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ABSTRACT

Non-thermal X-ray emission in compact accretion engines can be interpreted to result from magnetic dissipation
in an optically thin magnetized corona above an optically thick accretion disk. If coronal magnetic field originates
in the disk and the disk is turbulent, then only magnetic structures large enough for their turbulent shredding time
to exceed their buoyant rise time survive the journey to the corona. We use this concept and a physical model
to constrain the minimum fraction of magnetic energy above the critical scale for buoyancy as a function of the
observed coronal to bolometric emission. Our results suggest that a significant fraction of the magnetic energy
in accretion disks resides in large-scale fields, which in turn provides circumstantial evidence for significant
non-local transport phenomena and the need for large-scale magnetic field generation. For the example of
Seyfert active galactic nuclei, for which ∼30% of the bolometric flux is in the X-ray band, we find that
more than 20% of the magnetic energy must be of large enough scale to rise and dissipate in the corona.
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1. INTRODUCTION

Gaseous accretion disks around stars or compact objects pro-
vide a likely source of emission from these engines (see, e.g.,
Frank et al. 2002). To explain the rapid variability and short
lifetimes of accreting systems without unphysical mass densi-
ties, some enhanced angular momentum transport beyond that
which can be supplied by microphysical transport coefficients is
typically required (Shakura & Sunyaev 1973). Many accreting
sources show jets, outflows, and active coronae highlighting that
disk dynamics and energy release involves some combination
of local and large-scale transport. Understanding the relative
balance between the two is of fundamental importance.

In some models, the primary angular momentum transport
and dissipation takes place above the disk (Lynden-Bell 1969;
Field & Rogers 1993) and the turbulence within the disk plays
a secondary role. However, the magnetorotational instability
(MRI) has emerged as a likely source of turbulence within
accretion disks, and a leading candidate to contribute local
turbulent angular momentum transport when they are suffi-
ciently ionized (Velikhov 1959; Chandrasekhar 1960; Balbus &
Hawley 1991, 1998). Three-dimensional numerical simulations
(Hawley et al. 1995, 1996; Brandenburg et al. 1995; Stone et al.
1996) have revealed that the nonlinear evolution of systems
unstable to the MRI can sustain MHD turbulence and outward
angular momentum transport.

Understanding the MRI saturation is a topic of active research
(see Pessah & Goodman 2009, and references therein). Local
shearing box simulations have not converged to practical angular
momentum transport coefficients as they are found to depend on
the simulation box size, the initial seed magnetic field (see, e.g.,
Hawley et al. 1995; Sano et al. 2004; Pessah et al. 2007), and the
magnetic Prandtl number (Fleming et al. 2000; Sano & Inutsuka
2001; Fromang & Papaloizou 2007; Fromang et al. 2007; Lesur
& Longaretti 2007). A frontier is to understand the stronger
prevalence of large-scale magnetic field structures in saturation
states of stratified MRI-driven turbulence (Brandenburg et al.
1995; Miller & Stone 2000; Suzuki & Inutsuka 2009; Davis
et al. 2009; Shi et al. 2009) compared to unstratified cases

(e.g., Fromang & Papaloizou 2007) and the role of larger boxes
and aspect ratios (Bodo et al. 2008; Davis et al. 2009). A real
accretion engine involves coupled internal and coronal dynamics
(e.g., Kuncic & Bicknell 2004; Blackman 2007).

Observationally, the relevance of large-scale magnetic fields
in accretion disks is motivated by the interpretation of
X-rays from Seyferts which has been best interpreted as coro-
nal emission. The flux from 1 to 500 keV ranges from 10% to
50% of the total flux (Mushotzky et al. 1993). Galactic black
hole X-ray sources show both thermal and non-thermal (power
law) spectral components, with the ratio of non-thermal to to-
tal luminosity ranging between 20% and 40% (Nowak 1995).
The leading paradigm for X-ray emission in these accreting sys-
tems involves an optically thin, hot corona powered by magnetic
field dissipation (e.g., Haardt & Maraschi 1993; Field & Rogers
1993; Pariev et al. 2008). If the corona results from magnetic
structures dissipating above the disk midplane that were origi-
nally produced within the turbulent disk (e.g., via some MRI),
then these structures must be of large enough scale to survive
the buoyant rise without being prematurely shredded by disk
turbulence.

