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ABSTRACT

The detection of fast quasi-periodic variability from accreting black holes and neutron stars has been used to constrain
their masses, radii, and spins. If the observed oscillations are linear modes in the accretion disks, then bounds can
be placed on the properties of the central objects by assuming that these modes are locally sub-Keplerian. If, on the
other hand, the observed oscillations correspond to nonlinear resonances between disk modes, then the properties
of the central objects can be measured by assuming that the resonant modes are excited at the same radial annulus in
the disk. In this paper, we use numerical simulations of vertically integrated, axisymmetric hydrodynamic accretion
disks to provide examples of situations in which the assumptions implicit in both methods are not satisfied. We then
discuss our results for the robustness of the mass and spin measurements of compact objects from variability studies.
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1. INTRODUCTION

X-ray variability studies of accreting neutron stars and black
holes offer a tool for constraining the masses and spins of the
compact objects themselves. In the least model-dependent argu-
ment, the radial extent of the region responsible for variability
observed with a given characteristic frequency is assumed to
be at most equal to the size of a Keplerian orbit with the same
orbital frequency. Additionally, in order for this region to be
able to sustain long-lived oscillatory modes, it must be larger
than the radius of the innermost stable circular orbit around the
compact object. This requirement then places an upper bound
on the mass of the object and a lower bound on its spin (see,
e.g., Kluzniak et al. 1990; Mushotzky et al. 1993; Miller et al.
1998; Strohmayer 2001; for a discussion see Psaltis 2004).

The assumption implicit in the above argument is that
the Keplerian frequency corresponds to the fastest dynamical
timescale at any radius in the accretion disk. This is usually
justified by the fact that gravity is the strongest force in the
system (see, however, Alpar & Psaltis 2008). Indeed, the study
of normal modes in a viscous accretion disk shows that the
frequency of the lowest order, linear, hydrodynamic mode
excited at any radius has to be smaller than the local Keplerian
frequency (Kato 2001).

Observations of pairs of quasi-periodic oscillations from
black holes with frequencies in small-integer ratios, however,
have challenged the notion that these oscillations correspond
to linear hydrodynamic modes (Strohmayer 2001; Abramowicz
& Kluzniak 2001). Such frequency ratios are reminiscent of
nonlinear interactions, which can preferentially amplify only
those high-order harmonics of the normal modes that are in
resonance. If this is the prevailing mechanism for compact-
object variability, then meaningful bounds on or measurement
of their masses and spins can only be obtained within the context
of a detailed model for the oscillations. Indeed, assuming that
the two modes in resonance are dynamical hydrodynamic modes
in the disk and using an independent dynamical measurement
of the mass of the black hole may lead to an estimate of the
black hole spin (Abramowicz & Kluzniak 2001; Abramowicz
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et al. 2003). The assumption implicit in this last argument is the
fact that both modes are excited and trapped in the same radial
annulus in the accretion disk.

In this paper, we use numerical simulations of axisymmetric
viscous accretion disks in order to assess the validity of the two
main assumptions discussed above: that the highest frequency
of oscillation of a radial annulus in an accretion disk is the
local Keplerian frequency and that interactions may occur only
between modes that are locally excited. We show that neither of
these two assumptions are formally justified.

We find that oscillatory modes that are excited close to
the innermost stable circular orbit generate traveling sound
waves that propagate radially to tens of Schwarzschild radii.
The presence of such modes has been predicted in analytical
studies of diskoseismic modes (Kato 2001). Our study shows,
however, that they can grow to such amplitudes that they can
dominate the power spectrum of variability of the accretion
disks over extended regions. As viewed from any one radial
annulus outside their excitation region, these oscillations are
highly super-Keplerian. Moreover, nonlinear couplings may
lead to resonance between the traveling modes and those that are
excited locally. Both results have important implications for the
phenomenological constraints imposed on the masses and spins
of compact objects by the observation of high-frequency quasi-
periodic oscillations, which we will discuss in detail below.

