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ABSTRACT

In this paper, we investigate the solar cycle variation of coronal null points and magnetic breakout configurations
in spherical geometry, using a combination of magnetic flux transport and potential field source surface models.
Within the simulations, a total of 2843 coronal null points and breakout configurations are found over two solar
cycles. It is found that the number of coronal nulls present at any time varies cyclically throughout the solar cycle,
in phase with the flux emergence rate. At cycle maximum, peak values of 15–17 coronal nulls per day are found.
No significant variation in the number of nulls is found from the rising to the declining phase. This indicates that the
magnetic breakout model is applicable throughout both phases of the solar cycle. In addition, it is shown that when
the simulations are used to construct synoptic data sets, such as those produced by Kitt Peak, the number of coronal
nulls drops by a factor of 1/6. The vast majority of the coronal nulls are found to lie above the active latitudes and
are the result of the complex nature of the underlying active region fields. Only 8% of the coronal nulls are found to
be connected to the global dipole. Another interesting feature is that 18% of coronal nulls are found to lie above the
equator due to cross-equatorial interactions between bipoles lying in the northern and southern hemispheres. As the
majority of coronal nulls form above active latitudes, their average radial extent is found to be in the low corona below
1.25 R� (175,000 km above the photosphere). Through considering the underlying photospheric flux, it is found
that 71% of coronal nulls are produced though quadrupolar flux distributions resulting from bipoles in the same
hemisphere interacting. When the number of coronal nulls present in each rotation is compared to the number of
bipoles emerging, a wide scatter is found. The ratio of coronal nulls to emerging bipoles is found to be approximately
1/3. Overall, the spatio-temporal evolution of coronal nulls is found to follow the typical solar butterfly diagram
and is in qualitative agreement with the observed time dependence of coronal mass ejection source-region locations.
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1. INTRODUCTION

The study of coronal null points, locations where B = 0 in
the solar atmosphere, is currently a key area of research in solar
physics. Null points are of interest as they are sites where mag-
netic reconnection—accompanied by energy release—can take
place within the solar atmosphere (Pontin et al. 2004; Aulanier
et al. 2005; Pariat et al. 2006; Priest et al. 2003). The properties
and existence of coronal null points depend on the complex na-
ture of the magnetic field distribution at the solar photosphere.
This distribution may be mathematically prescribed as a bound-
ary condition in magnetic field extrapolation techniques. Many
studies have considered the existence and properties of coro-
nal null points either through considering theoretical configu-
rations (Brown & Priest 1999, 2001; Parnell et al. 1996, 1997;
Beveridge et al. 2002, 2004; Parnell & Galsgaard 2004; Parnell
et al. 2008) or through direct extrapolation of observed mag-
netograms (Longcope et al. 2003; Démoulin 2005; Maclean
et al. 2005; Démoulin 2006; Régnier et al. 2008; Longcope &
Beveridge 2007; Longcope & Parnell 2009). To date, most of
these studies of coronal null points have been carried out under
the potential field approximation and in a local cartesian frame
of reference. A few studies have also considered the existence of
coronal null points in spherical geometry due to a few sources
(Maclean et al. 2006a, 2006b; Maclean & Priest 2007) or in
non-potential magnetic field distributions.

In the paper of Antiochos (1998; see also Antiochos et al.
1999; MacNeice et al. 2004; Lynch et al. 2004; Choe et al.
2005), a coronal null point plays a key role in the escape of

coronal mass ejections (CMEs) from the Sun, in what is called
the magnetic breakout model. A CME is a violent ejection
of plasma, which may be directed earthward with disastrous
consequences. The key features of the magnetic breakout model
as set up by Antiochos (1998) can be seen in Figure 1(a). The
initial configuration consists of a quadrupolar photospheric flux
distribution and an overlying potential field. Even with such
a simple photospheric distribution, the resulting coronal field
has four distinct flux domains. The field lines within the two
domains which pass over the equator are oppositely orientated
to one another. Between them lies a coronal null point. This
coronal null point is a key feature; when the field underneath it
is stressed, reconnection may occur allowing the underlying flux
to break out. While in a two-dimensional situation a null point
is required for reconnection to occur, in a three-dimensional
situation, reconnection may also occur at other locations without
nulls such as current sheets (Priest & Démoulin 1995; Démoulin
et al. 1996; Hornig & Priest 2003; Titov et al. 2003; Galsgaard
et al. 2003; Pontin et al. 2005; Haynes et al. 2007). For simplicity,
the focus of this study is the variation of coronal null points
as they are a mathematically (and numerically) identifiable
topological feature and a key element in the initial configuration
of breakout topologies as described by Antiochos (1998). Thus,
the variation of these null points will indicate the variation
of possible breakout topologies and CMEs associated with
them.

A key aspect of coronal null points and the breakout model,
which is tested here, is their dependence on the solar cycle phase.
This is illustrated in Figures 1(b) and (c), which give possible
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Figure 1. (a) Initial setup of the breakout model. The setup consists of a
quadrupolar photospheric field (white ∼ positive flux, black ∼ negative flux)
with extrapolated overlying potential field denoted by the field lines which are
plotted in a single radial plane. The dipole orientation of the equatorial regions
of flux are opposite to that of the polar regions, resulting in a coronal null point
whose location is denoted by the X-point structure in the field. (b) Example
showing the field setup with one bipole inserted before global dipole reversal
and (c) after global dipole reversal. In (b), the two oppositely orientated central
flux regions will cause a coronal null point to form above the bipole, whereas,
in (c) no coronal null point will form due to the central regions being of the
same orientation.

flux distributions in the rising (before global dipole reversal) and
declining (after global dipole reversal) phases of the solar cycle.
For both of these cases, the magnetic distributions represent
those likely to occur on the Sun, as opposed to the idealized
case depicted in Figure 1(a). Before global dipole reversal, it
can clearly be seen that the overlying dipole field is of opposite
orientation to the underlying field caused by the bipolar region.
This means that a coronal null point and a magnetic breakout
configuration exist. However, after global dipole reversal the
overlying field is of the same orientation as the underlying
field caused by the bipolar region. No coronal null point occurs
(instead two photospheric null points occur between the two
negative polarities and the two positive polarities). This raises
two very important questions: (1) Do coronal null points and
magnetic breakout configurations occur during the declining
phase of the cycle and is there a cycle phase dependence in their
occurrence? and (2) If null points and breakout configurations
do occur in the declining phase what causes their existence if
not the global dipole? It should also be noted that other models
exist for the initiation of a CME where these do not require
coronal null points. These include varying processes such as flux
injection (Chen 1989, 1996), flux cancellation (van Ballegooijen
& Martens 1989; Priest & Forbes 1990; Forbes & Priest 1995),
and dynamical instabilities (Tokman & Bellan 2002; Török &
Kliem 2003; Kusano et al. 2004). Recently, Yeates & Mackay
(2009) carried out global simulations of the coronal field based
on observed magnetograms and found that flux cancellation
leading to the formation and loss of equilibrium of flux ropes
could account for 50% of the observed CME rates for a six
month period in 1999. For a review on CME mechanisms see
the papers of Klimchuk (2001) and Lin et al. (2003).

