 5-26555. These observations are associated
with programs No. 10174, No. 10494, No. 10587, No. 10798, and No. 10886.

dominated by matter (including a significant component of non-
baryonic “dark matter”), the discovery that the universe is ex-
panding at an accelerating rate (as traced by type Ia supernovae)
has forced a modification of this idea (Riess et al. 1998;
Perlmutter et al. 1999). It is now thought that the universe
is filled with a “dark energy,” an unknown substance with
negative pressure. The composition of the universe deter-
mines its evolutionary history through the FRW metric and the
Friedmann equations, and the evolution history of the universe
in turn sets the distance–redshift relation. Thus, measurements
of the conversion from redshift to distance constrain the density
of dark energy, which we denote simply by ΩΛ in this work (i.e.,
assuming an equation of state P = −ρc2).

This paper presents an analysis of the quantitative constraints
that can be placed on GR as a theory of gravity and on the
density of dark energy in the universe using the large and homo-
geneous set of strong gravitational lens galaxies observed by the
Sloan Lens ACS (SLACS) Survey collaboration (Bolton et al.
2006a). To date, research using the SLACS sample has been
primarily focused on constraining the internal structure and dy-
namics of the SLACS lenses under the assumption of GR and a
ΛCDM cosmology (e.g., Treu et al. 2006; Koopmans et al. 2006;
Gavazzi et al. 2007; Koopmans et al. 2009). However, with rea-
sonable prior assumptions and independent measurements of
the structure of early-type galaxies such as the SLACS lenses,
the problem can be inverted and the sample used to constrain the
parameters of GR and of the cosmology. The first avenue was
explored for an initial sample of 15 SLACS lenses by Bolton
et al. (2006b), who found the post-Newtonian parameter γ to
be 0.98 ± 0.07 on kiloparsec scales by adopting priors on early-
type galaxy structure taken from observations of the local uni-
verse. The second avenue, originally suggested in passing by
Golse et al. (2002), was examined at length by Grillo et al.
(2008), who discussed the use of the SLACS lensing systems as
a means to determine cosmological parameters, finding that the
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“concordance” values of (ΩM, ΩΛ) � (0.3, 0.7) fell within their
99% confidence regions. In both cases, the general approach
consists of using angular “Einstein radii” measured from imag-
ing, in combination with spectroscopic redshifts and param-
eterized galaxy mass models, to predict an observable stellar
velocity dispersion—which explicitly depends upon the param-
eter of interest, whether post-Newtonian or cosmological—and
then comparing this predicted value with the velocity dispersion
measured from spectroscopy. Alternatively, these techniques
can be characterized as treating strong-lensing Einstein radii
as “standard angles” calibrated by the stellar velocity disper-
sions of the lensing galaxies. (Also see Gavazzi et al. (2008) for
a related cosmological application.)

In this work, we re-examine the constraints that can be set
on both γ and ΩΛ using strong gravitational lensing by early-
type galaxies, given the availability of the expanded SLACS
sample presented by Bolton et al. (2008a). Our final emphasis
will not be as much on the most probable values for these
parameters, but rather on the uncertainties due to systematic
errors made in estimating the properties of the lensing galaxies.
In Section 2, we discuss the SLACS lens sample that is used in
our analysis. The lensing formalism that we utilize is reviewed
in Section 3. Our determination of γ and ΩΛ for a fiducial set
of lensing parameters is presented in Section 4, along with a
brief discussion of the statistical analysis that was employed.
Section 5 is devoted to an in-depth evaluation of the effects that
systematic errors in the lens parameters have on the nominal
values for γ and ΩΛ. Finally, in Section 6, we summarize our
findings and draw some conclusions on how to improve the
accuracy of strong lensing results in the future.

