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ABSTRACT

We consider the problem of fitting a parametric model to time-series data that are afflicted by correlated noise.
The noise is represented by a sum of two stationary Gaussian processes: one that is uncorrelated in time, and
another that has a power spectral density varying as 1/f γ . We present an accurate and fast [O(N )] algorithm
for parameter estimation based on computing the likelihood in a wavelet basis. The method is illustrated and
tested using simulated time-series photometry of exoplanetary transits, with particular attention to estimating
the mid-transit time. We compare our method to two other methods that have been used in the literature, the
time-averaging method and the residual-permutation method. For noise processes that obey our assumptions, the
algorithm presented here gives more accurate results for mid-transit times and truer estimates of their uncertainties.
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1. INTRODUCTION

Frequently one wishes to fit a parametric model to time-
series data and determine accurate values of the parameters
and reliable estimates for the uncertainties in those parameters.
It is important to gain a thorough understanding of the noise
and develop appropriate methods for parameter estimation,
especially at the research frontier, where the most interesting
effects are often on the edge of detectability. Underestimating
the errors leads to unjustified confidence in new results, or
confusion over apparent contradictions between different data
sets. Overestimating the errors inhibits potentially important
discoveries.

When the errors in the data are well understood and un-
correlated, the problem of parameter estimation is relatively
straightforward (see, e.g., Bevington & Robinson 2003; Gould
2003; Press et al. 2007). However, when the noise is not well
understood—and particularly when the noise exhibits correla-
tions in time—the problem is more challenging (see, e.g., Koen
& Lombard 1993; Beran 1994). Traditional methods that ignore
correlations often give parameter estimates that are inaccurate
and parameter errors that are underestimated. Straightforward
generalization of the traditional methods is computationally in-
tensive, with time complexity O(N2) in the worst cases (where
N is the number of data points). This makes certain analyses
impractical.

Our specific concern in this paper is the analysis of time-series
photometry of exoplanetary transits. During a transit, a planet
passes in front of the disk of its parent star, which is evident
from the slight diminution in the light received from the star.
A model of a transit light curve may have many parameters,
but we focus mainly on a single parameter, the mid-transit
time tc, for three reasons. The first reason is the simplicity
of a single-parameter model. The second reason is that tc is
a unique piece of information regarding each transit event, and
as such, the accuracy cannot be improved by combining results
from multiple transit observations. Instead, one must make the
most of single-event observations even if they are afflicted by
correlated noise. The third reason is that transit timing offers a
means of discovering additional planets or satellites by seeking

anomalies in a sequence of transit times due to gravitational
perturbations (Holman & Murray 2005; Agol et al. 2005).1

Beginning with the work of Pont et al. (2006), it has been
widely recognized that time-correlated noise (“red noise”) is
a limiting factor in the analysis of transit light curves. Many
practitioners have attempted to account for correlated errors in
their parameter estimation algorithms (see, e.g., Bakos et al.
2006; Gillon et al. 2006; Winn et al. 2007, 2009; Southworth
2008). Among these schemes are the “time-averaging” method,
in which the effects of correlations are assessed by computing
the scatter in a time-binned version of the data (Pont et al. 2006)
and the “residual-permutation” method, a variant of bootstrap
analysis that preserves the time ordering of the residuals (Jenkins
et al. 2002).

In this paper, we present an alternative method for parameter
estimation in the presence of time-correlated noise, and compare
it to those two previously advocated methods. The method
advocated here is applicable to situations in which the noise
is well described as the superposition of two stationary (time-
invariant) Gaussian noise processes: one which is uncorrelated,
and the other of which has a power spectral density (PSD)
varying as 1/f γ .

A more traditional approach to time-correlated noise is the
framework of autoregressive moving average (ARMA) pro-
cesses (see, e.g., Box & Jenkins 1976). The ARMA noise models
can be understood as complementary to our 1/f γ model, in that
ARMA models are specified in the time domain as opposed
to the frequency domain, and they are most naturally suited
for modeling short-range correlations (“short-memory” pro-
cesses) as opposed to long-range correlations (“long-memory”
processes). Parameter estimation with ARMA models in an as-
tronomical context has been discussed by Koen & Lombard
(1993), Konig & Timmer (1997), and Timmer et al. (2000).
As we will explain, our method accelerates the parameter es-
timation problem by taking advantage of the discrete wavelet
transform (DWT). It is based on the fact that the covariance
matrix of a 1/f γ noise process is nearly diagonal in a wavelet

1 The transit duration is also expected to vary in the presence of additional
gravitating bodies; see, e.g., Kipping (2009).

51

http://dx.doi.org/10.1088/0004-637X/704/1/51
mailto:carterja@mit.edu
mailto:jwinn@mit.edu


52 CARTER & WINN Vol. 704

basis. As long as the actual noise is reasonably well described
by such a power law, our method is attractive for its simplicity,
computational speed, and ease of implementation, in addition
to its grounding in the recent literature on signal processing.

The use of the wavelets in signal processing is widespread,
especially for the restoration, compression, and denoising of
images (see, e.g., Mallat 1999). Parameter estimation using
wavelets has been considered but usually for the purpose of
estimating noise parameters (Wornell 1996). An application of
wavelets to the problem of linear regression with correlated
noise was given by Fadili & Bullmore (2002). What is new in
this work is the extension to an arbitrary nonlinear model, and
the application to transit light curves.

This paper is organized as follows. In Section 2, we review the
problem of estimating model parameters from data corrupted by
noise, and we review some relevant noise models. In Section 3,
we present the wavelet method and those aspects of wavelet
theory that are needed to understand the method. In Section 4, we
test the method using simulated transit light curves, and compare
the results to those obtained using the methods mentioned
previously. In Section 5, we summarize the method and the
results of our tests, and suggest some possible applications and
extensions of this work.

2. PARAMETER ESTIMATION WITH “COLORFUL”
NOISE

Consider an experiment in which samples of an observable
yi are recorded at a sequence of times {ti : i = 1, . . . , N}. In
the context of a transit light curve, yi is the relative brightness
of the host star. We assume that the times ti are known with
negligible error. We further assume that in the absence of noise,
the samples yi would be given by a deterministic function,

y(ti) = f (ti;p1, . . . , pK ) = f (ti; �p) (no noise), (1)

where �p = {p1, . . . , pK} is a set of K parameters that specify the
function f. For an idealized transit light curve, those parameters
may be the fractional loss of light δ, the total duration T, and
ingress or egress duration τ , and the mid-transit time tc, in the
notation of Carter et al. (2008). More realistic functions have
been given by Mandel & Agol (2002) and Giménez (2007).

We further suppose that a stochastic noise process ε(t) has
been added to the data, giving

y(ti) = f (ti; �p) + ε(ti) (with noise). (2)

As a stochastic function, �ε = {ε(t1), . . . , ε(tN )} is characterized
by its joint distribution function D(�ε; �q), which in turn depends
on some parameters �q and possibly also the times of observation.
The goal of parameter estimation is to use the data y(ti) to
calculate credible intervals for the parameters �p, often reported
as best estimates p̂k and error bars σ̂pk

with some quantified
degree of confidence. The estimate of �p and the associated
errors depend crucially on how one models the noise and how
well one can estimate the relevant noise parameters �q.

In some cases, one expects and observes the noise to be
uncorrelated. For example, the dominant noise source may be
shot noise, in which case the noise process is an uncorrelated
Poisson process that in the limit of large numbers of counts is
well approximated by an uncorrelated Gaussian process,

D(�ε; �q) = N (ε; σ 2) =
N∏

i=1

1√
2πσ 2

exp

(
− ε2

i

2σ 2

)
, (3)

in which case there is only one error parameter, σ , specifying
the width of the distribution.

