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ABSTRACT

A modified phase correlation method, based on Fourier transform, which enables the alignment of solar coronal
images taken during the total solar eclipses, is presented. The method enables the measurement of translation,
rotation, and scaling factor between two images. With the application of this technique, pairs of images with
different exposure times, different brightness scale, such as linear for CCD and nonlinear for images taken
with photographic film, and even images from different emission lines can be aligned with sub-pixel precision.

Key words: eclipses – Sun: corona

1. INTRODUCTION

Total solar eclipses provide a unique opportunity to obtain
high-resolution and high-quality images of the solar corona. In
particular, the finest details of density structures in the innermost
corona, as captured in white-light images, cannot be attained
without total solar eclipses even from space-based observations.
However, the limiting factor in capturing the finest details which
only the eye can see is the very sharp gradient of the coronal
brightness.

A sequence of images with different exposure times is then
needed to produce an image where the details of coronal
structure can be revealed with acceptable signal-to-noise ratio.
The key problem, however, is image alignment. This factor
significantly influences the resolution of the resulting image.
Methods based on finding corresponding points to align images
are generally not adequate because of the absence of contrasty
features in the images suitable for that purpose. Only stars
and the details of the lunar edge can be used as reference
points. However, these reference points move during a total solar
eclipse. Although the parameters of these motions are known
and can be compensated for, no stars are detectable on images
with short exposure times, and for images with long exposure
times, the lunar edge cannot be used because of pixel saturation.

The modified phase correlation technique, presented here,
is based on Fourier transform. It works in frequency domain
and does not require any reference point for image alignment.
The phase correlation is currently a proven and widely used
technique for the alignment of images. However, the alignment
of total solar eclipse images has a number of specific problems
which necessitates the modification of this method. We show
in this paper how the application of the proposed modification
leads to unprecedented resolution in images of the corona taken
during total solar eclipses.

2. PHASE CORRELATION METHOD

The mathematical principles of the phase correlation align-
ment method for measuring translation, rotation, and scaling
were described by Reddy & Chatterji (1996). Let a(x, y) and
b(x, y) be two images (represented by their pixel matrices) which
are related by the formula b(x, y) = a(x − x0, y − y0). Let us
suppose that there are no periodic structures in these images,
i.e., b(x, y) = a(x −x1, y −y1) implies that (x1, y1) = (x0, y0).
Let us denote by A(ξ, η) and B(ξ, η) the corresponding Fourier
transforms of these images, by C(ξ, η) the cross-power spec-

trum, and by N (ξ, η) the normalized cross-power spectrum.
These spectra are defined by the formulae

C(ξ, η) = A(ξ, η)B�(ξ, η) (1)

N (ξ, η) = C(ξ, η)|A(ξ, η)B(ξ, η)|−1, (2)

where B� is the complex conjugate of B. Finally, let us define
an image

n(x, y) = F−1(N (ξ, η)),

where F−1 denotes the inverse Fourier transform. Then
n(x, y) = 0 for all points (x, y) except (x0, y0). It means that
the task of finding the shift between two images is transformed
to the task of finding the coordinate of the nonzero element in
the image matrix n(x, y).

Now, we suppose that b(x, y) is a rotated replica of a(x, y).
Let α be the angle of rotation. The rotation can be changed
to a translation by transforming images from the Cartesian
coordinate system (x, y) to the polar coordinate system (r, ϕ).
This enables the use of the described method and to measure
the angle α as a shift along the ϕ-axis.

The problem is that the center of rotation must be known,
which is usually not the case. This problem can be overcome by
using the Fourier transform amplitudes |A(ξ, η)| and |B(ξ, η)|
instead of images a(x, y) and b(x, y). The angle of rotation for
these Fourier transform amplitudes is identical to that for images
a(x, y) and b(x, y). However, the center of rotation is now known
and is the point (0, 0). If b(x, y) is not only rotated but also a
scaled replica of a(x, y), then we use the logarithm scale for the
r-axis. The scaling factor k is transformed to the shift along the
r-axis in this case.

For the most general case when images are of different scale,
the resulting algorithm then consists of the following steps.

1. Computing the Fourier transform amplitudes of images
a(x, y) and b(x, y).

2. Transforming the Fourier transform amplitudes to the polar
coordinate system with logarithm scale on the r-axis.

3. Measuring k and α by means of phase correlation.
4. Applying the scaling factor k−1 and rotation −α on image

b(x, y), resulting in b1(x, y).
5. Measuring the shift (x0, y0) between images a(x, y) and

b1(x, y).
6. Applying the shift (−x0,−y0) on image b1(x, y) to yield

b2(x, y).
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1606 DRUCKMÜLLER Vol. 706

In total, eight Fourier transforms (six forward and two
inverse) and two transforms from the Cartesian to the log–polar
coordinate system are necessary to compute all the geometrical
parameters for image alignment.