In a previous study, Barnes (2007) compared CME locations
with the occurrence of null points in an effort to deduce whether
the breakout model could account for observed eruptions. In
this work, 1800 vector magnetograms were subjected to a
magnetic charge topology analysis, and the null points were
determined. It was found that while there was a strong statistical
correlation between at least one coronal null being present and
eruptive events, the majority of events (74%) occur in areas
where no coronal null was present. Barnes (2007) concluded
that the breakout model cannot be used to explain all of the
CMEs that occur. The study of Barnes (2007) is fundamentally
different from the work presented in this paper due to the fact
that the observations used by Barnes were of a limited field
of view. In this paper, the existence of coronal null points and
their relevance to magnetic breakout configurations is studied
through modeling the global field, including the overlying global
dipolar field configuration in spherical geometry. Two discrete
but coupled mathematical models are used. The first produces
the lower boundary condition representing the radial magnetic
field at the solar surface. This is specified though flux transport
simulations which self-consistently produce the strength of the
global dipole based on the amount of flux emerged at low
latitudes and its subsequent evolution through flux transport
processes. Two forms of this lower boundary condition are
used. The first, which we call the “instant day simulation,”
produces the radial magnetic field over the entire surface of
the Sun at any given instant in time and is produced directly
by the output of the flux transport simulations. The second is
where we use the output from the instant day simulations to
produce “simulated synoptic magnetograms” in a comparable
manner to the observed synoptic magnetograms of Kitt Peak
(KP). In the context of this study the instant day simulations
may be regarded as the true representation of the magnetic
field across the entire surface of the Sun, while the simulated
synoptic magnetograms are an approximate representation that
would occur as a result of only being able to view one side
of the Sun at any one time. By doing so, we will determine
what information is lost when dealing with the solar synoptic
observations. The second component is a potential field source
surface (PFSS) model (Schatten et al. 1969) which extrapolates
a global coronal magnetic field from the photospheric flux
distribution out to 2.5 solar radii. The location and variation of
coronal null points within the PFSS is then determined. Through
this a better understanding of null point variation throughout the
entire global field is found, as opposed to over isolated active
regions.

The paper is ordered as follows. The simulation method
is described in Section 2. This will include a description of
the “instant day” simulation, along with the construction of
“simulated synoptic magnetograms.” The extrapolation of a
potential field out to 2.5 solar radii is also described along with
a description of the null point finding technique. Section 3 will
discuss the origin, behavior, and variation of coronal null points
for both the instant day and simulated synoptic distributions.
Finally, Section 4 will present the concluding discussions.

2. THE MODEL

To investigate the solar cycle variation of coronal null points
and subsequently magnetic breakout configurations, a mixture
of magnetic flux transport and PFSS models are used. A key
constraint of these simulations is that the absolute flux values
used within the flux transport simulations are matched to levels
determined from KP synoptic magnetograms. The techniques
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Figure 2. Example of a Kitt Peak synoptic magnetogram. White indicates
positive flux and black indicates negative flux where the image is set to saturate
at ±10 G.

employed and why observed flux distributions, such as KP
synoptic magnetograms, are not directly applied are described
next.

2.1. KP Magnetograms

KP synoptic magnetograms represent a monthly average
of the Sun’s global photospheric field and are created from
National Solar Observatory (NSO)/KP normal component full
disk magnetograms (Pierce et al. 1976). Each synoptic magne-
togram represents one Carrington rotation (27 days) of measure-
ment. An example of a KP magnetogram is given in Figure 2.
Synoptic magnetograms have been used for a variety of pur-
poses, including the study of the 27 day period found on the
Sun (Henney & Harvey 2001), the study of coronal holes during
solar maximum (Zhang et al. 2002), considering the origin of
the hemispheric pattern of filaments (Mackay et al. 2000; Yeates
et al. 2007, 2008) and in the study of the origin of CMEs (Yeates
& Mackay 2009).

One method of investigating the existence of coronal null
points could be to use the synoptic magnetograms as a lower
boundary condition coupled with the PFSS approximation.
However, as previously discussed, the existence of coronal null
points may critically depend on the distribution and strength of
the polar field and global dipole. Therefore, the direct use of
synoptic magnetograms in such a study has two disadvantages.
The first is that due to line-of-sight effects, beyond ±60◦ latitude
the polar field measurements are unreliable. Therefore, when
using observed magnetograms, synoptic or otherwise, the effect
of the global dipole on the underlying flux and coronal null
points may not be accurately modeled.

Secondly, due to the method of producing synoptic magne-
tograms information may be lost. This may occur if a bipole
emerges at a longitude after that longitude has passed through
central meridian (or if the longitude lies on the far side of the
Sun). Such a bipole may be significantly weakened or have
completely disappeared by the time the Sun has rotated enough
for the relevant field information to be extracted by the next
rotation.

As it is difficult to quantify what information is lost, KP
synoptic magnetograms are not directly used as a base bound-
ary condition within the simulation. Rather, we prefer to carry
out theoretical simulations that accurately represent the surface
magnetic field over the whole Sun throughout the solar cycle.
In these simulations, to obtain realistic flux distributions, we
simulate the emergence of a large number of synthetic mag-
netic bipoles. The bipoles are assumed to emerge at random
longitudes and follow the observed properties of the butter-

fly diagram in addition to Hale’s polarity law and Joy’s law.
Based on the work of Harvey & Zwaan (1993) and Schrijver &
Harvey (1994), the emergence rate of individual bipoles is in-
versely proportional to the size of regions. The properties of the
bipoles are discussed further in Section 2.2.1 and are shown in
Figure 3. In order to produce realistic flux distributions as a func-
tion of latitude, the emergence rate and properties of the bipoles
are varied so that the net flux values in the simulation at low
latitudes, match those found in KP data. The subsequent polar
field strengths are then self-consistently determined through the
surface flux transport processes. Secondly, from these computa-
tions, simulated synoptic data are produced—which allow us to
quantify what information is lost through producing such data
and how this affects the number of coronal nulls. The method of
doing this along with the flux transport simulations are discussed
in the next section.