If the noise is correlated, then it is characterized by a
joint probability distribution that is generally a function of
all the times of observation. We assume that the function is a
multivariate Gaussian function, in which case the noise process
is entirely characterized by the covariance matrix

Σ(ti , tj ) = 〈ε(ti)ε(tj )〉. (4)

Here, the quantity 〈ε〉 is the mean of the stochastic function ε
over an infinite number of independent realizations. We further
assume that the covariance depends only on the difference in
time between two samples, and not on the absolute time of either
sample. In this case, the noise source is said to be stationary
and is described entirely by its autocovariance R(τ ) (Bracewell
1965):

R(τ ) ≡ 〈ε(t)ε(t + τ )〉. (5)

The parameter estimation problem is often cast in terms of
finding the set of parameters p̂k that maximize a likelihood
function. For the case of Gaussian uncorrelated noise, the
likelihood function is

L =
N∏

i=1

1√
2πσ̂ 2

exp

(
− r2

i

2σ̂ 2

)
, (6)

where ri is the residual defined as yi − f (ti; �p) and σ̂ is
an estimate of the single noise parameter σ . Maximizing the
likelihood L is equivalent to minimizing the χ2 statistic

χ2 =
N∑
i

( ri

σ̂

)2
. (7)

In transit photometry, the estimator σ̂ of the noise parameter
σ is usually not taken to be the calculated noise based on
expected sources such as shot noise. This is because the actual
amplitude of the noise is often greater than the calculated value
due to noise sources that are unknown or at least ill quantified.
Instead, σ̂ is often taken to be the standard deviation of the
data obtained when the transit was not occurring, or the value
for which χ2 = Ndof for the best-fitting (minimum-χ2) model.
These estimates work well when the noise process is Gaussian,
stationary, and uncorrelated. For the case of correlated noise,
Equation (7) is replaced by (Gould 2003)

χ2 =
N∑

i=1

N∑
j=1

ri(Σ̂−1)ij rj . (8)

The case of uncorrelated noise corresponds to Σ̂ij = σ̂ 2δij .
It is at this point where various methods for modeling

correlated noise begin to diverge. One approach is to estimate Σ̂
from the sample autocovariance R̂(τ ) of the time series, just as
σ̂ can be estimated from the standard deviation of the residuals
in the case of uncorrelated noise. However, the calculation of
χ2 has a worst-case time complexity of O(N2), and iterative
parameter estimation techniques can be prohibitively slow. One
might ameliorate the problem by truncating the covariance
matrix at some maximum lag, i.e., by considering the truncated
χ2 statistic

χ2(L) =
N∑

i=1

L∑
l=−L

1<i+l<N

ri(Σ̂−1)i(i+l)ri+l , (9)
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but in the presence of long-range correlations one needs to
retain many lags to obtain accurate parameter estimates. (In
Section 4.3, we will give an example where 50–75 lags were
needed.) Alternatively, one may model the autocorrelation
function and therefore the covariance matrix using an ARMA
model with enough terms to give a good fit to the data (see,
e.g., Koen & Lombard 1993). Again, though, in the presence
of long-range correlations, the model covariance matrix will be
non-sparse and computationally burdensome.

Pont et al. (2006) presented a useful simplification in the
context of a transit search, when data are obtained on many
different nights. In such cases, it is reasonable to approximate
the covariance matrix as block diagonal, with different blocks
corresponding to different nights. Pont et al. (2006) also gave
a useful approximation for the covariance structure within each
block, based on the variance in boxcar-averaged versions of
the signal. Ultimately, their procedure results in an equation
resembling Equation (7) for each block, but where σ̂ is the
quadrature sum of σw (the “white noise”) and σr (the “red noise,”
estimated from the boxcar-averaged variance). In this paper, all
our examples involve a single time series with stationary noise
properties, and the net effect of the Pont et al. (2006) method is
to enlarge the parameter errors by a factor

β =
√

1 +

(
σr

σw

)2

, (10)

relative to the case of purely white noise (σr = 0). We will refer
to this method as the “time-averaging” method.

Another approach is to use Equation (7) without any modi-
fications, but to perform the parameter optimization on a large
collection of simulated data sets that are intended to have the
same covariance structure as the actual data set. This is the basis
of the “residual-permutation” method that is also discussed fur-
ther in Section 4.4. As mentioned above, this method is a variant
of a bootstrap analysis that takes into account time-correlated
noise. More details on both the time-averaging and residual-
permutation methods are given in Section 4.4.

Our approach in this paper was motivated by the desire to
allow for the possibility of long-range correlations, and yet
to avoid the slowness of any method based on Equation (9)
or other time-domain methods. Rather than characterizing the
noise in the time domain, we characterize it by its PSD S(f ) at
frequency f, defined as the square of the Fourier transform of
ε(t), or equivalently, the Fourier transform of the autocovariance
R(τ ). We restrict our discussion to noise sources with a PSD:

S(f ) = A

f γ
(11)

for some A > 0 and the spectral index γ . For the special case
of uncorrelated noise, γ = 0 and S(f ) is independent of f. This
type of noise has equal power density at all frequencies, which
is why it is called “white noise,” in an analogy with visible
light. As γ is increased, there is an increasing preponderance
of low-frequency power over high-frequency power, leading to
longer-range correlations in time.

Noise with a power spectrum 1/f γ is ubiquitous in nature and
in experimental science, including astrophysics (see, e.g., Press
1978). Some examples of 1/f γ noise are shown in Figure 1
for a selection of spectral indices. In an extension of the color
analogy, γ = 1 noise is sometimes referred to as “pink noise”
and γ = 2 noise as “red noise.” The latter is also known as a

Figure 1. Examples of 1/f γ noise. Uncorrelated (white) noise corresponds to
γ = 0. “Pink” noise corresponds to γ = 1. “Red” noise or Brownian motion
corresponds to γ = 2. These time series were generated using the wavelet-based
method described in Section 4.

Brownian process, although not because of the color brown but
instead because of the Scottish botanist Robert Brown. However,
as we have already noted, the term “red noise” is often used to
refer to any type of low-frequency correlated noise.

Here we do not attempt to explain how 1/f γ noise arises in
a given situation. Instead, we assume that the experimenter has
done his or her best to understand and to reduce all sources
of noise as far as possible, but despite these efforts there re-
mains a component of 1/f γ noise. In transit photometry, these
correlations often take the form of “bumps,” “wiggles,” and
“ramps” in a light curve and are often attributed to differential
atmospheric extinction, instrumental artifacts such as imperfect
flat-fielding, and stellar granulation or other astrophysical ef-
fects. The method presented in this paper is essentially a model
of the likelihood function that retains the essential information
in the covariance matrix without being prohibitively expensive
to compute and store. It is based on a wavelet-based description,
the subject of the following section.

3. WAVELETS AND 1/f γ NOISE

One may regard a time series with N points as a vector in an
N-dimensional space that is spanned by N orthonormal unit
vectors, one for each time index (the “time basis”). The
computational difficulty with correlated noise is that the sample
covariance matrix Σ̂ is not diagonal in the time basis, nor is
it necessarily close to being diagonal in realistic cases. This
motivates a search for some alternative basis spanning the data
space for which the covariance matrix is diagonal or nearly
diagonal. For example, if the noise took the form of additive
quasi-periodic signals, it would be logical to work in a Fourier
basis instead of the time basis.

The mathematical result that underpins our analysis algorithm
is that in the presence of 1/f γ noise, the covariance matrix
is nearly diagonal in a suitable wavelet basis. Before giving
the details of the algorithm we will briefly review the wavelet
transform. Our discussion is drawn primarily from Wornell
(1996), Teolis (1998), Daubechies (1988), and Mallat (1999).
Practical details and an sample implementation of the wavelet
transform are given by Press et al. (2007).

A wavelet is a function that is analogous to the sine and
cosine functions of the Fourier transform. Some properties
that wavelets share with sines and cosines are that they are
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localized in frequency space, and they come in families that are
related by translations and dilations. Wavelets are unlike sine
and cosine functions in that wavelets are strongly localized in
time. A wavelet basis is derived from a single “mother wavelet”
ψ(t), which may have a variety of functional forms and analytic
properties. The individual basis functions are formed through
translations and dilations of ψ(t). The choice of a mother
wavelet depends on the specific application. We restrict our
focus to dyadic orthogonal wavelet bases with basis functions

ψm
n (t) = ψ(2mt − n), (12)

for all integers m and n, and we further require ψ(t) to have one
or more vanishing moments.2 In this case, the pair of equations
analogous to the Fourier series and its inversion is

ε(t) =
∞∑

m=−∞

∞∑
n=−∞

εm
n ψm

n (t), (13)

εm
n =

∫ ∞

−∞
ε(t)ψm

n (t)dt, (14)

where εm
n is referred to as the wavelet coefficient of ε(t) at

resolution m and translation n.

3.1. The Wavelet Transform as a Multiresolution Analysis

We will see shortly that some extra terms are required in
Equation (14) for real signals with some minimum and maxi-
mum resolution. To explain those terms it is useful to describe
the wavelet transform as a multiresolution analysis, in which
we consider successively higher-resolution approximations of
a signal. An approximation with a resolution of 2m samples
per unit time is a member of a resolution space Vm. Following
Wornell (1996) we impose the following conditions:

1. if f (t) ∈ Vm then for some integer n, f (t − 2−mn) ∈ Vm,
2. if f (t) ∈ Vm then f (2t) ∈ Vm+1.