2. ONE-DIMENSIONAL MODELS OF HYDRODYNAMIC
ACCRETION DISKS

We used the numerical algorithm described in Milsom &
Taam (1996) in order to solve the hydrodynamic equations
that describe the time evolution of one-dimensional viscous
accretion disks. For completeness, we briefly summarize here
the relevant equations and assumptions.

The conservation of mass is described by the continuity
equation

∂Σ
∂t

+
∂

r∂r
(rΣur ) = 0 , (1)

where Σ is the column density through the entire thickness of
the accretion disk at radius r and ur is the radial velocity. The

717

http://dx.doi.org/10.1088/0004-637X/703/1/717
mailto:samao@cfa.harvard.edu


718 MAO, PSALTIS, & MILSOM Vol. 703

conservation of linear and angular momentum are described,
respectively, by the equations

∂(Σur )

∂t
+

∂

r∂r

(
rΣu2

r

) = −∂P

∂r
+ Σ

(
Ω2 − Ω2

K

)
r (2)

and

∂(ΣΩr2)

∂t
+

∂

r∂r
(rΣurΩr2) = 1

r

∂

∂r

(
Σνr3 ∂Ω

∂r

)
, (3)

where P is the sum of the vertically integrated gas and radiation
pressures, Ω is the angular velocity in the flow, ΩK is the
local azimuthal (Keplerian) dynamical frequency, and ν is
the kinematic viscosity. Finally, the conservation of energy is
described by the equation

∂(ΣεI)

∂t
+

∂

r∂r
[rur (ΣεI + P )] = ur

∂P

∂r
+νΣ

(
r
∂Ω
∂r

)2

−4acT 4

3κ0Σ
,

(4)
where εI is the internal energy per unit mass, T is the mid-plane
temperature in the disk, a is the radiation constant, c is the speed
of light, and κ0 is the sum of the electron-scattering and free–free
opacities of the flow.

This set of differential equations is augmented by a set of
algebraic equations that determine the gravitational potential of
the central star, the equation of state, and the kinematic viscosity
in the flow. We specify a pseudo-Newtonian gravitational
potential through

ΩK =
√

GM

r(r − rS)2
, (5)

where rS ≡ 2GM/c2 is the Schwarzschild radius that corre-
sponds to the mass of the star, M. We use an equation of state
that corresponds to a perfect gas in local thermodynamic equi-
librium with radiation such that

εI = 3

2

RT

μ
+

2HaT 4

Σ
(6)

and

P = Pgas + Prad = ΣRT

μ
+

2

3
HaT 4 , (7)

where R is the gas constant, μ = 0.62 is the mean molecular
weight in the flow, a is the radiation constant, and

H ≡
√

P/Σ
ΩK

(8)

is the vertical scale height of a disk in hydrostatic equilibrium.
Finally, we use the α-prescription

ν = 2

3
α

Pgas

P

√
P

Σ
H (9)

for the kinematic viscosity, which ensures thermal and viscous
stability.

In all numerical simulations, we set the mass of the central
object to 10 M� and specified the solution by the mass
accretion rate Ṁ in units of the Eddington accretion rate
ṀE ≡ 64πGM/(kesc) and the viscosity parameter α. The
domain of solution, initial conditions, boundary conditions, and
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Figure 1. Power spectrum of the vertically integrated column density Σ at three
different radii in an accretion disk with an accretion rate of 0.1ṀE and a viscosity
parameter α = 0.1. The power spectra have been displaced vertically for clarity.
The vertical solid line on each power spectrum corresponds to the local radial
epicyclic frequency, whereas the vertical dashed line on each power spectrum
corresponds to the local Keplerian frequency.

method of solution are described in detail in Milsom & Taam
(1996).

The global timing properties of our numerical simulations
have been described in detail by Milsom & Taam (1996). In
summary, for a given value of the viscosity parameter α, sim-
ulations with low (typically � 0.01ṀE) accretion rates result
in light curves with noisy power spectra, simulations with in-
termediate accretion rates exhibit large amplitude global modes
at frequencies comparable to the maximum radial epicyclic fre-
quency in the flow and its harmonics, and simulations at even
larger accretion rates (typically � 0.02ṀE) exhibit no signif-
icant variability (although epicyclic oscillations were always
visible in subsequent two-dimensional hydrodynamic simula-
tions; see Milsom & Taam 1997).