2. SLACS LENS SAMPLE

The post-Newtonian strong-lensing constraints published by
Bolton et al. (2006b) were based on a sample of 15 strong
galaxy–galaxy gravitational lenses from the SLACS Survey,
which are described in Bolton et al. (2006a), Treu et al. (2006),
and Koopmans et al. (2006). The current work uses a more
recent and larger sample of strong lenses from this same
survey, which is described in detail by Bolton et al. (2008a).
These systems were all selected from within the spectroscopic
database of the Sloan Digital Sky Survey (SDSS; York et al.
2000) based upon the presence of two significantly different
galaxy redshifts within a single spectrum, obtained with a
3′′-diameter fiber aperture. As a consequence of explicit lensing
and other selection effects, the SLACS sample consists primarily
of massive, early-type (i.e., elliptical and S0) galaxies lensing
much fainter and more distant emission-line galaxies.

For the present work, the key observables in each system
are the redshifts of the two components (foreground “lens” and
background “source”), the stellar velocity dispersion of the lens
galaxy, a power-law index representing the characteristic slope
of the luminosity profile, and the angular Einstein radius of
the strongly lensed image of the more distant galaxy. The first
three of these quantities are measured from SDSS spectroscopy,
while the last two are measured from high-resolution follow-
up images obtained by the SLACS survey through the F814W
(I-band) filter with the Wide Field Channel of the Advanced
Camera for Surveys (ACS) aboard the Hubble Space Telescope
(HST). Note that mass and light models fitted to the HST data
include a projected axis-ratio parameter, q, to capture ellipticity.
To connect these models to the axisymmetric approximation of
the analytic Jeans equation-based framework introduced below,

we use the interchange

R ↔ Rq =
√

qx2 + y2/q, (1)

which conserves the total mass or light within a given isodensity
or isobrightness contour and is consistent with the Einstein-
radius and effective-radius measurement conventions of Bolton
et al. (2008a).

The 53 lenses considered in this work are those from Bolton
et al. (2008a) that have single lens galaxies with early-type
morphology, successful quantitative strong-lens models (and
hence measured Einstein radii), and sufficiently high signal-to-
noise measurements of lens-galaxy stellar velocity dispersion.
These lens galaxies have redshifts in the range z ∼ 0.1–0.3,
and given these relatively low redshifts (and hence modest
look-back times), there is unlikely to be significant structural
difference between the SLACS lens galaxies and the local-
universe elliptical galaxies that we and Bolton et al. (2006b)
use as a calibration sample.

3. LENSING FORMALISM

We start with the weak-field PPN form of the Schwarzschild
metric

dτ 2 = dt2(1 − 2M/r) − dr2(1 − 2γM/r) − r2dφ2 (2)

with G = c = 1, where γ is a parameter to be constrained, and
γ = 1 for GR. For thin gravitational lenses, the “lens equation”
which governs the deflection of light is then

�θs = �θ − (1 + γ )

2
�∇ψ(�θ), (3)

where �θs is the angular location of the source, and �θ is the
angular location of the image. The scaled, projected Newtonian
potential ψ is defined as

ψ(�θ) = DLS

DLDS

2

c2

∫
dZ Φ(DL

�θ,Z), (4)

where Φ is the traditional Newtonian potential and Z is the
line-of-sight distance between the observer and the source, with
Z = 0 at the lens. Here, DS is the distance to the source, DL
is the distance to the lens, and DLS is the distance between the
lens and the source; all three are cosmological angular diameter
distances.

For a lens that is cylindrically symmetric around the line of
sight, the Einstein ring radius is found by setting �θs = 0 to yield

θE = (1 + γ )

2

(
dψ(θ )

dθ

)
E

. (5)

The Einstein radius provides the characteristic angle (or length)
in gravitational lensing. The angular size of the Einstein radius
corresponding to a point mass M is given by

θE =
√

1 + γ

2

(
4GM

c2

DLS

DSDL

)1/2

. (6)

For more general cylindrically symmetric mass distributions
with respect to the line of sight, this continues to hold with
M = ME ≡ M(RE), the mass contained within a cylinder
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of radius equal to the Einstein radius. Rearranging terms, and
noting that RE = DLθE , we find:

GME

RE

= 2

(1 + γ )

c2

4

DS

DLS

θE, (7)

a form which will prove useful. Regardless of the extent of the
mass distribution, only the mass interior to the Einstein radius
has a net effect on the deflection of the light in the circularly
symmetric (or, more generally, homoeoidal, see Schramm 1990)
case.