The first condition requires that Vm contain all translations (at
the resolution scale) of any of its members, and the second
condition ensures that the sequence of resolutions is nested:
Vm is a subset of the next finer resolution Vm+1. In this way, if
εm(t) ∈ Vm is an approximation to the signal ε(t), then the next
finer approximation εm+1(t) ∈ Vm+1 contains all the information
encoded in εm(t) plus some additional detail dm(t) defined as

dm(t) ≡ εm+1(t) − εm(t). (15)

We may therefore build an approximation at resolution M by
starting from some coarser resolution k and adding successive
detail functions:

εM (t) = εk(t) +
M∑

m=k

dm(t). (16)

The detail functions dm(t) belong to a function space Wm(t), the
orthogonal complement of the resolution Vm.

With these conditions and definitions, the orthogonal basis
functions of Wm are the wavelet functions ψm

n (t), obtained

2 In particular, it is required that the mother wavelet ψ(t) has zero mean. This
is a necessary and sufficient condition to ensure the invertibility of the wavelet
transform.

by translating and dilating some mother wavelet ψ(t). The
orthogonal basis functions of Vm are denoted as φm

n (t), obtained
by translating and dilating a so-called father wavelet φ(t). Thus,
the mother wavelet spawns the basis of the detail spaces, and the
father wavelet spawns the basis of the resolution spaces. They
have complementary characteristics, with the mother acting as
a high-pass filter and the father acting as a low-pass filter.3

In Equation (16), the approximation εk(t) is a member of Vk,
which is spanned by the functions φk

n(t), and dm(t) is a member
of Wm, which is spanned by the functions ψm

n (t). Thus we may
rewrite Equation (16) as

εM (t) =
∞∑

n=−∞
ε̄k
nφ

k
n(t) +

M∑
m=k

∞∑
n=−∞

εm
n ψm

n (t). (17)

The wavelet coefficients εm
n and the scaling coefficients ε̄m

n are
given by

εm
n =

∫ ∞

−∞
ε(t)ψm

n (t)dt, (18)

ε̄m
n =

∫ ∞

−∞
ε(t)φm

n (t)dt. (19)

Equation (17) reduces to the wavelet-only Equation (13) for the
case of a continuously sampled signal ε(t), when we have access
to all resolutions m from −∞ to ∞.4

There are many suitable choices for φ and ψ , differing
in the tradeoff that must be made between smoothness and
localization. The simplest choice is due to Haar (1910):

φ(t) =
{

1 if 0 < t � 1
0 otherwise , (20)

ψ(t) =
⎧⎨
⎩

1 if − 1
2 < t � 0

−1 if 0 < t � 1
2

0 otherwise
. (21)

The left panel of Figure 2 shows several elements of the approx-
imation and detail bases for a Haar multiresolution analysis.
The left panels of Figure 3 illustrate a Haar multiresolution
analysis for an arbitrarily chosen signal ε(t), by plotting both
the approximations εm(t) and details dm(t) at several resolutions
m. The Haar analysis is shown for pedagogic purposes only.
In practice, we found it advantageous to use the more compli-
cated fourth-order Daubechies wavelet basis, described in the
following section, for which the elements and the multireso-
lution analysis are illustrated in the right panels of Figures 2
and 3.

3.2. The Discrete Wavelet Transform

Real signals are limited in resolution, leading to finite M and
k in Equation (17). They are also limited in time, allowing only a
finite number of translations Nm at a given resolution m. Starting

3 More precisely, the wavelet and scaling functions considered here are
“quadrature mirror filters” (Mallat 1999).
4 The signal must also be bounded in order for the approximation to the
signal at infinitely coarse resolution to vanish, i.e., limk→−∞ εk(t) = 0.
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Figure 2. Examples of discrete wavelet and scaling functions, for N = 2048. Left: Haar wavelets and the corresponding father wavelets, also known as second-order
Daubechies orthonormal wavelets or 2Dm

n and 2Am
n . Right: fourth-order Daubechies orthonormal wavelets, or 4Dm

n and 4Am
n .

Figure 3. Illustration of a multiresolution analysis, for the function ε(t) = sin[4π (t/1024)3] (dashed line). Plotted are the approximations εm(t) to the function at
successive resolutions, along with the detail functions dm(t). Left: using the Haar wavelet basis. Right: using the fourth-order Daubechies wavelet basis.

from Equation (17), we truncate the sum over n and reindex the
resolution sum such that the coarsest resolution is k = 1, giving

εM (t) =
N1∑
n=1

ε̄1
nφ

1
n(t) +

M∑
m=2

Nm∑
n=1

εm
n ψm

n (t), (22)

where we have taken t = 0 to be the start of the signal. Since
there is no information on timescales smaller than 2−M , we need
only consider εM (ti) at a finite set of times ti:

ε(ti) =
N1∑
n=1

ε̄1
nφ

1
n(ti) +

M∑
m=2

Nm∑
n=1

εm
n ψm

n (ti). (23)

Equation (23) is the inverse of the DWT. Unlike the continuous
transform of Equation (13), the DWT must include the coarsest
level approximation (the first term in the preceding equation)
in order to preserve all the information in ε(ti). For the Haar
wavelet, the coarsest approximation is the mean value. For data
sets with N = n02M uniformly spaced samples in time, we will
have access to a maximal scale M, as in Equation (23), with
Nm = n02m−1.

A crucial point is the availability of the fast wavelet trans-
form (FWT) to perform the DWT (Mallat 1989). The FWT is a

pyramidal algorithm operating on data sets of size N = n02M

returning n0(2M − 1) wavelet coefficients and n0 scaling coeffi-
cients for some n0 > 0, M > 0. The FWT is a computationally
efficient algorithm that is easily implemented (Press et al. 2007)
and has O(N ) time complexity (Teolis 1998).

Daubechies (1988) generalized the Haar wavelet into a larger
family of wavelets, categorized according to the number of
vanishing moments of the mother wavelet. The Haar wavelet
has a single vanishing moment and is the first member of the
family. In this work, we used the most compact member (in time
and frequency), ψ =4D and φ =4A, which is well suited to the
analysis of 1/f γ noise for 0 < γ < 4 (Wornell 1996). We plot
4Dm

n and 4Am
n in the time domain for several n, m in Figure 2,

illustrating the rather unusual functional form of 4D. The right
panel of Figure 3 demonstrates a multiresolution analysis using
this basis. Press et al. (2007) provide code to implement the
wavelet transform in this basis.

3.3. Wavelet Transforms and 1/f γ Noise

As alluded in Section 3, the wavelet transform acts as a
nearly diagonalizing operator for the covariance matrix in the
presence of 1/f γ noise. The wavelet coefficients εm

n of such
a noise process are zero mean, nearly uncorrelated random
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variables. Specifically, the covariance between scales m, m′,
and translations n, n′ is (Wornell 1996, p. 65)

〈
εm
n εm′

n′
〉 ≈ (

σ 2
r 2−γm

)
δm,m′δn,n′ . (24)

The wavelet basis is also convenient for the case in which the
noise is modeled as the sum of an uncorrelated component and
a correlated component:

ε(t) = ε0(t) + εγ (t), (25)

where ε0(t) is a Gaussian white-noise process (γ = 0) with
a single noise parameter σw, and εγ (t) has S(f ) = A/f γ . In
the context of transit photometry, white noise might arise from
photon-counting statistics (and in cases where the detector is
well calibrated, σw is a known constant), while the γ = 0 term
represents the “rumble” on many timescales due to instrumental,
atmospheric, or astrophysical sources. For the noise process of
Equation (25), the covariance between wavelet coefficients is

〈
εm
n εm′

n′
〉 ≈ (

σ 2
r 2−γm + σ 2

w

)
δm,m′δn,n′ , (26)

and the covariance between the scaling coefficients ε̄m
n is

〈
ε̄m
n ε̄m

n

〉 ≈ σ 2
r 2−γmg(γ ) + σ 2

w, (27)

where g(γ ) is a constant of order unity; for the purposes of
this work, g(1) = (2 ln 2)−1 ≈ 0.72 (Fadili & Bullmore 2002).
Equations (26) and (27) are the key mathematical results that
form the foundation of our algorithm. For proofs and further
details, see Wornell (1996).

It should be noted that the correlations between the wavelet
and scaling coefficients are small but not exactly zero. The
decay rate of the correlations with the resolution index depends
on the choice of a wavelet basis and on the spectral index γ .
By picking a wavelet basis with a higher number of vanishing
moments, we hasten the decay of correlations. This is why we
chose the Daubechies fourth-order basis instead of the Haar
basis. In the numerical experiments described in Section 4,
we found the covariances to be negligible for the purposes
of parameter estimation. In addition, the compactness of the
Daubechies fourth-order basis reduces artifacts arising from the
assumption of a periodic signal that is implicit in the FWT.