3. SUPER-KEPLERIAN FREQUENCIES IN THE
NUMERICAL SIMULATIONS

The main goal of our study is to investigate the radial propa-
gation of the traveling modes excited in the various simulations,
in order to quantify the extent of the domain in which they dom-
inate the variability. For this reason, we performed fast Fourier
transforms (FFTs) of a number of physical quantities such as
the radiation flux, local mass accretion rate, vertically integrated
column density, etc., evaluated at different radii in the flow. In
order to resolve the fastest possible oscillations we used a time
resolution of 2 ms, and in order to resolve the power spectral
peaks of potential oscillations of high coherence we used seg-
ments of 4 s length. Finally, following standard procedure, we
averaged the FFTs of four sequential segments in every simu-
lation, in order to improve the statistics, and binned the power
density spectra in frequency space. Hereafter, we will be dis-
cussing the power density spectra of the vertically integrated
column density in the disk.

Figure 1 shows a typical example of the power spectrum of
the vertically integrated density Σ evaluated at three different
radii in the accretion disk for the simulation with an accretion
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Figure 2. Radius dependence of the dominant oscillation frequency of the
vertically integrated density in a simulation with Ṁ = 0.1ṀE and a viscosity
parameter α = 0.1. At each radius, the solid lines show the radial epicyclic
and Keplerian frequencies, whereas the dashed lines show increasingly higher
harmonics of the local Keplerian frequency.

rate of 0.1ṀE and a viscosity parameter of α = 0.1. We can
clearly see that the accretion disk is variable over a wide range
of timescales and, similar to the observed systems, exhibits both
broadband noise and quasi-periodic oscillations. Indeed, at 6RS
a large number of oscillation peaks can be seen, most of which
are overtones to a fundamental frequency. However, contrary
to all expectations, most of the quasi-periodic oscillations that
appear in the power spectra occur at frequencies larger than
the local Keplerian frequencies, indicated in the figure with the
vertical dashed lines.

Figure 2 shows the frequency of the dominant quasi-periodic
oscillation of the vertically integrated density as a function of
radius, for the simulation with Ṁ = 0.1ṀE and a viscosity
parameter α = 0.1. The radius dependence of the oscillation
frequency depicted in this figure shows three distinct regions that
appear in varying degrees in all simulations. First, there is a wide
region in the inner accretion disk where the dominant oscillation
frequency is constant and nearly equal to the maximum of the
radial epicyclic frequency. This is surrounded by a second region
in which the oscillation frequency is radius dependent, rapidly
decreasing, but super-Keplerian. Finally, in a third, outer region,
the oscillation frequency is radius dependent and nearly equal
to the radial epicyclic (or local Keplerian) frequency.

The radial extent of the regions in the accretion disk in which
the constant-frequency (CF) and variable-frequency (VF) modes
live depends strongly on the mass accretion rate and rather
weakly on the viscosity parameter α, as shown in Figure 3. At
accretion rates smaller than a few hundredths of the Eddington
critical value, the oscillation frequencies at all radii are nearly
equal to the local epicyclic frequencies. As the accretion
rate increases beyond ∼ 0.01ṀE, the radial extent of the CF
mode also increases, reaching radii � 40Rg for accretion rates
comparable to 0.1ṀE; beyond that radius, only the VF mode
exists.

The CF modes that dominate the variability in the inner
accretion disk at accretion rates � 0.1ṀE are neither excited nor
trapped in that region. They are in fact traveling inertial-acoustic
modes that are generated close to the innermost stable circular

Figure 3. Regions in the accretion disk where the constant-frequency (CF)
and the variable-frequency (VF) modes live for simulations with different mass
accretion rates and viscosity parameters α.