2.2. Flux Transport Simulation and Coronal Null Point
Identification

There are several steps that must be followed to determine the
variation of coronal null points and breakout topologies. First,
magnetic flux transport simulations are carried out, where at
any instant in time these simulations describe the radial magnetic
field (Br (θ, φ, t)) across the whole solar surface (Section 2.2.1).
These are called the “instant day simulations” as they give
the radial distribution of magnetic field across the whole Sun
at any instant in time. This simulation may be regarded as
the actual representation of the Sun’s magnetic field. From
this the “simulated synoptic magnetograms” are constructed
(Section 2.2.2), where these represent a global approximation to
the true field as only one side of the Sun may be observed at any
one time. Next, both the “instant day” and “simulated synoptic”
data are used as lower boundary conditions for a PFSS model
(Section 2.2.3), which extrapolates a magnetic field from the
solar surface into a coronal volume. Finally, the numerical null
point finding technique of Haynes & Parnell (2007) is used to
study the properties of the coronal null points (Section 2.2.4).
Full details of each of these stages are now described.

2.2.1. Instant Day Simulations

Magnetic flux at the solar surface evolves through the pro-
cesses of emergence, advection, and surface diffusion. New flux
emerges at the solar surface in the form of newly emerged bipo-
lar regions (Archontis et al. 2004; Murray et al. 2006; Murray &
Hood 2007). Once emerged, the flux is evolved via large-scale
flows such as differential rotation and meridional flow. The flux
transport code used in this study includes these effects along
with surface diffusion as a result of super-granular convection
in order to evolve the radial component of the magnetic field
forward at the solar surface (Wang et al. 1989; van Ballegooijen
et al. 1998; Schrijver & Title 2001; Baumann et al. 2006). The
evolution of the radial component of the magnetic field at the
solar surface (r = R� = 1) is given by

∂Br

∂t
= 1

sin θ

∂

∂θ

(
sin θ

(
−u(θ )Br + D

∂Br

∂θ

))

− Ω(θ )
∂Br

∂φ
+

D

sin2 θ

∂2Br

∂φ2
, (1)

where D = 600 km2 s−1 is the diffusion coefficient. The value
of D has been taken from previous studies (Wang et al. 1989;
van Ballegooijen et al. 1998) where its magnitude is determined
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Figure 3. Graphs showing the properties of the bipoles emerged within the simulation. (a) The distribution of bipole emergences as a function of time and latitudes,
(b) the numbers of bipoles emerging per 27 days, (c) the flux emerging within the bipoles per 27 days, (d) the average monthly tilt angle of the bipoles, (e) tilt angle
distribution throughout the simulation, and (f) the average tilt angle vs. latitude. The first cycle depicted in the above plots was used as a “control” cycle to initiate the
simulation. The work presented here will only analyze cycles two and three where flux values have been scaled to KP synoptic data.

by comparing midlatitude field strengths within the simulation
with those determined from observations. In the simulations,
the profile of u(θ ), the meridional flow, given as a function of
latitude (λ = π/2 − θ ) is

u(λ) =
{−uo sin (πλ/λo) , | λ |< λo;

0, otherwise; (2)

where above λo, the meridional flow velocity vanishes. For the
simulations, we choose λo = 75◦ and uo = 11 m s−1 as used by
van Ballegooijen et al. (1998). For differential rotation, Ω(θ ),
the profile of Snodgrass (1983) is used,

Ω(θ ) = 13.38 − 2.30 cos2 θ − 1.62 cos4 θ − Ωo

(deg day−1), (3)

where Ωo is the Carrington rotation rate (13.2 deg day−1).
To evolve the radial field component forward, Equation (1) is

expressed in terms of spherical harmonic functions where

Br (r = R�, θ, φ, t) =
N∑

l=1

l∑
m=−l

Blm(R�, t)

× Qlm(θ )eimφ, (4)

where Blm(R�, t) represent the time-dependent complex fourier
coefficients at the solar surface, Qlm(θ ) = Plm(x = cos θ ) are
associated Legendre functions, l is the harmonic degree, m is
the azimuthal mode number, and N is the number of harmonics.
By substituting Equation (4) into Equation (1), it can be shown
that the time variation of Br through its fourier coefficients is

∂Blm

∂t
=

N∑
l′=|m|

(Fu,l′lm − imGΩ,l′lm)Bl′m

− Dl(l + 1)Blm, (5)

where

Fu,l′lm = 2π

∫ π

0
u(θ )Qlm(θ )

dQl′m

dθ
sin θdθ, (6)

GΩ,l′lm = 2π

∫ π

0
Ω(θ )Qlm(θ )Ql′m(θ ) sin θdθ (7)

represent the effects of meridional flow and differential rotation
on the spherical harmonics. These couple modes of different
l but the same value of m. The final term in Equation (5)
represents the effect of diffusion, where each of the modes
diffuse independently of one another (higher order l modes
diffuse faster).

The instant day simulations are run for three solar cycles.
The first cycle is used to remove the unrealistic initial starting
condition of a purely axisymmetric polar field, while the
two later cycles are used to study the variation of coronal
null points. The dipole strength at the start of the simulation
is chosen such that in all the three cycles the polar fields
reverse one to two years after cycle maximum. The first cycle
is not considered any further in this study. The amount of
flux emerging within the later two cycles is matched to that
found in KP synoptic magnetograms for cycles 21 and 22 by
approximately matching flux values over the whole solar surface
and at 40◦ latitude. A latitude of 40◦ is chosen as no significant
large-scale emergences are expected throughout the solar cycle
above this latitude. Therefore, the polar fields and global dipole
within the simulation is self-consistently produced by the flux
passing through this latitude and subsequent surface diffusion. In
each cycle, approximately 4000 bipoles are emerged. Figure 3
presents the statistical properties of the bipoles. Five bipole
sizes are used ranging from 1019 Mx to 1022 Mx (Mackay et al.
2002; Mackay & Lockwood 2002). Combining these with the
wide range of tilt angles, polarity separations and latitudes of
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(a) (b)
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Figure 4. Graphs showing the surface flux from our “instant day” simulation ((a) and (b)) and the simulated synoptic magnetograms ((c) and (d)). Graphs (a) and
(c) give the total surface flux while (b) and (d) give the flux at 40◦ latitude. In each case, the solid lines denote the flux values deduced from the Kitt Peak synoptic
magnetograms where the dashed curve denotes the results of the simulations. The double-ended arrows in each graph denote a two year time period around cycle
maximum determined from the peaks in bipole emergence rate.

emergence, significantly affects how the total flux on the solar
surface evolves over time. The latitude distribution of emerging
bipoles (Figure 3(a)) follows the classic butterfly diagram. The
number of bipoles emerging (Figure 3(b)) follows a cyclic
variation similar to that of the sunspot number. In agreement
with this, the amount of flux emerging every 27 days also
follows a cyclic pattern (Figure 3(c)). The average tilt angle
of the bipoles (Joy’s law, Figure 3(d)) decreases throughout the
solar cycle, with the value at lower latitudes being less than that
at higher latitudes. In Figure 3(e), the distribution of bipole tilt
angles can be seen where there is a wide scatter in the data as
found in observations, but where the majority of the bipole tilt
angles satisfy Joy’s law. Finally in Figure 3(f), the average bipole
title angles can be seen as a function of latitude of emergence.
Note that the tilt angle does not follow the λ/2 variation used
in previous studies (Mackay et al. 2002; Mackay & Lockwood
2002) but has a much shallower variation such as that suggested
by Schüssler & Baumann (2006).