3.4. The Whitening Filter

Given an observation of noise ε(t) that is modeled as in
Equation (25), we may estimate the γ = 0 component by
rescaling the wavelet and scaling coefficients, and filtering out
the white component:

εγ (t) =
N1∑
n=1

(
σ 2

r 2−γ g(γ )

σ 2
r 2−γ g(γ ) + σ 2

w

)
ε̄1
nφ

1
n(t) (28)

+
M∑

m=2

Nm∑
n=1

(
σ 2

r 2−γm

σ 2
r 2−γm + σ 2

w

)
εm
n ψm

n (t). (29)

We may then proceed to subtract the estimate of the correlated
component from the observed noise, ε0(t) = ε(t) − εγ (t)
(Wornell 1996, p. 76). In this way, the FWT can be used to
“whiten” the noise.

3.5. The Wavelet-based Likelihood

Armed with the preceding theory, we rewrite the likelihood
function of Equation (6) in the wavelet domain. First we
transform the residuals ri ≡ yi − f (ti; �p), giving

rm
n = ym

n − f m
n ( �p) = εm

γ,n + εm
0,n, (30)

r̄1
n = ȳ1

n − f̄ 1
n ( �p) = ε̄1

γ,n + ε̄1
0,n, (31)

where ym
n and f m

n ( �p) are the discrete wavelet coefficients
of the data and the model. Likewise, ȳ1

n and f̄ 1
n ( �p) are the

n0 scaling coefficients of the data and the model. Given the
diagonal covariance matrix shown in Equations (26) and (27),
the likelihood L is a product of Gaussian functions at each scale
m and translation n:

L =
⎧⎨
⎩

M∏
m=2

n02m−1∏
n=1

1√
2πσ 2

W

exp

[
−

(
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n

)2

2σ 2
W

]⎫⎬
⎭

×
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⎩

n0∏
n=1

1√
2πσ 2

S

exp

[
−

(
r̄1
n

)2

2σ 2
S

]⎫⎬
⎭ , (32)

where

σ 2
W = σ 2

r 2−γm + σ 2
w, (33)

σ 2
S = σ 2

r 2−γ g(γ ) + σ 2
w, (34)

are the variances of the wavelet and scaling coefficients, respec-
tively. For a data set with N points, calculating the likelihood
function of Equation (32) requires multiplying N Gaussian func-
tions. The additional step of computing the FWT of the residuals
prior to computing L adds O(N ) operations. Thus, the entire
calculation has a time complexity O(N ).

For this calculation we must have estimators of the three
noise parameters γ , σr, and σw. These may be estimated
separately from the model parameters �p, or simultaneously with
the model parameters. For example, in transit photometry, the
data obtained outside of the transit may be used to estimate
the noise parameters, which are then used in Equation (32) to
estimate the model parameters; or, in a single step we could
maximize Equation (32) with respect to all of γ , σr , σw, and
�p. Fitting for both noise and transit parameters simultaneously
is potentially problematic, because some of the correlated noise
may be “absorbed” into the choices of the transit parameters,
i.e., the errors in the noise parameters and transit parameters
are themselves correlated. This may cause the noise level and
the parameter uncertainties to be underestimated. Unfortunately,
there are many instances when one does not have enough out-
of-transit data for the strict separation of transit and noise
parameters to be feasible.

In practice, the optimization can be accomplished with an
iterative routine (such as AMOEBA, Powell’s method, or a
conjugate-gradient method; see Press et al. 2007). Confidence
intervals can then be defined by the contours of constant
likelihood. Alternatively, one can use a Monte Carlo Markov
Chain (MCMC; see, e.g., Gregory 2005), in which case the
jump-transition likelihood would be given by Equation (32).
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The advantages of the MCMC method have led to its adoption
by many investigators (see, e.g., Holman et al. 2006; Burke
et al. 2007; Collier Cameron et al. 2007). For that method,
computational speed is often a limiting factor, as a typical
MCMC analysis involves several million calculations of the
likelihood function.

3.6. Some Practical Considerations

Some aspects of real data do not fit perfectly into the
requirements of the DWT. The time sampling of the data should
be approximately uniform, so that the resolution scales of the
multiresolution analysis accurately reflect physical timescales.
This is usually the case for time-series photometric data. Gaps
in a time series can be fixed by applying the DWT to each
uninterrupted data segment, or by filling in the missing elements
of the residual series with zeros.

The FWT expects the number of data points to be an integral
multiple of some integral power of 2. When this is not the case,
the time series may be truncated to the nearest such boundary;
or it may be extended using a periodic boundary condition,
mirror reflection, or zero padding. In the numerical experiments
described below, we found that zero padding has negligible
effects on the calculation of likelihood ratios and parameter
estimation.

The FWT generally assumes a periodic boundary condition
for simplicity of computation. A side effect of this simplification
is that the beginning and end of a time series are artificially
associated with each other. This is one reason why we chose
the fourth-order Daubechies-class wavelet basis, which is well
localized in time, and does not significantly couple the beginning
and the end of the time series except on the coarsest scales.

4. NUMERICAL EXPERIMENTS WITH TRANSIT
LIGHT CURVES

We performed many numerical experiments to illustrate
and test the wavelet method. These experiments involved
estimating the parameters of simulated transit light curves.
We also compared the wavelet analysis to a “white” analysis,
by which we mean a method that assumes the errors to be
uncorrelated, and to two other analysis methods drawn from the
literature. Because we used simulated transit light curves with
known noise and transit parameters, the “truth” was known
precisely, allowing both the absolute and relative merits of the
methods to be evaluated.

4.1. Estimating the Mid-transit Time: Known Noise Parameters

In this section, we consider the case in which the noise
parameters γ , σr , and σw are known with negligible error. We
have in mind a situation in which a long series of out-of-transit
data are available, with stationary noise properties.

We generated transit light curves with known transit parame-
ters �p, contaminated by an additive combination of a white and a
correlated (1/f γ ) noise source. Then we used an MCMC method
to estimate the transit parameters and their 68.3% confidence
limits. (The technique for generating noise and the MCMC
method are described in detail below.) For each realization of a
simulated light curve, we estimated transit parameters using the
likelihood defined either by Equation (6) for the white analysis,
or Equation (32) for the wavelet analysis.

For a given parameter pk, the estimator p̂k was taken to be the
median of the values in the Markov chain and σ̂pk

was taken to

be the standard deviation of those values. To assess the results,
we considered the “number-of-sigma” statistic:

N ≡ (p̂k − pk)/σ̂pk
. (35)

In words, N is the number of standard deviations separating
the parameter estimate p̂k from the true value pk. If the error
in pk is Gaussian, then a perfect analysis method should yield
results for N with an expectation value of 0 and variance of 1.
If we find that the variance of N is greater than 1, then we have
underestimated the error in p̂k and we may attribute too much
significance to the result. On the other hand, if the variance of
N is smaller than 1, then we have overestimated σpk

and we
may miss a significant discovery. If we find that the mean of N
is nonzero then the method is biased.

For now, we consider only the single parameter tc, the time of
mid-transit. The tc parameter is convenient for this analysis as
it is nearly decoupled from the other transit parameters (Carter
et al. 2008). Furthermore, as mentioned in the introduction,
the measurement of the mid-transit time cannot be improved
by observing other transit events, and variations in the transit
interval are possible signs of additional gravitating bodies in a
planetary system.

The noise was synthesized as follows. First, we generated a
sequence of N = 1024 independent random variables obeying
the variance conditions from Equations (26) and (27) for
1023 wavelet coefficients over nine scales and a single scaling
coefficient at the coarsest resolution scale. We then performed
the inverse FWT of this sequence to generate our noise signal.
In this way, we could select exact values for γ , σr , and σw. We
also needed to find the single parameter σ for the white-noise
analysis; it is not simply related to the parameters γ , σr , and
σw. In practice, we found σ by calculating the median sample
variance among 104 unique realizations of a noise source with
fixed parameters γ , σr , and σw.

For the transit model, we used the analytic formulae of
Mandel & Agol (2002), with a planet-to-star ratio of Rp/R� =
0.15, a normalized orbital distance of a/R� = 10, and an orbital
inclination of i = 90◦, as appropriate for a gas giant planet in a
close-in orbit around a K star. These correspond to a fractional
loss of light δ = 0.0225, duration T = 1.68 hr, and partial
duration τ = 0.152 hr. We did not include the effect of limb
darkening, as it would increase the computation time and has
little influence on the determination of tc (Carter et al. 2008).
Each simulated light curve spanned 3 hr centered on the mid-
transit time, with a time sampling of 11 s, giving 1024 uniformly
spaced samples. A noise-free light curve is shown in Figure 4.

