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ABSTRACT

We explore the properties of cold gravitoturbulent accretion disks—non-fragmenting disks hovering on the verge
of gravitational instability (GI)—using a realistic prescription for the effective viscosity caused by gravitational
torques. This prescription is based on a direct relationship between the angular momentum transport in a thin
accretion disk and the disk cooling in a steady state. Assuming that opacity is dominated by dust we are able to self-
consistently derive disk properties for a given Ṁ assuming marginal gravitational stability. We also allow external
irradiation of the disk and account for a non-zero background viscosity, which can be due to the magneto-rotational
instability. Spatial transitions between different co-existing disk states (e.g., between irradiated and self-luminous
or between gravitoturbulent and viscous) are described and the location of the boundary at which the disk must
fragment is determined in a variety of situations. We demonstrate in particular that at low enough Ṁ external
irradiation stabilizes the gravitoturbulent disk against fragmentation to very large distances thus providing means
of steady mass transport to the central object. Implications of our results for the possibility of planet formation by
GI in protoplanetary disks and star formation in the Galactic center and for the problem of feeding supermassive
black holes in galactic nuclei are discussed.
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1. INTRODUCTION

Gravitational instability (GI) in astrophysical disks has been a
subject of investigation for more than 50 years since the seminal
work by Safronov (1960) and Toomre (1964). Originally it
was studied predominantly in the context of driving the spiral
structure in galaxies. Later it has been suggested that GI may
play important role in planet formation (Cameron 1978; Boss
1998), and its significance for the properties of compact nuclear
disks around supermassive black holes in the centers of galaxies
has also been recognized (Paczynski 1978a; Goodman 2003).

It is generally accepted that the GI sets in when the so-called
Toomre Q satisfies the following condition:

Q ≡ Ωcs

πGΣ
< Q0, (1)

where Σ, Ω, and cs are the local surface density, angular
frequency, and the sound speed in the disk which we consider
to be made of gas and having a Keplerian rotational profile.
Q0 is a constant of order unity, its precise value determining the
instability threshold ranges from 0.7 to 1.7 according to different
authors (Kim et al. 2002; Boss 2002). Nonlinear development of
the GI sensitively depends on the thermodynamical properties
of the gas as has been first shown by Gammie (2001): if gas can
cool on a timescale shorter than the local dynamical timescale
Ω−1 then the disk fragments into bound, self-gravitating objects
which may grow further by accreting the surrounding gas
and colliding with each other. But if the cooling timescale
tcool is longer than Ω−1 then the disk settles into a state of
the so-called gravitoturbulence in which surface density can
experience significant fluctuations but the disk is stable against
fragmentation in the long run and maintains itself on the brink of
instability with Q ≈ Q0. Stability against fragmentation arises
because the restoring action of the thermal pressure resisting
the self-gravity of overdensities is not sufficiently reduced by
cooling when tcool � Ω−1.

1 Sloan Fellow.

Torques produced by the nonaxisymmetric density perturba-
tions in gravitoturbulent disks give rise to angular momentum
transport. Considering the disk to be in a steady state on time
shorter than its viscous evolution timescale one can directly
relate “effective viscosity” αGI produced by the gravitational
torques to the cooling time of the disk. Gammie (2001) has
demonstrated that the dimensionless α-parameter characteriz-
ing the disk viscosity (Shakura & Sunyaev 1973) is

α ∼ (Ωtcool)
−1. (2)

It is instructive to show where this relation comes from. First,
in a steady state the rate of energy dissipation per unit surface
area of the disk ∼Ω2Ṁ has to equal the energy flux F emitted
from the disk surface. Second, the accretion rate is Ṁ = 3πνΣ,
where ν ≡ αc2

s /Ω (Pringle 1981). Combining these relations
one immediately obtains Equation (2) with

tcool ≈ Σc2
s /F. (3)

Relation (2) makes it possible to interpret disk fragmentation
occurring at tcool ∼ Ω−1 as the inability of the disk to sustain
gravitational stress at α � 1 (Rice et al. 2005).

In this paper, we investigate the structure and evolution of
gravitoturbulent disks in which angular momentum is trans-
ferred predominantly by the gravitational torques. This problem
has been previously investigated by Lin & Pringle (1987) but
with a rather naive prescription for the effective viscosity. Also,
some efforts have been devoted to understanding the structure
of the gravitoturbulent disks which are unstable to fragmenta-
tion on large scale, i.e. disks having Q ≈ Q0 and αGI ∼ 1
everywhere (Rafikov 2005, 2007; Matzner & Levin 2005). In
this work, viscous evolution of the disk is explored according to
the prescription (2) without fixing the value of αGI—instead it
is calculated self-consistently based on the physical properties
of the gas. We concentrate our attention on rather cool disks in
which opacity is due to dust grains thus focusing on the GI in the
outer parts of protostellar disks and disks around supermassive
black holes.
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2. GENERAL CONSIDERATIONS

We consider a gravitoturbulent disk in which the dissipation of
transient density waves excited by GI is capable of maintaining
Q = Q0, and the cooling time tcool is longer than Ω−1. The
mass of the disk is assumed to be smaller than the mass of the
central star to avoid complications arising from the non-local
effects and the back reaction of the gravitational instability on
the central star. Because of this our results are only strictly
applicable to the case of low mass disks.

The cooling time of the disk is

tcool ≈ Σc2
s

σT 4
f (τ ), (4)

where Σ is the surface density of the disk, cs ≡ (kBT /μ) is the
isothermal sound speed determined by the midplane temperature
T, and f (τ ) is a function of the optical depth τ = ∫

κρdz (κ and
ρ are the gas opacity and density, z is the vertical coordinate)
which links the emitted flux F to T: F = σT 4/f (τ ). A specific
form of f (τ ) depends on the way in which energy is transported
from the midplane of an optically thick disk to its photosphere
where it is radiated to space. Rafikov (2007) has calculated
f (τ ) in the case of efficiently convecting disks. However, in this
work we assume (as was previously done in Rafikov 2005) for
simplicity that energy is carried from the disk midplane to its
surface solely by radiation in which case f (τ ) can be reasonably
well approximated by

f (τ ) ≈ τ +
1

τ
. (5)

This expression smoothly interpolates between the cooling rates
applicable in the optically thick (τ � 1) and optically thin
(τ � 1) regimes.

We assume a temperature-dependent opacity in the form

κ = κ0T
β, (6)

which is appropriate at low temperatures when κ is dominated
by dust grains. At very low temperatures, T < 150 K, it is
generally found (Bell & Lin 1994; Semenov et al. 2003) that
opacity is due to the icy grains and is characterized by

β = 2 and κ0 ≈ 5 × 10−4 cm2 g−1 K−2 (7)

within a factor of 2 or so. At higher temperatures ices evaporate
and opacity behavior can be crudely described as κ ≈ 0.1T 1/2

cm2 g−1 (Bell & Lin 1994). For simplicity in this work we do not
distinguish between the Rosseland mean and the Planck mean
opacities (appropriate for τ � 1 and τ � 1 correspondingly)
as they have similar values at low T.

