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ABSTRACT

The three-point correlation function of cosmological fluctuations is a sensitive probe of the physics of inflation.
We calculate the bispectrum, Bg(k1, k2, k3), Fourier transform of the three-point function of density peaks (e.g.,
galaxies), using two different methods: the Matarrese–Lucchin–Bonometto formula and the locality of galaxy
bias. The bispectrum of peaks is not only sensitive to that of the underlying matter density fluctuations, but also
to the four-point function. For a physically motivated, local form of primordial non-Gaussianity in the curvature
perturbation, Φ = φ + fNLφ2 + gNLφ3, where φ is a Gaussian field, we show that the galaxy bispectrum contains
five physically distinct pieces: (1) non-linear gravitational evolution, (2) non-linear galaxy bias, (3) fNL, (4) f 2

NL,
and (5) gNL. While (1), (2), and a part of (3) have been derived in the literature, (4) and (5) are derived in this
paper for the first time. We also find that, in the high-density peak limit, (3) receives an enhancement of a factor of
∼15 relative to the previous calculation for the squeezed triangles (k1 ≈ k2 � k3). Our finding suggests that the
galaxy bispectrum is more sensitive to fNL than previously recognized, and is also sensitive to a new term, gNL.
For a more general form of local-type non-Gaussianity, the coefficient f 2

NL can be interpreted as τNL, which allows
us to test multi-field inflation models using the relation between the three- and four-point functions. The usual
terms from Gaussian initial conditions, (1) and (2), have the smallest signals in the squeezed configurations, while
the others have the largest signals; thus, we can distinguish them easily. We cannot interpret the effects of fNL on
Bg(k1, k2, k3) as a scale-dependent bias, and thus replacing the linear bias in the galaxy bispectrum with the scale-
dependent bias known for the power spectrum results in an incorrect prediction. As the importance of primordial
non-Gaussianity relative to the non-linear gravity evolution and galaxy bias increases toward higher redshifts,
galaxy surveys probing a high-redshift universe are particularly useful for probing the primordial non-Gaussianity.
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1. INTRODUCTION

Are primordial fluctuations Gaussian or non-Gaussian? The
simplest models of inflation, driven by a slowly rolling single
scalar field with the canonical kinetic term originated from
the Bunch-Davis vacuum, predict the amplitude of primordial
non-Gaussianity that is below the detectable level. Therefore, a
convincing detection of primordial non-Gaussianity would rule
out the above simplest models, and thus lead to a breakthrough
in our understanding of the physics of inflation (see Bartolo
et al. 2004, for a review).

The tightest limit on primordial non-Gaussianity so far comes
from the angular bispectrum, spherical harmonic transform of
the angular three-point correlation function (see Komatsu 2001,
for a review), of anisotropy in the cosmic microwave background
(CMB) radiation (see Komatsu et al. 2009; Smith et al. 2009;
Curto et al. 2009, for the latest limits).

The large-scale structure of the universe can also provide
alternative ways of probing primordial non-Gaussianity through
abundances and clustering properties of galaxies and clusters of
galaxies. However, as the large-scale structure of the universe is
more non-linear than CMB, it was generally thought that CMB
would be the most promising way of constraining primordial
non-Gaussianity (Verde et al. 2000).

On the other hand, Sefusatti & Komatsu (2007) have shown
that observations of the large-scale structure of the universe in
a high-redshift universe, i.e., z > 1, can provide competitive
limits on primordial non-Gaussianity, as the other non-linear
effects are weaker in a high-redshift universe. Specifically, they
calculate the bispectrum of the three-dimensional distribution of

galaxies, Bg(k1, k2, k3),1 on large scales as (see also Scocci-
marro et al. 2004)

Bg(k1, k2, k3, z) = 3b3
1fNLΩmH 2
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×
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where H0 and Ωm are the present-day value of Hubble’s constant
and the matter density parameter, respectively, Pm(k, z) is the
power spectrum of linear matter density fluctuations, D(z) is
the linear growth factor, T (k) is the linear transfer function
whose limit is T (k) → 1 as k → 0, and F

(s)
2 (k1, k2) is a known

mathematical function given by Bernardeau et al. (2002)
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This function vanishes in the squeezed limit, k1 = −k2
(the triangles with the maximum angle, i.e., π , between k1
and k2, and |k1| = |k2|), and takes on the maximum value,
F

(s)
2 = (α +1)2/(2α) � 2, in the opposite limit, k1 = αk2 where

α � 1 (the triangles with the vanishing angle between k1 and k2).
Here, b1 and b2 are the linear and non-linear galaxy bias

parameters, respectively, which relate the underlying matter

1 The bispectrum, the Fourier transform of the three-point correlation
function, is defined as 〈δ(k1)δ(k2)δ(k3)〉 ≡ (2π )3B(k1, k2, k3)δD(k1 + k2 + k3).

1230

http://dx.doi.org/10.1088/0004-637X/703/2/1230
mailto:djeong@astro.as.utexas.edu


No. 2, 2009 PRIMORDIAL NON-GAUSSIANITY AND GALAXY BISPECTRUM 1231

density contrast, δm, to the galaxy density contrast, δg , as (Fry
& Gaztanaga 1993)

δg(x) = b1δm(x) +
b2

2

[
δ2
m(x) − σ 2] + · · · , (3)

where σ 2 ≡ 〈δ2
m〉, which ensures 〈δg〉 = 0.

The last two terms in Equation (1) are the well known results
for Gaussian initial conditions (see Bernardeau et al. 2002, for
a review), whereas the first term is the effect of the primordial
non-Gaussianity of the “local type,” whose Bardeen’s curvature
perturbation, Φ, is written as Φ(x) = φ(x) + fNLφ2(x), where φ
is a Gaussian field (Salopek & Bond 1990; Gangui et al. 1994;
Verde et al. 2000; Komatsu & Spergel 2001). The latest limit on
this parameter is fNL = 38 ± 21 (68% CL; Smith et al. 2009).

However, Sefusatti & Komatsu’s equation, Equation (1), may
require modifications, in light of recent analytical (Dalal et al.
2008; Matarrese & Verde 2008; Slosar et al. 2008; Afshordi &
Tolley 2008; Taruya et al. 2008; McDonald 2008) and numerical
(Dalal et al. 2008; Desjacques et al. 2008; Pillepich et al.
2008; Grossi et al. 2009) studies of the effects of primordial
non-Gaussianity on the galaxy power spectrum. These studies
have discovered an unexpected signature of primordial non-
Gaussianity in the form of a scale-dependent galaxy bias, i.e.,
Pg(k, z) = b2

1(z)Pm(k, z) → [b1(z) + Δb(k, z)]2Pm(k, z), where

Δb(k, z) = 3(b1(z) − 1)fNLΩmH 2
0 δc

D(z)k2T (k)
, (4)

and δc 
 1.68 is the threshold linear density contrast for a
spherical collapse of an overdensity region.

Then, several questions arise: can we still use Equation (1) for
the bispectrum? Should we replace b1 by b1 + Δb(k)? Does the
first line in Equation (1) somehow give the same correction as
Δb(k)? How about b2? We are going to address these questions
in this paper.

2. BISPECTRUM OF DARK MATTER HALOS

In this section, we derive the galaxy bispectrum for non-
Gaussian initial conditions by using two different methods. In
Section 2.1, we shall use the “functional integration method”
for computing n-point correlation functions of peaks of the cos-
mological density fluctuations (Politzer & Wise 1984; Grinstein
& Wise 1986). In Section 2.2, we shall present an alternative
derivation of the same result by using a local bias assumption.

2.1. Mararrese–Lucchin–Bonometto (MLB) Method

We shall use the Matarrese–Lucchin–Bonometto (MLB)
formula (Matarrese et al. 1986) which allows one to calculate
the n-point correlation functions of peaks for non-Gaussian
initial conditions. This approach is especially well suited for
our purposes, as Matarrese & Verde (2008) have applied the
MLB formula to compute the scale-dependent bias of the
galaxy power spectrum. We shall apply the MLB formula to
compute the galaxy bispectrum for general non-Gaussian initial
condition.

We study the three-point correlation function of the spatial
distribution of dark matter halos. Let us consider the probability
of finding three halos within three arbitrary volume elements:
dV1, dV2, and dV3, which are at x1, x2, and x3, respectively, as
(Peebles 1980)

P (x1, x2, x3) = n̄3[1 + ξh(x12) + ξh(x23) + ξh(x31)

+ ζh(x1, x2, x3)] dV1dV2dV3, (5)

where xij ≡ |xi − xj |, and ξh and ζh are the two- and three-point
correlation functions of halos, respectively.

The next step is to relate the correlation functions of halos, ξh

and ζh, to those of the underlying matter distribution function.
The locations of halos coincide with those of the peaks of the
matter density fluctuations; thus, one can compute ξh and ζh by
computing the correlation functions of peaks above a certain
threshold, above which the peaks collapse into halos.

We shall assume that halos would be formed in the region
where the smoothed linear density contrast exceeds δc. For
a spherical collapse in an Einstein–de Sitter universe δc =
3(12π )2/3/20 
 1.68, and one can find other values in the
ellipsoidal collapse in arbitrary cosmological models (see, e.g.,
Cooray & Sheth 2002, for a review). The mass of halos is
determined by the smoothing radius, R, i.e., M = (4π/3)ρmR3,
where ρm is the average mass density of the universe. The
smoothed density contrast, δR , is related to the underlying mass
fluctuations, δm, as δR(x) = ∫

d3x′WR(|x − x′|)δm(x′), where
WR(x) is a smoothing function. We shall use a top-hat filter
with radius R for WR(x).

Using the MLB formula, we find
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= exp
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, (6)

where m3 ≡ n − m1 − m2, ν ≡ δc/σR , σ 2
R is the variance of

matter density fluctuations smoothed by a top-hat filter with
radius R, and ξ

(n)
R denotes the connected parts of the n-point

correlation functions of the underlying matter density fields
smoothed by a top-hat filter of radius R. Here, we have assumed
that we are dealing with high density peaks, i.e., ν � 1, which
are equivalent to highly biased galaxies, b1 � 1.