We will mainly consider a flat cosmology, where Ωk = 0
and thus ΩM + ΩΛ = 1. This means there is only one
free cosmological parameter appearing in the distance–redshift
relation. This restriction on the dimension of the parameter
space yields a sharper constraint (see Section 4). The assumption
of flatness is not an unreasonable one. Currently, independent
measurements show |1 − ΩM − ΩΛ| < 0.02 (Komatsu et al.
2009), and the theoretical prediction of inflation is that Ω ≈ 1
(Guth 1981).

In this flat case, the relation among the angular diameter
distance between two objects (DA12) and their line-of-sight
comoving distances DC is

DA12 = 1

1 + z2
(DC2 − DC1) , (8)

where z is the redshift. Then, the ratio of angular diameter
distances DLS/DS which appears in our expression for the
Einstein radius is simply

DLS

DS

= 1 − DCL

DCS

. (9)

Since this is a ratio of two comoving distances, there is no
dependence on the Hubble constant. Thus, this ratio depends
only on the source and lens redshifts, which are measured, and
the choice of ΩΛ.

One of the simplest models one can write down for an
elliptical galaxy is a scale-free model based on power-law
density profiles for the total mass density, ρ, and luminosity
density, ν,

ρ(r) = ρ0

(
r

r0

)−α

, (10)

ν(r) = ν0

(
r

r0

)−δ

(11)

(see, e.g., Koopmans 2006). In general, the three-dimensional
velocity dispersion tensor is not isotropic. The deviation can be
characterized through the anisotropy parameter β, defined as

β(r) = 1 − σ 2
t

/
σ 2

r , (12)

where σr is the radial value. Having assumed spherical sym-
metry, σ 2

t ≡ σ 2
θ = σ 2

φ , and we refer to this component as
“tangential.” For the purpose of the current analysis it will suf-
fice to assume that β is independent of r. This is the model used
by Bolton et al. (2006b) and discussed by Koopmans (2006).

We define r to be the spherical radial coordinate from the lens
center and R to be the cylindrical radius, i.e., perpendicular to
the line of sight (defined to be along theZ-axis). So by definition
r2 = R2 + Z2.

A key ingredient in all the lensing measurements is the
observed velocity dispersion, which is a projected, luminosity
weighted average of the radially dependent velocity dispersion
profile of the lensing galaxy. In order to predict this value based
on a set of galaxy parameters, we start with an expression,
derived from the spherical Jeans equation, for σ 2(r), the radial
velocity dispersion of the luminous matter (i.e., stars; Binney
1980):

σ 2
r (r) = G

∫ ∞
r

dr ′ ν(r ′)M(r ′)(r ′)2β−2

r2βν(r)
, (13)

for the case where the velocity anisotropy parameter, β, is a
constant. Note that the use of Equation (13) is based on the
assumption that the relationship between stellar number density
and stellar luminosity density is spatially constant, an assump-
tion unlikely to be violated appreciably within the effective ra-
dius of the early-type lens galaxies under consideration. Using
the mass density profile in Equation (10), it is straightforward
to show that the relation between the mass contained within a
spherical radius r and ME is

M(r) = 2√
πλ(α)

(
r

RE

)3−α

ME, (14)

where we have defined the ratio of gamma functions

λ(x) = Γ
(

x − 1

2

) /
Γ

(x

2

)
. (15)

Therefore, after evaluating the integral in Equation (13) we find

σ 2
r (r) =

[
GME

RE

]
2√

π (ξ − 2β) λ(α)

(
r

RE

)2−α

, (16)

where, following Koopmans (2006), we have defined ξ =
δ + α − 2 as a convenient combination of the power-law
exponents.

Because all of the elliptical galaxy lenses in this study have
been directly imaged with HST, we can measure their projected
two-dimensional luminosity profiles. Following Bolton et al.
(2006b), we directly fit point-spread function (PSF) convolved
two-dimensional power-law ellipsoid images to HST F814W
imaging data over a circle of radius 1.′′8 centered on the lens
galaxies, adding 1 to the best-fit two-dimensional power-law
index so as to account for a deprojection into three dimensions
to obtain our adopted δ values for each system.