For the noise model, we chose σw = 1.35 × 10−3 and γ = 1,
and tried different choices for σr . We denote by α the ratio of
the rms values of the correlated noise component and the white-
noise component.5 The example in Figure 4 has α = 1/3. As
α is increased from zero, the correlated component becomes
more important, as is evident in the simulated data plotted
in Figure 5. Our choice of σw corresponds to a precision of
5.8 × 10−4 per minute-equivalent sample, and was inspired by
the recent work by Johnson et al. (2009) and Winn et al. (2009),
which achieved precisions of 5.4 × 10−4 and 4.0 × 10−4 per
minute-equivalent sample, respectively. Based on our survey of
the literature and our experience with the Transit Light Curve

5 We note that although σw is the rms of the white-noise component, σr is
generally not the rms of the correlated component. The notation is unfortunate,
but follows that of Wornell (1996).
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Figure 4. Constructing a simulated transit light curve with correlated noise. The total noise is the sum of uncorrelated Gaussian noise with standard deviation σw

(upper left panel) and correlated noise with a PSD S(f ) ∝ 1/f and an rms equal to σw/3 (upper right panel). The total noise (middle left panel) is added to an idealized
transit model (middle right panel) to produce the simulated data (bottom panel).

project (Holman et al. 2006; Winn et al. 2007), we submit that
all of the examples shown in Figure 5 are “realistic” in the
sense that the bumps, wiggles, and ramps resemble features in
actual light curves, depending on the instrument, observing site,
weather conditions, and target star.

For a given choice of α, we made 10,000 realizations of the
simulated transit light curve with 1/f noise. We then constructed
two MCMCs for tc starting at the true value of tc = 0.
One chain was for the white analysis, with a jump-transition
likelihood given by Equation (6). The other chain was for
the wavelet analysis, using Equation (32) instead. Both chains
used the Metropolis–Hastings jump condition, and employed
perturbation sizes such that ≈40% of jumps were accepted.
Initial numerical experiments showed that the autocorrelation
of a given Markov chain for tc is sharply peaked at zero lag,
with the autocorrelation dropping below 0.2 at lag one. This
ensured good convergence with chain lengths of 500 (Tegmark
et al. 2004). Chain histograms were also inspected visually to
verify that the distribution was smooth. We recorded the median
t̂c and standard deviation σ̂tc for each chain and constructed
the statistic N for each separate analysis (white or wavelet).
Finally, we found the median and standard deviation of N over
all 10,000 noise realizations.

Figure 6 shows the resulting distributions of N , for the
particular case α = 1/3. Table 1 gives a collection of results for
the choices α = 0, 1/3, 2/3, and 1. The mean of N is zero for
both the white and wavelet analyses: neither method is biased.
This is expected, because all noise sources were described by
zero-mean Gaussian distributions. However, the widths of the
distributions of N show that the white analysis underestimates
the error in tc. For a transit light curve constructed with equal
parts white and 1/f noise (α = 1), the white analysis gave an
estimate of tc that differs from the true value by more than 1σ
nearly 80% of the time. The factor by which the white analysis
underestimates the error in tc appears to increase linearly with
α. In contrast, for all values of α, the wavelet analysis maintains
a unit variance in N , as desired.

The success of the wavelet method is partially attributed to the
larger (and more appropriate) error intervals that it returns for t̂c.
It is also partly attributable to an improvement in the accuracy
of t̂c itself: the wavelet method tends to produce t̂c values that
are closer to the true tc. This is shown in the final column in
Table 1, where we report the percentage of cases in which the
analysis method (white or wavelet) produces an estimate of tc
that is closer to the truth. For α = 1, the wavelet analysis gives
more accurate results, 66% of the time.
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Figure 5. Examples of simulated transit light curves with different ratios α = rmsr /rmsw between the rms values of the correlated noise component and white-noise
component.

Figure 6. Histograms of the number-of-sigma statistic N for the mid-transit
time tc. Each distribution shows the probability of estimating a value for tc that
differs by Nσ from the true value. The simulated data were created by adding
an idealized transit model to a noise source that is the sum of uncorrelated noise
and 1/f noise with equal variances (α = 1; see the text).

4.2. Estimating the Mid-transit Time: Unknown Noise
Parameters

In this section, we consider the case in which the noise pa-
rameters are not known in advance. Instead the noise parameters

Table 1
Estimates of Mid-transit Time, tc, from Data with Known Noise Properties

Method α 〈σ̂tc 〉 (s) 〈N 〉 σN Prob(N > 1) (%) Prob(best)a (%)

White 0 4.1 +0.004 0.95 29 50
1/3 4.3 −0.005 1.93 61 39
2/3 5.0 +0.005 3.04 75 35
1 5.9 −0.036 3.82 79 34

Wavelet 0 4.0 +0.005 0.95 29 50
1/3 7.2 −0.004 0.93 28 61
2/3 11.5 −0.004 0.94 28 65
1 16.0 −0.001 0.95 29 66

Note. a The probability that the analysis method (white or wavelet) returns an
estimate of tc that is closer to the true value than the other method.

must be estimated based on the data. We did this by including the
noise parameters as adjustable parameters in the Markov chains.
In principle, this could be done for all three noise parameters
γ , σr , and σw, but for most of the experiments presented here
we restricted the problem to the case γ = 1. This may be a rea-
sonable simplification, given the preponderance of natural noise
sources with γ = 1 (Press 1978). Some experiments involving
noise with γ = 1 are described at the end of this section.

We also synthesized the noise with a non-wavelet technique,
to avoid “stacking the deck” in favor of the wavelet method.
We generated the noise in the frequency domain, as follows. We
specified the amplitudes of the Fourier coefficients using the
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Table 2
Estimates of tc from Data with Unknown Noise Properties

Method α 〈σ̂tc 〉 (s) 〈N 〉 σN Prob(N > 1) (%) Prob(better)a (%)

White 0 4.0 −0.011 0.97 31 · · ·
1/3 4.2 +0.010 1.70 57 · · ·
2/3 4.9 +0.012 2.69 73 · · ·
1 5.8 +0.023 3.28 78 · · ·

Wavelet 0 4.5 −0.009 0.90 26 50
1/3 6.9 −0.003 1.03 33 56
2/3 11.2 −0.005 1.07 35 57
1 15.7 −0.007 1.09 36 57

Time-averaging 0 4.4 −0.006 0.88 26 50
1/3 6.8 +0.009 1.15 36 50
2/3 11.6 −0.012 1.24 40 50
1 17.6 +0.007 1.21 38 50

Residual-permutation 0 3.5 −0.012 1.16 37 50
1/3 6.6 +0.013 1.24 37 50
2/3 11.8 −0.014 1.28 38 49
1 17.3 +0.008 1.30 38 48

Note. a The probability that the analysis method returns an estimate of tc that is closer to the true value than the white
analysis.

assumed functional form of the PSD [S(f ) ∝ 1/f ], and drew
the phases from a uniform distribution between −π and π . The
correlated noise in the time domain was found by performing an
inverse fast Fourier transform. We rescaled the noise such that
the rms was α times the specified σw. The normally distributed
white noise was then added to the correlated noise to create the
total noise. This in turn was added to the idealized transit model.

For each choice of α, we made 10,000 simulated transit light
curves and analyzed them with the MCMC method described
previously. For the white analysis, the mid-transit time tc
and the single noise parameter σ were estimated using the
likelihood defined via Equation (6). For the wavelet analysis,
we estimated tc and the two noise parameters σr and σw using
the likelihood defined in Equation (32).

Table 2 gives the resulting statistics from this experiment,
in the same form as were given in Table 1 for the case of
known noise parameters. (This table also includes some results
from Section 4.4, which examines two other methods for coping
with correlated noise.) Again we find that the wavelet method
produces a distribution of N with unit variance, regardless of
α, and again, we find that the white analysis underestimates
the error in tc. In this case, the degree of error underestimation
is less severe, a consequence of the additional freedom in the
noise model to estimate σ from the data. The wavelet method
also gives more accurate estimates of tc than the white method,
although the contrast between the two methods is smaller than
it was with for the case of known noise parameters.

Our numerical results must be understood to be illustrative,
and not universal. They are specific to our choices for the
noise parameters and transit parameters. Via further numerical
experiments, we found that the width of N in the white analysis
is independent of σw, but it does depend on the time sampling. In
particular, the width grows larger as the time sampling becomes
finer (see Table 3). This can be understood as a consequence of
the long-range correlations. The white analysis assumes that the
increased number of data points will lead to enhanced precision,
whereas in reality, the correlations negate the benefit of finer
time sampling.

Table 4 gives the results of additional experiments with γ = 1.
In those cases, we created simulated noise with γ = 1 but in the
course of the analysis we assumed γ = 1. The correlated noise

Table 3
Effect of Time Sampling on the White Analysis

Na Cadence (s) σN

256 42.2 1.72
512 21.1 2.04
1024 10.5 2.69
2048 5.27 3.49
4096 2.63 4.39

Note. a The number of samples in a 3 hr interval.

fraction was set to α = 1/2 for these tests. The results show that
even when γ is falsely assumed to be unity, the wavelet analysis
still produces better estimates of tc and more reliable error bars
than the white analysis.