As ξ
(n)
R � 1 on the large scales that we are interested in, we

expand the exponential in Equation (6). We keep the terms up
to the four-point function, as this term provides the dominant
contribution to the three-point function. We find

ζh(x1, x2, x3) = ν3

σ 3
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. (7)

The bispectrum of halos in Lagrangian space, BL
h (k1, k2, k3), is

the Fourier transform of ζh(x1, x2, x3),

BL
h (k1, k2, k3) = ν3

σ 3
R

[
BR(k1, k2, k3) +

ν

σR

×{PR(k1)PR(k2) + (2 cyclic)} +
ν

2σR

×
∫

d3q
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TR(q, k1 − q, k2, k3) + (2 cyclic)

]
, (8)
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where TR is the trispectrum, Fourier transform of ξ
(4)
R . Here,

we call BL
h the Lagrangian space bispectrum, as it relates

the halo overdensity to the initial matter overdensity with its
amplitude extrapolated to the present epoch. If we assume
that the halos move in the same way as matter, the observed
bispectrum in Eulerian space, Bh, would be the same expression
with Equation (8), except for the coefficients

Bh(k1, k2, k3) = b3
1

[
BR(k1, k2, k3)

+
b2

b1
{PR(k1)PR(k2) + (2 cyclic)}

+
δc

2σ 2
R

∫
d3q

(2π )3
TR(q, k1 − q, k2, k3) + (2 cyclic)

]
. (9)

Here, b1 is the so-called linear Eulerian bias parameter,
b1 = 1 + ν/σR , and b2 = (ν/σR)2 is the non-linear bias
parameter.2

2.2. Alternative Derivation

In this section, we present an alternative derivation of the
galaxy bispectrum, Equation (9). On large enough scales, we
may approximate the relation between the galaxy distribution
and the underlying density fluctuation as a local function. We
then Taylor-expand this local function in a power series of δm

(see Equation (3)).
When computing the correlation functions of halos of a given

mass M, we may smooth the matter density field with the same
filter over the corresponding length scale R, WR(|x− x′|), which
was defined in the previous section. We then Taylor-expand δg

in a power series of the smoothed density field, δR(x), as

δg(x) = b1δR(x) +
b2

2

[
δ2
R(x) − σ 2

R

]
+ · · · . (10)

In Fourier space, one finds

δg(k) = b1δR(k) +
b2

2

[∫
d3q

(2π )3
δR(k − q)δR(q) − σ 2

RδD(k)

]
+ · · · , (11)

where δD is the Dirac delta function. We calculate the bispec-
trum of galaxies directly from Equation (11):

〈δg(k1)δg(k2)δg(k3)〉 = b3
1〈δR(k1)δR(k2)δR(k3)〉

+
b2

1b2

2

[∫
d3q

(2π )3
〈δR(k1 − q)δR(q)δR(k2)δR(k3)〉

− σ 2
RδD(k1)〈δR(k2)δR(k3)〉 + (2 cyclic)

]
. (12)

The first term of Equation (12) is the matter bispectrum,

〈δR(k1)δR(k2)δR(k3)〉 = (2π )3BR(k1, k2, k3)δD(k123),

where k123 ≡ k1 + k2 + k3. We further calculate the ensemble
average of the four-point function in the second term of
Equation (12). For non-Gaussian density fields, four-point

2 Note that these expressions, b1 = 1 + ν/σR and b2 = (ν/σR)2 agree with
the linear halo bias parameter derived by Mo & White (1996) and Mo et al.
(1997), b1 = 1 + bL

1 and b2 = (ν2 − 3)/σ 2
R + 8bL

1 /21 for high-density peaks,
ν � 1. Here, bL

1 = (ν − 1/ν)/σR is the Lagrangian bias parameter.

function is given by a sum of connected (trispectrum) and
unconnected (products of the power spectra) parts as

〈δR(k1 − q)δR(q)δR(k2)δR(k3)〉 = (2π )6PR(q)PR(k2)

× δD(k1)δD(k2 + k3) + (2π )6PR(k2)PR(k3)δD(k2 + q)

× δD(k3 + k1 − q) + (2π )6PR(k2)PR(k3)δD(k3 + q)

× δD(k2 + k1 − q) + (2π )3TR(k1 − q, q, k2, k3)δD(k123),

where TR is the matter trispectrum. Note that the first term
in the above equation cancels the last term in Equation (12).
Combining the above equations, Equation (12) becomes

Bh(k1, k2, k3) = b3
1

[
BR(k1, k2, k3) +

b2

b1
{PR(k1)PR(k2)

+ (2 cyclic)} +
1

2

b2

b1

∫
d3q

(2π )3
TR(q, k1 − q, k2, k3)

+ (2 cyclic)

]
. (13)

Therefore, we find that the MLB method and the locality bias
assumption give formally the same results.

Although the Equations (9) and (13) are the same, there is a
subtle difference between them: the coefficient in the last term
of Equation (13) does not include σ 2

R explicitly. By evaluating
the last cyclic term in Equation (13) for the local type of
non-Gaussianity, we find that the integration of the smoothed
trispectrum depends on the smoothing scale, R, up to a constant
factor of 1/σ 2

R on large scales, say, k < 0.1 h Mpc−1. For
example, the bottom right panel of Figure 11 shows that BnG

f 2
NL

and

BnG
gNL

, which are defined in Equations (29) and (30), respectively,
do not depend on the smoothing scale R, as they include 1/σ 2

R

in their definitions.
Therefore, it is physically more sensible to include σ 2

R

explicitly in the equation such that the dependence on smoothing
scales on large scales can be absorbed by the bias parameters.
This motivates our writing the final form of the halo bispectrum,
derived from the local bias assumption, as

Bh(k1, k2, k3) = b3
1

[
BR(k1, k2, k3) +

b2

b1
{PR(k1)PR(k2)

+ (2 cyclic)} +
b̃2

b1

1

2σ 2
R

∫
d3q

(2π )3
TR(q, k1 − q, k2, k3)

+ (2 cyclic)

]
, (14)

with three bias parameters: b1, b2 and b̃2 ≡ b2σ
2
R . Note that

b̃2/b1 → δc for the MLB formula. Although δc is known to
be 1.68 for the spherically collapsed halo in the flat matter
dominated universe, its precise value, in this context, needs to
be tested against N-body simulations.

Equations (9) and (14) are the first main results of this paper,
which are general and can be applied to any models of non-
Gaussianities, once we know the bispectrum and trispectrum of
the underlying matter density field. Note that Equation (14) was
also obtained independently by Sefusatti (2009).

In principle both b1 and b2 are calculable from the theory
of collapse of halos (see, e.g., Cooray & Sheth 2002, for a
review); however, in practice it is more convenient and safe to
treat them as free parameters that one should marginalize over



No. 2, 2009 PRIMORDIAL NON-GAUSSIANITY AND GALAXY BISPECTRUM 1233

when extracting the cosmological information, such as fNL. See
Jeong & Komatsu (2009) for the same argument applied to the
galaxy power spectrum.

3. EFFECTS OF LOCAL-TYPE PRIMORDIAL
NON-GAUSSIANITY ON THE HALO BISPECTRUM

In this section, we shall evaluate Equation (14) for the local-
type primordial non-Gaussianity with a high-order term added

Φ(x) = φ(x) + fNL[φ2(x) − 〈φ2〉] + gNLφ3(x). (15)

The cubic-order term does not generate the bispectrum of CMB
anisotropy or the matter density fluctuations at the leading
order; however, it does generate the trispectrum, and the CMB
trispectrum has been calculated by Okamoto & Hu (2002); Kogo
& Komatsu (2006). On the other hand, the bispectrum of halos
receives the contribution from the trispectrum (see the last term
in Equation (14)), and thus it is necessary to include gNL.

To calculate various components of the bispectra shown in
Equation (14), we calculate the transfer function, T (k), and
the power spectra with the cosmological parameters in Table 1
(“WMAP+BAO+SN”) of Komatsu et al. (2009).

As for the smoothing scale, we use R = 1 h−1 Mpc. Although
the smoothing scale explicitly appears in the equation, it
makes negligible differences for the bispectrum on large scales,
k � 1/R.

Note that we shall adopt the non-standard convention in which
Φ(x) is Bardeen’s curvature perturbation extrapolated to the
present epoch, z = 0, using the linear growth factor of Φ, g(z) ≡
(1+z)D(z). Therefore, our fNL and gNL in this paper are different
from those in the literature on the CMB non-Gaussianity by a
factor of g(1090)/g(0), i.e., fNL = [g(1090)/g(0)]f CMB

NL and
gNL = [g2(1090)/g2(0)]gCMB

NL .3

The bispectrum and trispectrum of Φ are given by

BΦ(k1, k2, k3) = 2fNL[Pφ(k1)Pφ(k2) + (2 cyclic)], (16)

and

TΦ(k1, k2, k3, k4) = 6gNL[Pφ(k1)Pφ(k2)Pφ(k3) + (3 cyclic)]

+ 2f 2
NL[Pφ(k1)Pφ(k2){Pφ(k13) + Pφ(k14)} + (11 cyclic)],

(17)

with kij = |ki + kj |, respectively.
While Equation (17) is the consequence of Equation (15),

general multi-field inflation models do not necessarily relate
the coefficients of the trispectrum to that of the bispectrum.
Therefore, one may generalize Equation (17) by replacing f 2

NL
with a new parameter, τNL, which may or may not be related to
fNL,

TΦ(k1, k2, k3, k4) = 6gNL[Pφ(k1)Pφ(k2)Pφ(k3) + (3 cyclic)]

+
25

18
τNL[Pφ(k1)Pφ(k2){Pφ(k13) + Pφ(k14)} + (11 cyclic)].

(18)

Note that the coefficient of τNL reflects the definition of τNL
introduced by Boubekeur & Lyth (2006). This opens up an
exciting possibility that the galaxy bispectrum can test whether

3 The ratio g(1090)/g(0) is 1.308 for the cosmological parameters in Table 1
(“WMAP+BAO+SN”) of Komatsu et al. (2009).

τNL = (6fNL/5)2 or other predictions for the relation between
τNL and fNL are satisfied observationally.

