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IMPROVEMENT OF THE RICHNESS ESTIMATES OF maxBCG CLUSTERS
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ABSTRACT

Minimizing the scatter between cluster mass and accessible observables is an important goal for cluster
cosmology. In this work, we introduce a new matched filter richness estimator, and test its performance using
the maxBCG cluster catalog. Our new estimator significantly reduces the variance in the LX–richness relation, from
σ 2

ln LX
= (0.86 ± 0.02)2 to σ 2

ln LX
= (0.69 ± 0.02)2. Relative to the maxBCG richness estimate, it also removes the

strong redshift dependence of the LX–richness scaling relations, and is significantly more robust to photometric
and redshift errors. These improvements are largely due to the better treatment of galaxy color data. We also
demonstrate the scatter in the LX–richness relation depends on the aperture used to estimate cluster richness, and
introduce a novel approach for optimizing said aperture which can easily be generalized to other mass tracers.
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1. INTRODUCTION

The dependence of the halo mass function on cosmology is
a problem that is well understood both analytically (Press &
Schechter 1974; Bond et al. 1991; Sheth & Tormen 2002) and
numerically (Jenkins et al. 2001; Warren et al. 2006; Tinker
et al. 2008). In principle, this detailed understanding allows one
to place tight constraints on the amplitude of the primordial
power spectrum and on dark energy parameters (e.g., Holder
et al. 2001; Haiman et al. 2001). In practice, life is not so simple.
Cluster mass is not an observable,14 and so we must rely on other
quantities that trace mass to estimate the halo mass function.
In this context, observables that are tightly correlated with
mass and whose scatter is well understood are highly desirable,
as they permit a more accurate measurement of the mass
function.

One such mass tracer, and the subject of interest for this work,
is the so-called cluster richness, a measure of the galaxy content
of a cluster.15 Relative to other popular mass tracers such as

13 TABASGO Fellow
14 Here, we take the view that a cluster “observable” is a quantity that is
readily available with almost no systematic uncertainties in its interpretation.
In our mind, cluster mass is not an observable because all mass estimators are
subject to important systematics, in a way that more direct observables such as
galaxy velocity dispersions or X-ray luminosities are not.
15 Throughout this work, the word “richness” is meant to be taken as
shorthand for “optical mass tracer,” and not as the actual number of cluster
galaxies within the virialized region of a cluster. Examples of cluster richness
include those discussed in this work, the amplitude of the cluster–mass
correlation function Bgc, the optical luminosity of a cluster (which can itself
be defined in many ways), etc.

X-ray properties, SZ-decrements, and galaxy velocity disper-
sion, optical richness has unique advantages and disadvantages.
Its unique advantages are the following.

1. Cluster richness can easily be estimated with inexpensive,
photometric optical data.

2. Cluster richness can be estimated for both massive clusters
and low-mass groups.

The first of these two properties is significant because it
implies that cluster richness estimates are readily available given
any large, photometric optical survey such as the Sloan Digital
Sky Survey (SDSS; York et al. 2000a), DES,16 Pan-STARRS,17

or LSST.18 The latter property, on the other hand, is an important
advantage for a much more interesting reason.

It has long been known that cosmological constraints from
galaxy clusters are degenerate in σ8 and Ωm, a condition that
is usually summarized as σ8Ωγ

m = constant (see, e.g., Mantz
et al. 2008; Henry et al. 2009; Vikhlinin et al. 2009b; Rozo
et al. 2009, for the most recent analysis). Here, γ ≈ 0.5, σ8 is
a parameter specifying the amplitude of the primordial power
spectrum, and Ωm is the matter density of the universe in units
of the critical density. The existence of this degeneracy is easy
to explain (Rozo et al. 2004): suppose that we only measured the
abundance of galaxy clusters at a single mass scale. Since the
halo mass function depends on both σ8 and Ωm, it is evident that
with just one observable there must be a degeneracy between

16 http://www.darkenergysurvey.org/
17 http://pan-starrs.ifa.hawaii.edu/public/
18 http://www.lsst.org/lsst_home.shtml
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these two parameters. But what if we measure the halo mass
function over a range of scales? This is roughly equivalent to
measuring the amplitude and slope of the halo mass function at
the statistical pivot point. If the mass range probed is small, then
the slope of the mass function is not well constrained, and the
degeneracy between σ8 and Ωm will remain. In order to break
this degeneracy using only cluster abundance data requires a
measurement of the halo mass function over a large range of
masses or a large redshift range. Given local cluster samples,
only spectroscopic velocity measurements and optical richness
estimates can probe a mass range wide enough to successfully
break this degeneracy, but the former requires considerably more
observing resources.

There are, however, important disadvantages in using cluster
richness as a mass tracer. For instance, historically, the fact
that the relation between cluster richness and mass cannot be
predicted a priori based on simple physical arguments was
viewed as a significant drawback. Nowadays, however, this
argument holds little sway, since the level of accuracy required
for precision cosmology in our a priori knowledge of cluster
scaling relations is pushing current research toward a self-
calibrating approach, in which both cosmology and cluster
scaling relations are simultaneously constrained from the data
(Lima & Hu 2004; Majumdar & Mohr 2004; Lima & Hu 2005;
Hu & Cohn 2006; Wu et al. 2008). Thus, the lack of a simple
physical model for predicting cluster richness is no longer a
serious drawback as self-calibration techniques are viewed as
desirable, even in the case of a priori knowledge of cluster
scaling relations.

Another reason why optical richness estimates fell out of
favor relative to other mass tracers is that, in the past, richness
estimates were known to suffer from significant projection
effects, which resulted in impure cluster samples as well as large
scatter in the mass–richness relation. Abell made one of the first
systematic attempts at measuring richness (Abell 1958; Abell
et al. 1989) in defining his richness classes. He tried to minimize
projection by only counting galaxies dimmer than m3, the
magnitude of the third brightest cluster galaxy, but brighter than
m3 + 2. The bright cut is aimed at foreground interlopers, while
the dim cut reduces the contribution of the galaxy background.
Since then, new algorithms have been developed, and many of
them have been applied to CCD-based imaging (e.g., matched-
filter methods Postman et al. 1996; Bramel et al. 2000; Yee &
López-Cruz 1999; Kochanek et al. 2003; Dong et al. 2008).

Projection effects are now a much more benign problem
thanks to these new richness measurement techniques, the ad-
vent of accurate photometric data enabled by modern CCDs,
and most recently, the exploitation of the well known observa-
tion that ellipticals and cluster E/S0 galaxies in particular tend
to form a tight ridgeline in color–magnitude space (Visvanathan
& Sandage 1977; Bower et al. 1992; Gladders & Yee 2000;
Koester et al. 2007b). This color clustering has been indispens-
able to richness measurements in the SDSS (Goto et al. 2002;
Miller et al. 2005; Koester et al. 2007b) and the Red Sequence
Cluster Survey (RCS: Gladders & Yee 2005), and such color-
based measures have been shown to be effective mass tracers
(Muzzin et al. 2007; Sheldon et al. 2007a; Johnston et al. 2007;
Rykoff et al. 2008b; Becker et al. 2007a).