4.3. Runtime Analysis of the Time-domain Method

Having established the superiority of the wavelet method
over the white method, we wish to show that the wavelet
method is also preferable to the more straightforward approach
of computing the likelihood function in the time domain with a
non-diagonal covariance matrix. The likelihood in this case is
given by Equation (8).

The time-domain calculation and the use of the covariance
matrix raised two questions. First, how well can we estimate
the autocovariance R(τ ) from a single time series? Second,
how much content of the resulting covariance matrix needs to
be retained in the likelihood calculation for reliable parameter
estimation? The answer to the first question depends on whether
we wish to utilize the sample autocorrelation as the estimator
of R(τ ) or instead use a parametric model (such as an ARMA
model) for the autocorrelation. In either case, our ability to
estimate the autocorrelation improves with number of data
samples contributing to its calculation. The second question
is important because retaining the full covariance matrix would
cause the computation time to scale as O(N2) and in many cases
the analysis would be prohibitively slow. The second question
may be reframed as: what is the minimum number of lags L
that needs to be considered in computing the truncated χ2 of
Equation (9), in order to give unit variance in the number-of-
sigma statistic for each model parameter? The time complexity
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Figure 7. Autocorrelation functions of correlated noise. The noise was computed
as the sum of white noise with σw = 0.00135 and 1/f noise with an rms equal
to ασw , for α = 1/3 or 2/3.

Table 4
Estimates of tc from Data with Unknown Noise Properties

Method γ a 〈σ̂tc 〉 (s) 〈N 〉 σN Prob(N > 1) (%) Prob(best)b (%)

White 0.5 4.5 −0.025 1.34 47 50
1.5 4.6 +0.020 3.10 77 32

Wavelet 0.5 6.7 −0.021 0.97 30 50
1.5 6.9 +0.002 1.17 39 68

Notes.
a The spectral exponent of the PSD, S(f ) ∝ 1/f γ .
b The probability that the analysis method (white or wavelet) returns an estimate
of tc that is closer to the true value than the other method.

of the truncated likelihood calculation is O(NL). If L � 5,
then the time-domain method and the wavelet method may have
comparable computational time complexity, while for larger L
the wavelet method would offer a significant advantage.

We addressed these questions by repeating the experiments
of the previous sections using a likelihood function based on
the truncated χ2 statistic. We assumed that the parameters of
the noise model were known, as in Section 4.1. The noise was
synthesized in the wavelet domain, with γ = 1, σw = 0.00135,
and α set equal to 1/3 or 2/3. The parameters of the transit
model and the time series were the same as in Section 4.1. We
calculated the “exact” autocovariance function R(l) at integer
lag l for a given α by averaging sample autocovariances over
50,000 noise realizations. Figure 7 plots the autocorrelation
[R(l)/R(0)] as a function of lag for α = 1/3, 2/3. We
constructed the stationary covariance Σij = R(|i − j |) and
computed its inverse (Σ−1)ij for use in Equation (9).

Then we used the MCMC method to find estimates and errors
for the time of mid-transit, and calculated the number-of-sigma
statistic N as defined in Equation (35). In particular, for each
simulated transit light curve, we created a Markov chain of 1000
links for tc, using χ2(L) in the jump-transition likelihood. We
estimated tc and σtc , and calculated N . We did this for 5000
realizations and determined σN , the variance in N , across this
sample. We repeated this process for different choices of the
maximum lag L. Figure 8 shows the dependence of σN upon the
maximum lag L.

The time-domain method works fine, in the sense that when
enough non-diagonal elements in the covariance matrix are

Figure 8. Accuracy of the truncated time-domain likelihood in estimating mid-
transit times. Plotted is the variance in the number-of-sigma statistic σN for
the mid-transit time tc, as a function of the maximum lag in the truncated
series. The estimates of tc were found using the truncated likelihood given in
Equation (9).

retained, the parameter estimation is successful. We find that σN
approaches unity as L−β with β = 0.15, 0.25 for α = 1/3, 2/3,
respectively. However, to match the reliability of the wavelet
method, a large number of lags must be retained. To reach σN =
1.05, we need L ≈ 50 for α = 1/3 or L ≈ 75 for α = 2/3.
In our implementation, the calculation based on the truncated
covariance matrix (Equation (9)) took 30–40 times longer than
the calculation based on the wavelet likelihood (Equation (32)).

This order-of-magnitude penalty in runtime is bad enough, but
the real situation may be even worse, because one usually has
access to a single noisy estimate of the autocovariance matrix;
or, if one is using an ARMA model, the estimated parameters
of the model might be subject to considerable uncertainty
as compared to the “exact” autocovariance employed in our
numerical experiments. If it is desired to determine the noise
parameters simultaneously with the other model parameters,
then there is a further penalty associated with inverting the
covariance matrix at each step of the calculation for use in
Equation (9), although it may be possible to circumvent that
particular problem by modeling the inverse-covariance matrix
directly.

4.4. Comparison with Other Methods

In this section, we compare the results of the wavelet method
to two methods for coping with correlated noise that are drawn
from the recent literature on transit photometry. The first of
these two methods is the “time-averaging” method that was
propounded by Pont et al. (2006) and used in various forms by
Bakos et al. (2006), Gillon et al. (2006), Winn et al. (2007, 2008,
2009), Gibson et al. (2008), and others. In one implementation,
the basic idea is to calculate the sample variance of unbinned
residuals, σ̂ 2

1 , and also the sample variance of the time-averaged
residuals, σ̂ 2

n , where every n points have been averaged (creating
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m time bins). In the absence of correlated noise, we expect

σ̂ 2
n = σ̂ 2

1

n

(
m

m − 1

)
. (36)

In the presence of correlated noise, σ̂ 2
n differs from this expec-

tation by a factor β̂2
n . The estimator β̂ is then found by aver-

aging β̂n over a range Δn corresponding to timescales that are
judged to be most important. In the case of transit photometry,
the duration of ingress or egress is the most relevant timescale
(corresponding to averaging timescales on the order of tens of
minutes, in our example light curve). A white analysis is then
performed, using the noise parameter σ = βσ1 instead of σ1.
This causes the parameter errors σ̂pk

to increase by β but does
not change the parameter estimates p̂k themselves.6

A second method is the “residual-permutation” method that
has been used by Jenkins et al. (2002), Southworth (2008), Bean
et al. (2008), Winn et al. (2008), and others. This method is a
variant of a bootstrap analysis, in which the posterior probability
distribution for the parameters is based on the collection of
results of minimizing χ2 (assuming white noise) for a large
number of synthetic data sets. In the traditional bootstrap
analysis, the synthetic data sets are produced by scrambling
the residuals and adding them to a model light curve, or by
drawing data points at random (with replacement) to make a
simulated data set with the same number of points as the actual
data set. In the residual-permutation method, the synthetic data
sets are built by performing a cyclic permutation of the time
indices of the residuals, and then adding them to the model light
curve. In this way, the synthetic data sets have the same bumps,
wiggles, and ramps as the actual data, but they are translated
in time. The parameter errors are given by the widths of the
distributions in the parameters that are estimated from all the
different realizations of the synthetic data, and they are usually
larger than the parameter errors returned by a purely white
analysis.

As before, we limited the scope of the comparison to the
estimation of tc and its uncertainty. We created 5000 realizations
of a noise source with γ = 1 and a given value of α (either 0,
1/3, 2/3, or 1). We used each of the two approximate methods
(time-averaging and residual-permutation) to calculate β̂ and its
uncertainty based on each of the 5000 noise realizations. Then
we found the median and standard deviation of β̂/β over all 5000
realizations. Table 2 presents the results of this experiment.

Both methods, time-averaging and residual-permutation,
gave more reliable uncertainties than the white method. How-
ever, they both underestimated the true uncertainties by approx-
imately 15%–30%. Furthermore, neither method provided more
accurate estimates of tc than did the white method. For the time-
averaging method as we have implemented it, this result is not
surprising, for that method differs from the white method only
in the inflation of the error bars by some factor β. The parameter
values that maximize the likelihood function were unchanged.

4.5. Alternative Noise Models

We have shown the wavelet method to work well in the
presence of 1/f γ noise. Although this family of noise processes

6 Alternatively, one may assign an error to each data point equal to the
quadrature sum of the measurement error and an extra term σr (Pont et al.
2006). For cases in which the errors in the data points are all equal or nearly
equal, these methods are equivalent. When the errors are not all the same, it is
more appropriate to use the quadrature-sum approach of Pont et al. (2006). In
this paper, all our examples involve homogeneous errors.

encompasses a wide range of possibilities, the universe of
possible correlated noise processes is much larger. In this
section, we test the wavelet method using simulated data that
has correlated noise of a completely different character. In
particular, we focus on a process with exclusively short-term
correlations, described by one of the aforementioned ARMA
class of parametric noise models. In this way, we test our method
on a noise process that is complementary to the longer-range
correlations present in 1/f γ noise, and we also make contact
between our method and the large body of statistical literature
on ARMA models.