We transform these spectra to those of the smoothed linear
density contrasts, using the Poisson equation,

δ
(1)
R (k) = 2

3

k2T (k)

H 2
0 Ωm

W̃R(k)Φ(k) ≡ MR(k)Φ(k), (19)

where W̃R(k) is the Fourier transform of the top-hat filter with
radius R. Note that W̃R(k) → 1 as k → 0. In general, W̃R(k) 
 1
for k � 1/R. Then, we calculate the n-point function of
the matter density fields from the corresponding correlator of
curvature perturbations by

〈
δ

(1)
R (k1) · · · δ(1)

R (kn)
〉
=

n∏
i=1

MR(ki)〈Φ(k1) · · · Φ(kn)〉.

3.1. Known Terms

3.1.1. Formula

The first term in Equation (14) contains the bispectrum of
matter density fluctuations, BR, which consists of two pieces:
(1) the non-linear evolution of gravitational clustering (BG

m ) and
(2) primordial non-Gaussianity (BnG0

fNL
)4,

BR(k1, k2, k3) = BG
m (k1, k2, k3) + fNLBnG0

fNL
(k1, k2, k3), (20)

where

BG
m (k1, k2, k3) ≡ W̃R(k1)W̃R(k2)W̃R(k3)2F

(s)
2 (k1, k2)

× Pm(k1)Pm(k2) + (2 cyclic), (21)

with F
(s)
2 given by Equation (2), and

BnG0
fNL

(k1, k2, k3) ≡ 2
3∏

i=1

MR(ki)[Pφ(k1)Pφ(k2) + (2 cyclic)]

= 2
PR(k1)

MR(k1)

PR(k2)

MR(k2)
MR(k3) + (2 cyclic).

(22)

One finds that Equations (22) and (21) agree with the first and
the second terms in Equation (1) on the scales much larger than
the smoothing scale, i.e., k � 1/R, for which W̃R → 1.

One might wonder if it is OK to include the bispectrum from
non-linear evolution of density fluctuations in the MLB formula,
as Equation (9) is usually used for the Lagrangian density
fluctuations, i.e., “initial” fluctuations. However, it is perfectly
OK to use the evolved density fluctuations in this formula, as
one can always use the evolved density fluctuations as the initial
data. For example, we can think of starting our calculation at
z = 10, and ask the MLB formula to take the initial condition
at z = 10, including non-linear correction. Since we know how
to compute the bispectrum, trispectrum, etc., of the underlying

4 We ignore the following term in BR(k1, k2, k3):

3∏
i=1

W̃R(ki )
∫

d3q

(2π )3
F

(s)
2 (q, k1 − q)T (q, k1 − q, k2, k3) + (2 cyclic),

where T is the unfiltered primordial trispectrum which contains f 2
NL and gNL.

This term is negligibly small (Scoccimarro et al. 2004).
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Figure 1. Visual representations of triangles forming the bispectrum, B(k1, k2, k3), with various combinations of wavenumbers satisfying k3 � k2 � k1.

Figure 2. Shape of the bispectrum, B(k1, k2, k3). Each panel shows the amplitude of the bispectrum as a function of k2/k1 and k3/k1 for a given k1, with a condition
that k3 � k2 � k1 is satisfied. The amplitude is normalized such that it is unity at the point where the bispectrum takes on the maximum value. For the visual
representations of the triangle names such as the squeezed, elongated, folded, isosceles, and equilateral, see Figure 1. Top Left: the bispectrum from the non-linear
gravitational evolution, BG

m (Equation (21)), for k1 = 0.01 h Mpc−1. Top Right: BG
m for k1 = 0.05 h Mpc−1. Bottom Left: the bispectrum from the non-linear galaxy

biasing, PR(k1)PR(k2) + (2 cyclic) (the second term in Equation (14)), for k1 = 0.01 h Mpc−1. (Bottom Right) PR(k1)PR(k2) + (2 cyclic) for k1 = 0.05 h Mpc−1.

(A color version of this figure is available in the online journal.)

mass distribution at z = 10 (including non-linear effects), we
can use this information in the MLB formula. In other words,
the “initial” distribution does not need to be primordial. We can
provide the evolved density field as the initial data, and compute
the peak statistics. The MLB formula does not care whether the
source of non-Gaussianity is truly primordial or not: the only
conditions that we must respect for Equation (9) to be valid are
(1) high peaks (ν � 1) and (2) n-point correlation functions
are much less than unity, ξ

(n)
R � 1, so that the exponential in

Equation (6) can be Taylor expanded. In this case, one would
lose an ability to calculate the bias parameters, b1 and b2, using,
e.g., a halo model; however, this is not a disadvantage, as the
halo model calculations of the galaxy bias parameter, b1 and b2,
are at best qualitative even for Gaussian initial conditions (see,
e.g., Jeong & Komatsu 2009). In our approach, the coefficients
of individual terms in Equations (9) and (14), including δc, are
free parameters, and need to be determined from observations
themselves.

3.1.2. Shape Dependence: Non-linear Gravitational Evolution and
Non-linear Galaxy Bias

How about the shape dependence? First, let us review the
structure of BG

m (k1, k2, k3) (Equation (21)), which has been
studied extensively in the literature (see Bernardeau et al. 2002,
for a review).

Here, let us offer a useful way of visualizing the shape
dependence of the bispectrum. We can study the structure of
the bispectrum by plotting the magnitude of BG

m as a function
of k2/k1 and k3/k1 for a given k1, with a condition that
k1 � k2 � k3 is satisfied. In order to classify various shapes
of the triangles, let us use the following names: squeezed (k1 

k2 � k3), elongated (k1 = k2 + k3), folded (k1 = 2k2 = 2k3),
isosceles (k2 = k3), and equilateral (k1 = k2 = k3). See
panels (a)–(e) of Figure 1 for the visual representations of these
triangles.

The top-left panel of Figure 2 shows BG
m for k1 =

0.01 h Mpc−1. In this regime, PR(k1) is an increasing function
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Figure 3. Same as the top panels of Figure 2, but for BG
m /[PR(k1)PR(k2) + (2 cyclic)] (Equation (23)).

(A color version of this figure is available in the online journal.)

of k1 (recall that PR(k) peaks at k ≈ 0.02 h Mpc−1). Let us then
pick the first term in Equation (21), F

(s)
2 (k1, k2)PR(k1)PR(k2),

and ignore the cyclic terms for the moment. It follows from
Equation (2) and the descriptions below it that F

(s)
2 (k1, k2) van-

ishes in the squeezed limit (k1 = −k2) and reaches the max-
imum in the opposite limit (k1 = αk2). Therefore, we would
expect this term to give large signals in the “elongated configu-
rations,” k1 = k2 + k3; however, as PR(k) at k � 0.02 h Mpc−1

is an increasing function of k, one can also get large signals
when k1 and k2 are equally large, k1 = k2. As we have zero
signal in the squeezed limit, k3 = 0, it follows that we can find
a large signal in the equilateral configuration, k1 = k2 = k3. A
similar argument also applies to the cyclic terms. As a result, for
k1 = 0.01 h Mpc−1, we find the largest signal in the equilateral
configuration, and then the signal decreases as we approach the
squeezed configuration, i.e., the signal decreases as we go from
panel (e) to (a) in Figure 1.

The top-right panel of Figure 2 shows BG
m for k1 =

0.05 h Mpc−1. In this regime, PR(k1) is a decreasing func-
tion of k1, and thus the equilateral configurations are no longer
as important as the folded ones. Instead, we have large signals
in the folded configurations as well as in the elongated config-
urations. Note that the exact squeezed limit is still suppressed
due to the form of F

(s)
2 .

In summary, BG
m usually has the largest signal in the folded

and elongated (or equilateral, depending on the wavenumber)
configurations, with the squeezed configurations suppressed rel-
ative to the others. The suppression of the squeezed configura-
tions is a generic signature of the causal mechanism such as the
non-linear gravitational evolution that F

(s)
2 describes.

The bispectrum from the non-linear bias term, the second
term in Equation (9), has the same structure as BG

m , but it
does not contain F

(s)
2 . As a result the non-linear bias term

does not have as much suppression as BG
m has in the squeezed

configuration. In addition, as F
(s)
2 enhances the signal in the

elongated configurations, the non-linear bias term does not have
as much enhancement as BG

m has in the elongated configurations.
These properties explain the bottom panels of Figure 2.

As BG
m and the non-linear bias term contain products of

PR(k1)PR(k2) and the cyclic terms, it is often more convenient
to deal with Qh(k1, k2, k3) given by Peebles (1980),

Qh(k1, k2, k3) ≡ Bh(k1, k2, k3)

PR(k1)PR(k2) + (2 cyclic)
, (23)

to reduce the dependence on the shape of the power spectrum.
This combination is constant and equal to b2

1b2 for the non-linear
bias term (see the second term in Equation (9)).

The left and right panels of Figure 3 show BG
m (k1, k2, k3)/

[PR(k1)PR(k2) + (2 cyclic)] for k1 = 0.01 h Mpc−1 and

0.05 h Mpc−1, respectively. We find that Qh better reflects the
shape dependence of F

(s)
2 irrespective of k1: it has the largest

signal in the folded and elongated configurations in both large
and small scales. The squeezed configurations are still heavily
suppressed relative to the others.

3.1.3. Shape Dependence: fNL Term

How about the fNL term, BnG0
fNL

(k1, k2, k3)? This term has
a completely different structure. Let us pick the first term,
MR(k1)Pφ(k1)MR(k2)Pφ(k2)MR(k3), in Equation (22). The
important point is that the power spectrum of φ is always a de-
creasing function of k, i.e., Pφ(k) ∝ 1/k3 for a scale-invariant
spectrum. On the other hand, on large scales, we have T (k) → 1
and MR(k) ∝ k2. Therefore, collecting all the cyclic terms, we
find BnG0

fNL
(k1, k2, k3) ∝ k2

3/(k1k2) + k2
2/(k1k3) + k2

1/(k2k3) =
(k3

1 + k3
2 + k3

3)/(k1k2k3). In other words, it has the largest signal
when one of k’s is very small, i.e., the squeezed configura-
tions, which is opposite to the structures of BG

m and the non-
linear bias term. The middle panels of Figure 4 show BnG0

fNL

for k1 = 0.01 h Mpc−1 and 0.05 h Mpc−1, and we find the
largest signals in the squeezed configurations. We also find
that Qh from the fNL term, BnG0

fNL
(k1, k2, k3)/[PR(k1)PR(k2) +

(2 cyclic)], still has the largest signal in the squeezed
configurations.