3. MODIFIED PHASE CORRELATION METHOD

The previous section described a hypothetical case. The
situation is more complicated in reality because the images
a(x, y) and b(x, y) contain noise, they are of different brightness
scale and may contain other dissimilarities. These factors cause
the image n(x, y) to contain random noise and for the point
(x0, y0) to be a local maximum of n(x, y) only. If this maximum
is global it is easy to find it, and no filtration of the noise
is necessary prior to the search for the maximum. However,
this rarely occurs. The filtration then must be done in two
steps because the noise has different sources. The first one is
the low amplitude of several spatial frequencies which causes
the cross-power spectrum to be divided by values close to
zero. The solution is to replace the normalized cross-power
spectrum (Equation (2)) by

Np,q (ξ, η) = C(ξ, η)[(|A(ξ, η)| + p)(|B(ξ, η)| + q)]−1,

where p and q are positive constants. (If images a(x, y) and b(x,
y) were taken with the same equipment, we may assume that
p = q). The second source is the additive noise contained in
images a(x, y) and b(x, y). It is possible to filter this type of noise
by means of low-pass filter applied in the frequency domain, i.e.,
by multiplying the cross-power spectrum by a suitable weight
function. We use the Gaussian function

Gσ (ξ, η) = exp(−0.5(ξ 2 + η2)σ−2)

for that purpose. Let us denote by np,q,σ (x, y) the resulting image
on which both filtrations were applied, namely,

np,q,σ (x, y) = F−1
(
Np,q (ξ, η)Gσ (ξ, η)

)
. (3)

Another problem is the presence of very low frequencies in the
cross-power spectrum. These frequencies may cause misalign-
ment, because they represent mainly information about diffuse
light in the optical system, which changes significantly during
the total solar eclipse. It might seem easy to remove these low
frequencies again in the frequency domain by changing the low-
pass filter to bandpass filter. However, many experiments made
with both digital and classical film data led to the conclusion
that this type of filter applied to the cross-power spectrum gives
unreliable results. The problem is caused by the extreme radial
gradient of the coronal brightness. Any nonlinearity in bright-
ness scale (chip saturation, non-homogenous diffuse light, film
properties, etc.) highly influences spatial frequencies in the ra-
dial direction and makes them unreliable for image alignment.
The solution is to remove these frequencies and to use frequen-
cies in the tangential direction only. However, it is not possible
to perform this type of filtration in the frequency domain. It is
done in space domain by a filter H� defined by the formula

H�(a(x, y)) = a(x, y) (4)

−
∫ ω2

ω1

a(r + cos(ϕ + ω), r + sin(ϕ + ω)) e
− ω2

2�2 dω,

where r and ϕ denote the polar coordinates with the origin in the
solar center of point (x, y). Since it is not easy to find this point,

Figure 1. Example of image (Equation (5)) with � = 8. The image was taken
with a Canon EOS 5D, 1250 mm lens, during the 2008 total solar eclipse from
Mongolia.

the lunar center is used as an approximation with no impact
on the precision of the alignment. The integral in formula (4)
may be understood as an unsharp mask created by means of a
one-dimensional Gaussian low-pass filter applied to the circle
centered at the center of the Sun. The limits ω1 and ω2 are
usually set to ±2�. Because a(x, y) is defined for integer values
(x, y) only, interpolation must be used for the computation of
the integral.

The last but very important step is to remove all parts of
the image which move during the total solar eclipse relative to
solar corona, such as the Moon, bright stars, dust particles on
the chip, and defective pixels. Leaving these parts in the image
may cause misalignment, because they have different alignment
parameters from the solar corona. For the same reason, it is
necessary to treat the edge of the image. The removal is done
by multiplying the image a(x, y) by an unsharp mask ma(x, y).
This mask is created by applying the Gaussian low-pass filter
on the image ma(x, y) defined by the formula

ma(x, y) =
{

1 if(x, y) ∈ Ca and rx,y > r1
and rx,y < r2

0 otherwise,

where Ca denotes the set of all pixels which belong to the corona
in image a(x, y), rx,y denotes the distance of the point (x, y) from
the solar (resp. lunar) center (sx, sy), r1 is a constant greater than
the lunar radius, and r2 is a constant lower than the radius of the
incircle with the center (sx, sy).

Finally, we replace the input images a(x, y) and b(x, y) with
images a�(x, y) and b�(x, y) defined by formulae

a�(x, y) = H�(a(x, y))ma(x, y) (5)

b�(x, y) = H�(b(x, y))mb(x, y), (6)

and apply formula (3). Let us denote the result as np,q,σ,�(x, y).
This is the final image for the maximum search.
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Figure 2. Example of the searched peak in the image np,q,σ,�(x, y) in a
three-dimensional representation (15 × 15 pixels, bicubic interpolation used
for magnification).