While richness estimates show a strong correlation with
other mass proxies (e.g., Bahcall 1981; Yee & Ellingson 2003;
Gilbank et al. 2004; Dai et al. 2007; Lopes et al. 2006; Sheldon
et al. 2007a; Johnston et al. 2007; Becker et al. 2007a; Rykoff
et al. 2008a), considerable scatter in the mass–richness relation

still remains. For instance, the richness measure used in the
RCS cluster catalog has a logarithmic scatter of σln M ≈ 0.8
(Gladders et al. 2007), while for maxBCG clusters the number
is closer to σln M ≈ 0.5 (Rozo et al. 2008). This is to be compared
with the scatter for X-ray mass tracers, which is expected to be
as low as σln M = 0.08 for YX based on simulations (Kravtsov
et al. 2006), or as high as σlnM = 0.25 for non-core extracted
soft X-ray band luminosities (e.g., Stanek et al. 2006; Vikhlinin
et al. 2009a). Clearly, much improvement is needed to bring the
scatter of richness measures to the level of X-ray mass tracers.19

This work is aimed at reducing the variance in the richness–
mass relation. We do this by explicitly constructing a new
richness estimator that significantly reduces the scatter in mass
at fixed richness for maxBCG clusters. Relative to N200 of
maxBCG, we introduce two significant differences. The first
of these involves using a matched filter algorithm to estimate
cluster richness. Matched filters have been used in the literature
before (Postman et al. 1996; Kochanek et al. 2003). Unlike those
works, however, our matched filter includes a color component,
which is of critical importance for reducing projection effects
over the redshift range spanned by our cluster sample. Indeed,
we find that most of the improvement we observe in our richness
estimator is driven by our improved modeling of galaxy colors
when estimating cluster richness. In some sense, our filter is
close in spirit to that of Dong et al. (2008), who include a
photometric redshift filter into their richness estimate. We also
note here that group-scale studies suggest that some measure of
the average color in the cluster is indicative of mass, particularly
below ∼ 1014 M� (Martı́nez et al. 2002; Martı́nez & Muriel
2006; Weinmann et al. 2006; Hansen et al. 2007).

The second difference we introduce is the way in which
the aperture used to estimate cluster richness is determined.
Generically, cluster richness estimators involve counting the
number of galaxies within some specified aperture, which can
thus be interpreted as defining the “size” of the cluster. This begs
the question, then, of how is one to select the correct size of a
cluster a priori? Theoretically, halo sizes are usually defined in
terms of RΔ, a radius which encompasses a mean density that
is Δ times either the mean or the critical density of the universe
(conventions vary from author to author). Unfortunately, not
only is such a definition not applicable observationally,20 authors
vary both on the reference background density (critical versus
mean mass density), and on the specific overdensity value. Thus,
even though significant progress has been made (Cuesta et al.
2008), a definitive definition of halo size remains elusive.

In this work, we approach this question with observations
in mind. That is, rather than coming with a preconceived
notion of what the radius of a cluster is, we let the data tell
us what the optimal radii for our clusters is by demanding
that optical richness be as tightly correlated as possible with
X-ray luminosity. This approach was pioneered by Popesso
et al. (2004) and Lopes et al. (2006), who use the scatter in
the LX–richness relation to derive an ideal fixed aperture with
which to estimate optical richness. Here, however, we wish
to allow for the fact that larger clusters are expected to have
larger radii, which suggests that a fixed aperture is not ideal. To
explore this possibility, we proceed as follows: first, one posits

19 In all scatter values quoted above, scatter is defined as the standard
deviation in log mass at a fixed observable.
20 By this we mean that to compute MΔ one needs to know the background
density or the critical density at the redshift of the cluster. Either requires us to
know the underlying cosmology a priori, which is impossible. Thus, the
quoted values for MΔ always have an explicit cosmology assumption in them.
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a scaling relation between cluster richness and cluster radius.
When estimating cluster richness, one then demands that the
richness–radius scaling relation be satisfied. For instance, given
a cluster, one can simply make an initial guess for its richness.
Using the richness–radius scaling relation, one can then draw
a circle of the appropriate radius, and count the number of
galaxies within it. If the richness was underestimated, one will
find too few galaxies, signaling that the richness estimate must
be increased. Proceeding in this way, one can quickly zero in on
the appropriate richness for the object.

This does, however, leave open the question of what the
correct richness–radius relation is. Since we are interested in
finding a new richness estimator that is tightly correlated with
halo mass, we can use the scatter in the mass–richness relation
as our figure of merit to determine the “correct” richness–radius
relation. In practice, we use the LX–richness scatter rather than
the mass–richness scatter because we cannot measure the scatter
in mass directly. We emphasize that since the mass scatter
at fixed X-ray luminosity (see, e.g., Vikhlinin et al. 2009a)
is considerably tighter than the corresponding scatter at fixed
richness (Rozo et al. 2008), the use of X-ray luminosity as a
mass tracer for our purposes is well justified.

The layout of the paper is as follows. We describe the data sets
used in this work in Section 2. Our matched filter estimator is
introduced in Section 3, followed by our method for determining
the optimal radius–richness relation in Section 4. We present our
results in Section 5. In investigating the properties of our new
richness measure, we have discovered that the redshift evolution
of the LX–richness relation of our new estimator is much milder
than that measured for N200. These results and the corresponding
discussion are presented in Section 6. We summarize our results
and present our conclusions in Section 7. Throughout, whenever
needed a flat ΛCDM cosmology with ΩM = 0.3 and h = 1.0
was assumed.

2. DATA

The data for the analysis presented in this work come from two
large area surveys, the SDSS (York et al. 2000b) and the ROSAT
All-Sky Survey (RASS; Voges et al. 1999). SDSS imaging data
are used to select clusters and to measure their matched filter
richness; RASS data provide 0.1–2.4 keV X-ray fluxes, which
we convert into estimates of the X-ray luminosity of the clusters.

2.1. SDSS

The imaging and spectroscopic surveys that comprise the
SDSS are currently in the sixth Data Release (Adelman-
McCarthy et al. 2008). This release includes nearly 8500 deg2

of drift-scan imaging in the Northern Galactic Cap, and another
7500 deg2 of spectroscopic observations of stars, galaxies, and
quasars.

The camera design (Gunn et al. 2006) and drift-scan imaging
strategy of the SDSS enable acquisition of nearly simultaneous
observations in the u, g, r, i, z filter system (Fukugita et al.
1996). Calibration (Hogg et al. 2001; Smith et al. 2002; Tucker
et al. 2006), astrometric (Pier et al. 2003), and photometric
(Lupton et al. 2001) pipelines reduce the data into object catalogs
containing a host of measured parameters for each object.