These properties allow us to distinguish between the primor-
dial non-Gaussianity and the other effects such as the non-linear
gravitational evolution and non-linear bias. Sefusatti & Komatsu
(2007) have studied in detail how well one can separate these
effects using Qh.

3.2. New Term

3.2.1. Formula

Now, we shall evaluate the new term, the third term in
Equation (14), which was not considered in Sefusatti & Komatsu
(2007). The trispectrum is generated by the primordial non-
Gaussianity, as well as by the non-linear evolution of matter
density fluctuations. The non-linear evolution of matter density
fluctuations on large scales is given by perturbation theory (see
Bernardeau et al. 2002, for a review). Let us expand the filtered
non-linear matter density field in Fourier space as

δR(k) = W̃R(k)[δ(1)(k) + δ(2)(k) + δ(3)(k) + · · ·], (24)

where δ(n)(k) is the nth order quantity of the linear density
contrast, δ(1)(k). Then, the connected matter density trispectrum
is given by

TR(k1, k2, k3, k4)

= T 1111
R (k1, k2, k3, k4) +

{
T 1112

R (k1, k2, k3, k4) + (3 cyclic)
}
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Figure 4. Same as Figure 2, but for the terms proportional to fNL. (Top) the BnG
m term (Equation (33)), (Middle) the BnG0

fNL
term (Equation (22)), and (Bottom) the

BnG1
fNL

term (Equation (39)). Note that the non-Gaussian terms diverge in the exact squeezed limit, k3 → 0; thus, we show these terms normalized to be unity at

k3/k1 = 10−2. In order to facilitate the comparison better, we draw the dotted contour for all six panels.

(A color version of this figure is available in the online journal.)

+
{
T 1113

R (k1, k2, k3, k4) + (3 cyclic)
}

+
{
T 1122

R (k1, k2, k3, k4) + (5 cyclic)
}

+ O(φ8), (25)

with T
ijkl

R given by

(2π )3δD(k1234)T ijkl

R (k1, k2, k3, k4)

≡
4∏

n=1

W̃R(kn)〈δ(i)(k1)δ(j )(k2)δ(k)(k3)δ(l)(k4)〉c. (26)

The leading contributions of all the terms shown in Equation (25)
are order of φ6.

The first term, T 1111
R , is the linearly evolved primordial

trispectrum calculated from Equation (17), and thus it contains
the terms proportional to f 2

NL and gNL. The second term, T 1112
R ,

has a coupling between the primordial non-Gaussianity (linear
in fNL) and the non-linear gravitational evolution (linear in F

(s)
2 ).

These two terms are important on large scales.
The other terms, T 1113

R and T 1122
R , do not have contributions

from fNL or gNL at the leading-order level, but solely come from
the non-linear gravitational coupling; thus, they may be ignored
on large scales we are considering in this paper. Sefusatti (2009)
also derived and studied T 1112

R as well as T 1113
R and T 1122

R .
Therefore, we approximate the integration in the third term

of Equation (14) as

1

2σ 2
R

∫
d3q

(2π )3
[TR(q, k1 − q, k2, k3) + (2 cyclic)]

≈ 1

2σ 2
R

{∫
d3q

(2π )3

[
T

(1)
R (q, k1 − q, k2, k3) + (2 cyclic)

]

+
∫

d3q

(2π )3

[
T

(2)
R (q, k1 − q, k2, k3) + (2 cyclic)

]}
, (27)

where “cyclic” denotes the cyclic combinations of k1, k2, and
k3, and T

(1)
R and T

(2)
R denote T

(1)
R (k1, k2, k3, k4) = T 1111

R (k1, k2,

k3, k4), and T
(2)
R (k1, k2, k3, k4) = T 1112

R (k1, k2, k3, k4) +
(3 cyclic), respectively.

The first term in Equation (27) is the integration of the lin-
early evolved primordial curvature trispectrum, which contains
two pieces: one proportional to f 2

NL and another to gNL (see
Equation (17)). Therefore, we symbolically write the first line
in Equation (27) as

1

2σ 2
R

∫
d3q

(2π )3

[
T

(1)
R (q, k1 − q, k2, k3) + (2 cyclic)

]
= gNLBnG

gNL
(k1, k2, k3) + f 2

NLBnG

f 2
NL

(k1, k2, k3), (28)

where

BnG

f 2
NL

(k1, k2, k3) ≡ 1

2σ 2
R

[
4MR(k2)MR(k3)

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)Pφ(q)

× [Pφ(|k1 − q|)Pφ(|k2 + q|) + Pφ(|k1 − q|)Pφ(|k3 + q|)]
+ (2 cyclic) + 8MR(k2)MR(k3)Pφ(k2)

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)Pφ(q)Pφ(|k3 + q|)

+ (2 cyclic) + 8MR(k2)MR(k3)Pφ(k3)

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)Pφ(q)Pφ(|k2 + q|)

+ (2 cyclic) + 8MR(k2)MR(k3)Pφ(k1)
[
Pφ(k2) + Pφ(k3)

]
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×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)Pφ(q) + (2 cyclic)

+ 4MR(k2)MR(k3)Pφ(k2)Pφ(k3)

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)

× [Pφ(|k2 + q|) + Pφ(|k3 + q|)] + (2 cyclic)

]
, (29)

BnG
gNL

(k1, k2, k3) ≡ 1

2σ 2
R

[
6MR(k2)MR(k3)

[
Pφ(k2) + Pφ(k3)

]

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)Pφ(q)Pφ(|k1 − q|)

+ (2 cyclic) + 12MR(k2)MR(k3)Pφ(k2)Pφ(k3)

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)Pφ(q) + (2 cyclic)

]
. (30)

We find that the first three cyclic terms in Equation (29) are
parametrically small on large scales and may be ignored for
k � 0.1 h Mpc−1. Therefore, one may just calculate the last
two cyclic terms

BnG

f 2
NL

(k1, k2, k3) ≈ 1

2σ 2
R

[
8MR(k2)MR(k3)Pφ(k1)

× [Pφ(k2) + Pφ(k3)]
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)

× Pφ(q) + (2 cyclic) + 4MR(k2)MR(k3)Pφ(k2)Pφ(k3)

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)

× [Pφ(|k2 + q|) + Pφ(|k3 + q|)] + (2 cyclic)

]
. (31)

Next, the second term of Equation (27) contains a cross-
correlation between the non-linearly evolved density field
(δ(2) ∼ F

(s)
2 [δ(1)]2) and the primordial bispectrum, and thus it

is linearly proportional to fNL and F
(s)
2 . We present the explicit

functional form of T 1112
R as well as the full expression of the

second term of Equation (27) in Appendix A. Here, we only
show the final result. We write it as

1

2σ 2
R

∫
d3q

(2π )3
T

(2)
R (q, k1 − q, k2, k3) + (2 cyclic)

= fNL

[
BnG

m (k1, k2, k3) + BnG1
fNL

(k1, k2, k3)

+ 4BnG0
fNL

(k1, k2, k3) {GR(k1) + GR(k2) + GR(k3)}
]
,

(32)

where

BnG
m (k1, k2, k3) ≡ 4W̃R(k1)W̃R(k2)W̃R(k3)

×
{[

FR(k1)

MR(k1)
+

FR(k2)

MR(k2)

]
Pm(k1)Pm(k2)F (s)

2 (k1, k2)

+ (2 cyclic)

}
, (33)

BnG1
fNL

(k1, k2, k3) ≡ 1

2σ 2
R

[
8W̃R(k2)W̃R(k3)M(k3)Pm(k2)

×
∫

d3q

(2π )3
W̃R(|k1 − q|)W̃R(q)M(|k1 − q|)M(|k2 + q|)

× F
(s)
2 (−k2, k2 + q){Pφ(k3)Pφ(|k1 − q|)

+ Pφ(k3)Pφ(|k2 + q|) + Pφ(|k1 − q|)Pφ(|k2 + q|)}
+ (5 permutation) + 8W̃R(k2)W̃R(k3)M(k3)

×
∫

d3q

(2π )3
W̃R(|k1 − q|)W̃R(q)M(|k1 − q|)

× M(|k2 + q|)Pm(q)F (s)
2 (−q, k2 + q)

× {Pφ(|k1 − q|)Pφ(k3) + Pφ(|k1 − q|)Pφ(|k2 + q|)
+ Pφ(k3)Pφ(|k2 + q|)} + (5 permutation)

+ 8(W̃R(k2)W̃R(k3))2Pm(k3)M(k2)

×
∫

d3p

(2π )3
M(p)M(|k2 − p|)Pφ(p){Pφ(|k2 − p|)

+ 2Pφ(k2)}F (s)
2 ( p, k2 − p) + (5 permutation)

]
. (34)

Here, M(k) ≡ MR(k)/W̃R(k).
In the above equations, we have defined two functions, FR(k)

and GR(k), which are given by

FR(k) ≡ 1

2σ 2
R

∫
d3q

(2π )3
Pφ(q)MR(q)MR(|k − q|)

×
[
Pφ(|k − q|)

Pφ(k)
+ 2

]
, (35)

GR(k) ≡ 1

2σ 2
R

∫
d3q

(2π )3

W̃R(q)W̃R(|k − q|)
W̃R(k)

× Pm(q)F (s)
2 (k,−q). (36)

As shown in Figures 5 and 6, both FR(k) and GR(k) are almost
constant on large scales. If we do not have a smoothing, i.e.,
R → 0, the large scale asymptotic value of GR(k) is 17/42.
However, the presence of filter changes this asymptotic value.
As k → 0,

GR(k) → 13

84
+

1

4σ 2
R

∫
d3q

(2π )3
W̃R(q)Pm(q)

sin(qR)

qR
, (37)

whose value depends on the smoothing scale, R, as shown in
Figure 7.