In the instant day simulations by varying the bipole properties
to those shown in Figure 3, the flux levels over the entire surface
and at 40◦ latitude are matched with KP synoptic magnetograms
(Figures 4(a) and (b)). The fluxes match fairly well over (a) the
whole surface and at (b) 40◦ latitude. For (b) a similar graph was
found for the southern hemisphere. The peaks in flux occur at
approximately the same time, as do the minima. Slightly higher
flux values are found within the “instant day” simulation. We
attribute this to the fact that the instant day simulation generates
the whole surface field and does not lose information—which
occurs in the construction of KP synoptic magnetograms. As

described earlier, the KP synoptic magnetograms lose data by
missing some emerging active regions and therefore have a
lower flux than what occurs in reality on the Sun. A better
comparison between the observations and the simulations is to
compare the observed data with “simulated synoptic data,” as
these data sets are constructed in a similar manner.

2.2.2. Simulated Synoptic Magnetogram Conversions

In order to convert the “instant day” maps into the form of
simulated synoptic magnetograms, the relevant data from each
of the instant day maps must be identified and extracted. To do
this, initially a latitudinal strip with a width of 13.◦5 longitude
is taken from the rightmost edge of the first “instant day” map.
This portion of the instant day map is defined to be the portion
that is initially lying at central meridian. This information is
then stored as the rightmost strip of the first simulated synoptic
magnetogram. A second latitudinal strip, of the same width, is
then taken from the left edge of the previous strip in the instant
day map, representing the fact that this would be the next strip
to lie at central meridian. This is then stored as the next section
of the simulated synoptic magnetogram. This method is then
continued over 27 days of the “instant day” maps, making up a
single simulated synoptic magnetogram covering one Carring-
ton rotation. This process is then repeated with each successive
27 day period of the instant day simulation, producing a subse-
quent simulated synoptic magnetogram. Once constructed, the
simulated synoptic magnetograms are then corrected for flux
balance which usually involves only a small correction.
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Figure 5. Image showing (a) a typical instant day map and (b) a simulated synoptic magnetogram covering the same 27 day rotation period. The area within the vertical
black lines corresponds to the portion of the instant day map that lies at central meridian and is extracted and inserted into the simulated synoptic magnetogram.
Several key features have been marked on both the “instant day” map and the simulated synoptic magnetogram.

A comparison of a single instant day map (Figure 5(a)) and a
simulated synoptic map (Figure 5(b)) shows that the technique
produces a good average representation of the field over a single
rotation. To check that the conversion has correctly worked,
we compare several features between the instant day and the
simulated synoptic magnetograms. The black line in Figure 5(a)
denotes the portion of the instant day map that lies at central
meridian. This portion of the map is also highlighted in the
simulated synoptic map. The information to the right of the
black-lined section in Figure 5(b) has already been extracted
from the instant day maps, while the information to the left
has yet to be extracted in relation to the shown instantaneous
map. Comparing feature 2 in both images shows that in the
“instant day” map the active regions appear slightly weaker,
and more longitudinally sheared than in the simulated synoptic
magnetogram due to its extraction at an earlier time. Feature 5
shows bipolar regions, within the “instant day” map that have
yet to be extracted for the simulated synoptic magnetogram.
These bipolar regions appear less sheared and stronger than the
corresponding regions in the simulated synoptic magnetogram.
Therefore, this shows the opposite effect to that of feature 2,
where the large-scale solar flows and diffusion have not had as
much of an effect upon it, as they will have by the time the
field information is extracted. Feature 4 shows a bipole that is
yet to emerge in the “instant day” map, but is picked up for
the simulated synoptic magnetogram. Conversely, features 1
and 3 show two bipolar regions that have been missed by the
conversion into simulated synoptic magnetogram form. This is
a key point, as information may be missed when converting into
synoptic form thereby artificially impacting the complexity of
the field distribution.

After converting the instant day maps into simulated synoptic
magnetograms, the same flux measurements are taken as before,
shown in Figure 4. The simulated synoptic magnetograms
show a better match than the instant day maps. The peaks
of flux at solar maximum occur at approximately the same
time and magnitude. The minima give a better match between
the two data sets than before. This is because the simulated
synoptic magnetograms lose some information compared to
the instant day simulations (in the same way that the KP
magnetograms lose information). By comparing the simulated
synoptic magnetograms to the KP synoptic magnetogram, data
produced by a similar technique are compared. From this we
have confirmation that our low latitude field distributions are

realistic and subsequently will produce realistic high latitude
fields.

2.2.3. Extrapolation of a Potential Field.

Once the flux levels in the simulations are matched with KP
synoptic magnetogram levels, a coronal magnetic field must
now be constructed. Within the solar corona the Lorentz force is
the dominant force and any magnetic field that is in equilibrium
satisfies to zeroth order the force-free field equation, j × B = 0.
As a result, the electric current, j = 1/μo∇ × B, can be written
as j = α(r)B. The two most useful class of solution to the force-
free field equation occur when α = 0 (a potential magnetic field)
and α = α(r) (a nonlinear force field). When α is non-zero, the
magnetic field may be regarded as being sheared. Observations
of the solar corona in Hα and X-rays show localized, highly
sheared regions called solar filaments and sigmoids, along with
less or very weakly sheared regions such as coronal loops.
Alternatively, white light coronagraphic observations show that
the large-scale global field may be approximately represented
by a field which is close to potential. In recent years, much
work has been done in constructing global MHD models based
from single extrapolations (Riley et al. 2006) or nonlinear force-
free field evolutions over a period of months based on observed
magnetograms (Yeates et al. 2007, 2008; Yeates & Mackay
2009). In the study of Riley et al. (2006), the authors found
that global potential field solutions closely matched those found
from MHD simulations, at large scales, when extrapolations are
carried out; since our study mainly deals with the topology of
the large-scale coronal structures, we believe that a potential
field extrapolation of the coronal field is adequate for our
purposes.

A potential field is extrapolated out to 2.5 solar radii for both
the ”instant day” and ”simulated synoptic magnetograms” us-
ing the surface spherical harmonics Blm(R�, t) for each case.
The potential magnetic field is found by solving Laplace’s
equation with inner and outer boundary conditions given by
Br (R�, θ, φ, t) and Bθ = Bφ = 0 at Rss = 2.5 R�, respec-
tively. It may be easily shown that for fixed boundary conditions
the potential magnetic field is both unique and the lowest energy
solution. For a potential magnetic field,

∇ × B = 0 ⇒ B = −∇Ψ,

where Ψ is some unknown scalar function. Combining this with
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the solenoidal constraint ∇ · B = 0, means that Ψ must satisfy

∇2Ψ = 0.