The velocity dispersions are measured from SDSS spectra.
Each SDSS spectroscopic fiber subtends a circle of radius 1.′′5
on the sky, with atmospheric blurring adding an additional
consideration. The actual aperture weighting function w(R)
should thus be the convolution of the atmospheric seeing,
represented by a Gaussian,

s(R) = exp

(
− R2

2σ 2
atm

)
, (17)

and the fiber aperture

a(R) = Π
(

R

2Rfib

)
, (18)

where Π is the rectangle function as defined in Bracewell (1986).
Then w(R) = a(R) ∗ s(R) which has the form

w(R) ∝ e−R2/2σ 2
atm

∫ Rfib/σatm

0
dη η e−η2/2 I0

(
η

R

σatm

)
, (19)
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where I0 is a modified Bessel function of the first kind. We have
evaluated Equation (19) numerically, and found that as long as
Rfib/σatm � 1.5, the convolution of the Gaussian and the top-hat
will remain approximately Gaussian, where

σ̃atm ≈ σatm

√
1 + χ2/4 + χ4/40 (20)

and χ = Rfib/σatm. Thus, we will later use

w(R) ≈ e−R2/2σ̃ 2
atm , (21)

for the aperture weighting function in Equation (23). For
each lens in our analysis, we take for σatm the median value
recorded by the spectroscopic guide cameras during the SDSS
observations.

The actual velocity dispersion measured by the observations
has been effectively luminosity-weighted along the line of sight
and over the effective spectrometer aperture. This averaging can
be expressed mathematically as

〈
σ 2

∗,‖
〉 =

∫ ∞
0 dR R w(R)

∫ ∞
−∞ dZ ν(r)

(
1 − β R2

r2

)
σ 2

r (r)∫ ∞
0 dR R w(R)

∫ ∞
−∞ dZ ν(r)

, (22)

where w(R) is the observational aperture weighting function
defined above in Equation (21). In Equation (22), the factor(
1 − β R2

r2

)
takes into account how the radial and tangential

components of the velocity dispersion tensor project along the
line of sight. This integral expression for 〈σ 2

∗,‖〉 is analytic and,
given the above definitions, it becomes

〈
σ 2

∗,‖
〉 =

[
2

(1 + γ )

c2

4

DS

DLS

θE

]
2√
π

(
2σ̃ 2

atm

)1−α/2

(ξ − 2β)

×
[
λ(ξ ) − βλ(ξ + 2)

λ(α)λ(δ)

] Γ
( 3−ξ

2

)
Γ
(

3−δ
2

) , (23)

where, again, λ(x) is the ratio of gamma functions defined in
Equation (15). Henceforth, we abbreviate 〈σ 2

∗,‖〉 as simply σ̄ 2
∗ .

One can immediately observe from Equation (23) that there
are degeneracies among α, β, and δ. The dependence upon ΩΛ
enters this relation by way of the ratio DS/DLS .

4. DETERMINATION OF γ AND ΩΛ

As mentioned previously, the general approach to generating
a constraint is to compare the velocity dispersion from the SDSS
observations, σSDSS, with the velocity dispersion calculated from
a galaxy model σ̄∗. By virtue of the analysis in the previous
section, we have

σ̄∗ = σ̄∗(α, β, δ, θE; γ, ΩΛ), (24)

where the semicolon separates the galaxy parameters and
observables (α, β, δ, θE) for which we have measured or adopted
values from the global parameters (γ , ΩΛ), which we are seeking
to constrain.

We will generate the constraint by considering σSDSS and
its corresponding uncertainty εSDSS to be a measurement with
Gaussian errors such that the probability density for the observed
value of σSDSS given a “true” value of σ̄∗ is

P (σSDSS|σ̄∗) = 1√
2πεSDSS

exp

[
− (σ̄∗ − σSDSS)2

2ε2
SDSS

]
. (25)

Statistical errors on δ, θE , and the source and lens redshifts are
negligible in comparison to the velocity dispersion errors and
the intrinsic variation of the galaxy parameters α and β, and
therefore we do not treat them explicitly.