Let us study the structure of each term in Equation (32). The
first piece is BnG

m . On very large scales, where W̃R(k) → 1
and FR(k) → 1, BnG

m becomes a product of the usual matter
bispectrum for Gaussian initial conditions, BG

m , and the scale
dependent bias shown in Equation (4), as

2fNLFR(k)

MR(k)
= 3fNLH 2

0 Ωm

k2T (k)

FR(k)

W̃R(k)
→ 3fNLH 2

0 Ωm

k2T (k)
, (38)

as k → 0. Therefore, we can interpret this term as a scale depen-
dent bias multiplying the usual matter bispectrum for Gaussian
initial conditions; however, this behavior is not generic—in fact,
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Figure 5. Shape of the function, FR(k), defined in Equation (35). We show
FR(k) for four different smoothing lengths: R = 1, 2, 5, 10 Mpc h−1.

the other terms cannot be expressed in terms of products of the
scale-dependent bias and the results in the continuous limit,
Equation (1).

The next piece is BnG1
fNL

(k1, k2, k3). By numerically calculating

Equation (34), we find that the terms that contain F
(s)
2 (q, k − q)

are parametrically small on large scales, and that the dominant
contributions come from the first permutation terms. Therefore,
we approximate Equation (34) on large scale (k � 0.1 h Mpc−1)
as

BnG1
fNL

(k1, k2, k3) ≈ 1

2σ 2
R

[
8W̃R(k2)W̃R(k3)Pm(k2)M(k3)Pφ(k3)

×
∫

d3q

(2π )3
W̃R(|k1 − q|)W̃R(q)M(|k1 − q|)M(|k2 + q|)

× [Pφ(|k2 + q|) + Pφ(|k1 − q|)]F (s)
2 (−k2, k2 + q)

+ (5 permutation)

]
. (39)

How about the last term of Equation (32), 4BnG0
fNL

(k1, k2, k3)
{GR(k1) + GR(k2) + GR(k3)}? As GR(k) → constant on large
scales (Figure 6), this piece becomes BnG0

fNL
multiplied by a

constant factor whose exact value depends on the smoothing
scale, R (Figure 7).

In summary, we have derived the new terms in the galaxy
bispectrum, which arise from the integration of the matter
trispectrum. While we find one term, BnG

m , includes the scale-
dependent bias which appears on the galaxy power spectrum,
we also find that there are more terms contributing to the galaxy
bispectrum.

Equation (28) along with Equations (29)–(31), and Equa-
tion (32) along with Equations (33), (34), and (39) are the second
main results of this paper. In the next sections, we shall present
the detailed assessment of the new terms we have derived in this
section.

3.2.2. Shape Dependence

Let us consider the shape dependence. First of all, the last
term of Equation (32) has the same shape dependence as BnG0

fNL
,

as GR(k) is almost constant on large scale. Thus, it peaks at the
squeezed configurations as BnG0

fNL
does. How about the shape

dependence of the other terms?
All terms in Equations (30), (31), and (39) have Pφ(ki) outside

of the integral, and Equation (33) contains 1/MR(k) ∝ k−2,

Figure 6. Shape of the function, GR(k), defined in Equation (35). We show
GR(k) for four different smoothing lengths: R = 1, 2, 5, 10 Mpc h−1.

Figure 7. Large-scale asymptotic value of GR(k) as a function of the smoothing
scale R. The value for R = 1[Mpc h−1], which is used for generating
Figures 10–14, is 0.3718.

which suggests that all of BnG
gNL

, BnG

f 2
NL

, BnG1
fNL

, and BnG
m peak at the

squeezed configurations. For sufficiently large scales in which
T (k) ≈ 1, and for a scale-invariant spectrum (Pφ(k) ∝ 1/k3),
we may write down Equations (33), (39), (31), and (30), as

BnG
m (k1, k2, k3) ∝

(
k2

k1
+

k1

k2

)

×
[

5

7
+

k1· k2

2k1k2

(
k1

k2
+

k2

k1

)
+

2

7

(
k1· k2

k1k2

)2
]

+ (2 cyclic), (40)

BnG1
fNL

(k1, k2, k3) ∝ k2

k3

∫
d3q

q
q3

( |k1 − q|2
|k2 + q| +

|k2 + q|2
|k1 − q|

)
× W̃R(|k1 − q|)W̃R(q)T (|k1 − q|)
× T (|k2 + q|)F (s)

2 (−k2, k2 + q)

+ (5 permutation), (41)

BnG

f 2
NL

(k1, k2, k3) ∝ 4

k2k3

[
2
(
k3

2 + k3
3

)
k3

1

∫
d3q

q
|k1 − q|2T (q)

× W̃R(q)T (|k1 − q|)W̃R(|k1 − q|)
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Figure 8. Same as Figure 2, but for (Top) the gNL term (Equation (30)), and (Bottom) the f 2
NL term (Equation (31)). Note that the non-Gaussian terms diverge in the

exact squeezed limit, k3 → 0; thus, we show these terms normalized to be unity at k3/k1 = 10−2. In order to facilitate the comparison better, we draw the dotted
contour for top panels.

(A color version of this figure is available in the online journal.)

+
∫

d3qq2|k1 − q|2
(

1

|k2 + q|3 +
1

|k3 + q|3
)

× T (q)W̃R(q)T (|k1 − q|)W̃R(|k1 − q|)
+ (2 cyclic), (42)

BnG
gNL

(k1, k2, k3) ∝ 6

k2k3

[
(k3

2 + k3
3)

∫
d3q

q

1

|k1 − q|
× T (q)W̃R(q)T (|k1 − q|)W̃R(|k1 − q|)
+ 2

∫
d3q

q
|k1 − q|2T (q)W̃R(q)T (|k1 − q|)

× W̃R(|k1 − q|)
]

+ (2 cyclic), (43)

respectively. For a given k1, all of these terms have the largest
signals when k3 is small, i.e., the squeezed configurations. Note
that we do not use the exact scale-invariant spectrum for the
numerical calculation, but use the WMAP five-year best-fitting
value reported in Table 1 (“WMAP+BAO+SN”) of Komatsu
et al. (2009).

The top-left and bottom-left panels of Figure 4 show BnG
m

and BnG1
fNL

as a function of k2/k1 and k3/k1, respectively, for

k1 = 0.01 h Mpc−1. The top-right and bottom-right panels of
Figure 4 show the same quantities for k1 = 0.05 h Mpc−1. We
also show BnG

gNL
and BnG

f 2
NL

in the top-left and bottom-left panels of

Figure 8 for k1 = 0.01 h Mpc−1, and top-right and bottom-right
for for k1 = 0.05 h Mpc−1. In all cases, we find that BnG

m , BnG1
fNL

,
BnG

gNL
and BnG

f 2
NL

peak at the squeezed configurations, as expected

from the above argument.
We find that the shape dependence of BnG0

fNL
and that of BnG1

fNL
,

BnG
gNL

are quite similar, whereas that of BnG
m is higher toward the

elongated triangles, and that of BnG

f 2
NL

is more sharply peaked at

the squeezed configuration.
We can understand this behavior analytically as follows. In

order to simplify the analysis, we consider a scale-invariant cur-
vature power spectrum, Pφ = Pφ0/k3, on large scales where

Equations (41), (40), (42), and (43) are valid. On
such a large scale, MR(k) can be approximated as
MR(k) 
 2k2/(3H 2

0 Ωm) ≡ M0k
2, where M0 
 2.16 ×

107 (0.277/Ωm) [Mpc/h]2 is a constant. We focus on the
squeezed triangle, k1 = k2 = αk3 ≡ k (α � 1), where the
signals of all the primordial non-Gaussianity terms are maxi-
mized. The triangles in this configuration lie on the upper side
of the triangular region of (k3/k1, k2/k1) plane in Figures 4
and 8, and the triangle approaches the exact squeezed limit as
α → ∞. With this parametrization, we compare the dominant
contributions of each of these primordial non-Gaussianity terms.

First, we shall analyze the terms proportional to fNL: BnG0
fNL

,
BnG

m , and BnG1
fNL

. The largest contribution to BnG0
fNL

in the squeezed
configurations occurs when k3 is in the denominator

BnG0
fNL

= 2M3
0P

2
φ0

(
k2

1

k2k3
+

k2
2

k3k1
+

k2
3

k1k2

)


 2M3
0P

2
φ0

(
k2

1

k2k3
+

k2
2

k3k1

)
= 4αM3

0P
2
φ0. (44)

To compute BnG
m , which contains F

(s)
2 , we note that, in the

squeezed limit, the angular cosines between two wave vectors
are k1 · k2/(k1k2) = −1 + 1/α2 
 −1 and k2 · k3/(k2k3) =
k1 · k3/(k1k3) = −1/(2α). We thus find

BnG
m = 8M3

0P
2
φ0

(
α +

1

α

)[
5

7
− 1

4α

(
α +

1

α

)
+

1

14α2

]


 26

7
αM3

0P
2
φ0. (45)

The detailed analysis for BnG1
fNL

is more complicated, as Equa-
tion (39) involves a non-trivial integration. We simplify the
situation by only analyzing the dominant term, which can be
written as

BnG1
fNL

≈ 8M3
0P

2
φ0

[
k2

k3
H(k1, k2) +

k1

k3
H(k2, k1)

]
= 8αM3

0P
2
φ0 [H(k1, k2) + H(k2, k1)] , (46)
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Figure 9. Shape of the integration that appears in the dominant term of BnG

f 2
NL

and BnG
gNL

, Equation (48). We use four different smoothing scales: R = 1, 2, 5,

and 10 Mpc h−1.

where H(k1, k2) is the integration that appears in Equation (39)
including 1/(2σ 2

R) pre-factor. Note that this integration depends
only on the magnitudes of two vectors and the angle between
them; thus, for the squeezed configuration we are interested in
here, H(k2, k1) depends only weakly on α—they depend on α
only through the inner product of k1 · k2 = k2(−1 + 1/α2).