If all coronal and jet emission results from fields initially
produced within a turbulent disk, then the fraction of coronal
to bolometric luminosity is directly related to the fraction of
magnetic energy associated with buoyant fields of large enough
scale to survive the vertical trip without being turbulently
shredded. In this Letter, we employ this concept and develop
a model relating the observed ratio of coronal to bolometric
emission to the fraction of magnetic energy produced in the
disk that is of large enough scale to buoyantly rise to the corona.
By comparing the model implications with observations, we
infer that a substantial fraction of magnetic energy in accretion
disks is produced in large-scale fields.

2. WHY CORONAE REQUIRE LARGE-SCALE FIELDS

In order for magnetic fields to power coronae and jets, the
buoyancy time, tb, associated with a magnetic structure rising
through the disk must be smaller than the time associated with
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its turbulent diffusion, td. These timescales are estimated as
tb ≡ H/Ub, where H is the disk half thickness and Ub is the
characteristic buoyancy speed, and td ≡ l2/νt, where νt ∼ vlt is
the turbulent magnetic diffusion coefficient, v is the dominant
turbulent speed, and lt is the characteristic scale of a typical
(anisotropic) turbulent cell, i.e., lt ∼ 〈lx ly lz〉1/3.

The escape condition, tb < td, sets a lower bound on the scale
l of magnetic structures that can survive shredding and reach
the corona (Blackman & Tan 2004), namely,

l2 > l2
c ≡ ltH

v

Ub
. (1)

Shear can make an initially isotropic structure anisotropic, as
can the formation of flux tubes. Thus, the critical scale applies
to the smallest dimension of a given magnetic structure, i.e.,
lc � min{lx, ly, lz}, since this determines the shortest diffusion
time.3

In the α-viscosity disk framework (Shakura & Sunyaev 1973),
νt ≡ vlt ≡ αcsH ∼ v2/Ω, where cs is the sound speed
and Ω is the local angular frequency. Using cs ∼ ΩH , this
implies v = α1/2cs and thus lt ∼ α1/2H . Plugging these into
Equation (1) implies

l2
c ≡ αH 2 cs

Ub(lc)
. (2)

In a fully developed MHD/MRI turbulent flow the velocity of
dominant turbulent motions is approximately (if not slightly
less than) the rms Alfvén speed, i.e., v ∼ vA. Therefore, if
Ub � vA ∼ v ∼ α1/2cs, then l > lc > α1/4H = lt/α

1/4, which
is larger than lt for α < 1. If instead we use Ub(l) � cs, the
analogous procedure gives l > lc > α1/2H = lt. Either way,
the buoyant magnetic structures that survive turbulent shredding
must have l > lc � lt.

That lc � lt implies that an accretion engine with significant
power emanating from its corona requires a significant fraction
of magnetic energy to be organized in magnetic structures with
l > lc. In what follows, we quantify this fraction by determining
lc and Ub(l) and connect them with the observed ratio of coronal
to bolometric emission flux.

3. CORONAL EMISSION FRACTION

We develop a model in which the observed fraction of coronal
to bolometric disk luminosity is determined by the rate of large-
scale magnetic energy rising to the corona. We assume that
buoyant structures fill a volume fraction fv in the disk such that
the average disk mass density is

ρ ≡ ρo − fv(ρo − ρi), (3)

where ρo and ρi are the mass densities external to and internal to
buoyant structures, respectively. The average magnetic energy
density is then

B2

8π
≡ 1

8π

(
B2

o + fvB
2
ls

)
, (4)

3 During the rise of a structure, its buoyancy and diffusion times can evolve
over multiple scale heights via competing actions involving shear, expansion,
and density and magnetic field gradients. The timescales are more precisely
represented as integrals over height in a dynamical theory. Here we simply
make the comparison at the midplane and for a single scale height. In
Section 6, we point out that this gives a lower limit on the large-scale field
fraction.

where B2
ls ≡ B2

i − B2
o corresponds to the difference of internal

and external magnetic fields squared. We suppose that although
the entire magnetic energy of the structures B2

i contributes to
their initial buoyancy, only B2

ls survives to the corona; the smaller
scale fields are “bled” away during the buoyant rise. We define
the fraction of the magnetic energy density in scales larger than
the critical scale for surviving the buoyant rise to be

fs ≡ fvB
2
ls

B2
= fvB

2
ls

fvB
2
ls + B2

o

. (5)