For 1/f γ noise, we have shown that time-domain parameter
estimation techniques are slow. However, if the noise has ex-
clusively short-range correlations, the autocorrelation function
will decay with lag more rapidly than a power law, and the
truncated-χ2 likelihood (Equation (9)) may become computa-
tionally efficient. ARMA models provide a convenient analytic
framework for parameterizing such processes. For a detailed re-
view of ARMA models and their use in statistical inference, see
Box & Jenkins (1976). Applications of ARMA models to astro-
physical problems have been described by in Koen & Lombard
(1993), Konig & Timmer (1997), and Timmer et al. (2000).

To see how the wavelet method performs on data with short-
range correlations, we constructed synthetic transit data in which
the noise is described by a single-parameter autoregressive
(AR(1; ψ)) model. An AR(1; ψ) process ε(ti) is defined by
the recursive relation

ε(ti) = η(ti) + ψε(ti−1), (37)

where η(ti) is an uncorrelated Gaussian process with the width
parameter σ and ψ is the sole autoregressive parameter. The
autocorrelation γ (l) for an AR(1; ψ) process is

γ (l) = σ 2

1 − ψ2
ψl. (38)

An AR(1;ψ) process is stationary so long as 0 < ψ < 1
(Box & Jenkins 1976). The decay length of the autocorrelation
function grows as ψ is increased from zero to one. Figure 9
plots the autocorrelation function of a process that is an additive
combination of an AR(1; ψ = 0.95) process and a white-noise
process. The noise in our synthetic transit light curves was
the sum of this AR(1; ψ = 0.95) process, and white noise,
with α = 1/2 (see Figure 9). With these choices, the white
method underestimates the error in tc, while at the same time
the synthetic data look realistic.

We proceeded with the MCMC method as described pre-
viously to estimate the time of mid-transit. All four methods
assessed in the previous section were included in this analysis,
for comparison. Table 5 gives the results. The wavelet method
produces more reliable error estimates than the white method.
However, the wavelet method no longer stands out as superior to
the time-averaging method or the residual-permutation method;
all three of these methods give similar results. This illustrates
the broader point that using any of these methods is much bet-
ter than ignoring the noise correlations. The results also show
that although the wavelet method is specifically tuned to deal
with 1/f γ noise, it is still useful in the presence of noise with
shorter-range correlations.

It is beyond the scope of this paper to test the applicability
of the wavelet method on more general ARMA processes.
Instead, we suggest the following approach when confronted
with real data (see also Beran 1994), calculate the sample



No. 1, 2009 PARAMETER ESTIMATION FROM TIME-SERIES DATA 63

Table 5
Estimates of tc from Data with Autoregressive Correlated Noise

Method 〈σ̂tc 〉 (s) 〈N 〉 σN Prob(N > 1) (%) Prob(better)a (%)

White 4.5 −0.010 2.50 70 . . .

Wavelet 8.7 −0.016 1.33 44 51
Time-averaging 9.9 −0.010 1.25 40 49
Residual-permutation 10.2 −0.010 1.23 38 51

Note. a The probability that the analysis method returns an estimate of tc that is closer to the true value
than the white analysis.

Figure 9. Example of an autoregressive noise process with complementary
characteristics to a 1/f γ process. The top panel shows the sum of an AR(1)
process with ψ = 0.95 and white noise. The standard deviation of the correlated
component is one-half of the standard deviation of the uncorrelated component
(α = 0.5).

autocorrelation, and PSD, based on the out-of-transit data or the
residuals to an optimized transit model. For stationary processes
these two indicators are related as described in Section 2.
Short-memory, ARMA-like processes can be identified by
large autocorrelations at small lags or by finite PSD at zero
frequency. Long-memory processes (1/f γ ) can be identified
by possibly small but non-vanishing autocorrelation at longer
lags. Processes with short-range correlations could be analyzed
with an ARMA model of the covariance matrix (see Box &
Jenkins 1976), or the truncated-lag covariance matrix, although
a wavelet-based analysis may be sufficient as well. Long-
memory processes are best analyzed with the wavelet method
as described in this paper.

It should also be noted that extensions of ARMA models
have been developed to mimic long-memory, 1/f γ processes. In
particular, fractional autoregressive integrated moving-average
models (ARFIMA) describe “nearly” 1/f γ stationary processes,
according to the criterion described by Beran (1994). As
is the case with ARMA models, ARFIMA models enjoy
analytic forms for the likelihood in the time domain. Alas, as
noted by Wornell (1996) and Beran (1994), the straightforward

calculation of this likelihood is computationally expensive and
potentially unstable. For 1/f γ processes, the wavelet method
is probably a better choice than any time-domain method for
calculating the likelihood.

4.6. Transit Timing Variations Estimated from a Collection of
Light Curves

We present here an illustrative calculation that is relevant to
the goal of detecting planets or satellites through the pertur-
bations they produce on the sequence of mid-transit times of
a known transiting planet. Typically, an observer would fit the
mid-transit times tc,i , to a model in which the transits are strictly
periodic:

tc,i = tc,0 + EiP, (39)

for some integers Ei and constants tc,0 and P. Then, the residuals
would be computed by subtracting the best-fit model from the
data, and a test for anomalies would be performed by assessing
the likelihood of obtaining those residuals if the linear model
were correct. Assuming there are N data points with normally
distributed, independent errors, the likelihood is given by a χ2-
distribution, prob(χ2, Ndof), where

χ2 =
∑

i

[
tc,i − (tc,0 + EiP )

σtc,i

]2

(40)

and Ndof = N − 2 is the number of degrees of freedom. Values
of χ2 with a low probability of occurrence indicate that the
linear model is deficient, that there are significant anomalies in
the timing data, and that further observations are warranted.

We produced 10 simulated light curves of transits of the
particular planet GJ 436b, a Neptune-sized planet transiting
an M dwarf (Butler et al. 2004; Gillon et al. 2007) which
has been the subject of several transit-timing studies (see, e.g.,
Ribas et al. 2008; Alonso et al. 2008; Coughlin et al. 2008).
Our chosen parameters were Rp/R� = 0.084, a/R� = 12.25,
i = 85.◦94, and P = 2.644 d. This gives δ = 0.007, T = 1
hr, and τ = 0.24 hr. We chose limb-darkening parameters as
appropriate for the Sloan Digital Sky Survey (SDSS) r band
(Claret 2004). We assumed that 10 consecutive transits were
observed, in each case giving 512 uniformly sampled flux
measurements over 2.5 hr centered on the transit time. Noise
was synthesized in the Fourier domain (as in Section 4.2), with
a white component σw = 0.001 and a 1/f component with
an rms of 0.0005 (α = 1/2). These 10 simulated light curves
are plotted in Figure 10. Visually, they resemble the best light
curves that have been obtained for this system.

To estimate the mid-transit time of each simulated light curve,
we performed a wavelet analysis and a white analysis, allowing
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Figure 10. Simulated transit observations of the “hot Neptune” GJ 436. Arbitrary
vertical offsets have been applied to the light curves, to separate them on the
page.

only the mid-transit time and the noise parameters to vary while
fixing the other parameter values at their true values. We used
the same MCMC technique that was described in Section 4.2.
Each analysis method produced a collection of 10 mid-transit
times and error bars. These 10 data points were then fitted to the
linear model of Equation (39). Figure 11 shows the residuals
of the linear fit (observed − calculated). Table 6 gives the best-
fit period for each analysis (wavelet or white), along with the
associated values of χ2.

As was expected from the results of Section 4.2, the white
analysis gave error bars that are too small, particularly for epochs
4 and 7. As a result, the practitioner of the white analysis would
have rejected the hypothesis of a constant orbital period with
98% confidence. In addition, the white analysis gave an estimate
for the orbital period that is more than 1σ away from the true
value, which might have complicated the planning and execution
of future observations. The wavelet method, in contrast, neither
underestimated nor overestimated the errors, giving χ2 ≈ Ndof
in excellent agreement with the hypothesis of a constant orbital
period. The wavelet method also gave an estimate for the orbital
period within 1σ of the true value.

Figure 11. Transit timing variations estimated from simulated transit observa-
tions of GJ 436b. Each panel shows the residuals (observed − calculated) of
a linear fit to the estimated mid-transit times. The mid-transit times were esti-
mated with a wavelet analysis and also with a white analysis, as described in
the text. The dashed lines indicate the 1σ errors in the linear model.