Now, using definition (1) and the condition Q = Q0 we find
that

cs = πGQ0Σ
Ω

, (8)

T = μ

kB

(
πGQ0Σ

Ω

)2

(9)

in a gravitoturbulent disk. In the optically thick regime total
optical depth is dominated by the midplane layers of the disk in
which most of the mass is concentrated, so that up to factors of

order unity τ ≈ κ(T )Σ. Clearly, this approximation also works
in the optically thin case. Thus, using Equation (9) one rather
generally finds that

τ ≈ κ0Σ2β+1

(
μ

kB

)β (
πGQ0

Ω

)2β

. (10)

We can also calculate αGI characterizing angular momentum
transport caused by the non-axisymmetric surface density per-
turbations. Using Equations (2), (4), and (9) one finds that

αGI = ζ
σ (πGQ0)6

f (τ )

(
μ

kB

)4 Σ5

Ω7
. (11)

The kinematic viscosity ν ≡ αGIc
2
s /Ω is then given by the

following expression:

νGI = ζ
σ (πGQ0)8

f (τ )

(
μ

kB

)4 Σ7

Ω10
. (12)

Parameter ζ ∼ 1 appearing in these equations absorbs our
ignorance of the exact values of constant factors in Equations (2)
and (4).

Equations (10)–(12) provide us with the desired viscosity
prescription needed for determining the physical structure and
evolution of the gravitoturbulent disk. The only two essential
ingredients that went into deriving this viscosity recipe are (1)
requirement that disk maintains itself in a state of marginal
stability with respect to GI and (2) prescription (2) for αGI
which arises from reasonable assumption that disk is in thermal
equilibrium on timescales shorter than the viscous timescale.

3. CONSTANT Ṁ DISKS

In this section, we consider the structure of the gravitotur-
bulent disk with a specified mass accretion rate Ṁ . In a steady
state Ṁ = 3πνΣ, which with the aid of Equation (12) can be
manipulated into the following general relation:

Ṁ = 3πζ
σ (πGQ0)8

f (τ )

(
μ

kB

)4 Σ8

Ω10
. (13)

Function f (τ ) entering this expression depends on Σ and Ω
through Equation (10). This allows us to uniquely express Σ as
a function of Ω for a given Ṁ .

We should note here that although in the following we will
mainly discuss disks with constant Ṁ our results are also directly
applicable to disks in which Ṁ varies with distance. Indeed, as
long as one knows Ṁ at a particular distance (or Ω) in the
disk Equation (13) uniquely determines the value of Σ in this
location.2 Thus, all our subsequent numerical estimates would
apply also to the case of non-constant Ṁ disks as long as Ṁ is
specified at a location of interest.

We separately consider the cases of optically thick and
optically thin gravitoturbulent disks. Before we do this we note
that there are two important transitions characterizing such a
disk. One is the

τ = 1 (14)

2 Strictly speaking the relation Ṁ ∼ νΣ used in deriving (13) is valid only in
disks with smoothly varying Σ (e.g., in disks with power-law dependence of Ṁ
on r); constant factor in this relation is in general different from 3π .
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transition between the optically thick and optically thin regions.
Another is the point at which tcool becomes comparable to Ω−1

and disk fragments. This transition is defined by condition

αGI = χ ∼ 1, (15)

where χ is the constant of order unity, its precise value has been
determined by Gammie (2001) and Rice et al. (2003, 2005) in a
variety of circumstances.

According to Equations (10) and (11) each of these two
relations sets a unique constraint between Σ and Ω. However,
if we demand that both of them are fulfilled simultaneously
(i.e., disk fragments exactly at the τ = 1 transition) then these
relations hold only for specific values of Σ and Ω, which we
denote Σf and Ωf . Equations (10), (11), (14), and (15) then
yield the following values of these parameters:

Σf ≈
[(

ζσ

πGQ0χ

)2β (
μ

kB

)β

κ−7
0

](4β+7)−1

, (16)

Ωf ≈
[(

ζσ

χ

)2β+1 (πGQ0)2β+6

κ5
0

(
μ

kB

)3β+4
](4β+7)−1

(17)

(we set f (τ ) ∼ 1 at τ = 1). Through Equations (8), (9), (13)
Σf and Ωf (with f (τ ) ∼ 1) also determine fiducial values of
the mass accretion rate Ṁf , sound speed cs,f , and midplane
temperature Tf :

Ṁf ≈ 3πχ

×
[(

ζσκ2
0

χ

)3

(πGQ0)4(β+1)

(
μ

kB

)6(β+2)
]−(4β+7)−1

, (18)

cs,f ≈
[

πGQ0χ

ζσκ2
0

(
μ

kB

)−2(β+2)
](4β+7)−1

, (19)

Tf ≈
[(

πGQ0χ

ζσκ2
0

)2
kB

μ

](4β+7)−1

. (20)

Note that all these fiducial quantities depend only on phys-
ical constants and opacity parametrization. For κ given by
Equation (7) we find the following values of these parameters
(assuming Q0 ≈ 1, χ, ζ ∼ 1):

Σf ≈ 15 g cm−2, cs,f ≈ 0.22 km s−1, Tf ≈ 11.6 K,

Ωf ≈ 1.4 × 10−10 s−1, Ṁf ≈ 7 × 10−6 M� yr−1. (21)

The numerical value of Tf conveniently falls into the regime of
κ dominated by icy dust grains.

For a given mass of a central object M� angular frequency
Ωf determines a fiducial distance rf according to the formula

rf =
(

GM�

Ω2
f

)1/3

≈ 130 AU

(
M�

M�

)1/3

. (22)

In the case of a disk around M� = 106 M� black hole one finds
rf ≈ 0.06 pc.

We now consider the disk structure in the constant Ṁ case
separately for the optically thick and the optically thin regimes,
as well as the effects of external irradiation and the background
viscosity in the disk.

3.1. Optically Thick Case

In the optically thick case f (τ ) ≈ τ . Plugging this into
Equation (13) and using expression (10) we find the following
scalings:

Σ = Σf (ṁω10−2β )(7−2β)−1 = Σf ṁ1/3ω2, (23)

T = Tf (ṁ2ω6)(7−2β)−1 = Tf ṁ2/3ω2, (24)

where second equalities are for β = 2 and we have defined the
following dimensionless quantities:

ṁ ≡ Ṁ

Ṁf

, ω ≡ Ω
Ωf

.