The factor fv arises in the numerator because B2
ls is contained

only in the volume of the buoyant structures. The quantity fs
represents the fraction of magnetic energy with scales larger than
lc, which can be written more generally in terms of integrated
magnetic spectra as

fs =
∫ kc

kmin
EM(k)dk∫ kmax

kmin
EM(k)dk

, (6)

where the limiting wavenumbers are kc = 2π/lc, kmin = 2π/H ,
and kmax = 2π/ldiss and ldiss is the dissipation scale.

Motivated by the physical picture described above, we break
up the accretion energy per unit area dissipated at a given radius
into the sum of the dissipation associated with small-scale field
within the disk

Dd ≡ QΣΩ2νt(1 − fs) = 2Qαβcsεmag(1 − fs) , (7)

and the dissipation of large-scale field in the corona

Dc ≡ fsUbεmag . (8)

Here, Σ is the surface density, Q ≡ (d ln Ω/dR)2/2 and
β ≡ ρc2

s /2εmag, where εmag ≡ B2/8π is the total mag-
netic energy density. The first term on the right-hand side of
Equation (7) resembles that which would follow from standard
disk theory (Frank et al. 2002) but with the extra factor of 1−fs.

Defining the ratio of coronal to total dissipation as

q ≡ Dc

Dd + Dc
, (9)

the ratio of coronal to disk dissipation becomes

Dc

Dd
= q

1 − q
= fs

2Qαβ(1 − fs)

Ub

cs
, (10)

and depends cleanly on Ub/cs. Since both Dc and Dd are
expected to be dominated by their contributions near the inner
radius, we do not address the radial dependence of these
quantities in detail here and interpret q as an estimate of total
coronal to bolometric emission.

4. CONSTRAINING THE BUOYANCY SPEED

To constrain Ub/cs, we consider forces on a magnetic struc-
ture in pressure balance with its exterior, i.e.,

B2
i

8π
+ nikBTi = B2

o

8π
+ nokBTo , (11)
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where n and T are the corresponding number densities and
temperatures, and kB is the Boltzmann constant. Assuming
Ti = To = T , we obtain

ρo − ρi = B2
ls

8πc2
s

. (12)

We take the force density acting on the magnetic structure
to be Fb − Fdr, where Fb is the upward gravitational buoyancy
force density and Fdr is the drag force density. The former can
be estimated as

Fb ≡ gH
B2

ls

8πc2
s

= B2
ls

8πH
, (13)

where the last equality follows from hydrostatic equilibrium
for an isothermal gas (Γ = 1), that is kBT/mp = c2

s =
(GM/R)(H/R), with g ≡ GM/R2. We approximate Fd to
be the high Reynolds number hydrodynamic drag associated
with a cylinder of length L and diameter l, namely (see, e.g.,
Moreno-Insertis 1986; Landau & Lifshitz 1987)

Fdr ≡ Cdr

2
ρoU

2
b

[
lL

π (l/2)2L

]
= 2Cdr

πl
ρoU

2
b , (14)

with drag coefficient Cdr of order unity. The work done per unit
volume by the net force over a distance H equals the kinetic
energy density of the rising structure, H (Fdr − Fb) � ρiU

2
b /2.

Combining this with Equations (12)–(14), we obtain

Ub

cs
=

(
1 − ρi

ρo

)1/2 (
2Cdr

π

H

l
+

ρi

2ρo

)−1/2

. (15)

Therefore, for all buoyant structures Ub(l) � U (lc) since l � lc.
Given that l � H for all structures that fit in the disk, Ub(l) < cs
for all l would imply ρi/ρo > 2/3 − 4Cdr/3π . We thus restrict
ourselves to this density ratio regime. Note that our estimate
for Ub/cs is itself an upper limit since we consider only a
hydrodynamic drag force restricting the buoyant rise, ignoring
for example, magnetic tension, compared to Schramkowski
& Torkelsson (1996). Whether the dynamics allows densities
below the above upper limit remains an open question. However,
even if the structures were initially moving faster than cs,
shocks and the associated dissipation would slow the motion
via additional drag.