Second, we analyze BnG
gNL

. We find that the first cyclic terms in
Equation (30) are small in the squeezed limit, and the dominant
contribution to BnG

gNL
is given by

BnG
gNL

= 12M2
0P

2
φ0

[
I(k1)

k2k3
+
I(k2)

k3k1
+
I(k3)

k1k2

]


 12M2
0P

2
φ0

[
I(k1)

k2k3
+
I(k2)

k3k1

]
, (47)

where we have defined

I(k) ≡ 1

2σ 2
R

∫
d3q

(2π )3
MR(q)MR(|k − q|)Pφ(q). (48)

We find that I(k) 
 0.5 and is almost independent of k on large
scales (e.g., k � 0.03 h Mpc−1 for R = 1.0 Mpc h−1; see
Figure 9). Therefore, by writing I(k) = I0, we obtain

BnG
gNL


 24αM2
0P

2
φ0
I0

k2
. (49)

These results show that all the terms we have analyzed analyt-
ically so far, BnG0

fNL
, BnG

m , BnG1
fNL

, and BnG
gNL

, have the same shape
(i.e., α) dependence in the squeezed configurations: they both
increase linearly as α increases. This explains the shape depen-
dence computed from the full numerical calculations presented
in Figure 4 and the top panels of Figure 8.

Finally, we analyze BnG

f 2
NL

. We find that the second cyclic terms

in Equation (31) are small in the squeezed configurations. The
dominant terms are

BnG

f 2
NL

= 8M2
0P

2
φ0

×
[
k3

2 + k3
3

k2k3k
3
1

I(k1) +
k3

3 + k3
1

k3k1k
3
2

I(k2) +
k3

1 + k3
2

k1k2k
3
3

I(k3)

]


 8M2
0P

2
φ0

k3
1 + k3

2

k1k2k
3
3

I(k3)


 16α3M2
0P

2
φ0
I0

k2
. (50)

Therefore, BnG

f 2
NL

increases more sharply as it approaches the

squeezed limit, BnG

f 2
NL

∝ α3.

This sharp increase of BnG

f 2
NL

relative to the other terms, and that

there are many new terms that are of the same order of magnitude
as BnG0

fNL
, imply that the formula derived by Sefusatti & Komatsu

(2007) may not be valid in the squeezed configuration, where
BnG

f 2
NL

may dominate over BnG
fNL

. This is particularly important

because it is the squeezed configuration that gives the largest
signal from the primordial non-Gaussianity. We shall study this
point in more detail in the next section.

A careful inspection of Equation (42) shows that the second
term within the square bracket diverges when k2 + q = 0 or
k3 + q = 0. This is due to the fact that Pφ(k) ∝ 1/k4−ns

and thus Pφ(k) diverges as k → 0 for ns < 4. To avoid
the divergence we set Pφ(k) = 0 at k � kmin, and use
kmin = 10−6 h Mpc−1. Fortunately the divergence is mild and
the results on the squeezed configurations, for which BnG

f 2
NL

gives

the most important contribution, are insensitive to kmin: changing
kmin = 10−6 h Mpc−1 to kmin = 10−9 h Mpc−1 results in
negligible changes in the squeezed configurations.

On the other hand, the folded and equilateral configurations
are more sensitive to kmin, and we find that the difference
between kmin = 10−6 h Mpc−1 and kmin = 10−9 h Mpc−1

is scale-dependent: at k1 = 0.01 h Mpc−1 the differences are
negligible for all shapes, whereas the differences reach ∼ 40%
at k ∼ 1 h Mpc−1. (Note that the difference in the squeezed
configuration reaches 1% at k ∼ 1 h Mpc−1, being totally
negligible on larger scales.) While this divergence does not have
much observational consequences (because the signals in the
other configurations at k � 0.01 h Mpc−1 would be dominated
by the other non-linear effects: BG

m , non-linear bias and terms
proportional to fNL, as we show in the next section), there may
be a better treatment of the divergence than setting Pφ(k) = 0
at k � kmin.

3.3. Scale Dependence

How important are the primordial non-Gaussianity terms,
BnG0

fNL
, BnG1

fNL
, BnG

m , BnG

f 2
NL

, and BnG
gNL

, relative to BG
m and the

non-linear bias term? Which one is the most dominant of the
primordial terms, terms proportional to fNL, BnG

f 2
NL

, or BnG
gNL

? How

about the scale-dependence? How about the shape dependence?
We collect all the terms proportional to fNL, and call it B tot

fNL
,

B tot
fNL

≡ BnG0
fNL

+
b̃2

b1

[
BnG

m + BnG1
fNL

+ 4 (GR(k1) + GR(k2) + GR(k3)) BnG0
fNL

]
. (51)

Throughout this section, we use the standard value of b̃2/b1 =
3(12π )2/3/20 
 1.68 from a spherical collapse model.

Figure 10 shows the scale and shape dependence of each term
in Equation (51) evaluated at z = 0. For all configurations shown
in this figure, the primordial non-Gaussian term calculated in
Sefusatti & Komatsu (2007) is the smallest among four fNL
terms, which means that the non-Gaussian signal on large scales
is much bigger than recognized before.
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Figure 10. Scale and shape dependence of the galaxy bispectrum terms that are linearly proportional to fNL, as a function of k1. Except for the bottom-right panel,
we use R = 1 Mpc h−1. (Top Left) The squeezed triangles with k1 = k2 = 100k3, (Top Right) the elongated triangles with k1 = k2 + k3 and k2 = 3k3, (Middle
Left) the folded triangles with k1 = 2k2 = 2k3, (Middle Right) the isosceles triangles with 3k1 = 4k2 = 4k3, and (Bottom Left) the equilateral triangles with
k1 = k2 = k3. The thick dot-dashed, dashed, solid, and dotted lines show the contributions from the primordial non-Gaussianity: the BnG0

fNL
(Equation (22)), b̃2/b1B

nG
m

(Equation (33)), 4(b̃2/b1) [GR(k1) + GR(k2) + GR(k3)] BnG0
fNL

(GR(k) defined in Equation (36)), and b̃2/b1B
nG1
fNL

(Equation (39)) terms, respectively. The thin dotted and

dashed lines show the non-linear effects: BG
m (Equation (21)) and the non-linear bias (the second term in Equation (9)), respectively. We use the standard value of

b̃2/b1 ≡ δc 
 1.686 from spherical collapse model. (Bottom Right) Dependence of the squeezed bispectrum on the smoothing scale, R, showing that the dependence
is negligible for k1 � 1/R.

For the squeezed triangle, all of the terms in Equation (51)
depend on k1 in a similar way. We find their ratios by comparing
Equations (44), (45), and (46),

BnG0
fNL

: BnG
m : BnG1

fNL

 1 :

26

28
: 2.96. (52)

Note that we have used the numerical value of H(k1, k2) 

0.741 for α = 100, and this value slightly increases when
α decreases.5 Therefore, for the squeezed triangle, we find a
simple and illuminating result

B tot
fNL

(k1, k2, k3) 
 15BnG0
fNL

(k1, k2, k3). (53)

This is an important result, showing that the statistical er-
ror on fNL from the galaxy bispectrum will be smaller by
at least a factor of 15, compared to what was obtained in
Sefusatti & Komatsu (2007). Note that this result is valid only
for the high-density peak limit, i.e., ν � 1, which implies

5 On large scales, k < 0.01 h Mpc−1, the numerical ratio BnG1
fNL

/BnG0
fNL

is
constant, and is equal to 3.15, 3.06, 3.00, and 2.98 for α = 10, 20, 50, and 100,
respectively.

b̃2/b1 = 1.68. For lower density peaks we would find a smaller
factor.

Figure 11 and the top panels of Figure 12 show various bispec-
trum terms in various triangle configurations (see Figure 1 for
the visual representations of the triangles), evaluated at z = 0.
As an example we use the following bias and non-Gaussianity
parameters: b2/b1 = 0.5, fNL = 40, and gNL = 104. The value
of the linear bias, b1, is irrelevant here as it does not change the
relative importance of terms in Equation (14), and thus we show
the bispectrum terms divided by b3

1.
The message is quite simple: it is the squeezed configura-

tion that provides the best window into the primordial non-
Gaussianity. The other non-linear effects become more and more
dominant as we move from the squeezed to the equilateral, i.e.,
panels (a) to (e) in Figure 1. Even with this generous amount of
non-Gaussian signals, fNL = 40 and gNL = 104, only fNL term
can be visible in the isosceles and equilateral configurations on
large scales.

For the the non-squeezed configurations, the f 2
NL and gNL

terms with the above chosen parameters are comparable and the
fNL term is order of magnitude greater than the f 2

NL and gNL
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Figure 11. Scale and shape dependence of various bispectrum terms, B(k1, k2, k3), as a function of k1. For the figure except for the bottom right, we use R = 1 Mpc h−1.
(Top Left) The squeezed triangles with k1 = k2 = 100k3, (Top Right) the elongated triangles with k1 = k2 + k3 and k2 = 3k3, (Middle Left) the folded triangles with
k1 = 2k2 = 2k3, (Middle Right) the isosceles triangles with 3k1 = 4k2 = 4k3, and (Bottom Left) the equilateral triangles with k1 = k2 = k3. The thick dot-dashed,
triple-dot-dashed, and solid lines show the contributions from the primordial non-Gaussianity: the fNLB tot

fNL
(Equation (51)), b̃2/b1gNLBnG

gNL
(Equation (30)), and

b̃2/b1f
2
NLBnG

f 2
NL

(Equation (31)) terms, respectively. The thin dotted and dashed lines show the non-linear effects: BG
m (Equation (21)) and the non-linear bias (the

second term in Equation (9)), respectively. We use the standard value of b̃2/b1 ≡ δc 
 1.686 from spherical collapse model. (Bottom Right) Dependence of the
squeezed bispectrum on the smoothing scale, R, showing that the dependence is negligible for k1 � 1/R.

terms; however, the f 2
NL term is the most dominant of all on

large scales in the squeezed configuration (α > 10).
We can understand these results analytically by comparing

Equations (53), (44), (49), and (50). For the squeezed triangles
with k1 = k2 = αk3 (α � 1) and a scale-invariant spectrum,
Pφ ∝ k−3, we find

fNLB tot
fNL

f 2
NLBnG

f 2
NL


 15

fNLα2

M0k
2

4I0(b̃2/b1)


 0.0240

(
100

α

)2 40

fNL

(
k

0.01 h Mpc−1

)2

,

(54)

gNLBnG
gNL

f 2
NLBnG

f 2
NL


 3

2α2

gNL

f 2
NL


 0.000938

(
100

α

)2 (
40

fNL

)2
gNL

104
, (55)

fNLB tot
fNL

gNLBnG
gNL


 15
fNL

gNL

M0k
2

6I0


 25.6
fNL

40

104

gNL

(
k

0.01 h Mpc−1

)2

. (56)

These estimates confirm that Bf 2
NL

dominates over BfNL and
BgNL in the squeezed configurations on large scales, k �
0.05 h Mpc−1 for α = 100, and k � 0.03 h Mpc−1 for α = 50.
For α = 10, f 2

NL term dominates only on the extremely large
scales: k � 0.006 h Mpc−1.