Using Equations (10) and (11) we also find that in the optically
thick regime

αGI = χ (ṁ4−2βω−9)(7−2β)−1 = χω−3, (25)

τ = (ṁ2β+1ω10+4β )(7−2β)−1 = ṁ5/3ω6. (26)

According to Equation (26) our assumption of τ > 1 is self-
consistent only if

ω > ω1 = ṁ−(2β+1)/(10+4β) (27)

(we assume β < 7/2 as expected for dust opacity). Thus,
the gravitoturbulent disk is going to be optically thick for all
Ω > Ωf (or ω > 1) if Ṁ > Ṁf (or ṁ > 1).

Note that Equations (23)–(26) predict very rapid variation of
disk properties with radius in the optically thick regime. Indeed,
for β = 2 one finds Σ, T ∝ r−3, while τ ∝ r−9. It is clear that
even a moderate increase in r would lead to the disk becoming
optically thin. Also, αGI ∝ r9/2 (analogous scaling has been
found by Goodman (2003) under different assumptions) and
given this rapid variation it is obvious that an optically thick
gravitoturbulent region can exist only within a limited range of
radii (see Sections 3.4 and 3.5).

3.2. Optically Thin Case

In the optically thin regime, we need to use f (τ ) ≈ τ−1 in
Equation (13) which combined with Equation (10) gives the
following scalings:

Σ = Σf (ṁω10+2β )(9+2β)−1 = Σf ṁ1/13ω14/13, (28)

T = Tf (ṁω)2/(9+2β) = Tf ṁ2/13ω2/13, (29)

αGI = χ (ṁ2β+6ω−3)(9+2β)−1 = χṁ10/13ω−3/13, (30)

τ = (ṁ2β+1ω10+4β )(9+2β)−1 = ṁ5/13ω18/13. (31)

Assumption of an optically thin gravitoturbulent disk is valid
provided that a condition opposite to (27) is satisfied. In
particular, τ < 1 for all Ω < Ωf (or ω < 1) only if Ṁ < Ṁf

(or ṁ < 1).
Properties of optically thin gravitoturbulent disks exhibit

more moderate variation with r than in the optically thick case.
Indeed, when τ < 1 and β = 2 the disk temperature and αGI
vary with distance quite slowly, T ∝ r−3/13 and αGI ∝ r9/26.
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As a result, the optically thin gravitoturbulent regime can be
realized in a rather extended region of the disk.

Disks in which Ṁ varies with distance can also be described
by expressions (23)–(26) and (28)–(31): in this situation ṁ =
ṁ(ω) and the dependence of various disk properties on ω can
be directly obtained by plugging ṁ(ω) into these equations.

3.3. External Irradiation

According to Equations (24) and (29) the temperature of a
gravitoturbulent disk decreases with r. At some point external
irradiation becomes more important for the thermal balance
than the internal gravitoturbulent dissipation. Here we want to
investigate a transition from a self-luminous disk (heated only
by internal dissipation) to an irradiated regime. We assume that
the disk is illuminated by external radiation at spatially constant
temperature T0. In many situations, the irradiation temperature
is an explicit function of radius (e.g., if irradiation is due to
illumination by the central star), and our constant T0 treatment
may be trivially extended to this more general situation.

Given that most of the disk material is concentrated in its
midplane region the gravitational stability of the disk is going
to be determined by the temperature T near the midplane and
the condition for marginal stability is still given by Q ≈ Q0
with Q defined in Equation (1). Below we consider separately
the optically thick and optically thin cases.

3.3.1. Optically Thick Case

Irradiated optically thick disk appears as an extension of a
self-luminous optically thick disk. A specific location at which
such transition occurs can be found by equating T given by
Equation (24) to T0. The angular frequency corresponding to
this transition is

ωT = ṁ−1/3

(
T0

Tf

)(7−2β)/6

. (32)

By construction τ at this location must be greater than unity,
which with the aid of Equation (26) yields the following
constraint on the optically thick transition to an irradiated disk:

T0

Tf

> ṁ(5+2β)−1
. (33)

If τ � 1 then the midplane temperature of the disk is given
by the solution of the vertical radiative transfer in diffusion
approximation as

T 4 ≈ T 4
ph + ητ

ṀΩ2

σ
, (34)

where η is a factor of order unity which absorbs our ignorance
of how the dissipation rate is distributed across the vertical
thickness of the disk. Also, from energy conservation the
temperature at the disk surface (photospheric temperature Tph)
is

T 4
ph = T 4

0 +
3ṀΩ2

8πσ
. (35)

These two relations allow us to distinguish three levels of the
importance of irradiation.

First, when

σT 4
0 � ṀΩ2 (36)

irradiation is so weak that it does not play any significant role
even in the photosphere of the disk. This corresponds to the case
of a self-luminous disk which was covered in Section 3.

Second, when

ṀΩ2 � σT 4
0 � τṀΩ2 (37)

external irradiation keeps disk surface temperature at the level
of T0 and creates a roughly isothermal gas layer underneath
the surface. Nevertheless, the midplane temperature is still set
predominantly by the internal dissipation and the outgoing flux
∼ṀΩ2 is still given by F = σT 4/τ , according to Equations (34)
and (37). For that reason this irradiation regime also corresponds
to the case of self-luminous disks explored in Section 3 with
some minor corrections having to do with the fact that the surface
disk layers are hotter than they would have been in the absence
of irradiation.

Finally, when

τṀΩ2 � σT 4
0 (38)

the irradiation is so strong that even the midplane temperature
reaches T0 and the disk becomes vertically isothermal. This
regime is different from the case of a self-luminous disk con-
sidered before since the disk can no longer regulate its thermal
state—its midplane temperature is fixed at T ≈ T0. Assuming
that the disk is gravitoturbulent under strong irradiation we find
from Equation (8) that its surface density must scale linearly
with Ω:

Σ = cs,0Ω
πGQ0

≈ Σf

(
T0

Tf

)1/2

ω, (39)

where cs,0 is the sound speed corresponding to temperature T0.
According to this result Σ is independent of Ṁ in irradiated
gravitoturbulent regions.

Under strong irradiation one can no longer use the expression
(4) to derive αGI. However, we know Σ from (39), so from the
steady-state condition Ṁ = 3πνΣ and definition ν = αc2

0/Ω
one finds that

αGI = Q0

3

GṀ

c3
0

≈ ṁ

(
T0

Tf

)−3/2

. (40)

This result implies that αGI is constant in the strongly irradiated
part of the disk. Note that an analogous result has been
previously obtained in Goodman (2003).

We can also calculate the run of the optical depth

τ = c0κ0T
β

0

πGQ0
Ω ≈

(
T0

Tf

)β+1/2

ω, (41)

which shows that τ decreases as r−3/2. This result combined
with Equation (34) also demonstrates that as r increases the
relative contribution of the internal dissipation to the midplane
temperature rapidly goes down since it is proportional to
τΩ2 ∝ Ω3.