Vishniac (1995) estimated Ub ∼ αcs. Had we used this
smaller U,b instead of the upper limit cs, our value of fs in
Equation (17) would dramatically increase, highlighting the
importance of large-scale field for coronal dynamics even more.
Characteristic values of fs resulting from this smaller buoyancy
speed are shown as dashed lines in Figure 2.

5. QUANTIFYING THE IMPORTANCE OF LARGE-SCALE
FIELDS

Setting l = lc in Equation (15), and using Equation (2), gives
a fifth-order equation for lc/H as a function of Cdr, ρi/ρo, and
α. The physical solution to this equation is shown in Figure 1
for a range in drag coefficients, 10−3 � Cdr � 2, and for
three values of α = {0.5, 0.1, 0.01} as a function of the density
ratio ρi/ρo. The characteristic turbulent scale lt ≡ α1/2H is
also shown as horizontal lines for each value of α. Since lc
is the minimum scale for buoyant rise, the fact that lc > lt
highlights the importance of large-scale fields. For the regime

Figure 1. Ratio of the critical scale for buoyancy to the disk scale height, lc/H ,
that satisfies Equations (2) and (15) simultaneously, as a function of the density
ratio ρi/ρo. The three sets of solid curves correspond to α = {0.5, 0.1, 0.01}
from top to bottom. Larger values of α correspond to more efficient shredding
and thus require larger scales lc to survive the buoyant rise. For a given α,
the solutions correspond to a range of drag coefficients 10−3 � Cdr � 2,
logarithmically spaced. The bottommost curves in each set correspond to the
lowest drag; larger Cdr requires a larger lc to survive buoyant rise. The dashed
lines show the turbulent scale lt = α1/2H . That each set of curves lies above the
line associated with lt(α) shows the importance of large-scale fields. A corona
cannot form for region lc > H .

on the plot where lc > H , a buoyant corona cannot arise from
fields produced internally to the disk.

We can set two constraints on the minimum fraction fs of
magnetic energy that the disk must produce in fields with scales
l > lc for a given coronal to bolometric emission fraction q. The
more stringent bound relies on the fact that Ub(l) < Ub(H ) for
l < H ; a less severe limit is obtained requiring Ub(H ) < cs,
which is satisfied as long as the density ratio ρi/ρo does not
fall below the lower limit discussed above. Applying these
conditions to Equation (10), we obtain

Dc

Dd
= q

1 − q
� fsUb(H )/cs

2Qαβ(1 − fs)
� fs

2Qαβ(1 − fs)
. (16)

Then, for an observationally inferred value of coronal to
bolometric flux, we can obtain a lower limit on the fraction
of magnetic energy residing in large-scale fields, i.e.,

fs � αβ

αβ + 4(1/q − 1)/9
, (17)

where we have used Q ∼ 9/8 for Keplerian disks.
The lower limit for fs depends on the dimensionless parame-

ters characterizing the angular momentum transport efficiency,
α, and magnetic pressure support, β, only though the product
αβ. This is encouraging because, despite the fact that both quan-
tities vary over several orders of magnitude across simulations
carried out in domains with various sizes and with different field
strengths and geometries (see Pessah et al. 2006, and references
therein), their product remains nearly constant4 with αβ � 0.5
(see Blackman et al. 2008, and references therein).

4 The constancy of αβ is consistent with the relations below Equation (2); for
a disk with MRI growth time ∼Ω−1, we expect νt = αcsH ∼ v2/Ω ∼ v2

A/Ω.
Using cs ∼ ΩH then gives α ∝ β−1 with a proportionality constant dependent
upon anisotropy and the polytropic index (Blackman et al. 2008).
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Figure 2. Lower limits on the fraction of magnetic energy residing at scales large
enough for their buoyant rise time to be small compared to the corresponding
turbulent shredding time, fs, as a function of the ratio of coronal to bolometric
dissipation, q. The solid curves correspond to Ub = cs in Equation (16) which
gives the most stringent lower limit for αβ = {1.0, 0.5, 0.1}, from top to bottom.
The dashed curves correspond to Ub = αcs, as suggested in Vishniac (1995).
In this case, the lower limit given by Equation (16) is independent of α. The
dashed lines correspond to β = {100, 10, 5}, from top to bottom (β = 1 would
coincide with the curve for αβ = 1 for Ub = cs). This last set of curves show
that the same ratio of coronal to bolometric emission requires a higher fraction
of large-scale fields as the buoyancy speed is reduced.