We determine observational constraints for both γ and ΩΛ
in a similar manner and thus the following discussion concerns
our method of constraining a single parameter X ∈ {γ, ΩΛ}.
In order to constrain γ , we assume a standard flat cosmology
with ΩΛ = 0.7. In order to constrain ΩΛ, we assume that GR is
correct and thus γ = 1.

We are interested in calculating the probability of our obser-
vations having yielded a certain value of galaxy velocity disper-
sion, σSDSS, given a particular assumed value of the parameter
X. We incorporate the dependence upon δ and θE by using the
system-specific values determined from the HST imaging as
discussed in Sections 2 and 3, although in what follows we sup-
press δ and θE for notational convenience. Because we cannot
independently measure α and β for individual lensing systems,
we consider these values to be drawn from Gaussian distribu-
tions P (α) and P (β) with known mean and intrinsic scatter. For
a given lens, the probability density of interest can be written as

P (σSDSS|X) =
∫

dα P (α)
∫

dβ P (β) P [σSDSS|σ̄∗(α, β;X)].

(26)
Assuming a flat prior P (X) for X over a range of interest, a
universal value for X in all systems, and statistical independence
of the measurements of each system, the posterior probability
for X given the data is then proportional to the product over the
individual probabilities:

P (X|{σSDSS,i}) ∝ P ({σSDSS,i}|X) P (X)

∝ P (X)
53∏
i=1

P (σSDSS,i |X). (27)

We illustrate this analysis by selecting a fiducial set of pa-
rameters. For α and β, we choose a set of Gaussian distributions
characterized by:

〈α〉 = 2.00; σα = 0.08

〈β〉 = 0.18; σβ = 0.13. (28)

The cited 1σ ranges in α and β are meant to indicate the intrinsic
spreads in these quantities rather than uncertainties in the mean
values. The mean of α is fiducially taken to be simply 2.00, the
slope of a singular isothermal sphere. This is the same value
as adopted in the analysis of Grillo et al. (2008). This is also
consistent with the value of 〈α〉 = 1.96 ± 0.08 determined for
the same sample of SLACS lenses by Koopmans et al. (2009)
via an ensemble aperture-mass analysis, which is independent
of any dynamical data or modeling and hence does not introduce
circularity into our logic in proceeding to constraints on γ and
ΩΛ. The scatter in α and the distribution for β are the same
as used in Bolton et al. (2006b), and are taken to describe the
distribution of mass-dynamical properties of the well-studied
sample of nearby elliptical galaxies from Gerhard et al. (2001).
Koopmans et al. (2009) present a significantly higher value for
the intrinsic scatter in α, but argue that this value should be
regarded as an upper limit given the likelihood of unmodeled
systematic effects. For comparison with these adopted values of
〈α〉 and 〈β〉, our measured values of δ have a mean of 〈δ〉 = 2.40
and a standard deviation σδ = 0.11.
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Figure 1. Constraint on γ determined using the method discussed in the text.
The gray curves represent the posterior PDF for γ from each system. The black
curve is the joint posterior PDF for all systems, the normalized product of the
gray curves. (In this plot, the joint PDF is scaled by a factor of one-half so as to
relatively enhance the scale of the individual gray PDF curves.) A Gaussian fit
to the joint posterior PDF gives γ = 1.01 ± 0.05.

Performing the analysis discussed above for γ , we find the
resulting posterior probability density shown in Figure 1. A fit
to a Gaussian gives γ = 1.01 ± 0.05 (1σ confidence). The
result is consistent with γ = 1 and GR. Compared to the
previous Bolton et al. (2006b) result, γ = 0.98 ± 0.07,
the statistical errors are reduced by a factor of ∼ 1.5 as a result
of the increase in the number of lensing systems considered
(15 versus 53). However, as we discuss in the next section,
the systematic errors may be comparable to, or even dominate
over, these statistical uncertainties, thereby preventing a large
improvement in the precision of γ simply by increasing the
sample size of gravitational lens systems.