The maxBCG cluster sample and the galaxy catalogs used
to remeasure cluster richness in this paper are derived from the
SDSS. The galaxy catalogs are drawn from an area approxi-
mately coincident with DR4 (Adelman-McCarthy et al. 2006).
Galaxies are selected from SDSS object catalogs as described in

Sheldon et al. (2007b). In this work we use CMODEL COUNTS as
our total magnitudes, and MODEL COUNTS when computing col-
ors. The latter choice is made to ensure that the magnitudes used
to compute colors are estimated with the same angular aperture
in the different bands, so that the color we obtain is a measure
of the mean color of the galaxy at a specific radius. Bright stars,
survey edges and regions of poor seeing are masked as previ-
ously described (Koester et al. 2007a; Sheldon et al. 2007b).

2.2. Cluster Sample

We obtain sky locations, redshift estimates, and initial rich-
ness values from the maxBCG cluster catalog. Details of the
selection algorithm and catalog properties are published else-
where (Koester et al. 2007a, 2007b). In brief, maxBCG selection
relies on the observation that the galaxy population of clusters is
dominated by luminous, red galaxies clustered tightly in color
(the E/S0 ridgeline). Since these galaxies have old, passively
evolving stellar populations, their g−r color closely reflects their
redshift. The brightest such red galaxy, typically located at the
peak of the galaxy density, defines the cluster center.

The maxBCG catalog is approximately volume limited in the
redshift range 0.1 � z � 0.3, with very accurate photometric
redshifts (δz ∼ 0.01). Studies of the maxBCG algorithm applied
to mock SDSS catalogs indicate that the completeness and
purity are very high, above 90% (Koester et al. 2007a; Rozo
et al. 2007). The maxBCG catalog has been used to investigate
the scaling of galaxy velocity dispersion with cluster richness
(Becker et al. 2007b) and to derive constraints on the power
spectrum normalization, σ8, from cluster number counts (Rozo
et al. 2007).

The primary richness estimator used in the maxBCG catalog
is N200, defined as the number of galaxies with g − r colors
within 2σ of the E/S0 ridgeline as defined by the BCG color,
brighter than 0.4 L∗ (in the i band), and found within r

gal
200 of

the cluster center. r
gal
200 is a cluster radius that depends upon

the richness Ngals, which is defined exactly as N200 with the
exception of the radius employed, which is now taken to be a
fixed metric aperture of 1 h−1 Mpc. The radius r200 is calibrated
so that, on average, the galaxy overdensity within r

gal
200 is 200Ω−1

m

assuming Ωm = 0.3 (Hansen et al. 2005). The full catalog
comprises 13,823 objects with a richness threshold N200 � 10,
corresponding to M � 5 × 1013 h−1 M� (Johnston et al. 2007).

As mentioned in the introduction, we re-estimate the cluster
richness for every object in the maxBCG catalog, and measure
the corresponding scatter in the LX–richness relation. When
doing so, we always limit ourself to the 2000 richest clusters,
ranked according to the new richness estimate. This cut is made
to ensure that our results are insensitive to the N200 � 10 cut
of the maxBCG catalog. This is a somewhat subtle point: to
estimate the scatter in the LX–λ relation, we wish to use a λ
thresholded sample with λ > λmin. In order to define such
a sample from the maxBCG, one must require that there be
no clusters with λ > λmin and N200 � 10, the maxBCG
richness cut. This condition is satisfied as long as we limit
ourselves to about the richest 2000 clusters. We have explicitly
checked that our results are insensitive to selecting fewer than
2000 clusters, but our results become noisier. We have also
explicitly checked that we cannot use much more than 2000
clusters before our results start becoming affected by our choice
of λmin. We also note that our choice of always selecting
the 2000 richest clusters also implies that the specific cluster
sample used to estimate the scatter in the LX–richness relation
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varies somewhat as we vary the parameters of the richness
estimator.

2.3. X-ray Measurements

The scatter in LX at fixed richness is estimated using a slight
variant of the method presented in Rykoff et al. (2008b). Briefly,
we use the RASS photon maps to estimate the 0.5–2.0 keV
X-ray flux at the location of each cluster, which is used to derive
LX [0.1–2.4 keV] using the cluster photometric redshift (the
conversion factors are similar to those used in Böhringer et al.
2004). We then perform a Bayesian linear least-squares fit to
ln Lx as a function of ln N , where N is the richness parameter to
be tested. The variance in ln LX is included as a free parameter.
The fit is done following the algorithm presented in Kelly (2007),
and correctly takes into account upper limits for LX for those
clusters with upper limits on X-ray emission.

It is important to note here that the estimated X-ray luminosity
of a cluster depends on the aperture used to measure LX .
Rykoff et al. (2008b) used a fixed 750 h−1 kpc aperture as a
compromise between needing a large aperture to avoid losing X-
ray photons due to the ROSAT point spread function (PSF) and
cluster miscentering, and the need for a small aperture in order
to increase the signal-to-noise of the cluster emission. Since,
we have discovered that the scatter in the LX–N200 relation is
minimized when we measure LX within a 1 h−1 Mpc radius.21

The corresponding scatter for the top 2000 maxBCG clusters is
σln LX |N200 = 0.96 ± 0.03.22

The nature of the present exercise has the benefit of assigning
a cluster radius Rc, to each individual cluster, so it is natural to
measure LX in the same scale as the optical richness. Thus, in this
work, we estimate LX using a variable aperture which depends
upon the cluster’s richness. Using a fixed 1 h−1 Mpc aperture to
estimate LX does not have a large effect on our results, for reasons
that will be discussed below. Finally, we note that very small
physical apertures are impractical for the most distant clusters
due to the large size of the RASS PSF, which corresponds to a
physical scale of 300 h−1 kpc (FWHM) at z = 0.23, the median
redshift of the maxBCG catalog. Therefore, we place a fixed
minimum aperture of 500 h−1 kpc for each cluster. We discuss
the small effect of this aperture cutoff in Section 4.

2.4. Cleaning the Sample

Our analysis depends on a combination of optical and X-ray
measurements of maxBCG clusters using SDSS and RASS data.
As discussed in detail in Rykoff et al. (2008b, see Section 5.6),
there is clear evidence that cool core clusters increase the scatter
in X-ray cluster properties. High-resolution X-ray imaging of
clusters allows the exclusion of cluster cores, reducing the
scatter in observed X-ray properties (e.g., O’Hara et al. 2006;
Chen et al. 2007; Maughan 2007). Unfortunately, the broad
PSF of RASS means that it is impossible to exclude the cores
of clusters in this work. In order to asses how robust our results
are to the presence or absence of cooling flow clusters in the

21 This is in essence the converse procedure to that explored in Popesso et al.
(2004) and Lopes et al. (2006), in that we hold the richness definition fixed,
and we then vary the aperture used to estimate LX .
22 The attentive reader will note that the quoted scatter in LX at fixed richness
is significantly larger than the scatter in mass at fixed richness quoted in the
introduction, which was closer to 0.5. Given a slope of ≈ 1.6 in the LX–M
relation, a scatter of 0.96 in LX corresponds to ≈ 0.96/1.6 ≈ 0.6 scatter in
mass. The remaining 10% difference is because the scatter Rozo et al. (2008)
uses the scatter of the 1000 richest clusters, which is smaller than that of the
2000 richest clusters by 0.1.

cluster sample, we have created a “clean” sample of maxBCG
clusters by removing all known cool core clusters that might
have boosted global X-ray luminosity and may significantly
bias our results. In addition, we have removed apparently X-ray
bright maxBCG clusters that were determined via inspection to
have their X-ray flux significantly contaminated by foreground
objects such as stars, low redshift galaxy clusters, and active
galactic nuclei (AGNs).