We have four parameters p, q, σ , and � which must be deter-
mined experimentally in order to obtain a well-defined global
maximum (Figure 2) in the image np,q,σ,�(x, y). Fortunately,
the sensitivity of the approach to the choice p, q, and � is not
very high, so it is easy to find parameters which are satisfactory
for the majority of images. Typical values of p and q are in the
interval 〈0.01, 0.1〉 percent of the maximal Fourier transform
amplitudes, and � is usually in the interval 〈8, 16〉. On the other
hand, the value of σ must be varied over a wide range which
makes it impossible to automate the alignment of the images.
Setting the value of σ too high may cause incorrect maximum
identification and incorrect alignment. Setting the value of σ too
low decreases the alignment precision because of strong sup-
pression of high spatial frequencies. Typical values of σ are in
the interval 〈0.01n, n〉, where n denotes the width of the image
in pixels.

4. SUB-PIXEL EXTENSION OF THE METHOD

The image np,q,σ,�(x, y) is represented by a pixel matrix,
therefore the searched maximum coordinates (x0, y0) are of
integer values. Several possibilities exist for how to extend the
precision to sub-pixel level. These methods are based either
on interpolation or on statistical moment characteristics. The
second approach is more robust and more suitable for the
alignment of solar corona images. We use the following formula
for sub-pixel coordinate (x0, y0) finding:

(x0, y0) = (
M1,0M

−1
0,0,M0,1M

−1
0,0

)
, (7)

where

Mr,s =
∑∑

k2+l2<ε2
kr ls np,q,σ (x0 + k, y0 + l). (8)

We may consider the point (x0, y0) as the center of gravity of
the peak and its neighborhood with radius ε. Typical values of
ε range from 3 to 5.

5. TESTING OF THE PRECISION OF THE METHOD

An experimental program, written in Borland–Delphi, was
developed to implement the described alignment method. The
program was first tested on simulated data. The total solar
eclipse image shown in Figure 1 was resized (k ∈ 〈0.9, 1.1),
rotated (α ∈ 〈0, 2π〉), and shifted (x0, y0 ∈ 〈−100, 100〉 pixels)
by means of bilinear interpolation. The known parameters of
these transforms were measured. The Fourier transforms were
computed on a 4096 × 4096 element matrix. The values of k,
α, x0, and y0 were generated randomly and 50 trials were made.

Figure 3. Details of the 12.5 MPix image composed from 25 images aligned
by means of phase correlation. Exposure times range from 1/4000 s to 8 s. The
resolution is 0.89 arcsec pixel−1. The image shows the southern polar region of
the corona on 2008 August 1, at 11:04 UT. The equipment was the same as that
used to produce Figure 1.

For all these trials, the alignment error was less than 0.01 pixel
near the lunar edge and less than 0.1 pixel near the corners of
the image. The alignment error was less than 0.002 pixel for
k = 1 and α = 0. Therefore, the alignment error of the method
itself may be considered negligible.

The verification of this method with real eclipse data is
problematic because no other method exists with comparable
precision. So, the measurement of the lunar centroid was used
as the second independent method. Images with very short
exposures only were used because the lunar edge is saturated
and the motion blurred on longer exposure images. That is why
the amount of suitable images was limited. The lunar centroid
CM (0) in the master (fixed) image aM was used as the reference
point and its position was moved to position CM (ti) as expected
in the aligned image ai according to the time ti at which the image
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Table 1
Difference di Between the Lunar Centroid Alignment Method and the Phase

Correlation Method

i Exposure (s) ti (s) di (pixels)

1 1/250 −6.0 0.13
2 1/250 −3.0 0.29
3 1/125 0.0 0.00 master
4 1/125 3.0 0.38
5 1/60 6.0 0.05
6 1/60 9.0 0.11
7 1/60 12.0 0.20
8 1/30 16.0 0.40
9 1/30 18.0 0.14

10 1/30 21.0 0.35

ai was taken. Let Ci(ti) denote the position of the lunar centroid
in the aligned image ai. The distance di between CM (ti) and
Ci(ti) was used for testing the precision. The results are given
in Table 1.

The images used for testing the method were taken with
the same equipment as the image shown in Figure 1. The
following parameters for the alignment method were used:
p = q = 0.01% of the maximal value of the Fourier transform
amplitudes, σ = 0.1n, � = 8, and ε = 3. Since a parallactic
mount with precise polar alignment was used in the acquisition

of the eclipse images, the rotation α was considered to be 0 for
this experiment. The total computing time (Pentuim D, 3.2 GHz)
for the alignment of one image was 205 s.

6. SUMMARY

The modified phase correlation method described in this
paper enabled the alignment of a series of total solar eclipse
images without degradation of resolution by alignment errors
(see Figure 3). The method gives reliable results even for images
taken with different equipment. The combined total solar eclipse
images aligned by means of this method were published by
Pasachoff et al. (2007, 2008). The only disadvantage of the
method, at present, is that it is not possible to automate it.
Finding the algorithm for automatic estimation of parameters p,
q, σ , and � is the subject of future research.

This work was supported by grant 205/09/1469 of the Czech
Science Foundation.
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