3.3.2. Optically Thin Case

An optically thin irradiated disk can emerge as an extension
of an optically thin self-luminous disk, which happens when T
given by Equation (29) becomes equal to T0, or at

ωT = ṁ−1

(
T0

Tf

)(9+2β)/2

. (42)



No. 1, 2009 PROPERTIES OF GRAVITOTURBULENT ACCRETION DISKS 285

Such an optically thin transition is possible when an inequality
opposite to (33) is satisfied.

An irradiated optically thin disk can also appear as a con-
tinuation of the irradiated optically thick disk considered in
Section 3.3.1. According to Equation (41) this τ = 1 transition
occurs at

ωT =
(

T0

Tf

)−(β+1/2)

. (43)

An optically thin disk is roughly isothermal vertically and its
thermal balance requires

T 4 ≈ T 4
0 + η

ṀΩ2

τσ
, (44)

which is different from Equation (34) by a factor τ−2 in
the second term on the right-hand side accounting for the
inefficiency of radiative cooling and absorption in the optically
thin disk. There are two obvious regimes to consider. First, when

σT 4
0 � ṀΩ2/τ, (45)

irradiation does not affect disk properties and we go back to
the case studied in Section 3.2. Second, when the condition
opposite to (45) is satisfied irradiation sets the disk temperature.
In this case, all results (except for Equation (44), different
from (34)) obtained in the optically thick irradiated case—
Equations (39)–(41)—remain valid since in deriving them we
did not use any assumptions about the value of τ .

The most important result regarding externally irradiated
constant Ṁ disks is that they can remain gravitoturbulent
independent of their optical depth and that their effective
viscosity αGI remains constant. If the background viscosity does
not dominate angular momentum transport at least in some self-
luminous parts of the gravitoturbulent disk it will not dominate
the transport in the irradiated part either since αGI is constant
there. Thus, torque needed for transporting mass through the
disk must be due to the GI.

3.4. Fragmentation Limit

When tcool becomes comparable to Ω−1 the disk can no longer
sustain the gravitoturbulence and has to fragment into bound
objects (Gammie 2001). As mentioned before fragmentation
condition Ωtcool � 1 can be recast in terms of the αGI threshold
according to Equation (15). This formulation now allows us to
directly apply our results for αGI derived in previous sections.

In particular, a self-luminous optically thick gravitoturbulent
disk starts fragmenting at

ω < ωfrag = ṁ(4−2β)/9, (46)

which follows from demanding αGI given by Equation (25) to be
larger than χ—the critical value of α needed for fragmentation.
The radius rfrag at which fragmentation first occurs is given by
rfrag = rf ṁ−4(2−β)/27 and is rather insensitive to either β or
ṁ, so that fragmentation always occurs not too far from rf . It
is rather interesting that for β = 2, corresponding to the low
temperature dust opacity the location of the fragmentation edge
in the optically thick limit is completely independent of ṁ:
fragmentation occurs exactly at Ω = Ωf . This fact has been
first noticed by Matzner & Levin (2005). Clearly, the constant
Ṁ self-luminous gravitoturbulent disk cannot be fed by a source
located outside rfrag.

According to Equation (27) ωfrag corresponds to the optically
thick part of the disk only if ṁ > 1. Thus, whenever ṁ > 1
the gravitoturbulent disk stays optically thick all the way to the
fragmentation edge located inside rf . Then external disk feeding
must necessarily occur interior to rf .

In the optically thin case one finds from Equation (30) that

ωfrag = ṁ(2β+6)/3. (47)

The fragmentation boundary lies in the optically thin part of
the disk only if ṁ < 1, in which case it is located outside the
fiducial radius rf . The fragmentation radius rfrag = rf ṁ−(2β+6)/9

is a rather sensitive function of ṁ: for β = 2 and Ṁ = 10−7

M� yr−1 ≈ 0.014Ṁf (rather typical value of Ṁ in protoplan-
etary disks) one finds rfrag ≈ 102rf . Thus, in the optically thin
regime fragmentation can be pushed out to large distances by
reducing ṁ (for the just used values of β and Ṁ and M� = M�
one finds rfrag ≈ 104 AU), but it still cannot be avoided if the
disk is self-luminous.

Everything we said before regarding fragmentation applied to
self-luminous disks. If the disk is stable against fragmentation
all the way to the point where its temperature is determined by
external irradiation then in the irradiated region αGI is constant
and given by Equation (40). Since αGI must attain this value
somewhere near the transition to irradiated regime and the disk is
assumed to be non-fragmenting there (i.e., αGI � χ at ω ∼ ωT )
we may conclude from Equation (40) that the disk is going to
remain in a gravitoturbulent state stable against fragmentation
as long as it is externally irradiated and

ṁ � χ

(
T0

Tf

)3/2

. (48)

This is a rather interesting conclusion since it implies that a
sufficiently low Ṁ disk can in principle be stably fed by a source
of mass located at very large distance. In particular, for T0 ≈ 102

K, when the low-temperature opacity (Equation (7)) still applies,
one finds using estimates (21) that Ṁ � 10−4 M� yr−1 satisfies
condition (48) in which we set χ ∼ 1 for simplicity. Thus, disks
obeying the condition (48) can transfer mass at a constant rate
from very large distances despite being gravitationally unstable,
unlike the high Ṁ disks around quasars. Note that the criterion
(48) is independent of either the opacity behavior or the optical
depth of the disk. A qualitatively similar conclusion about the
stabilizing role of irradiation has been reached in Matzner &
Levin (2005) and Cai et al. (2008).

Real irradiated gravitoturbulent disks cannot extend to infinity
for one of the following reasons. First, surface density scaling
given by Equation (39) implies that the disk mass diverges at
large radii as r1/2 while all our results assume that the disk mass
is small compared to the mass of the central star. One can easily
show that this constrains the applicability of our results to radii

r < rf

Tf

T0

(
M�

Mf

)2/3

, (49)

where

Mf =
[
κ0

(
ζσ

χ

)2β+4

(πGQ0)6β+10

(
μ

kB

)9β+16
]−(4β+7)−1

∼ Ṁf

Ωf

∼ Σf

(
cf

Ωf

)2

∼ 10−3 M� (50)
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is the fiducial mass scale relevant for our problem. For a
stellar mass central object (M� ∼ M�) the disk mass becomes
comparable to M� only at r ∼ 102rf ∼ 104 AU. For more
massive objects (like a supermassive black hole) the boundary
at which the disk mass equals M� is pushed even further in units
of rf .

Second, in the irradiated disk radiation pressure at large radii
becomes more important than the gas pressure: the former is
constant with r while the latter drops as Ω2. This lowers the
effective adiabatic index of the disk fluid making it susceptible
to fragmentation even when the cooling time is longer than Ω−1.
The radiation pressure is negligible compared to gas pressure
and fragmentation does not happen as long as

r < rf

Tf

T0

(
c

cf

)1/3

≈ 110rf

Tf

T0
, (51)

where c is the speed of light. Depending on the mass of the
central object one of the criteria (49) or (51) determines the
extent of the region of applicability of our results.