Figure 4. Radius–time plot of the vertically integrated density for the simulation
with an accretion rate of 0.1ṀE and a viscosity parameter α = 0.1.

orbit and propagate outward (see also Chen & Taam 1995). This
is illustrated in Figure 4, which shows the radius–time plot of
the vertically integrated column density for the simulation with
an accretion rate of 0.1ṀE and a viscosity parameter α = 0.1.

4. DISCUSSION

We investigated the presence of oscillatory radial modes in
numerical simulations of axisymmetric, viscous accretion disks.
In agreement with earlier efforts (see Chen & Taam 1995), we
find that traveling modes are generated close to the innermost
stable circular orbit of the flow and propagate outward to several
tens of Schwarzschild radii, without getting attenuated. As
viewed from any given annulus in the accretion disk, these
waves appear as density oscillations with frequencies that are
locally super-Keplerian.

The presence of such super-Keplerian oscillations in the
simulations implies that we cannot use the frequency of an
observed oscillation to set a bound on the extent of the region
in the accretion flow that is responsible for the modulated
emission. For example, if we were to assume, as is normally
done, that the oscillation with a frequency f � 110 Hz shown
in Figure 2 is limited by the local Keplerian frequency, i.e.,
that f � fK � (1/2π )

√
GM/R3, then we would infer that the

region responsible for this oscillation is smaller than

R � 4.7RS

(
M

10 M�

)1/3 (
f

110 Hz

)−2/3

. (10)
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However, this limit would seriously underestimate the radial
extent of the region where the � 110 Hz mode resides, which
is in fact four times larger (see Figure 2). This is a direct
consequence of the fact that the traveling mode is locally super-
Keplerian in the entire inner region of the disk.

It is important to emphasize here that, although the CF modes
are super-Keplerian in the region of the accretion disk where
they are traveling, they are sub-Keplerian near the innermost
stable circular orbit, where they are excited. This is true for all
modes in all simulations that we explored. As a result, even
though we cannot use the frequency of the mode to set an upper
bound on the radial extent of the region in which it resides, we
can still constrain the mass and the spin of the compact object
by requiring that the mode is sub-Keplerian in the region where
it is excited.

Our simulations can only recover the excitation and prop-
agation of axisymmetric radial oscillations. Because of this,
we cannot simulate the possible nonlinear coupling of these to
other, azimuthal or vertical, modes. However, the presence of
large amplitude traveling modes in the simulated disks suggests
that the nonlinear coupling and resonances may not necessarily
occur between modes that are excited in the same region in the
accretion disk. Indeed, Figure 2 shows that the � 110 Hz mode
is in 2:1 resonance with an azimuthal Keplerian mode at � 7RS,
in 3:2 resonance with an azimuthal mode at � 8.5RS, etc. As
a result, it is not justifiable to use the frequencies of observed
resonant oscillations and infer the properties of the compact
objects assuming that they correspond to modes in the same re-
gion in the accretion flow (as in, e.g., Abramowicz & Kluzniak
2001).

Finally, it is worth pointing out that our results are valid
for geometrically thin, hydrodynamic accretion disks with an
alpha viscosity. Traveling inertial-acoustic modes such as those
we studied here are not visible in time-dependent simulations
of magnetohydrodynamic accretion disks (see, e.g., Hawley &

Krolik 2001; Armitage & Reynolds 2003; but see also Arras et al.
2006 and Chan et al. 2009). This is probably due to the combined
effects of the magnetorotational instability, which damps such
radial epicyclic modes, and the presence of fully developed
turbulence that quickly destroys the coherence of such traveling
modes. It is not clear, at this point, what physics needs to be
included (or perhaps what assumptions need to be relaxed) for
the numerical simulations of magnetohydrodynamic disks to
show large-amplitude oscillations that are ubiquitous in nature.
Independent of whether the hydrodynamic inertial-acoustic
modes survive in realistic simulations, our results still serve
as a proof of principle that high-amplitude, super-Keplerian
traveling modes may, in principle, exist in the inner regions of
accretion flows.

D.P. was supported in part by the NSF CAREER award NSF
0746549.
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