We now set γ = 1 and establish a constraint on ΩΛ.
Because the calculation, and in particular the ratio DS/DLS

contained in Equation (23), is not very sensitive (at more than
the ∼ 10% level) to cosmological parameters, we restrict our
attention to flat universes with ΩM + ΩΛ = 1. The resulting
posterior probability density for ΩΛ is shown in Figure 2. The
peak occurs at ΩΛ = 0.75 and the distribution has a best-
fit Gaussian width (1σ ) of 0.17. ΩΛ = 0 is clearly excluded.
This constraint is consistent with the results from the cosmic
microwave background, galaxy clusters, and type Ia supernovae.
The recent WMAP5 data in combination with type Ia supernovae
and baryon acoustic oscillations indicate ΩΛ = 0.726 ± 0.015
and is also consistent with our assumption of a flat universe,
giving the constraint −0.0179 < Ωk < 0.0081 (Komatsu et al.
2009).

One can see from Figure 2 that none of the individual posterior
probability density function (PDF) curves peak: all are either
strictly increasing or decreasing. This bimodality occurs because
of the relative insensitivity of DS/DLS to ΩΛ. A quick test
shows that a reduction of the errors on σSDSS by a factor of
∼ 2 would induce a few of the flatter likelihood curves to peak.
However, for most systems, there is no value of ΩΛ ∈ [0, 1] such
that σ̄∗(〈α〉, 〈β〉, δ; ΩΛ) = σSDSS, which leads to the monotonic
likelihood curves.

One may also observe that the posterior PDF curves for two of
the systems rise or fall more sharply than the others. These two
lens systems (J0252+0039 and J0737+3216) are among the high
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Figure 2. Constraint on ΩΛ determined as discussed in the text. The gray
curves represent the individual posterior PDFs of ΩΛ from each system. The
black curve is the joint posterior PDF, the normalized product of the gray curves.
A Gaussian fit to the joint PDF gives ΩΛ = 0.75 ± 0.17.
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Figure 3. Sensitivity of the ratio DLS/DS to the cosmological parameter ΩΛ.
The gray curves shown are each of the 53 SLACS lenses. The median is shown
by the thick black curve. All curves are normalized to a value of unity at a
nominal value of ΩΛ = 0.7.

end of the SLACS sample in terms of lens redshift (zL ∼ 0.3)
but appear to be otherwise unremarkable. Neither lens strongly
influences the final result: removing one or the other system
shifts the peak posterior probability for ΩΛ by about three-
quarters of a standard deviation, and removing both leaves the
peak of the posterior probability approximately unchanged.

To illustrate the dependence of the ratio DLS/DS to the
cosmological parameter ΩΛ, we show in Figure 3 the ratio as a
function of the assumed value of ΩΛ for the 53 SLACS lenses.
The curves are all normalized so that they yield a ratio of unity
for a nominal value of ΩΛ = 0.7. We see clearly from the curves
in Figure 3 that the ratio of distances typically varies by ±7%
and rarely by more than ±10%. The fractional statistical error
in the inferred distance ratios for each system will be roughly
10%–15%, or twice the fractional error in the measured velocity
dispersion (DS/DLS ∝ σ̄ 2

∗ ; see Equation (23)). Therefore, a
determination of ΩΛ from an individual lens system can only
be made at a “less-than-one-sigma” level. As previously noted
by Grillo et al. (2008), many lenses are required to obtain a
statistically significant determination of ΩΛ.
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Figure 4. Derived value of the post-Newtonian parameter, γ , as a function of
each of the six lens parameters, as defined in the text, centered on their fiducial
value. As one parameter is varied, the others are held at their fiducial values.

5. THE EFFECT OF SYSTEMATICS

Figure 1 shows the posterior PDF for the post-Newtonian
parameter γ using fiducial values for the lens model parameters:
〈α〉 = 2.00, σα = 0.08, 〈β〉 = 0.18, and σβ = 0.13 (see
Equation (28)), the measured slopes of the light profiles, δ,
and the values of the measured velocity dispersions, σSDSS. The
figure provides a clear estimate of the statistical uncertainty in γ ,
such that γ = 1.01 ± 0.05 (1σ confidence). Similarly, Figure 2
shows the posterior PDF for the ΩΛ parameter using the same
fiducial values for the lens model parameters as described here
for determining γ , which yields a value for ΩΛ and its statistical
uncertainty, ΩΛ = 0.75 ± 0.17.