The argument based on Equation (48) may not be without
caveats. The value of αGI given by Equation (40) is derived
based on the cooling rate equal to the energy production rate
∼ṀΩ2 due to the dissipation of gravitoturbulence. This rate is
much lower than the (external heating) rate σT 4

0 × min(1, τ ) at
which the disk would cool if irradiation were suddenly switched
off or if the GI in irradiated disks were capable of producing
surface density perturbations of order unity. One can easily
show that Ωtcool based on such a fast cooling rate does not stay
constant in irradiated part of the disk but steadily increases.
The tricky question is the following: which cooling rate should
determine the ability of the disk to fragment? This issue can
be settled satisfactorily via careful numerical simulations of
strongly irradiated gravitoturbulent disks, something that has not
yet been done. But given that in accretion disks which are close
to the steady state, angular momentum transfer (determining
Ṁ) must be uniquely related to the energy dissipation rate, we
feel that it is more likely for the fragmentation condition to be
determined by the criterion (48) rather than by the much shorter
cooling time set by the irradiation heating rate. Our subsequent
consideration will be based on this assumption.

3.5. Background Viscosity

If the angular momentum transport caused by gravitational
torques becomes weak some other mechanisms may start
providing effective viscosity. Here we assume that in addition
to gravitational torques disk also possesses some background
viscosity αν due to, e.g., the magneto-rotational instability
(MRI). Normally one expects αν � 1 so that this background
viscosity would become significant only when αGI gets rather
small.

If, as expected for the dust opacity, β is between 0 and 2
then both in the optically thick and optically thin regimes αGI
decreases as ω increases. In other words, gravitoturbulent disk
becomes less “viscous” as the distance to the center decreases.
With this in mind we find that in the optically thick case the
background viscosity would dominate over the gravitoturbulent
torque (i.e., αν � αGI) at

ω � ων ≈ (
α2β−7

ν ṁ4−2β
)1/9

, τ > 1. (52)

According to Equation (26) this critical angular frequency corre-
sponds to the optically thick regime only if ṁ � α

(10+4β)/(7+4β)
ν .

In the optically thin case, the background viscosity regulates
the disk at

ω � ων ≈ (
α−2β−9

ν ṁ2β+6)1/3
, τ < 1, (53)

and this ων corresponds to τ < 1 provided that ṁ �
α

(10+4β)/(7+4β)
ν .
Inside the region where the background viscosity dominates

(at ω > ων), equations governing the disk structure change.
Previously, when considering the gravitoturbulent transport, we
did not have a constraint on α but instead had a relationship
between T and Σ in the form of Equation (9), arising from the
requirement of the marginal gravitational instability. However,
with the background viscosity dominating the angular momen-
tum transport α is constrained to be equal to αν , which leads to
an overdetermined system of equations if we also try to keep
the condition Q = Q0. This contradiction is naturally avoided
by dropping the latter constraint, i.e., allowing the disk not to
be marginally gravitationally unstable when α = αν .

In Appendix A, we present Σ, T, and τ behaviors in accretion
disk with the dominant background viscosity αν and opacity in
the form (6). If we now use these expressions (Equations (A1),
(A2), (A5), and (A6)) to calculate Toomre Q in the self-luminous
viscous part of the disk at ω > ων we find that

Q/Q0 = (ω/ων)9/(10−2β), τ > 1 (54)

in the optically thick case and

Q/Q0 = (ω/ων)3/(6+2β), τ < 1 (55)

in the optically thin case. Apparently, for any reasonable
dust opacity behavior Q starts to deviate from its marginal
stability value Q0 toward higher values at the transition from
the gravitoturbulent to viscous regime (at ω = ων). Thus, the
accretion disk cannot be gravitationally unstable if its angular
momentum transport is not dominated by gravitational torques
but is rather due to some other form of effective viscosity.
This consideration demonstrates explicitly how the transition
between the gravitoturbulent and viscous parts of the disk
occurs.

Note that αGI given by Equation (40) is independent of ω.
This implies that if

ṁ � αν

(
T0

Tf

)3/2

, (56)

the accretion disk remains viscous everywhere and does not
transition into the gravitoturbulent state at all. Thus, at low
enough ṁ the disk is gravitationally stable at large radii and can
transport matter all the way to the central object from very large
distances. Condition (56) is more restrictive than the constraint
(48) which delineates the regime in which the gravitoturbulent
constant Ṁ disk can transfer material from very large distances
without fragmentation.

4. DISCUSSION

Our results derived in Section 3 apply to a variety of situations
in which gravitoturbulent disks can exist: they can be optically
thick or thin, fragmenting or not. Here we classify different
states in which accretion disks can be found according to the val-
ues of Ṁ , background viscosity αν , and irradiation temperature
T0. We also describe applications of these results to real astro-
physical systems and discuss their connection with the work of
others.
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Figure 1. Plot of different possible states in which an accretion disk can be
found as a function of mass accretion rate Ṁ and angular frequency Ω (the
corresponding dimensionless quantities ṁ = Ṁ/Ṁf and ω = Ω/Ωf are
shown on the upper and right axes). The disk has a non-zero background
viscosity αν = 0.003 and is externally irradiated at a spatially constant tem-
perature T0 = 3Tf ≈ 35 K, corresponding to condition (57). Shading indi-
cates viscous regions (slant solid shading), irradiated regions (horizontal dotted
shading), and region where the disk must fragment (vertical solid shading).
The gravitoturbulent, self-luminous region is unshaded. Different curves sepa-
rate regions with distinct physical conditions and are marked on the plot (see
the text for more details). Coordinates of the points where these curves cross in
the (ṁ, ω) coordinates are given by expressions (B1).

4.1. Separation of Different Regimes

We consider a particular case when external irradiation at
constant temperature T0 is strong,

T0/Tf > 1, (57)

in which case the phase space of possible regimes can be
represented by Figure 1. Given that in the case of opacity
dominated by cold dust Tf is just slightly higher than 10 K
(see Equation (21)) it is clear that condition (57) should apply
to virtually all accretion disks in the universe as even the lowest
measured temperatures encountered in some dense molecular
cores are not very different from 10 K (Di Francesco et al.
2007). For that reason in the following we consider only disks
for which condition (57) is fulfilled.