There does not exist a complete, unbiased catalog of cool
core X-ray clusters. Peres et al. (1998) used ROSAT pointed
observations of an X-ray-flux-limited catalog (Edge et al. 1990)
to estimate the central cooling time of 55 nearby clusters.
Two of these are in the maxBCG catalog (A1689, A2244)
and exhibit characteristics of a cool core (tcool < 10 Gyr).
Bauer et al. (2005) used Chandra observations of the higher
redshift (z > 0.15) clusters to systematically estimate the
central cooling time of bright X-ray clusters. We identify seven
maxBCG clusters (A750, A963, A1835, RXJ 2129.6+0005,
Z2701, Z3146, Z7160) from this sample with cooling times
tcool < 10 Gyr which we mark as cool core clusters. Finally,
Böhringer et al. (2005) identified ClG J1504.1-0248 as a cluster
with a massive cooling core. These clusters are typically very
X-ray bright for their richness, and tend to show strong Hα
emission in the SDSS spectroscopy. In fact, for several of these
clusters maxBCG failed to identify the correct BCG because the
strong Hα emission changes the apparent galaxy color, making
it inconsistent with the red sequence of the cluster. From here
on, the maxBCG catalog presented in Koester et al. (2007b) is
referred to as the “full” cluster sample, and the subsample with
these cooling core cluster removed is referred to as the “clean”
cluster sample.

3. MATCHED FILTER RICHNESS ESTIMATORS

3.1. Derivation of the Matched Filter Richness Estimator

Let x be a vector characterizing the observable properties
of a galaxy (e.g., galaxy color and magnitude). We model
the projected galaxy distribution around clusters as a sum
S(x) = λu(x|λ)+b(x) where λ is the number of cluster galaxies,
u(x|λ) is the cluster’s galaxy density profile normalized to unity,
and b(x) is the density of the background (i.e., non-member)
galaxies. The probability that a galaxy found near a cluster is
actually a cluster member is given by

p(x) = λu(x|λ)

λu(x|λ) + b(x)
. (1)

Consequently, the total number of cluster galaxies λ must satisfy
the constraint equation

λ =
∑

p(x|λ) =
∑ λu(x|λ)

λu(x|λ) + b(x)
, (2)

where the sum is over all galaxies in the cluster field. If the
filters u(x|λ) and b(x) are known, then given an observed
galaxy distribution {x1, . . . , xN } around a cluster we can define
a richness estimator λ̂ as the solution to Equation (2). As it
turns out, one can also derive this expression using a maximum
likelihood (ML) approach, and indeed, this is how the estimator
first arose (Postman et al. 1996).23 Interested readers are referred

23 The estimator derived here is not actually the same as the Postman et al.
(1996) estimator. The main difference is that ours represents the “fine grained
likelihood” estimator, while Postman et al. (1996) employed the “coarsed grain
likelihood” approximation in their derivation (see Kepner et al. 1999, for
further discussion).
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to Appendix A for details. From now on, the letter λ shall
always refer to a matched filter richness estimate obtained with
Equation (2).

3.2. Cluster Radii and Matched Filter Richness Estimates

Consider again Equation (2). As mentioned before, the sum
used in Equation (2) needs to extend over all galaxies. In
practice, of course, one needs to add over all galaxies within
some cutoff radius Rc. Operationally, this is equivalent to setting
u = 0 for all galaxies with radii R > Rc, so it is natural to
interpret the cutoff radius Rc as a cluster radius. In this light, it
seems obvious that considerable care must be taken to choose
the correct cluster radius when estimating richness, but how
to go about doing just that is a less straightforward question
(Popesso et al. 2004; Lopes et al. 2006).

In this work, we propose that cluster radii be selected on
the basis of a model radius–richness relation. Specifically, we
assume that the size of a cluster of richness λ scales as a power
law of λ,

Rc(λ) = R0(λ/100.0)β. (3)

Naively, we expect R0 ≈ 1 Mpc, as that is the characteristic size
of clusters, and β ≈ 1/3 assuming that R ∝ M1/3 ∝ λ1/3. We
postpone the discussion of how we go about selecting R0 and β
in Section 4. For the time being, we shall simply assume that R0
and β are known. In that case, Equation (2) becomes

λ =
∑

p(x|λ) =
∑

R<Rc(λ)

λu(x|λ)

λu(x|λ) + b(x)
. (4)

Note that we have explicitly included the cutoff radius Rc in the
sum above, and that this cutoff radius now depends on λ. We
emphasize that in the above equation, the cluster richness λ is
the only unknown, so we can numerically solve for λ. That is,
our richness estimator λ is defined as the solution to f (λ) = 0
where24

0 = f (λ|R0, β) = λ −
∑

R<Rc(λ)

λu(x|λ)

λu(x|λ) + b(x)
. (5)

Note that because Rc(λ) depends on both R0 and β, the solution
to f (λ) = 0 will itself depend on R0 and β. That is, any two
values for these two parameters define a unique and distinct
richness estimator.

Figure 1 shows the function f (λ|R0, β) for cluster SDSS
J082026.8+073650.1 for two different values of R0 and β: these
are R0 = 1.27 h−1 Mpc and β = 1/3, and R0 = 1 h−1 Mpc
and β = 0.0. We note that in both cases there is a unique
zero crossing of the function f (λ), implying that our richness
estimator is well defined, but that the value of this zero crossing
depends on R0 and β. We discuss below how we go about
selecting optimal R0 and β values.

Before we move on, it is perhaps worth illustrating the above
formalism with a simple toy model. Consider a simple model in
which the probability p of a galaxy being a cluster member is a
simple top-hat: membership probability is simply

p(R|λ) =
{

1 if R � Rc(λ)
0 otherwise. (6)

24 Note that since we are explicitly setting u = 0 for R > Rc , the fact that u
must be normalized to unity necessarily introduces a dependence of u on λ.
That is, changing λ will not only change the range of the sum in Equation (4),
but will also change the value of the summands.
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Figure 1. Function f (λ|R0, β) defined in Equation (5) for two different values
of R0 and β for the cluster SDSS J082026.8+073650.1. The values for R0 and
β are R0 = 1.27 h−1 Mpc and β = 1/3 (solid), and R0 = 0.9 h−1 Mpc and
β = 0 (dashed). Our richness estimator is defined as the solution to the equation
f (λ|R0, β) = 0. Every pair of values (R0, β) defines a unique estimator. The
fact that the two curves above result in similar richness estimates is by design.
Section 4 describes how we go about optimizing the values for R0 and β.