However, each of the six lens parameters discussed above is
susceptible to systematic error in either the adopted mean values
(〈α〉 and 〈β〉), the assumed intrinsic widths (σα and σβ), or in
the directly measured parameters (δ and σ̄SDSS). It is therefore
of crucial importance to test the sensitivity of our results for γ
and ΩΛ to systematic shifts in the parameters associated with
the lensing galaxies and to judge whether these sensitivities
pose immediate and fundamental limitations to the precision of
our constraints. To this end, we map out the dependence of the
peak value of γ and ΩΛ (e.g., from results that are analogous
to those shown in Figures 1 and 2) on the lens parameters.
In particular, we vary 〈α〉 over the range 1.90–2.10 and 〈β〉
over the range 0.08–0.28. We explore the effect of the assumed
intrinsic widths by varying σα over the range 0.03–0.18 and σβ

over the range 0.03–0.23. Next, we shift all the measured values
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Figure 5. Derived value of ΩΛ as a function of each of the six lens parameters, as
defined in the text, centered on their fiducial value. As one parameter is varied,
the others are held at their fiducial values.

Table 1
Derivatives with Respect Lens Parameters

Y a Y0
b dγ /dY dΩΛ/dY

〈α〉 2.00 2.3 7.3
〈β〉 0.18 0.64 2.3
σα 0.08 0.85 2.4
σβ 0.13 −0.03 0.06
f 1.00 −4.0 −12
Δ 0.00 −0.9 −2.9

Notes.
a All parameters are dimensionless and are defined in the text.
b The fiducial value at which the derivatives are evaluated.

of dispersion velocity, σSDSS by a multiplicative factor, f, taken
between 0.95 and 1.05, as well as all the measured slopes of
the light distribution, δ, by an additive amount Δ ranging from
−0.10 to 0.10. As we vary each of the these parameters in turn,
the other parameters are held fixed at their fiducial values.

The results for the sensitivity of γ to systematic variations in
the six lens parameters are shown in Figure 4. In each of the
six panels, the center of the plot is located at γ = 1 and at the
fiducial value of the lens parameter being varied: 〈α〉 = 2.00,
〈β〉 = 0.18, σα = 0.08, σβ = 0.13, f = 1.0, and Δ = 0.0,
respectively. The values of the slopes of these curves (at the
fiducial point) are summarized in Table 1. The analogously
determined sensitivity of ΩΛ to systematic variations in the six
lens parameters is shown in Figure 5, with the corresponding
slopes also given in Table 1. The results are closely related to
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those for γ , except that they are typically a factor of ∼3 times
larger in the case of ΩΛ than for γ . This is due to the fact that
matching the model 〈σ∗,||〉 (as defined in Equation (23)) to the
measured σ is much more sensitively dependent on γ than it is
on ΩΛ. Roughly speaking, ΩΛ is about three times more difficult
to determine precisely than γ using strong lensing.

In general, one can see from Figures 4 and 5 and Table 1 that
constraints on γ and ΩΛ are quite sensitive to small systematic
shifts in the adopted lens-galaxy parameters. For example, a
shift in the mean value of the slope of the mass profile of 0.04
in 〈α〉 leads to a shift in γ of 0.04 × 2.3 � 0.09, a change
that is nearly twice the statistical uncertainty associated with
our γ measurement. Such a departure of 〈α〉 from the value of
2.00, which amounts to just one-half of the adopted intrinsic
scatter, is entirely plausible given the variation in this quantity
as deduced from independent analyses and data sets (e.g.,
Gerhard et al. 2001; Rusin et al. 2003; Rusin & Kochanek 2005;
Bolton et al. 2008b; Koopmans et al. 2009). More crucially,
this same shift in 〈α〉 would produce a change in ΩΛ of 0.29, a
nearly fatal degradation of our constraint on this cosmological
parameter. Shifts of comparable magnitude in γ and ΩΛ would
be caused by a systematic error of 2.5% in the measured velocity
dispersions, (i.e., f = 1±0.025) which is well within the range
of uncertainty due to possible mismatch between the stellar
populations of the lens galaxies and the stellar spectrum template
set used for the measurement of σSDSS.