In Figure 1, one can examine different regimes (indicated by
shading) which are relevant for a given Ṁ . Curves3 separating
different regimes correspond to various critical transitions: α =
αν (dotted lines) implies a transition from viscous (above and
to the left of this curve, slant solid shading) to gravitoturbulent
state, α = 1 (solid lines) describes the onset of fragmentation
(below and to the right of this curve, vertical solid shading),
T = T0 is a (long-dashed) line below which external irradiation
starts to dominate disk structure (region with horizontal dotted
shading), τ = 1 curve (short-dashed) shows a transition from
an optically thick (above this curve) to an optically thin disk.
Coordinates (in phase space ṁ, ω, upper and right axes) of
the points A, B, C, D where these curves cross are given by

3 Equations for these curves can be found in Sections 3.1–3.5 and
Appendix A.

expressions (B1) in Appendix B. Unshaded region corresponds
to a self-luminous, gravitoturbulent disk. A constant Ṁ disk
corresponds to a straight vertical line in Figure 1 cutting through
different regimes.

The numerical values on the left and lower axes of this figure
correspond to a particular choice of αν = 0.003, T0/Tf = 3
(T0 = 35 K), and the opacity in form (7). As described in
Section 3.5, the very low Ṁ � 10−7 M� yr−1 disk is always
viscous and gravitationally stable, even at very large distances
from the central object. Above this value of Ṁ the disk must
be gravitoturbulent within some range of distances. For 10−7

M� yr−1 � Ṁ � 4×10−5M� yr−1, the gravitoturbulent region
extends from Ω ∼ 10−10–10−9 s−1 all the way to very large
distances (where Ω → 0), limited only by conditions (49) or
(51). However, for Ṁ above Ṁ � 4 × 10−5 M� yr−1, the
gravitoturbulent disk fragments at Ω ≈ 1.4 × 10−10 s−1 (in
the optically thick case with opacity characterized by β = 2
fragmentation occurs exactly at Ωf , see Section 3.4) so that a
constant Ṁ disk can be maintained only interior to this point.
For any Ṁ � 10−7 M� yr−1, the gravitoturbulent angular
momentum transport becomes weak at large enough Ω so that
the background viscosity starts to determine disk properties at
small radii (the upper part of the plot, at Ω > 10−9 s−1 in this
particular case).

As an example, let us use Figure 1 to figure out where the
transitions between different regimes occur in a disk with Ṁ =
10−5 M� yr−1, αν = 0.003, T0/Tf = 3 and opacity in the form
(7). At Ω > 10−9 s−1, the disk is gravitationally stable and self-
luminous, angular momentum is transported through the disk
by background viscosity. For 2 × 10−10 s−1 < Ω < 10−9 s−1,
the disk is gravitoturbulent and self-luminous. For Ω < 2 ×
10−10 s−1, the disk is gravitoturbulent and externally irradiated.
The disk is optically thick for all Ω � 10−11 s−1 and optically
thin for smaller Ω. This example clearly shows the complexity
of possible states in which a given accretion disk can be found
at different distances from the central object.

Figure 1 exhibits four invariant properties of accretion disks:
(1) the disk is dominated by background viscosity for all Ω
at very low Ṁ (for ṁ < αν(T0/Tf )3/2, see Appendix B) and
non-zero T0; (2) for all Ṁ the disk is dominated by background
viscosity at high enough Ω; (3) at intermediate values of Ṁ
(for αν(T0/Tf )3/2 < ṁ < (T0/Tf )3/2), the disk possesses a
gravitoturbulent, externally irradiated region that extends to
large distances; (4) at large values of Ṁ (for ṁ > (T0/Tf )3/2),
the disk has a gravitoturbulent region within a finite range of
distances but must inevitably fragment at some large distance.
Similar qualitative conclusions hold also for opacity behaviors
different from (7).

We should note here that calculations presented in this section
rely on our use of opacity (6) and (7) throughout the whole
region of Ṁ, Ω phase space that we consider. In reality, at
high Ṁ and Ω the disk temperature should exceed 102 K at
which point icy grains sublimate leaving metal-silicate grains
as a source of opacity. This latter opacity source while still
being in form (6) is characterized by smaller values of κ at the
same temperature and β ≈ 1/2. This is likely to quantitatively
(but not qualitatively) affect results presented in Figure 1 at
high Ṁ and Ω. To not complicate things further here we do
not attempt to self-consistently describe transitions between
different opacity regimes but rather display a qualitative picture
for a single opacity law.
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4.2. Applications

Our results can be applied to understanding the properties of
the outer, cold parts of realistic accretion disks. In particular, we
address three important issues.

First, a possibility of giant planet formation by GI in pro-
toplanetary disks has been discussed since Cameron (1978). In
this context, it is interesting to ask under which conditions a con-
stant Ṁ protoplanetary disk would be prone to fragmentation
into gravitationally bound, self-gravitating objects. Our results
described in Section 4.1 can directly address this issue. Indeed,
conditions used in producing Figure 1, namely α = 0.003 and
T0 ≈ 35 K, are quite typical for the outer regions of protoplane-
tary disks, beyond ∼100 AU from the central star. On one hand,
the disk surface density there is low enough (see below) for the
cosmic ray ionization to stimulate MRI operation which gives
rise to αν at the level of ∼10−3–10−2 (e.g., Fleming & Stone
2003). On the other hand, outer regions of protoplanetary disks
are warmed up by radiation of either the parent star or the neigh-
boring stars at the level of several tens of K. Thus, the situation
represented in Figure 1 can be directly used for understanding
the properties of external parts of protoplanetary disks.

What is obvious from this figure is that giant planet formation
by gravitational instability in constant Ṁ disks can take place
only beyond ≈ 120 AU which is the distance from a 1 M�
star at which Ω = Ωf —remember that in the optically thick4

gravitoturbulent disks fragmentation occurs at this specific value
of Ω (Matzner & Levin 2005; see Equation (46)). Thus, planets
produced by gravitational instability should be born far from
their parent stars although one cannot exclude their subsequent
migration to shorter periods.

Another obvious constraint on planet formation that follows
from Figure 1 is that Ṁ must be pretty high at the location
where disk fragments and planets form. Indeed, one can easily
see that fragmentation is possible only if Ṁ locally exceeds
10−5M� yr−1. At lower Ṁ, the disk maintains itself in a
gravitoturbulent state (or even being kept gravitationally stable
by its own background viscosity at very low Ṁ) without
fragmentation even very far from the star.

Accretion rates in excess of 10−5 M� yr−1 are atypical for
mature T Tauri disks (Gullbring et al. 1998). However, they
may have been present at the very earliest stages of star and
disk formation when the material from collapsing protostellar
envelope rains down onto the disk at a very high rate, possibly
exceeding 10−5 M� yr−1 in some locations. Such disks are
likely not to have Ṁ constant through their whole extent but as
we discussed in Section 3 our results are still applicable5 with
some modifications even to this more complicated case.