We further assume that R0 = 1 h−1 Mpc and β = 0. The
function f (λ) is therefore

f (λ) = λ − N (1 h−1 Mpc), (7)

where N (R) is the observed number of galaxies within R of the
cluster center. Our richness estimator is given by f (λ) = 0, or,
solving for λ, λ = N (1 h−1 Mpc). This is as expected: if our
cluster model is that all galaxies within a radius R = 1 h−1 Mpc
of the cluster center are cluster galaxies, then the richness
estimate of a cluster is simply the total number of galaxies
within the said radius. The only difference between this simple
example and our proposed richness estimator is the way we
estimate membership probabilities, and the values of R0 and β
used to estimate cluster richness.

3.3. The Filters

In this work we consider three observable properties of
galaxies: R, the projected distance from a galaxy to the assigned
cluster center, m, the galaxy magnitude, and c, the galaxies’
g − r color. We adopt a separable filter function

u(x) = [2πRΣ(R)]φ(m)G(c), (8)

where Σ(R) is the two-dimensional cluster galaxy density pro-
file, φ(m) is the cluster luminosity function (expressed in ap-
parent magnitudes), and G(c) is the color distribution of cluster
galaxies. The prefactor 2πR in front of Σ(R) accounts for the
fact that given Σ(R), the radial probability density distribution
is given by 2πRΣ(R). Also, note that the separability condition
makes the implicit assumption that these three quantities are
fully independent of each other, which is not true in detail (for
a discussion of the galaxy population of maxBCG clusters see
Hansen et al. 2007). For instance, the tilt of the ridgeline im-
plies that the mean color of a red-sequence cluster galaxy varies
slightly as a function of magnitude. We postpone an investi-
gation of how including the correlation between these various
observables affects our conclusions to future work (B. P. Koester
et al. 2009, in preparation). We now describe each of our three
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filters in detail. We note that defining said filters requires us to
specify parameters governing the shape of the filters (e.g., Rs for
the radial filter, α for the luminosity filter, etc.). A detailed study
on the dependence of our matched filter richness estimates on
the shape of our filters will be presented in future work.

3.3.1. The Radial Filter

N-body simulations show that the matter distribution of
massive halos can be well described by the so-called Navarro,
Frenk, & White (NFW) profile (see, e.g., Navarro et al. 1995,
1997),

ρ(r) ∝ 1

(r/rs)(1 + r/rs)2
, (9)

where rs is the characteristic scale radius at which the logarith-
mic slope of the density profile is equal to −2. The correspond-
ing two-dimensional surface density profile (Bartelmann 1996)
is

Σ(R) ∝ 1

(R/Rs)2 − 1
f (R/Rs), (10)

where Rs = rs and

f (x) = 1 − 2√
x2 − 1

tan−1

√
x − 1

x + 1
. (11)

This formula assumes x > 1. For x < 1, one uses the identity
tan−1(ix) = i tanh(x).

Here, we assume that the NFW profile can also reasonably
describe the density distribution of galaxies in clusters (Lin &
Mohr 2004; Hansen et al. 2005; Popesso et al. 2007), and follow
Koester et al. (2007a) in setting Rs = 150 h−1 kpc. In principle,
one could optimize the value of this parameter, but we do not
expect our final results to be overly sensitive to our chosen
value (see, e.g., Dong et al. 2008). Also, in order to avoid the
singularity at R = 0 in the above expression, we set Σ to a
constant for R � Rcore = 100 h−1 kpc. This core density is
chosen so that the mass distribution Σ(R) is continuous. Our
results are insensitive to the particular choice of core radius for
Rcore � 200 h−1 kpc. Finally, the profile Σ(R) is truncated at the
cluster radius Rc(λ), and is normalized such that

1 =
∫ Rc(λ)

0
dR 2πRΣ(R). (12)

We emphasize that this condition implies that the normalization
constant for the density profile is richness dependent, and
must be recomputed for each λ value when solving for λ in
Equation (4).

3.3.2. The Luminosity Filter

At z � 0.3, the luminosity distribution of satellite cluster
galaxies is well represented by a Schechter function (e.g.,
Hansen et al. 2007) which we write as

φ(m) = 0.4 ln(10)φ∗10−0.4(m−m∗)(α+1) exp(−10−0.4(m−m∗)).
(13)

We take α = 0.8 independent of the redshift. The charac-
teristic magnitude, m∗, is corrected for the distance modulus,
k-corrected, and passively evolved using stellar population syn-
thesis models described in Koester et al. (2007b). When ap-
plying the luminosity filter, m∗ is chosen from these models,
appropriate to the redshift of the cluster under consideration,
and the filter is normalized by integrating down to a magnitude
corresponding to 0.4L∗ at the cluster redshift, or an absolute
magnitude Mi = −20.25. The latter is simply a luminosity cut
bright enough to make the maxBCG sample volume-limited.

3.3.3. The Color Filter

Early-type galaxies are known to dominate the inner re-
gions of low-redshift galaxy clusters (see, e.g., Dressler 1984;
Kormendy & Djorgovski 1989; Hansen et al. 2007). The rest-
frame spectra of these galaxies typically exhibit a significant
drop at about 4000 Å, that gives early-type galaxies at the same
redshift nearly uniformly red colors when observed through
filters that encompass this break. In the SDSS survey, the cor-
responding filters for galaxies at z � 0.35 are g and r, and we
find that the g − r colors of early-type galaxies are found to be
Gaussianly distributed with a small intrinsic dispersion of about
0.05 mag. Consequently, we take the color filter G(c) to be

G(c|z) = 1√
2πσ

exp

[
(c − 〈c|z〉)2

2σ 2

]
, (14)

where c = g − r is the color of interest, 〈c|z〉 is the mean
of the Gaussian color distribution of early-type galaxies at
redshift z, and σ is the width of the distribution. The mean color
〈c|z〉 = 0.625 + 3.149z was determined by matching maxBCG
cluster members to the SDSS LRG (Eisenstein et al. 2001)
and MAIN (Strauss et al. 2002) spectroscopic galaxy samples.
The net dispersion σ is taken to be the sum in quadrature of
the intrinsic color dispersion σint, set to σint = 0.05, and the
estimated photometric error σm. In g − r, the typical photometric
error on the red-sequence cluster galaxies brighter than 0.4L∗
is σm ≈ 0.01 mag for z = 0.1, but can be as large as σm ≈
0.05 mag for z = 0.3.