Note that for a given configuration (for a given α),
BnG

fNL

/
BnG

f 2
NL

∝ k2 and BnG
fNL

/
BnG

gNL
∝ k2 while BnG

gNL

/
BnG

f 2
NL

is inde-

pendent of k, which is consistent with what we show in Figure 11
on k � 0.1 h Mpc−1.

In summary, the most unexpected and important results of
our study are as follows.

1. The terms that are linearly proportional to fNL, de-
rived in Sefusatti & Komatsu (2007), receive additional
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Figure 12. Same as Figure 11, but for squeezed triangles with different ratios: α = 50 and α = 10. (Top) All the parameters are the same as in Figure 11. (Middle) z = 3
and b2/b1 = 1.5. The non-Gaussianity parameters, fNL = 40 and gNL = 104, are the same as in Figure 11. (Bottom) z = 3 and b2/b1 = 1.5. The non-Gaussianity
parameters, fNL = 4 and gNL = 100.

contributions, and are enhanced by a factor of ∼ 15 for the
squeezed triangles (see Equation (53)).

2. The f 2
NL (or τNL) term actually dominates over the fNL term

by a large factor for the squeezed triangles (see the top-left
panel of Figure 11).

This suggests that the galaxy bispectrum is more sensitive
to fNL than previously recognized by Sefusatti & Komatsu
(2007), greatly enhancing our ability to detect the primordial
non-Gaussianity of local type. On very large scales, k1 �
0.01 h Mpc−1, even the gNL term (with gNL = 104) dominates
over the fNL term, giving us a hope that perhaps we can obtain
a meaningful limit on this term using the galaxy bispectrum.

3.4. Redshift Dependence

The quantities we have calculated so far are evaluated at
the present epoch, z = 0. At higher redshift, each quantity
needs to be scaled with some powers of the linear growth factor
D(z), which is normalized to 1 at the present epoch. We find
PR ∝ D2(z), BG

m ∝ D4(z), BnG0
fNL

∝ D3(z), BnG
m ∝ D3(z),

BnG1
fNL

∝ D3(z), BnG

f 2
NL

∝ D2(z), and BnG
gNL

∝ D2(z). Therefore,

the final result for the halo bispectrum from the local type non-

Gaussianity is

Bg(k1, k2, k3, z) = b3
1(z)D4(z)

[
BG

m (k1, k2, k3)

+
b2(z)

b1(z)
{PR(k1)PR(k2) + (2 cyclic)}

+
fNL

D(z)
BnG0

fNL
(k1, k2, k3)

+
b̃2(z)

b1(z)

{
fNL

D(z)

(
BnG

m (k1, k2, k3) + 4(GR(k1)

+GR(k2) + GR(k3))BnG0
fNL

(k1, k2, k3)
)

+ BnG1
fNL

(k1, k2, k3) +
f 2

NL

D2(z)
BnG

f 2
NL

(k1, k2, k3)

+
gNL

D2(z)
BnG

gNL
(k1, k2, k3)

}]
, (57)

where BG
m , PR, BnG0

fNL
, BnG

m , BnG1
fNL

, BnG

f 2
NL

, and BnG
gNL

are evaluated

at z = 0.
From Equation (57) it is clear that the contributions from non-

Gaussian initial conditions become more and more important as
we go to higher redshifts. The new terms that we have derived
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Figure 13. Same as Figure 11, but for z = 3 and b2/b1 = 1.5. The non-Gaussianity parameters, fNL = 40 and gNL = 104, are the same as in Figure 11.

in this paper, the BnG

f 2
NL

and BnG
gNL

terms, are even more important

than the term derived by Sefusatti & Komatsu (2007), BnG0
fNL

,
This property makes high-redshift galaxy surveys particularly a
powerful probe of primordial non-Gaussianity.

Figure 13 and the middle panel of Figure 12 show the
bispectrum terms at z = 3. Note that we use a larger value for the
non-linear bias, b2/b1 = 1.5, in accordance with a halo model
(Cooray & Sheth 2002). At this redshift, with fNL = 40 and
gNL = 104, the gNL and f 2

NL terms dominate over the non-linear
effects also in the elongated, folded and isosceles configurations
at k � 0.01 h Mpc−1, as well as in the squeezed ones. The
fNL terms dominate over the non-linear effects on even smaller
scales, and the importance of the f 2

NL and gNL terms relative to
the fNL term is greater, as expected from their dependence on
D(z).

4. DISCUSSION AND CONCLUSIONS

Let us come back to this question, “can we still use Sefusatti
& Komatsu’s equation, Equation (1), with b1 replaced by the
scale-dependent bias, Equation (4)?” The answer is clearly no:
the primordial non-Gaussianity gives the largest signal in the
squeezed limit, whereas the non-linear gravitational evolution
and non-linear bias give the minimal signals in the same limit.
This means that these effects are physically totally distinct, and
thus a mere scale-dependent rescaling of one effect does not give

another. Therefore, replacing b1 in Equation (1) with the scale-
dependent bias in Equation (4) results in an incorrect prediction.
For example, even though we have a term similar to that of the
scale-dependent bias, BnG

m , in our final expression of the galaxy
bispectrum for the local-type primordial non-Gaussianity, there
are many more terms that do not look like the scale-dependent
bias that appears in the galaxy power spectrum. Furthermore,
BnG

m is by no means the most dominant term.
In this paper, we have derived a general expression for the

bispectrum of density peaks in the presence of primordial
non-Gaussianity (Equation (9)), using the MLB formula as
well as using the local bias ansatz. This result is general as
long as we consider the bispectrum of high density peaks,
i.e., ν = δc/σR � 1, which is equivalent to highly biased
galaxy populations, b1 � 1, on large scales in which the n-
point correlation functions are much smaller than unity. (This
condition was necessary for us to Taylor-expand the exponential
in Equation (6).)

We have applied our formula to the local form of primordial
non-Gaussianity in Bardeen’s curvature perturbations, Φ =
φ + fNLφ2 + gNLφ3, and found new terms that are proportional
to fNL, f 2

NL and gNL, which were absent in the formula derived
by Sefusatti & Komatsu (2007). We have examined the shape
and scale dependence of these new terms as well as those of the
known terms, and found that the primordial non-Gaussianity
contributions yield the largest signals in the squeezed triangle
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Figure 14. Same as Figure 13, but for smaller non-Gaussianity parameters, fNL = 4 and gNL = 100.

configurations, where the non-linear gravitational evolution and
non-linear bias yield the minimal signals. This is a good news:
this property enables us to distinguish the primordial and non-
primordial effects easily.

The effects of primordial non-Gaussianity on the galaxy
bispectrum are more important in a high redshift universe, and
thus high-redshift galaxy surveys are particularly a potent probe
of the physics of inflation via measurements of primordial non-
Gaussianity.

The most significant conclusion of this paper is that, in the
squeezed configurations, the f 2

NL term actually dominates over
the fNL term by a large factor, and, on large scales, newly
derived fNL term dominates over the non linear terms for all
configurations. Because of this, the galaxy bispectrum should
be more sensitive to fNL than previously recognized: in the high
density peak limit, we have found a factor of ∼15 enhancement
for the fNL term studied in Sefusatti & Komatsu (2007). In
addition it is also sensitive to a new term, gNL. Figure 14 and the
bottom panel of Figure 12 shows the bispectrum at z = 3 with
much reduced primordial non-Gaussianity parameters, fNL = 4
and gNL = 100. In the squeezed configurations (α = 100),
the f 2

NL term is still well above the usual terms from Gaussian
initial conditions at k � 0.1 h Mpc−1, the fNL term is above at
k � 0.4Mpc−1, and the gNL term is above at k � 0.01 h Mpc−1.
Even with the milder squeezed limit for α = 10, the fNL term
still is above the Gaussian term at k � 0.02 Mpc−1.

The fact that the f 2
NL term dominates in the squeezed limit is

particularly interesting, as it provides us with the unique window
into the physics of inflation in the following way. Recently, a
number of groups (e.g., Boubekeur & Lyth 2006; Huang & Shiu
2006; Byrnes et al. 2006; Buchbinder et al. 2008) have shown
that the primordial trispectrum can in general be written as

TΦ(k1, k2, k3, k4) = 6gNL[Pφ(k1)Pφ(k2)Pφ(k3) + (3 cyclic)]

+
25

18
τNL[Pφ(k1)Pφ(k2){Pφ(k13) + Pφ(k14)}

+ (11 cyclic)], (58)

instead of Equation (17). Different models of the early universe
predict different relations between τNL and fNL. Therefore,
separately detecting the τNL (i.e., f 2

NL) and fNL terms can be
a powerful tool for constraining the model of the early universe.