The second practical issue that we are going to address has
to do with the feeding of supermassive black holes in centers
of galaxies. It has been known for a long time that the outer
parts of quasar disks must be gravitationally unstable which
was always raising a question of how gas is transported to the
black hole from large distances. Our results demonstrate that
as long as Ṁ is not very high the GI is not going to impede
mass transfer through the disk since for low enough Ṁ , namely
for Ṁ � Mf (T0/Tf )3/2, see Equation (48), a gravitationally

4 That the disk with the assumed values of αν and T0 is optically thick at the
fragmentation boundary is evident from Figure 1.
5 A disk with Ṁ varying with distance would not correspond to a straight
vertical line in Figure 1 like a constant Ṁ disk would but must follow a more
complicated path determined by a specific dependence of Ṁ on r (or,
alternatively, Ω).

unstable disk can persist in a gravitoturbulent state out to very
large distances from the central object. How high Ṁ can be
carried through a gravitoturbulent disk globally thus depends
only on the level of external irradiation.

Radiation fields in galactic nuclei due to circumnuclear stars
are expected to be quite intense giving rise to T0 at the level
of tens to hundreds of K. Assuming T0 = 100 K (which
is a radiation field slightly more intense than that expected
in the Galactic center), we find that the gravitoturbulent disk
can transport mass from large distance to the black hole as
long as Ṁ � 103Ṁf ≈ 10−2M� yr−1. This is about 10%
of the Eddington rate (for radiative efficiency of 10%) for
the 4 × 106 M� black hole in the center of our Galaxy,
which is quite significant given that the Bondi accretion rate
of this object is � 10−5M� yr−1 (Baganoff et al. 2003). Thus,
irradiated gravitoturbulent accretion disks provide a natural way
of continuous feeding at least some (not too massive) central
black holes at reasonable rates by gas transported from very
large distances.

However, it is also clear from our results and Figure 1 that
accretion disks around more massive black holes (>106 M�)
consuming mass at rates close to Eddington cannot remain grav-
itoturbulent out to very large distances—for any reasonable level
of external irradiation the disk must fragment at some point, and
the most distant possible location of the fragmentation bound-
ary corresponds to Ω = Ωf ≈ 1.4 × 10−10 s−1 (for the case of
dust opacity in the form [7]). Transport of gas from beyond this
distance is still an open issue discussed by Goodman (2003).

Finally, we briefly discuss the origin of the young stellar disk
around a supermassive black hole in the center of our Galaxy.
Inner parsec of the Galaxy is known (Paumard et al. 2006; Lu
et al. 2009) to contain at least one disk of young (6±2 Myr old)
massive stars spread between 0.04 pc and 0.5 pc. To explain
formation of these stars so close to the black hole where they
are subject to action of its strong tidal field a fragmentation
of a gravitationally unstable disk has been proposed (Levin &
Beloborodov 2003; Levin 2007). Such an event can in principle
happen both in a (quasi-)steady state disk like the one we
considered in this work or in a short-lived promptly fragmenting
(on a dynamical time scale) disk-like structure that may arise
as a result of molecular cloud collision with the black hole
(Wardle & Yusef-Zadeh 2008; Bonnell & Rice 2008; Hobbs &
Nayakshin 2009). Here we try to constrain the first possibility.
We will assume that the disk was illuminated by surrounding
stars which kept T0 at the level of tens of K so that its opacity law
was given by Equation (7). Distance rf at which fragmentation
would occur in an optically thick disk around the 4 × 106 M�
black hole is ≈ 0.1 pc which is within the span of the observed
stellar disk.

For a long-lived disk to start fragmenting, a variability of
some of its properties must take place. One possibility is an
increase of Ṁ which can bring a gravitoturbulent irradiated
disk extending out to large distances across a fragmentation
threshold (see Figure 1). But then the outer regions of the disk
(at r � rf ) where Ṁ has increased would immediately fragment
and it is not at all obvious that mass would be transferred inward
increasing Ṁ at small radii (at r ∼ rf ) where stellar disks are
observed. In principle, the disk could be not an accretion but
a spreading (Pringle 1991) disk formed as a result of a dense
molecular cloud disruption at very small distances. However, in
this case an increase of Ṁ is unlikely while a decrease of Ṁ
typical for spreading disks would only stabilize the disk against
gravitational fragmentation.
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Another (probably less likely) possibility is a reduction of
external irradiation which can cause fragmentation of even a
constant in time Ṁ disk as soon as the condition (48) gets
violated. The problem with this scenario is that it may then be
difficult to explain the existence of stars at 0.04 pc which is
significantly closer to the black hole than the minimum radius
rf at which fragmentation occurs in a cold disk. In principle, Ωf

can be increased by lowering disk metallicity which affects κ0.
However, according to Equations (17) and (22) moving rf from
0.1 pc to 0.04 pc would require reducing κ0 by a factor of 60
compared to the value in (7), implying an extremely subsolar
metallicity in the disk.

More generally, star formation in a nearly Keplerian disk does
not naturally explain rather significant eccentricities of disk stars
(Bartko et al. 2009) and the possible presence of a second disk
component. Thus, it seems unlikely (although not completely
impossible) that stellar disks were formed by gravitational
fragmentation of a long-lived gaseous disk. Scenario of a prompt
fragmentation of a tidally disrupted molecular cloud advanced
by Wardle & Yusef-Zadeh (2008), Bonnell & Rice (2008),
and Hobbs & Nayakshin (2009) presents a more attractive
possibility.

4.3. Comparison with Previous Studies

The first investigation of self-gravitating accretion disks
has been undertaken by Paczynski (1978a), later followed by
Paczynski (1978b) and Kozlowski et al. (1979). These early
numerical modeling efforts concentrated on studying hot quasar
disks around the supermassive black holes with accretion rates
close to the Eddington rate. Some of the important ingredients
of these models have been the inclusion of the radiation pressure
(neglected in our case) and use of high-T opacities, which makes
comparison of these calculations to the results of our study rather
difficult.

Another investigation of a quasi-viscous evolution of a self-
gravitating disk driven by gravitational torques has been done
by Lin & Pringle (1987). In their work, based on rather
general arguments, a specific model for the viscosity due to
the disk self-gravity has been assumed, namely ν ∝ Σ2r6Ω (or
α ∼ Q−2 > 1). The correct prescription (2) is in general quite
different from this naive ansatz precluding direct comparisons
with our results. Also, the assumption Q ∼ 1 has been relaxed
in Lin & Pringle (1987) allowing Q to drop significantly below
unity.

More recently, Goodman (2003) has analytically investigated
properties of Q ≈ 1 regions of constant Ṁ quasar disks, again
taking into account the radiation pressure. This study has a lot
in common with our work with the major difference being that
Goodman (2003) left α to be a free parameter while we self-
consistently calculate its value using a prescription (2). Some
of the results derived in Goodman (2003) have been retrieved in
our study.