3.3.4. Background Estimation

To fully specify our filters, we also need to describe our
background model. We assume that the background galaxy
density is constant in space, so that b(x) = 2πRΣ̄g(mi, c) where
Σ̄g(mi, c) is the galaxy density as a function of galaxy i-band
magnitude and g − r color. Σ̄g(mi, c) is estimated by distributing
106 random points throughout the same SDSS photometric
survey footprint that defines our galaxy sample. All galaxies
within an angular separation of 0.05 deg of the random points
(about 1h−1 Mpc at z = 0.25) are used to empirically determine
the mean galaxy density Σ̄g(mi, c) using a top hat cloud-in-cells
(CIC) algorithm (e.g., Hockney & Eastwood 1981). For our
cells, we used 60 evenly spaced bins in g − r ∈ [0, 2] and 40
bins in i ∈ [14, 20]. In each two-dimensional bin, the number
density of galaxies is normalized by the total number of random
points, the width of each color and magnitude bin (0.05 mag
and 0.1 mag, respectively), and area searched (0.052π degrees).

This process creates an estimate of the global background,
i.e., the number density of galaxies as a function of color
and magnitude in the full SDSS survey. Not surprisingly, a
similar result is obtained by binning the whole galaxy catalog
in color and magnitude with CIC and dividing by the survey
area. However, the procedure we employ above can readily
be adapted to returning alternative background estimates, e.g.,
the local cluster density as a function of redshift, by replacing
random points with clusters.

4. METHODS

We have now fully specified our richness estimators, except
for the values R0 and β that govern the radius–richness scaling
relation. We now discuss how we go about selecting optimal
values for these parameters.
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As we mentioned earlier, we wish to find the cluster rich-
ness estimator that minimizes the scatter in the richness–mass
relation. Cluster mass, however, is not an observable, and thus
we must rely on other mass tracers. Here, we use X-ray lumi-
nosity (LX) as our mass proxy, primarily because it is a well
known mass tracer (e.g., Reiprich & Böhringer 2002; Stanek
et al. 2006; Rykoff et al. 2008a) that is readily accessible to us
and for which we can quickly estimate the scatter for multiple
richness measures (see Rykoff et al. 2008b).

We proceed as follows: we begin by defining a coarse grid in
R0 and β, given by

R0 = {0.5, 0.75, 1.0, 1.25, 1.5} (15)

β = {−0.05, 0.05, 0.15, 0.25, 0.35, 0.45}, (16)

where R0 is measured in units of h−1 Mpc. Each of these grid
points defines a distinct richness estimator through Equation (4).
For each grid point, we estimate the corresponding richness for
every cluster in the maxBCG catalog. We then select the 2000
richest clusters and calculate the scatter in LX at fixed richness
of those top 2000 clusters. Note that, because the rank ordering
of the clusters changes as we vary our richness estimate, the
clusters used to estimate the scatter in LX varies slightly across
the grid. We limit ourselves to the richest 2000 clusters to ensure
our results are insensitive to the N200 � 10 cut in the maxBCG
catalog.

From our measurements of the scatter σln LX |λ(R0, β) at each
grid point, we can directly read which parameter combination
minimizes the scatter. We emphasize that because the scatter in
mass at fixed LX is much lower than the corresponding scatter
at fixed richness (E. Rozo et al. 2009, in preparation), for our
purposes LX is a nearly perfect mass tracer. We note that the X-
ray measurements described in Section 2.3 require a minimum
aperture of 500 h−1 kpc. For the 2000 richest clusters, this cutoff
is only employed when R0 = 0.5 h−1 Mpc and β � 0.15, which
is a region of parameter space that already does not appear to
have a strong correlation between LX and richness. Therefore,
we conclude that the aperture cutoff does not have a significant
effect on our results.

To determine the uncertainty in the recovered parameters R0
and β, we need to understand the errors in our measurement of
the LX–richness scatter. We estimate these errors using bootstrap
resampling. We proceed as follows: let μ be an index that
runs over all grid points (R0, β), and let σμ be the scatter at
the μth grid point. We resample (with replacement) the full
maxBCG catalog, and measure the scatter σμ at every grid
point. The procedure is iterated 100 times, and the measurements
are used to estimate the mean and covariance matrix of σμ.25

Assuming that the probability distribution P (σμ) is a multi-
variate Gaussian characterized by the observed mean and
covariance matrix, we generate 105 Monte Carlo realizations
of the scatter, and estimate the fraction of times that each grid
point is observed to have the lowest scatter among all grid
points.

To use the grid to zero in on a particular value for R0 and
β, and to estimate errors in these values, we fit each of the 105

realizations of the scatter σln LX |λ(R0, β) with a 2D parabola.
From the fits, we can read off the values of R0 and β at which

25 The measurement of the scatter in LX at fixed richness is very time
consuming, and needs to be done independently for every point in the grid.
This explains why we restrict ourselves to only 100 bootstrap resamplings.

the minimum occurs, giving us 105 samplings of the probability
distribution of the location of the minimum in parameter space.
The probability distribution of the resulting 105 minima is
exactly what we desired.

As it turns out, and as discussed in Section 5, the coarse
grid defined above is too broad for a parabolic fit to adequately
describe the function σln LX |λ(R0, β). However, if we restrict
ourselves to a smaller region of parameter space near our
expected value β = 1/3, a quadratic fit becomes adequate.
Therefore, we have defined a narrower fine grid,

R0 = {0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5} (17)

β = {0.22, 0.26, 0.30, 0.34, 0.38, 0.42} (18)

with R0 measured in units of h−1 Mpc. It is this grid that we use
to report our final results and to select the optimal parameters
R0 and β.

To summarize, we first do a rough exploration of the param-
eter space R0 and β using a coarse grid, and then use a smaller
but finer grid to statistically constrain the location of the scatter
minimum.

5. RESULTS

5.1. Identification of Low LX–Richness Scatter Regions

Figure 2 illustrates the probability that each coarse grid point
is found to minimize the scatter of the 2000 richest clusters when
resampling our data as described in Section 4. For this plot, we
have used the full cluster sample, though a similar result holds
when using the clean cluster sample. Each square is shaded in
gray on a log scale according to the fraction of trials that point is
found to have the minimum scatter. The primary feature of this
plot is a broad degeneracy region from (R0, β) ≈ (0.8, 0.0) to
(R0, β) ≈ (1.4, 0.5), corresponding to a scatter σln LX |λ ≈ 0.78.
Note, this scatter is a significant improvement relative to the LX–
richness scatter measured for N200, σln LX |N200 = 0.96. The scatter
in LX increases as we move away from the degeneracy region,
ranging from σln LX |λ ∼ 0.86 in the lower right corner of Figure 2
to σln LX |λ > 1.0 in the upper-left corner. Further discussion of
why our new richness estimator results in significantly reduced
scatter is presented in Section 6.