Solutions of Laplace’s equation in spherical coordinates are well
known (Jackson 1962),

Ψ(r, θ, φ) =
∑

l

l∑
m=−l

[almrl + blmr−(l+1)]

× Qlm(θ )eimφ,

where alm and blm are unknown and Qlm(θ ) = Plm(x = cos θ ).
From this expression, the radial field becomes

Br (r, θ, φ, t) =
∑
l=1

l∑
m=−l

Blm(r, t)Qlm(θ )eimφ,

where Blm = −lalmrl−1 + (l + 1)blmr−l−2. Through determin-
ing similar equations for Bθ and Bφ , and applying the outer
boundary conditions it may be shown that

Blm(r, t) = Blm(R�, t)

×
⎡
⎣ (l + 1)

(
r

R�

)−l−2
+ l

(Rss

R�

)−2l−1( r
R�

)l−1

l + 1 + l
(Rss

R�

)−2l−1

⎤
⎦ .

Therefore, the higher the model number, l, the faster the mode
falls off with radial distance. Through knowing Br, the Bθ and
Bφ components may be uniquely determined using ∇ · B = 0
and B = −∇Ψ to first determine Ψ and then the horizontal field
components where

Bθ (r, θ, φ, t) =
∑

l

l∑
m=−l

Clm

∂Qlm(θ )

∂θ
eimφ,

Bφ(r, θ, φ, t) =
∑

l

l∑
m=−l

im

sin θ
ClmQlm(θ )eimφ,

and

Clm(r, t) = Blm(R�, t)

×
⎡
⎣

(
r

R�

)−l−2 − (
Rss

R�

)−2l−1( r
R�

)l−1

(l + 1) + l
(

Rss

R�

)−2l−1

⎤
⎦

are the mode amplitudes associated with the angular compo-
nents of the field. Note that the equations defining the three
components of B contain both real and imaginary terms where
only the real parts are considered physical and used within this
study.

2.2.4. Null Point Finding Method

In order to scan the simulation for the location of coronal
null points, the trilinear null finding method of Haynes &
Parnell (2007) is used where it is adapted to work in spherical
coordinates. The method is split into three distinct parts:
reduction, trilinear analysis, and then locating the null point
to sub-grid resolution through a root finding technique. In the
reduction stage, every grid cell is scanned and a simple test
is used to determine whether or not a null point may exist.

A necessary but not sufficient condition for a null is that all the
three field components as defined on the corners of the cube must
reverse sign. Applying this condition reduces the number of cells
from 1,212,416 to 20,718 in the “instant day” simulations (1.7%
of the cells are retained) and to 15,833 in the simulated synoptic
magnetograms (1.3% of the cells are retained).

The second stage of the method is a trilinear analysis of each
cell that is remaining. This is based on the fact that if a null
point exists then it must lie on all three of the zero curves,
Br = Bθ = 0, Bθ = Bφ = 0, and Bφ = Br = 0. The existence
of such curves is first considered on the faces of each cell,
where the lines Br = 0, Bθ = 0, and Bφ = 0 are considered.
To consider this, each field component is expressed in terms of
a bilinear equation,

Bi = ai + bix + ciy + dixy, (8)

where i indicates the component of the magnetic field consid-
ered, and x and y represent the spherical coordinates within the
plane of the cell face. For simplicity, it is assumed that the range
of each x and y value is normalized such that 0 � x � 1 and 0 �
y � 1. The constants are determined from the values of the field
on the cell corners such that ai = Bi(0,0), bi = Bi(1,0) − Bi(0,0),
ci = Bi(0,1) − Bi(0,0), and di = Bi(1,1) − Bi(1,0) − Bi(0,1) − Bi(0,0)
(where Bi(0,0) = Bi(0, 0)). To solve for any single intersection,
pairs of equations Bi = Bj = 0 are considered and the values
of x and y which satisfy this and lie between 0 � x � 1 and
0 � y � 1 are found.

These points represent the location where zero curves thread-
ing through the interior of the cell cross the boundary of the cell.
A necessary condition for a single null to occur in the cell is that
each possible combination of these zero curves, must pierce the
boundary of the cell in pairs, however, it is possible for one zero
curve to cross the boundary at more than one pair of points. A
null exists along any given zero curve if and only if the third
component of the field is of opposite sign at the endpoints which
lie on the face.

Once the existence of a null has been confirmed, it is then
located down to sub-grid resolution using a three-dimensional
version of the Newton–Raphson method for finding roots
of equations. The Newton–Raphson method is repeated until
|B| � 1e − 4. Various starting points are used until the iterative
method is successful within the cell. Should the method fail,
the grid is then split up into eight sub-grid cells, using trilinear
interpolation, and the trilinear process is then repeated on these
sub-cells.

While the trilinear method will yield the location of nulls
throughout the simulation. One key point is whether or not the
null points are connected to the global dipole. This is key as it
is only these that are affected by the reversal of the overlying
global dipole on the Sun at solar maximum. Figure 6 shows two
scans from the instant day simulation. In each case, the nulls
have been located (crosses), and field lines plotted around them.
The image on the top shows a null that has a connection with
the global dipole, as the field lines around the null extend up
into the polar regions. In the image on the bottom, several nulls
are found and the field lines surrounding a typical example are
plotted. This null has no connection with the overlying dipolar
field on the Sun.

3. NULL POINT BEHAVIOR

The properties of the null points found within the global
simulations are now considered where first the general proper-
ties of the null points throughout the simulations are discussed
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Figure 6. Images showing a field line plot around a null that is connected with the global dipole (top) and a set of nulls not connected with the global dipole (bottom).

(Section 3.1), next the number of nulls as a function of bipoles
emergence rates is considered (Section 3.2), and finally the re-
lationship between the nulls and their underlying photospheric
flux distributions is shown (Section 3.3).