Subsequently, Rafikov (2005, 2007) has looked at the prop-
erties of gravitationally unstable disks, which are capable of
forming giant planets by direct fragmentation. Such disks must
simultaneously fulfill two constraints: Q = Q0 and αGI = χ .
These assumptions were used to set stringent constraints on the
properties of disks that are able to form planets by GI. Clearly,
such disks do not have constant Ṁ in general. Our current as-
sumptions are different in that we assume only Q = Q0 and
fix Ṁ at some value (not necessarily constant, see the discus-
sion after Equation (13)) at every point in the disk, but αGI is
then calculated self-consistently. Matzner & Levin (2005) and

Levin (2007) have also studied cold Q = 1 disks with opacity
dominated by dust specifically looking at the conditions nec-
essary for fragmentation. We successfully reproduce some of
their results such as the location of the fragmentation boundary
in the optically thick regime and the importance of irradiation
for stabilizing the gravitoturbulent disk against fragmentation at
large distances.

Kratter et al. (2008) have looked at the properties and
conditions for fragmentation in massive, self-gravitating disks
with continuing infall. In their study, they have adopted a
prescription for the angular momentum transport different from
ours: their effective αGI depends on Toomre Q (which is fixed
at the level of Q0 in our case) and the disk-to-star mass ratio
(which is close to zero in our case), which allowed them to
cover the massive disk case. For that reason (and because of a
different physical setup, e.g., absence of infall, in our case) a
direct comparison of our results with theirs even in the limit of
small disk mass is not trivial.

Finally, Terquem (2008) and Zhu et al. (2009) have con-
structed global numerical models of protoplanetary disks ac-
counting for the possibility of GI in some parts of the disk.
These studies pay special attention to the presence of the so-
called “dead zones” (Gammie 1996)—disk regions where MRI
cannot operate because of low ionization. Our analytical calcu-
lations do not account for the existence of such regions, nev-
ertheless they provide good foundation for understanding the
numerical results of Terquem (2008) and Zhu et al. (2009) in
the outermost regions of their disks.

5. CONCLUSIONS

We have explored the properties of marginally gravitationally
unstable accretion disks using a realistic prescription for the
angular momentum transfer driven by the gravitational torques.
We self-consistently derived scalings of important disk variables
such as surface density and temperature in both the optically
thick and thin regimes. We also accounted for the possibility of
disk having some background viscosity, e.g., due to MRI, and
demonstrated that in this case a gravitoturbulent disk inevitably
switches to an ordinary viscous disk at small radii. Another
important ingredient of our study is the inclusion of possible
external irradiation of the disk (e.g., by central object or nearby
stars). We have demonstrated that for low enough Ṁ external
irradiation helps to stabilize the disk against fragmentation
out to very large distances providing means of external mass
feeding of the central object. At extremely low Ṁ, disks have
been shown to never become gravitationally unstable because of
background viscosity. At high Ṁ (the exact threshold depends
on the irradiation temperature) the fragmentation of the disk is
inevitable at large distances. Results of this work apply to our
understanding of the possibility of giant planet formation by GI
and star formation in the Galactic center, and to the problem of
feeding the quasars.

I am grateful to Jeremy Goodman for useful discussions.
The financial support for this work is provided by the Sloan
Foundation and NASA grant NNX08AH87G.

APPENDIX A

PROPERTIES OF VISCOUS ACCRETION DISKS

When the angular momentum transport in the disk is dom-
inated by some internal source of viscosity characterized by
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parameter αν one finds that in the optically thick case,

Σν ≈
[

σ

κ0

Ω2−βṀ3−β

α
4−β
ν

(
kB

μ

)β−4
](5−β)−1

≈ Σf

(
ω2−βṁ3−β

α
4−β
ν

)(5−β)−1

, (A1)

Tν ≈
[

Ω3 κ0Ṁ
2

σαν

μ

kB

](5−β)−1

≈ Tf

(
ω3ṁ2

αν

)(5−β)−1

, τ > 1,

(A2)
where we have dropped constant numerical factors of order
unity. With these expressions one finds

τ =
(

ω2β+2ṁβ+3

α4
ν

)(5−β)−1

, (A3)

meaning that the viscous disk is optically thick only when

ω >

(
α4

ν

ṁβ+3

)(2+2β)−1

. (A4)

When condition (A4) is violated, the disk becomes optically
thin and we find

Σν ≈
[
σκ0

Ω2+βṀ3+β

α
4+β
ν

(
μ

kB

)4+β
](3+β)−1

≈ Σf ṁ

(
ω2+β

α
4+β
ν

)(3+β)−1

, (A5)

Tν ≈
[

Ω
αν

σκ0

kB

μ

](3+β)−1

≈ Tf (ανω)(3+β)−1
, (A6)

τ = ṁ

(
ω1+β

α2
ν

)2/(3+β)

, τ < 1. (A7)

Derivation of Equations (A1)–(A7) assumes that it is the in-
ternal viscous dissipation in the disk that sets its midplane tem-
perature. However, analogous to the case studied in Section 3.3
one can consider a possibility that the disk temperature is set by
external irradiation at the level of T = T0 even when its angular
momentum transport has non-gravitational nature. From Equa-
tion (A2) we find that an optically thick self-luminous viscous
disk changes to an externally irradiated disk at a radius where

ω = ωT =
( αν

ṁ2

)1/3
(

T0

Tf

)(5−3)/3

. (A8)

Analogously, Equation (A6) predicts that an optically thin
transition from a self-luminous to an externally irradiated disk
occurs at the point where

ω = ωT = α−1
ν

(
T0

Tf

)(3+β)

. (A9)

In those regions where the disk temperature is fixed at the
constant level T0 one can easily show that

Σ = ṁω

αν

T0

Tf

, (A10)

τ = ṁω

αν

(
T0

Tf

)(β−1)

. (A11)

Q/Q0 = αν

ṁ

(
T0

Tf

)3/2

. (A12)

The last equation implies that Toomre Q is constant in the
irradiated viscous part of the constant Ṁ disk. That Q > Q0
there can easily be seen from Equation (40), which allows us
to rewrite Equation (A12) as Q/Q0 = αν/αGI and this ratio is
> 1 since for αν to dominate over the gravitoturbulent torques
αν > αGI must be fulfilled. It also follows from Equation (A11)
that the τ = 1 transition, if it occurs in the externally irradiated
region of viscous disk, takes place at

ω = ω1 = αν

ṁ

(
T0

Tf

)1−β

. (A13)

APPENDIX B

PHASE SPACE PLOT

The (ṁ, ω) coordinates of various critical points in Figure 1
corresponding to T0/Tf > 1 are

A =
(

αν

(
T0

Tf

)3/2

, α−1/3
ν

(
T0

Tf

)(2−β)/3
)

,

B =
(

αν

(
T0

Tf

)3/2

,

(
T0

Tf

)−(β+1/2)
)

, (B1)

C =
((

T0

Tf

)3/2

,

(
T0

Tf

)−(β+1/2)
)

,

D =
((

T0

Tf

)3/2

,

(
T0

Tf

)(2−β)/3
)

.
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