Figure 3 shows the probability density of the points in R0 −β
space that minimize the scatter in LX at fixed richness for the
fine grid, as estimated through the parabolic fits to the function
σln LX |λ(R0, β) described in Section 4. The solid contours are
for the full cluster sample and the dashed contours are for the
clean cluster sample. The diagonal degeneracy suggested in the
previous plot is now very obvious, especially in the 2σ contour.
Importantly, both the full and clean samples produce very similar
results, although the contours are noticeably smoother for the
clean sample. We note that the closing of the 1σ contours in
the upper right and lower left is likely an artifact of the grid
boundaries. As demonstrated in the coarse grid in Figure 2, the
degeneracy region extends at least to β ∼ 0 and β ∼ 0.5.

The existence of the degeneracy region is relatively simple
to explain. Consider the problem we are trying to address:
what is the correct size of a cluster? Roughly speaking, this
involves two parts: one, determining the correct cluster size of
the average cluster, and two, determining how the cluster size
scales with richness as one moves away from the average cluster.
The former is much better determined than the latter, so in the
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Figure 2. Probability that a given point in the grid minimizes the scatter in
LX at fixed richness in the coarse grid. The gray scale varies logarithmically
with the probability, which is explicitly quoted in the figure. Note the broad
degeneracy region from (R0, β) ≈ (0.8, 0.0) to (R0, β) ≈ (1.4, 0.5), where the
scatter σln LX |λ ∼ 0.78.

(R0, β) plane, one typically expects a sharp constraint on the
mean cluster radius, and a considerably weaker constraint on
the orthogonal direction, corresponding to the scaling of the
radius with richness around the statistical pivot point. Thus, we
expect the observed degeneracy between R0 and β to pick out
parameter combinations that hold the median cluster radius of
the sample fixed.

Figure 3 clearly illustrates that this is the case. In this figure,
the diagonal dotted line corresponds to a fixed median cluster
radius R̃(R0, β) = 900 h−1 kpc, where the function R̃(R0, β)
is defined as the median cluster radius of the 2000 richest
clusters. The fact that this contour falls almost exactly along
the observed degeneracy between R0 and β strongly supports
our interpretation.

Our argument suggests a way to break the degeneracy
between R0 and β. If we can measure the scatter in LX at fixed
richness at two very different richness scales, then the mean
radius picked out by each of the samples will be substantially
different. This, in turn, rotates the degeneracy lines relative to
each other, so that the intersection defined by the two samples
would cleanly pick out a single value for R0 and β.

We have repeated our analysis on the top 500 and 1000
clusters, but these thresholds are much too close to our reported
2000 clusters to be able to successfully break the observed
degeneracy. Ideally, we would repeat our study using the 10,000
or 20,000 richest clusters, thereby guaranteeing a degeneracy
region that is significantly rotated relative to that of Figure 3.
Unfortunately, performing our scatter analysis on the top 10,000
clusters is not presently possible since the vast majority of this
larger cluster sample does not emit sufficiently in X-rays to allow
for individual luminosity estimates of the clusters. Furthermore,
when choosing more than the top ∼ 3000 clusters we begin to
run into threshold effects due to the initial selection of maxBCG
clusters with N200 � 10. One might hope instead to repeat
our analysis using not the top 10,000 clusters, but rather the
top 100 clusters, that is, by limiting ourselves to very rich
systems. Unfortunately, this suffers from a different problem:
when looking at the top 100 clusters only, the range of richnesses
being sampled is much too narrow to allow a simultaneous
estimate of the amplitude, slope, and scatter of the LX–richness
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Figure 3. Contour plot of the probability density of the points in R0 − β space
that minimize the scatter σln LX |λ(R0, β). The solid contours show the 1σ and
2σ contours for the full sample, and the dashed lines show the same contours
for the “cleaned” sample (see Section 2.4). The closing of the 1σ contours in
the upper right and lower left are likely to be an artifact of the grid. The dotted
line shows that corresponds to a fixed mean cluster radius Rc = 900 h−1 kpc.
All the richness estimators along this line result in the same mean cluster radius,
and have therefore very similar richness values.

relation, so performing our analysis using the top 100 clusters
only is also not feasible. Thus, for the time being, we must
simply accept the existence of a large degeneracy between R0
and β.

5.2. Selecting an Optimal R0 and β

Due to the large degeneracy between R0 and β, it is difficult
to select any single point in R0 − β space as optimal. We note,
however, that the degeneracy region goes through β = 1/3,
which is loosely theoretically motivated based on the naive
expectation R3 ∝ M ∝ λ. Since our goal is to define a unique
richness measure, we have opted for setting β = 1/3. Given that
the degeneracy region goes through β = 1/3, our choice does
not adversely affect the properties of our richness estimator. That
is, the scatter for β = 1/3 is indistinguishable from that of the
best possible value for β to within observational uncertainties.

Using a principal component analysis on the best-fit minima
that describe the contours in Figure 3, we have calculated the
degeneracy axis for each of the full and clean cluster samples.
For the full cluster sample we obtain

ln(R0/1 h−1 Mpc) − 1.342(β − 0.33) = 0.25 ± 0.04, (19)

while for the clean cluster sample we find

ln(R0/1 h−1 Mpc) − 1.277(β − 0.33) = 0.24 ± 0.03. (20)

We have confirmed that the residuals are Gaussian along most
of the degeneracy axis. We quote the degeneracy line in terms
of ln R0 and β rather than R0 and β themselves simply because
the former results in more accurate extrapolations for β values
that are very different from β = 1/3.

We are encouraged by the fact that the clean and full samples
give fully consistent results, thus showing that the known cool
core clusters and obvious foreground contamination are not
significantly biasing the best combination of R0 and β. Our
final choice for R0 and β is therefore R0 = 1.27 h−1 Mpc and
β = 1/3.
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Table 1
Scatter in LX at Fixed Richness, Top 2000 Clusters

Richness Full Sample Clean Sample

N200 0.95 ± 0.03 0.86 ± 0.02
N200L

0.79
BCG 0.84 ± 0.02 0.78 ± 0.02

λ 0.79 ± 0.02 0.70 ± 0.02
λ 0.78 ± 0.02 0.69 ± 0.02

Notes. Except for the last row, LX was measured within a fixed 1 h−1 Mpc
aperture. The scatter in LX quoted in the last row is different only in that it
measured LX within the assigned optical cluster radius Rc(λ). The combination
N200L

0.79
BCG was suggested by Reyes et al. (2008) as an improvement over N200.

The error bars define 68% confidence intervals.

5.3. Improvement in the Scatter

Now that we have a fully specified R0 = 1.27 h−1 Mpc and
β = 1/3, and we have measured the matched filter richness of
every cluster in the Koester et al. (2007b) sample. Figure 4 shows
LX versus N200 (top panel) and LX versus λ (bottom panel) for
the top 3000 richest clusters. Following Rykoff et al. (2008b),
the solid points represent detections at the > 1σ level, and the
empty points represent 1σ upper limits. The vertical dotted line
represents the cutoff for the top 2000 richest clusters used in this
analysis. Though not obviously visible in this plot, the scatter
in λ is significantly decreased. We note that there are still some
significant outliers in the LX–λ relation, especially at high LX .
The red diamonds and blue squares represent clusters that are
removed from the clean cluster sample. The red diamonds are
clusters whose measured X-ray flux is known to be contaminated
by foreground emission from stars, nearby galaxy clusters, or the
AGN. The blue squares represent the known cool core clusters.
These are, for the most part, significantly brighter than typical
maxBCG clusters at similar richness, which is consistent with
the hypothesis that the X-ray luminosity of these clusters is
boosted by emission from the core.