3.1. Null Point Variation

Figure 7 presents the variation of null points for both the
instant day (a) and (b)) and simulated synoptic magnetogram
cases (c) and (d) for cycles 2 and 3 which are simulated to
match KP synoptic magnetograms. In each case, (a) and (c)
show the variation in total number of null points per day
as a function of time, and (b) and (d) show the number of
null points connected with the overlying global dipole. The
sampling rate is every 27 days. Both sets of graphs show that
the number of null points varies cyclically with the emergence
rate during the solar cycle. At solar minimum, there are fewer
null points than at solar maximum. One of the main features
of these graphs is that the number of coronal null points
found is high with peak values at cycle maximum of 15–17
per day in the instant day simulation. It is clear that fewer
null points are found in the simulated synoptic magnetograms.
The total number of null points within either simulation is
approximately one quarter to a third of the number of emerged
bipoles (a total of 2843 in the “instant day” simulation and
2437 in the simulated synoptic magnetograms). Therefore, the
simulated synoptic magnetograms lose approximately 1/6 of the
total number of nulls (relative to the instant day simulations).
This is due to the loss of information and complexity of the
photospheric field encountered when creating the simulated
synoptic magnetograms. This is an important caveat which must

be kept in mind when using synoptic magnetograms to represent
the actual field of the Sun. The number of null points connected
with the global dipole is found to be a very small fraction of the
total nulls. In the “instant day” maps, only 8% of the total null
points are connected to the global dipole and in the simulated
synoptic magnetograms it is only 7%. A key feature of both
the graphs is that after solar maximum of each cycle there are
no null points connected with the global dipole until the new
solar cycle begins, as predicted in the schematic of Figure 1.
However, as there are a similar number of nulls in both the
rising and the declining phase, the creation of the majority of
null points depends upon the configuration of the underlying
active latitude flux and not on the global dipole. This implies
that the magnetic breakout configuration as a model of CME
initiation is not solar cycle phase dependent but is applicable,
and indeed occurs, throughout the rising and declining phases.

Figure 8 shows the variation of null point properties within the
“instant day” simulation for cycles 2 and 3 which are matched
to KP. A similar graph is found for the simulated synoptic
magnetograms; however, it is not shown here as its features are
nearly identical to those shown in Figure 8. Figure 8(a) shows
the distribution of null points with latitude. It can be seen that
the majority of nulls are confined to ±50◦ latitude and therefore
connect to the underlying active latitude flux. A key feature
of these graphs is the presence of a significant number of null
points over the equatorial region of the Sun. If null points occur
in the equatorial plane, then the breakout model could possibly
account for earthwardly directed CMEs in the equatorial plane.
Figure 8(b) shows the average absolute value of latitude of null
points over time. It can clearly be seen that as the solar cycle
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(a) (b)

(c) (d)

Figure 7. Graphs showing the variation in total number of nulls found in (a) the instant day simulation and (c) the simulated synoptic simulation. The number of those
nulls connected with the overlying global dipole can also be seen for (b) the instant day map simulation and (d) the simulated synoptic simulation. The double-ended
arrows in each graph denote a two year time period around cycle maximum determined from the peaks in bipole emergence rate.

progresses the null points occur at lower and lower latitudes
following the butterfly diagram.

Figure 8(c) shows the average radial distance of the null points
as a function of latitude. The average radial distance slightly
increases as the null points occur closer to the equator; while it
is true, the average radial distance remains very low in the corona
(peaking below 1.25 solar radii). Figure 8(d) shows the number
of coronal nulls against radial distance in the corona. From
this graph, it can be seen that the majority of null points occur
below 1.5 solar radii. For comparison, the dashed line denotes
a line of slope −3 which indicates that the nulls fall off with
radial distance as 1/r3. This matches the results of Longcope
et al. (2003) who found this relation in terms of isolated point
sources. Figure 8(e) shows the average radial distance of null
points with time, and it can be seen that the coronal null radial
distances follow a cyclic variation throughout the solar cycle.
As the overlying global dipole weakens and the underlying field
becomes stronger, the nulls reach higher into the corona. As
the overlying dipole field strengthens in the declining phase
of the cycle and the flux in the active region belt reduces, the
nulls become restricted to lower radii. In the graphs described
above a wide range of scatter is found. To consider whether
averaging may reduce this and produce simpler trends, the
present simulation has been extended by adding three additional
theoretical cycles. Doing so only slightly reduces the scatter, so
we believe that this scatter is a true feature where it is the result
of the complicated underlying photospheric fields.

In Figure 9, butterfly distributions of the latitude of the null
points are shown. The left-hand image shows the distribution
of null point latitudes in the “instant day” simulation, the right-
hand image shows the latitude distribution of null points in the
“simulated synoptic magnetogram” simulation. It can be seen
that the location of null points generally follows the pattern of
sunspot emergence, with null points forming closer to the equa-
tor as the solar cycle progresses through the rising and declining
phases. On comparing Figure 9 with Figure 3(a), it can be seen
that the null point butterfly diagram has a much wider spread
compared to the bipole emergence butterfly diagram. A notice-
able feature is that there is a steady stream of null points form-
ing closer to the polar caps around cycle maximum. After solar
maximum and subsequent polar field reversal, these null points
disappear until the following solar cycle begins. These are null
points that are all connected with the overlying global dipole.

An important result from this study is that the majority of null
points are dependent on the underlying active region flux. This
means that the overlying global dipole reversal that occurs after
solar maximum will not indicate a disappearance of null points
throughout the declining phase of the solar cycle. While it is true
that some nulls are linked to the global dipole, their numbers are
not significant enough to indicate any decrease in applicability
of the magnetic breakout model. The consequence of this is that
null points will occur throughout the entire solar cycle, and the
breakout model is applicable throughout all stages as a possible
mechanism for CME initiation.



1030 COOK, MACKAY, & NANDY Vol. 704

(a) (b)

(c) (d)

(e)

Figure 8. Graphs from the instant day map simulation showing (a) the distribution of nulls with latitude, (b) the average absolute value of latitude with time, (c) the
average radial extent of a null with latitude, (d) the distribution of nulls with radial distance where the dashed straight line shows a gradient of −3, and (e) the average
radial extent of a null with time. In (b) and (e), the double-ended arrows denote a two year time period around cycle maximum as determined from the peak in bipole
emergence rate.

3.2. Null Point Numbers in Relation to Bipolar Emergence
Rates

To understand how coronal null points depend upon the lower
latitude active region flux, the relationship between the number
of coronal null points and the emergence rates of the bipolar
active regions is investigated. Figure 10 shows a scatter diagram
of the number of coronal null points every 27 days against the
number of bipolar regions emerged in that same 27 day period.
It can be seen that there is a positive, linear association where
there is roughly a relation of 1/3 of the bipoles emerged to the

number of null points (denoted by the solid straight line; a best fit
gives a gradient of 0.29). Even though there is a rough relation
of a linear fit, it can be seen that there is a very wide scatter
both above and below the line. This generally means that, as the
number of bipoles emerged increases, so does the number of
coronal null points present within the simulation. The number
is less than the theoretical value of 1/2 (dashed line), assuming
that a single null point can exist between every two bipoles
that emerge in a quadrupolar configuration. However, the value
of 1/2 still lies within the width of the scatter in the diagram.
Therefore, active periods of solar cycles should have many more
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Figure 9. Butterfly diagrams showing the distribution of null points in (a) the “instant day” map simulation (left) and (b) the simulated synoptic magnetogram
simulation (right).