Table 6
Linear Fits to Estimated Mid-transit Times

Method Fitted period/True period χ̂2/Ndof Prob(χ2 < χ̂2) (%)

White 1.00000071 ± 0.00000043 2.25 98
Wavelet 1.00000048 ± 0.00000077 0.93 51

4.7. Estimation of Multiple Parameters

Thus far we have focused exclusively on the determination
of the mid-transit time, in the interest of simplicity. However,
there is no obstacle to using the wavelet method to estimate
multiple parameters, even when there are strong degeneracies
among them. In this section, we test and illustrate the ability of
the wavelet method to solve for all the parameters of a transit
light curve, along with the noise parameters.

We modeled the transit as in Sections 4.1 and 4.2. The noise
was synthesized in the frequency domain (as in Section 4.2),
using σw = 0.0045, γ = 1, and α = 1/2. The resulting
simulated light curve is the upper time series in Figure 12.
We used the MCMC method to estimate the transit parameters
{Rp/R�, a/R�, i, tc} and the noise parameters {σr, σw} (again
fixing γ = 1 for simplicity). The likelihood was evaluated with
either the wavelet method (Equation (32)) or the white method
(Equation (6)).

Figure 13 displays the results of this analysis in the form of the
posterior distribution for the case of tc, and the joint posterior
confidence regions for the other cases. The wavelet method
gives larger (and more appropriate) confidence regions than
the white analysis. In accordance with our previous findings,
the white analysis underestimates the error in tc and gives an
estimate of tc that differs from the true value by more than 1σ .
The wavelet method gives better agreement. Both analyses give
an estimate for Rp/R� that is smaller than the true value of
0.15, but in the case of the white analysis, this shift is deemed
significant, thereby ruling out the correct answer with more
than 95% confidence. In the wavelet analysis, the true value
of Rp/R� is well within the 68% confidence region. Both the
wavelet and white analyses give accurate values of a/R� and
the inclination, and the wavelet method reports larger errors.
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Figure 12. Wavelet analysis of a single simulated transit light curve. Top:
a simulated light curve with correlated noise. The jagged line is the best-
fitting transit model plus the best-fitting model of the 1/f component of the
noise. Bottom: a simulated light curve after applying the whitening filter of
Equation (29), using the noise parameters estimated from the wavelet analysis.
The solid line is the best-fitting transit model.

As shown in Figure 13, the wavelet method was successful at
identifying the parameters (α and σw) of the underlying 1/f
noise process.

Figure 12 shows the best-fitting transit model, and also
illustrates the action of the “whitening” filter that was described
in Section 3.4. The jagged line plotted over the upper time series
is the best estimate of the 1/f contribution to the noise, found by
applying the whitening filter (Equation (29)) to the data using
the estimated noise parameters. The lower time series is the
whitened data, in which the 1/f component has been subtracted.
Finally, in Figure 14 we compare the estimated 1/f noise
component with the actual 1/f component used to generate the
data. Possibly, by isolating the correlated component in this way,
and investigating its relation to other observable parameters, the
physical origin of the noise could be identified and understood.

5. SUMMARY AND DISCUSSION

In this paper, we have introduced a technique for parameter
estimation based on fitting a parametric model to a time series
that may be contaminated by temporally correlated noise with
a 1/f γ PSD. The essence of the technique is to calculate the
likelihood function in a wavelet basis. This is advantageous
because a broad class of realistic noise processes produce a
nearly diagonal covariance matrix in the wavelet basis, and
because fast methods for computing wavelet transforms are
available. We have tested and illustrated this technique, and
compared it to other techniques, using numerical experiments
involving simulated photometric observations of exoplanetary
transits.

For convenience, we summarize the likelihood calculation
here:

1. Given the N data points y(ti) obtained at evenly spaced
times ti, subtract the model fi(ti; �p) with model parameters
�p to form the N residuals r(ti) ≡ y(ti) − f (ti; �p).

2. If N is not a multiple of a power of 2, either truncate the time
series or enlarge it by padding it with zeros, until N = n02M

for some n0 > 0, M > 0.
3. Apply the FWT to the residuals to obtain n0(2M−1) wavelet

coefficients rm
n and n0 scaling coefficients r̄1

n .
4. For stationary, Gaussian noise built from an additive com-

bination of uncorrelated and correlated noise (with PSD
S(f ) ∝ 1/f γ ), the likelihood for the residuals r(ti) is given
by

L =
⎧⎨
⎩

M∏
m=2

n02m−1∏
n=1

1√
2πσ 2

W

exp

[
−

(
rm
n

)2

2σ 2
W

]⎫⎬
⎭

×
⎧⎨
⎩

n0∏
n=1

1√
2πσ 2

S

exp

[
−

(
r̄1
n

)2

2σ 2
S

]⎫⎬
⎭ , (41)

where

σ 2
W = σ 2

r 2−γm + σ 2
w, (42)

σ 2
S = σ 2

r 2−γ g(γ ) + σ 2
w, (43)

for some noise parameters σw > 0, σr > 0 and g(γ ) =
O(1) (e.g., g(1) ≈ 0.72).

The calculation entails the multiplication of N terms and has
an overall time complexity of O(N ). With this prescription
for the likelihood function, the parameters may be optimized
using any number of traditional algorithms. For example, the
likelihood may be used in the jump-transition probability in a
MCMC analysis, as we have done in this work.

Among the premises of this technique are that the correlations
among the wavelet and scaling coefficients are small enough
to be negligible. In fact, the magnitude of the correlations at
different scales and times is dependent on the choice of the
wavelet basis and the spectral index γ describing the PSD
of the correlated component of the noise. We have chosen
for our experiments the Daubechies fourth-order wavelet basis
which seems well suited to the cases we considered. A perhaps
more serious limitation is that the noise should be stationary.
Real noise is often nonstationary. For example, photometric
observations are noisier during periods of poor weather, and
even in good conditions there may be more noise at the
beginning or end of the night when the target is observed through
the largest air mass. It is possible that this limitation could be
overcome with more elaborate noise models, or by analyzing
the time series in separate segments; future work on these topics
may be warranted.

Apart from the utility of the wavelet method, we draw the
following conclusions based on the numerical experiments of
Section 3. First, any analysis that ignores possible correlated
errors (a “white” analysis in our terminology) is suspect, and
any 2–3σ results from such an analysis should be regarded as
provisional at best. As shown in Sections 4.1, 4.2, and 4.6,
even data that appear “good” on visual inspection and that are
dominated by uncorrelated noise may give parameter errors that
are underestimated by a factor of 2–3 in a white analysis. Second,
using any of the methods described in Section 4.4 (the wavelet
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Figure 13. Results of parameter estimation for the simulated light curve of Figure 12. Results for both the wavelet method (solid lines) and the white method (dashed
lines) are compared. The upper left panel shows the posterior distribution for the mid-transit time. The other panels show confidence contours (68.3% and 95.4%) of
the joint posterior distribution of two parameters. The true parameter values are indicated by dotted lines.

Figure 14. Isolating the correlated component. Plotted are the actual and
estimated 1/f components of the noise in the simulated light curve plotted
in Figure 12. The estimated 1/f signal was found by applying the wavelet filter,
Equation (29), to the residuals.

method, the time-averaging method, or the residual-permutation
method) is preferable to ignoring correlated noise altogether.

Throughout this work, our main application has been the
estimation of the parameters of a single time series or a few
such time series, especially determining the mid-transit times

of transit light curves. One potentially important application
that we have not discussed is the detection of transits in a
database of time-series photometry of many stars. Photometric
surveys such as the ground-based Hungarian-made Automated
Telescope Network (HATnet; Bakos et al. 2007) and the Su-
per Wide Angle Search for Planets (SuperWASP; Pollacco
et al. 2006), and space-based missions such as the Convec-
tion Rotation and Planetary Transits mission (CoRoT; Baglin
et al. 2003) and the Kepler mission (Borucki et al. 2003)
produce tens to hundreds of thousands of time series, span-
ning much longer intervals than the transit durations. It seems
likely that the parameters of a noise model could be very
well constrained using these vast databases, and that the ap-
plication of a wavelet-based whitening filter could facilitate
the detection of transits and the elimination of statistical
false positives. Popular techniques for dealing with correlated
noise in large photometric databases are those of Tamuz et al.
(2005), Kovács et al. (2005), and Pont et al. (2006). A priority for
future work is to compare these methods with a wavelet-based
method, by experimenting with realistic survey data.

We are grateful to Frederic Pont for a very detailed and
constructive critique of an early version of this manuscript. We
also thank Scott Gaudi and Jason Eastman for helpful comments.
This work was partly supported by the NASA Origins program
(grant No. NNX09AB33G).
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