How well can one constrain these parameters with the current
or planned future high-redshift galaxy surveys? As we based
our analysis in this paper on the assumption of high density
peaks, i.e., ν � 1, the relative importance of the new terms
depends on how high the peaks (in which the observed galaxies
reside) are. For example, for SDSS–LRG sample (z = 0.315,
ng = 1.36 × 10−4 [h/Mpc]3), where δc/σR 
 1.57, the halo
model (see Sefusatti & Komatsu 2007, for a detailed method)
gives b̃2/b1 
 0.5, which is about a third of the value from
the high peak limit that we have used in this paper. Therefore,
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we expect that the non-Gaussian signal for the SDSS–LRG
bispectrum is smaller by the same factor. Detailed analysis will
be presented in a forthcoming paper.
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APPENDIX A

INTEGRATION OF T 1112
R

In the standard perturbation theory, the four-point correlator
contained in the definition of T 1112

R (see Equation (26)) is given
by6

〈δ(1)(k1)δ(1)(k2)δ(1)(k3)δ(2)(k4)〉=
∫

d3q

(2π )3
F

(s)
2 (q, k4 − q)

× 〈δ(1)(k1)δ(1)(k2)δ(1)(k3)δ(1)

× (k4 − q)δ(1)(q)〉. (A1)

For non-Gaussian density fields, the leading order of Equa-
tion (A1) contains the ensemble average of products of six
Gaussian variables, φ, which gives products of three power
spectra, Pφ . We find∫

d3q

(2π )3
F

(s)
2 (q, k4 − q)〈δ(1)(k1)δ(1)(k2)δ(1)(k3)

× δ(1)(k4 − q)δ(1)(q)〉
=

∫
d3q

(2π )3
F

(s)
2 (q, k4 − q)〈δ(1)(k1)δ(1)(k2)〉

× 〈δ(1)(k3)δ(1)(k4 − q)δ(1)(q)〉 + (cyclic 123)

+ 2
∫

d3q

(2π )3
F

(s)
2 (q, k4 − q)〈δ(1)(k1)δ(1)(q)〉

× 〈δ(1)(k2)δ(1)(k3)δ(1)(k4 − q)〉 + (cyclic 123)

= (2π )3

[
2fNLPm(k1)M(k3)

∫
d3qM(q)

× M(|k4 − q|)Pφ(q){Pφ(|k4 − q|) + 2Pφ(k3)}
× F

(s)
2 (q, k4 − q)δD(k12) + 4fNLM(k2)M(k3)

× M(k14)Pm(k1)F (s)
2 (−k1, k14)

× {Pφ(k2)Pφ(k3) + Pφ(k2)Pφ(k14) + Pφ(k3)Pφ(k14)}
+ (cyclic 123)

]
δD(k1234). (A2)

6 Sefusatti (2009) also derived and studied this term independently.

Therefore, T 1112
R is given by

T 1112
R (k1, k2, k3, k4)=W̃R(k1)W̃R(k2)W̃R(k3)W̃R(k4)

×
[

2fNLPm(k1)M(k3)
∫

d3qM(q)

×M(|k4 − q|)Pφ(q){Pφ(|k4 − q|)
+ 2Pφ(k3)}F (s)

2 (q, k4 − q)δD(k12)

+ 4fNLM(k2)M(k3)M(k14)Pm(k1)

×F
(s)
2 (−k1, k14){Pφ(k2)Pφ(k3) + Pφ(k2)

×Pφ(k14)+Pφ(k3)Pφ(k14)}+(cyclic 123)

]
,

(A3)

where M(k) ≡ MR(k)/W̃R(k), kij = ki + kj , and (cyclic 123)
denotes that the cyclic changes among (k1, k2, k3). We calculate
the sum of {1112} terms in Equation (27) by integrating
Equation (A3)∫

d3q

(2π )3
T

(2)
R (q, k1 − q, k2, k3) = 8fNLW̃R(k2)W̃R(k3)M(k1)

× M(k2)M(k3){Pφ(k2)Pφ(k3)

+ Pφ(k2)Pφ(k1) + Pφ(k3)Pφ(k1)}

×
∫

d3q

(2π )3
W̃R(|k1 − q|)W̃R(q)Pm(q)F (s)

2 (−q, k1)

+ 4fNLW̃R(k2)W̃R(k3)M(k1)
[
Pm(k2)F (s)

2 (k2, k1)

+ Pm(k3)F (s)
2 (k3, k1)

] ∫
d3q

(2π )3
W̃R(|k1 − q|)

× W̃R(q)M(q)M(|k1 − q|){Pφ(q)Pφ(|k1 − q|)
+ 2Pφ(q)Pφ(k1)} + 8fNLW̃R(k2)W̃R(k3)M(k3)

× Pm(k2)
∫

d3q

(2π )3
W̃R(|k1 − q|)W̃R(q)

× M(|k1 − q|)M(|k2 + q|)F (s)
2 (−k2, k2 + q)

× {Pφ(k3)Pφ(|k1 − q|) + Pφ(k3)Pφ(|k2 + q|)
+ Pφ(|k1 − q|)Pφ(|k2 + q|)} + (k2 ↔ k3)

+ 8fNLW̃R(k2)W̃R(k3)M(k3)
∫

d3q

(2π )3

× W̃R(|k1 − q|)W̃R(q)M(|k1 − q|)
× M(|k2 + q|)Pm(q)F (s)

2 (−q, k2 + q)

×{Pφ(|k1 − q|)Pφ(k3) + Pφ(|k1 − q|)Pφ(|k2 + q|)
+ Pφ(k3)Pφ(|k2 + q|)} + (k2 ↔ k3)

+ 8fNL(W̃R(k2)W̃R(k3))2Pm(k3)M(k2)

×
∫

d3q

(2π )3
M(q)M(|k2 − q|)Pφ(q)

× {Pφ(|k2 − q|) + 2Pφ(k2)}F (s)
2 (q, k2 − q)

+ (k2 ↔ k3). (A4)

APPENDIX B

SUMMARY OF EQUATIONS

As various terms contributing to the galaxy bispectrum are
scattered over various places in the paper, we collect them
together in this appendix. For galaxies of size R (or mass
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M = (4π/3)R3ρ̄m, where ρ̄m is the cosmic mean matter
density), the galaxy bispectrum at redshift z is given by

Bg(k1, k2, k3, z)=b3
1(z)D4(z)

[
BG

m (k1, k2, k3) +
b2(z)

b1(z)

×{PR(k1)PR(k2) + (2 cyclic)} +
fNL

D(z)

×BnG0
fNL

(k1, k2, k3)+
b̃2(z)

b1(z)

{
fNL

D(z)

(
BnG

m (k1, k2, k3)

+ 4(GR(k1) + GR(k2) + GR(k3))BnG0
fNL

(k1, k2, k3)
)

+ BnG1
fNL

(k1, k2, k3) +
f 2

NL

D2(z)
BnG

f 2
NL

(k1, k2, k3)

+
gNL

D2(z)
BnG

gNL
(k1, k2, k3)

}]
, (B1)

where b1(z) and b2(z) are the linear and non-linear bias param-
eters, respectively. As we mentioned in Section 2, b̃2(z)/b1(z)
would be equal to δc within the context of the MLB formalism,
but the precise value has to be measured from N-body simula-
tions.

Note that the redshift evolution of each term in explicitly given
by the powers of the linear growth factor D(z), and various
contributions, BG

m , PR, BnG
m , BnG0

fNL
, BnG1

fNL
, BnG

f 2
NL

, and BnG
gNL

, are

evaluated at z = 0 with

BG
m (k1, k2, k3) = 2F

(s)
2 (k1, k2)W̃R(k1)W̃R(k2)W̃R(k3)

× Pm(k1)Pm(k2) + (2 cyclic) (B2)

BnG0
fNL

(k1, k2, k3) = 2
PR(k1)

MR(k1)

PR(k2)

MR(k2)
MR(k3) + (2 cyclic)

(B3)

BnG
m (k1, k2, k3) = 4W̃R(k1)W̃R(k2)W̃R(k3)

×
[
FR(k1)

MR(k1)
+

FR(k2)

MR(k2)

]
Pm(k1)Pm(k2)

× F
(s)
2 (k1, k2) + (2 cyclic) (B4)

BnG1
fNL

(k1, k2, k3) ≈ 1

2σ 2
R

[
8W̃R(k2)W̃R(k3)Pm(k2)M(k3)Pφ(k3)

×
∫

d3q

(2π )3
W̃R(|k1 − q|)W̃R(q)

× M(|k1 − q|)M(|k2 + q|)
× [Pφ(|k2 + q|) + Pφ(|k1 − q|)]
× F

(s)
2 (−k2, k2 + q) + (5 permutation)

]
(B5)

BnG

f 2
NL

(k1, k2, k3) ≈ 1

2σ 2
R

[
8MR(k2)MR(k3)Pφ(k1)

× [Pφ(k2) + Pφ(k3)]
∫

d3q

(2π )3
MR(q)

× MR(|k1 − q|)Pφ(q) + (2 cyclic)

+ 4MR(k2)MR(k3)Pφ(k2)Pφ(k3)
∫

d3q

(2π )3

× MR(q)MR(|k1 − q|)
× [Pφ(|k2 + q|) + Pφ(|k3 + q|)] + (2 cyclic)

]
(B6)

BnG
gNL

(k1, k2, k3) = 1

2σ 2
R

[
6MR(k2)MR(k3)[Pφ(k2) + Pφ(k3)]

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)Pφ(q)

× Pφ(|k1 − q|) + (2 cyclic)

+ 12MR(k2)MR(k3)Pφ(k2)Pφ(k3)

×
∫

d3q

(2π )3
MR(q)MR(|k1 − q|)Pφ(q)

+ (2 cyclic)

]
. (B7)

Note that we show only dominant terms for BnG1
fNL

and BnG

f 2
NL

on

large scales. One can find the exact definitions in Equations (29)
and (34). Finally, FR(k) and GR(k) are defined as follows.

FR(k) ≡ 1

2σ 2
R

∫
d3q

(2π )3
Pφ(q)MR(q)MR(|k − q|)

×
[
Pφ(|k − q|)

Pφ(k)
+ 2

]
(B8)

GR(k) ≡ 1

2σ 2
R

∫
d3q

(2π )3

W̃R(q)W̃R(|k − q|)
W̃R(k)

Pm(q)F (s)
2 (k,−q)

(B9)
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