Figure 10. Scatter plot of the number of null points found every 27 days vs.
the number of bipolar regions emerged every 27 days. The triangle in the center
indicates the mean point of both data sets. The solid line denotes a gradient of
1/3 while the dashed line 1/2.

coronal null points than inactive periods and consequently more
possible locations would exist for breakout configurations. An
interesting feature can be seen in Figure 10 when the emergence
rate of bipoles is low. When the emergence rate falls below 15
regions per 27 days an extremely wide scatter is found and there
is no clear relationship between regions emerged and number of
null points. The upper limit in the scatter provides a near one-
to-one relationship between bipoles emerged and coronal nulls.
The reason for this is discussed in Section 3.3, where the null
points are classified relative to the underlying magnetic flux.

Figure 11 shows the number of coronal null points found in
the “instant day” simulation when (a) 100%, (b) 75%, (c) 50%,
and (d) only 25% of the bipoles were emerged. The number
of bipoles is reduced by randomly removing them from the
previous run. It can clearly be seen that, as the number of bipoles
emerged within the simulation decreases, the total number of
null points decreases. Between Figures 11(a) and (d), where
the number of bipoles is reduced by 75%, we find that the
total number of nulls reduces by 63%. Therefore, the loss in
number of nulls is slightly less than that of bipoles, but the
rates of decrease are consistent with one another and Figure 10.
Therefore, the gradient of 1/3 obtained in Figure 10 only holds
for large emergence rates and as the emergence rate dips to

lower values, the results are not robust. The reason for this is
explained in the next section where the location of null points
is considered in relation to the distribution of radial flux at the
photosphere.

3.3. Null Point Topology Classification

After locating all of the null points within the “instant
day” simulation, the photospheric distribution that causes the
coronal null point to exist is studied in order to classify them.
The four types of photospheric distribution can be seen in
Figure 12 and are defined as, from left to right, (a) the triple
polarity configuration, (b) a newly emerged quadrupolar flux
distribution, (c) an enclosed quadrupolar flux distribution which
will occur across the equator as bipoles with opposite orientation
in each hemisphere interact, and (d) an advected quadrupolar
flux distribution. In each case, the star denotes the location of
the coronal null. For each case, the top panel gives an idealized
photospheric setup, while the bottom image is taken from the
“instant day” map simulation and shows an actual example of
each of the four photospheric flux distributions. On close
inspection, it can be seen that cases (b) and (d) are the same
from a topological standpoint. The distinction we are making
between them is that (b) is formed by the emergence of bipoles in
close proximity, while (d) requires convergence and interaction
between the bipoles before a null can form. This information
will enable us to determine whether configurations (a) or (d)
are responsible for the extended width of the null point butterfly
diagram.

Figure 13 shows the number and variation of null points
that exist, within each of the four configuration types. It can
be seen that the majority of coronal null points occur due to
a newly emerged quadrupolar flux system on the photosphere
(Figure 13(b)). The numbers of coronal nulls of this type of
configuration vary cyclically with emerging bipole numbers,
indicating their dependence upon the newly emerging bipoles
within the solar cycle. Figure 13(d) shows the number of
coronal nulls that are classified as an advected quadrupolar flux
distribution on the solar surface. The number of nulls of this
form starts off low at the start of the cycle. Then as the newly
emerging surface flux begins to evolve due to meridional flow,
differential rotation and diffusion, and bipoles converge toward
one another. This causes the advected quadrupolar formations
and associated null points to form. Figure 13(a) shows the
number of coronal null points that are classified as a triple
polarity photospheric configuration. These type of null points
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(a) (b)

(c) (d)

Figure 11. Graphs showing (a) the number of nulls found in the instant day map simulation with 100% of the bipoles emerged, (b) the number of nulls found in the
instant day map simulation with 75% of the bipoles emerged, (c) the number of nulls found in the instant day map simulation with 50% of the bipoles emerged, and
(d) the number of nulls found in the instant day map simulation with 25% of the bipoles emerged. The double-ended arrows in each graph denote a two year time
period around cycle maximum determined from the peaks in bipole emergence rate.

Figure 12. Image showing examples of the photospheric flux distributions used
in order to classify the null point configuration. The first example is (a) a triple
polarity configuration, (b) a newly emerged quadrupolar flux distribution, (c)
an enclosed quadrupolar flux distribution, and (d) an advected quadrupolar flux
distribution.

seem to occur throughout the rising phase of the cycle, and
for a limited time after solar maximum, at which point they
do not exist until the following cycle. This is due to the
fact that the null points with this classification occur almost
exclusively as pictured in Figure 12. The null is formed due to
the magnetic field from one bipolar region and the polar field.
At the start of the cycle and throughout the rising phase, the
bipoles emerge at higher latitudes on the solar surface and in
fewer numbers. This will cause several of the bipoles to have
connections with the polar field within that hemisphere resulting
in coronal null points. This clearly explains the wide scatter and
tendency for higher number of nulls relative to emerged bipoles
in Figure 10, when the number of emerging nulls are low. Later
in the cycle, at approximately solar maximum and throughout
the declining phase of the cycle, the bipolar regions emerge at
lower latitudes and in greater numbers. This means that there
are more interactions between the fluxes of one bipolar region
and another, and nulls of a quadrupolar configuration are more
likely to occur. This also explains why a 75% decrease in bipole
emergence rates only results in a 68% decrease in the number
of nulls. When fewer bipoles emerge there is an increased
chance of a single bipole interacting with the polar field and
producing a null, thus compensating for the decrease based on
bipole–bipole interactions. As both the advected quadrupolar
and triple polarity configurations have significant numbers, this
illustrates why the width of the null point butterfly diagram is
much wider than that of the bipole emergence butterfly diagram.



No. 2, 2009 CORONAL NULL POINTS 1033

(a) (b)

(c) (d)

Figure 13. Graphs showing the classification of the null points within the “instant day” simulation. The graphs show results for (a) a triple polarity configuration, (b)
a newly emerged quadrupolar configuration, (c) an enclosed quadrupolar configuration, and (d) an advected quadrupolar configuration. The double-ended arrows in
each graph denote a two year time period around cycle maximum determined from the peaks in bipole emergence rate.

Null may form at any point, as bipoles are advected across the
solar surface and not just when bipoles emerge. Figure 13(c)
shows the number of coronal null points that are classified by
an enclosed quadrupolar flux configuration on the photosphere.
The number of null points of this type remains fairly constant
throughout the simulation. A slight peak exists around solar
maximum, due to the complexity of the photospheric field at that
point, which has the highest rate of emergence. The constancy
of this value fits the fact that these null points require cross-
equatorial interactions and as bipoles emerge throughout the
cycle at random longitudes there should be equal probability of
this occurring.

In terms of all of the coronal null points that occurred in
the simulation, approximately 45.3% had a photospheric flux
distribution of the newly emerged quadrupolar type, 25.4% had
an advected quadrupolar flux distribution on the photosphere,
17.6% had an enclosed quadrupolar photospheric flux distribu-
tion, and 11.7% have a triple polarity photospheric flux distri-
bution. The triple polarity photospheric flux distributions are of
a higher percentage compared to the number of nulls connected
to the global dipole. This is because, in some cases, the triple
polarity configurations may occur when bipoles interact with
unipolar regions that do not lie at the poles.