Though the effects are a bit less dramatic, similar statements
hold for the sensitivity of the γ and ΩΛ results to the adopted
intrinsic mass-slope scatter σα , the mean velocity anisotropy
〈β〉, and the systematic uncertainty in the light-profile slope
Δ. With respect to the last quantity, we note that although the
power-law luminosity profile model that we have adopted could
be improved upon with a different choice such as deVaucouleurs
or Sérsic, the best-fit models from these classes still show
significant departures from the HST imaging data. Thus, the
sensitivity of γ and ΩΛ constraints to systematic errors in
the adopted luminosity profile is unlikely to improve much
beyond the level presented here. Even massively parametric
models for the luminosity profile such as the radial B-spline
(Bolton et al. 2006a, 2008a) would be afflicted by systematic
uncertainties related to ellipticity and deprojection. In addition,
other currently unmodeled systematic effects such as selection
effects (Dobler et al. 2008; Mandelbaum et al. 2009) and
environmental overdensities (Auger 2008; Treu et al. 2009;
Guimarães & Sodré 2009), which appear to contribute only
minorly to analyses of the structure of SLACS lenses under
the assumption of γ = 1 and ΛCDM, could have significant
implications for the type of constraints considered in the current
work.

From this analysis, we conclude that the systematics of the
lens parameters must be controlled to a much tighter degree
than currently appears possible before a more precise value of
the post-Newtonian parameter γ can be determined, and before
a meaningful independent determination of ΩΛ can be derived
from strong gravitational lensing.

6. SUMMARY AND CONCLUSIONS

In this work we have shown that, for a well-motivated set
of fiducial lens-galaxy parameters, the current sample of 53
SLACS gravitational-lensing galaxies can constrain either the
post-Newtonian parameter γ (on kpc length scales), or the
cosmological parameter ΩΛ. The statistical errors are such
that the measurements provide an interesting level of precision

(∼0.05 in γ and ∼0.17 in ΩΛ). We have paid particular attention
to quantifying the effects of systematic uncertainties in the lens
parameters on the determination of γ and ΩΛ. These systematic
errors are likely to be of equal or greater magnitude than the
statistical uncertainties, so that the final result is largely limited
by our imperfect knowledge of the galaxy parameters used in
the analysis. In particular, the derivatives of both γ and ΩΛ with
respect to several important lens parameters (enumerated in
Section 5) have been calculated; these are displayed graphically
in Figures 4 and 5 and tabulated in Table 1.

The larger lens sample we use as compared to that of Bolton
et al. (2006b) has enabled us to reduce the statistical error on
γ by a factor of ∼1.5 (from 0.07 to 0.05). However, since
the uncertainty in γ due to the systematic errors in the lens
parameters is likely to be at least as large as the statistical
errors, simply increasing the lens sample will not improve the
constraints on γ until the lens parameters are better understood.

Measurements of ΩΛ based on strong lensing involve different
sets of assumptions than other experimental methods, and
therefore could provide a useful independent estimate of this
important cosmological parameter. However, our results show
that in order for strong lensing by galaxies to become effective
in determining ΩΛ, our independent knowledge of lens-galaxy
mass-dynamical structure will have to improve by an order of
magnitude.

Future observations and analysis have some prospect of
improving this situation. High-resolution ground-based spec-
troscopy with large telescopes and good seeing can reduce both
the statistical and systematic errors on the measured velocity
dispersions (Czoske et al. 2008; Barnabe et al. 2009), and may
indeed be able to provide a measurement of the average ve-
locity anisotropy for some systems. A more detailed, spatially
resolved dynamical analysis of nearby galaxies such as from
the SAURON survey (Emsellem et al. 2004; Cappellari et al.
2006) could be used to derive more accurate prior distributions
on lens-galaxy mass-model parameters, providing that the dif-
fering selection effects between SLACS and SAURON samples
can be effectively controlled. Finally, system-by-system con-
straints on galaxy mass profiles using higher order information
contained in lensing data alone (e.g., Dye & Warren 2005; Willis
et al. 2006; Dye et al. 2008) could be used to remove some of
the need for independent priors.
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