The upper limits for the fraction of magnetic energy associ-
ated with large-scale field structures are shown in Figure 2 for
three values of the product αβ = {1.0, 0.5, 0.1}. The minimum
constraints on fs show that if the observed non-thermal emission
is interpreted as coronal emission due to magnetic dissipation
from buoyant fields that were produced within a turbulent disk,
then a significant fraction of the energy budget of the magnetic
field build in the disk must be produced in fields of scale l > lc.
Since Figure 1 shows that in general l > lt, together these fig-
ures highlight the importance of large-scale magnetic fields in
powering coronae.

Finally, we note that MHD jet models typically invoke global
scale fields, compared to Ferreira (2007). If these fields arise
from the opening of coronal fields (as in the Sun; Wang &
Sheeley 2003: Blackman & Tan 2004) then the mechanical
luminosities of jets would represent an additional contribution
to that which results from the buoyant rise of magnetic fields.
Specifically, Dc in Equation (9) would be replaced by Dc + Dj

where the latter is the jet power. This would further increase our
lower limits on fs.

6. RELATION TO PREVIOUS WORK

In our physical picture, the coronal emission fraction q
depends on the fraction of magnetic energy fs produced in
scales larger than the critical scale lc. We incorporate the density
contrast between buoyant structures and the ambient medium
required for coronal feeding. Also, our lower limit on fs employs
cs as an upper limit for the buoyant rise time. We use the
α-viscosity prescription only for dissipation inside the disk;
the coronal dissipation is modeled as a distinct contribution
(see Equations (7) and (8)). These features differ from those
of Merloni & Fabian (2002) and Wang et al. (2004) which
make no distinction between the density inside and outside the

buoyant structures or the role of large-scale versus small-scale
magnetic fields. Furthermore, the coronal emission fraction in
those papers is taken as a subset of the viscous (α-viscosity)
dissipation. Also, the buoyant rise time is taken to be the Alfvén
speed; less than our upper limit value of cs.

In the present work, we implicitly consider systems with
low enough accretion rates such that radiation pressure is
unimportant. A subtlety associated with radiation pressure is
that the thermal photosphere can be significantly higher than
the scale at which the magnetic pressure dominates the thermal
pressure (e.g., Hirose et al. 2009) reducing the observationally
inferred coronal non-thermal emission fraction. This reduction
for large accretion rate systems is observed in Wang et al. (2004).
For a fixed magnetic spectrum, this would also be expected in
our paradigm, because H in Equation (2) is the scale that we
consider a buoyant structure must rise to contribute to coronal
emission. If the buoyant structure has to move higher, then lc
would be larger and less of the magnetic energy would survive
the buoyant rise. In Merloni & Fabian (2002), the reduction
in coronal emission for large radiation pressure occurs because
their coronal emission fraction depends inversely on the total
disk pressure.

7. CONCLUSIONS

Starting with the assumption that coronal luminosity from a
turbulent accretion disk results from buoyant magnetic struc-
tures that survive turbulent shredding for at least one vertical
density scale height, we derived lower limits on (1) the scale of
such magnetic structures and (2) the fraction of magnetic energy
that needs to be produced above this scale within the disk to ac-
count for observed values of coronal to bolometric luminosity.
In our minimalist model, we considered the buoyant structures
to be in pressure equilibrium with the ambient medium but to
have an additional magnetic energy contribution from scales
above the critical scale lc, and a lower density.

We find that typical ratios of coronal to bolometric luminosity
observed in active galactic nuclei require the critical scale
for buoyancy to robustly exceed the characteristic scale set
by turbulent motions and that double-digit percentages of
magnetic energy should reside in fields above this scale. This
is consistent with recent work highlighting the importance of in
situ large-scale dynamos in feeding coronae (Blackman 2007;
Vishniac 2009). Our results complement growing motivation
to consider larger domains in stratified MRI simulations and
motivate analysis of the magnetic energy spectra produced
therein. The results also resonate with models of accretion disks
in which buoyancy and coronal dissipation play a primary role
for transport (Lynden-Bell 1969; Field & Rogers 1993).
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