4. CONCLUSIONS

In this paper, the existence of coronal null points has been
considered through simulations of the Sun’s global magnetic

field. As coronal null points are a necessary element of the
magnetic breakout model, it is expected that the location and
variation of such null points will indicate possible CME source-
region locations and their variation. As discussed in Section 1
and illustrated in Figure 1, the reversal of the global dipole
in the declining phase of the solar cycle may have significant
consequences for the existence of coronal null points and
therefore on the issue of the solar cycle phase dependence of
the breakout model. The reversal of the global dipolar field and
the orientation (tilt-angle) distribution of solar active regions are
intimately related in the context of the solar dynamo mechanism
(Nandy & Choudhuri 2001; Yeates et al. 2008), and therefore
connects magnetic field dynamics in the solar interior to coronal
activity.

To model the variation of the Sun’s global magnetic field,
both at the level of the photosphere and corona, a combination
of magnetic flux transport and PFSS models are applied.
The locations and properties of the coronal null points are
then considered through two distinct, but related, data sets
prescribing the lower photospheric boundary condition. The first
data set which we call the “instant day simulation” considers
the flux distribution produced by the flux transport simulation
and may be regarded as a true representation of the whole Sun
magnetic field. This prescribes the radial field over the whole
solar surface at any instant in time. The second data set, which
we call the “simulated synoptic” data set considers the existence
of coronal null points when the instant day simulation is used
to produce synoptic magnetograms in a manner similar to that
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carried out by KP (i.e., when limited observations are present
and we can only view a portion of the solar disk). Through
considering both data types, we were able to categorize what
effect such a synoptic approximation makes on the number and
location of coronal null points. Although this study is carried out
with theoretical simulations, the flux values of these simulations
are constrained by observations from KP. The present study
differs from that of previous studies (Barnes 2007) as it considers
the large-scale global field, rather than small-scale isolated
regions.

Both the instant day and simulated synoptic simulations show
that the number of coronal nulls varies cyclically throughout the
simulation and in phase with the emergence rate of new flux. As
the emerging flux follows the well-known butterfly diagram, the
location of coronal nulls follows a similar pattern. There is how-
ever a difference in the structure of the butterfly diagram for the
nulls as it shows a polar drift in the rising phase of the solar cycle.
Over the two simulated cycles considered, a total of 2843 coro-
nal nulls were found for the instant day simulations and 2437
for the simulated synoptic magnetograms. Therefore, through
the process of forming synoptic magnetograms approximately
1/6 of the nulls are lost. This is a significant but acceptable
number. At cycle maximum for the instant day simulations, the
number of null points peaks at around 15–17 per day. When the
number of nulls are compared to the rate of bipole emergence,
a wide scatter is observed; however, on average, the ratio of
nulls to emerged bipoles is approximately 1/3. Active cycles
should therefore have many more coronal null points and break-
out configurations than inactive ones. As the properties of the
null points in the simulated synoptic magnetograms give similar
results to that of the instant day simulations, only results from
the latter simulations are discussed from now on.

On studying the latitudes of formation of the nulls, it is found
that the vast majority of nulls form within the active latitude belts
of ±50◦, with only very few forming outside this range. This
indicates that it is the complex underlying active regions fields
that are key in forming the coronal nulls and not the interaction
of single bipoles with the global dipole. This is supported by
the result that only 8% of the total number of nulls found were
connected to the global dipole. As the vast majority of nulls
are not connected to the global dipole, there is no significant
change in the number of nulls between the rising and declining
phases; therefore, the breakout configurations occur throughout
the solar cycle. The hypothesis presented in Section 1 and
Figure 1 is found to be true for nulls connected to the global
dipole, however, their numbers are not significant.

As the majority of the coronal nulls are found to form at
active latitudes, due to the complex structure of the underlying
photospheric fields, a consequence of this is that the nulls form
low down in the corona. An average radial extent of 1.25 R�
(175,000 km above the photosphere) is found. In addition, the
number of nulls falls off as 1/r3, as predicted by Longcope
et al. (2003). When the null points are classified depending upon
the photospheric flux distribution leading to their creation, it is
found that 71% form in quadrupolar flux distributions (either
newly emerged quadrupoles—46%, or advected quadrupoles—
25%), 18% form around the equator due to cross-hemisphere
bipole interactions, while only 11% are due to the interaction
of single bipoles with unipolar regions of flux such as the polar
fields.

In previous studies such as that of Barnes (2007), the authors
have considered a direct one-to-one comparison of coronal nulls
and CMEs as a test for the magnetic breakout model based

on extrapolations from magnetograms with limited field of
view. Such a one-to-one comparison would not be useful in
the present study as we are not considering actually observed
configurations, but rather simulated configurations based on
global coronal modeling. Therefore, we restrict ourselves to
comparing the qualitative behavior uncovered in our simulations
to observations.

Over the years, much work has been done to calculate the
variation of CMEs throughout the solar cycle (Cremades &
St. Cyr 2007). Using all of the coronagraph data collected so
far, almost three solar cycles worth, Cremades & St. Cyr (2007)
found that CMEs follow a cyclic variation throughout the solar
cycle, with more occurring at solar maximum and fewer at
solar minimum. This fits the general variation of coronal null
points found in this paper. Moreover, detailed analysis of the
properties of CMEs and their source-region variation over the
solar cycle indicate that, in fact, the spatio-temporal distribution
of CME sources do follow the sunspot butterfly diagram rather
closely (Yashiro et al. 2004; Cremades et al. 2006; Howard
et al. 2008). A comparison with Figure 2 of the latter two works
(where the observed CME time–latitude butterfly diagrams are
plotted) shows that our simulated variation of coronal null points
(Figure 9) agrees remarkably well with the observations. The
reason is that the coronal null point distribution (or breakout
topology) is simply coupled to active region distribution; its
dependence on the phase (i.e., rising or declining) of the
solar cycle and to the global dipolar orientation is minimal,
as uncovered through our simulations.

In summary, we have considered the properties and variation
of coronal null points in full Sun global simulations over two
solar cycles. These null points are a key ingredient of the
magnetic breakout model first proposed by Antiochos (1998)
as a model for the initiation of CME’s. The results of this study
show that the majority of null points (over 90%) do not connect
to the global dipole, and therefore there is no significant variation
in the abundance of breakout configuration between the rising
and declining phases of the solar cycle (other than that related to
just asymmetry in sunspot numbers). The lack of dependence of
the majority of the null points upon the global dipole is one of our
key conclusions. As a consequence, in principle, the magnetic
breakout model remains equally applicable at all stages of the
solar cycle as an initiation mechanism for CMEs.
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