Table 1 summarizes how the scatter of the 2000 richest
clusters varies as we change our richness measure. Here, we
consider three richness measures only: N200, which is the
original richness estimate for maxBCG clusters presented in
Koester et al. (2007a); N200L

0.79
BCG, which was suggested by Reyes

et al. (2008) as an improvement over N200 by making use of
LBCG, the luminosity of the cluster BCG; and our optimized
matched filter richness estimator λ. We see that for both the
full and clean samples, our optimized matched filter estimator
significantly outperforms both N200 and N200L

0.79
BCG. To quantify

the significance of the improvement, we must take into account
the fact that the errors are correlated. Following Section 4, we
have performed bootstrap resampling on the full catalog and
clean catalog, calculating the scatter in the top 2000 clusters for
both λ and N200. For each bootstrap resampling we calculate
r = σln LX |λ/σln LX |N200 . If the improvement in scatter is not
significant, we will find that r is consistent with unity, whereas
an improved scatter will result in an r value that is significantly
less than r = 1. We find that r < 1 at 9σ for the full cluster
sample, and at 11σ for the clean sample.

6. REDSHIFT DEPENDENCE

Rykoff et al. (2008b) showed that there is strong redshift
evolution in the mean 〈LX|N200〉 relation of maxBCG clus-
ters. Similar redshift dependence is observed in the velocity
dispersion–optical richness relation measured in Becker et al.
(2007a). This is best understood as a variation of N200 at fixed
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Figure 4. Top panel: LX vs. N200 for the 3000 richest clusters. Following Rykoff
et al. (2008b), the solid points represent > 1σ detections, and the empty circles
represent 1σ upper limits. The vertical dotted line represents the cutoff for the top
2000 clusters used in the analysis. The dashed lines represent the ±2σln L|N200
scatter constraints. The fictitious data point in the lower right corner shows
the typical LX error. Richness errors are very small, typically less than 10%.
The red diamonds represent clusters that are excluded from the clean sample
because they are obviously contaminated by foreground X-ray emission. The
blue squares represent clusters that are excluded from the clean sample because
they are known cool core clusters. Bottom panel: LX vs. λ for R0 = 1.27,
β = 1/3 for the 3000 richest clusters; the symbols are the same as for the top
panel. Our optimized matched filter richness estimate λ is significantly more
tightly correlated with LX than N200.

(A color version of this figure is available in the online journal.)

mass, with an observed fractional decrease in N200 of 30%–40%
over the redshift range of the maxBCG catalog. In our previous
work, the origin of this redshift dependence was unclear. Here,
we demonstrate how the matched-filter richness removes this
redshift dependence, and show the pitfalls of a simple richness
estimator such as N200.

Figure 5 shows the mean 〈LX|N200〉 relation for maxBCG
clusters split into three different redshift bins (solid symbols).
Also shown is the mean relation 〈LX|λ〉 for the same three
redshift bins (empty symbols). It is obvious from the figure that
the redshift evolution in the LX–richness relation is significantly
weaker for λ than it is for N200. We have fitted the data with a
power-law evolution in redshift, following Rykoff et al. (2008b,
Section 5.3):

〈LX|N〉 = A

(
N

40

)α (
1 + z

1 + z̃

)γ

, (21)

where z̃ is the median redshift of the cluster sample and N is
the richness measure of interest. We find that γ = 6.0 ± 0.8 for
N200 while γ = 0.7 ± 0.8 for λ, consistent with no evolution.
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Figure 5. 〈LX〉 vs. richness in three different richness bins. The empty points
denote the matched filter richness λ, and the solid points denote the original
maxBCG richness N200. The three richness bins are 0.10 < z < 0.18 (blue
circles); 0.18 < z < 0.26 (green squares); 0.26 < z < 0.30 (red diamonds).
The normalization of 〈LX〉 − N200 has been multiplied by 5 for clarity. It is
readily apparent that N200 has a strong redshift dependence (Rykoff et al. 2008b;
Becker et al. 2007a), while λ does not.

(A color version of this figure is available in the online journal.)

Note, however, that even if the relation between λ and cluster
mass is redshift independent, we expect to see evolution in
the LX–λ relation due to evolution in the LX–M relation. The
expectation for self-similar evolution in LX at fixed mass is
that LX ∝ ρc(z)7/6 for bolometric luminosities, but closer to
ρ̄1.0

c for soft-band X-ray luminosities (Kaiser 1986). Here, ρc

is the critical density of the universe at redshift z. In a ΛCDM
universe with Ωm = 0.25, LX ∝ ρc is well approximated by
LX ∝ (1 + z)1.10, or γ = 1.10, implying our results are also
consistent with self-similar evolution.

The striking difference in the evolution in the LX–richness
relation between λ and N200 is due to the differences in how N200
and λ employ galaxy colors when estimating cluster richness.
For λ, a galaxy contributes to the richness by an amount that
is proportional to a Gaussian color filter centered on the mean
color of red-sequence galaxies at the cluster’s redshift. For N200,
a galaxy contributes to the richness if and only if its color differs
from the BCG color by no more than twice the intrinsic width
of the ridgeline color width plus the galaxy’s photometric error,
added in quadrature. That is, N200 weighs galaxies according to
the probability distribution ptop−hat(c) given by

ptop−hat(c) =
{

1 if |c − cBCG| �
√

(2σint)2 + σ 2
obs

0 otherwise,
(22)

where σint = 0.05 is the intrinsic width of the ridgeline. This
is a top-hat distribution in observed color, but the width of the
top-hat depends on the photometric error of the galaxy under
consideration. Also, note that the center of the color box is not
the model 〈c|z〉 quoted earlier, but rather the color of the BCG,
which, as we show below, is a very significant difference.

To illustrate how these differences in the color filter result in
differences in the evolution and scatter of λ and N200, we have
defined three additional richness measures with key properties
bridging those of λ and N200. Including λ and N200, the five
richness measures considered here are the following.

1. λ: the matched filter richness with a variable aperture, as
described above, with a Gaussian color filter centered on
〈c|z〉.

2. λBCG: the matched filter richness using the same aperture
as with λ, but with the Gaussian model centered on cBCG.

3. Ntop−hat,model, a top-hat richness using the ptop−hat formu-
lation above, centered around 〈c|z〉 as in Equation (14),
measured on a fixed 1 h−1 Mpc scale.

4. Ntop−hat,BCG, a top-hat richness using the ptop−hat formu-
lation above, centered around cBCG, measured on a fixed
1 h−1 Mpc scale. This is similar to the maxBCG Ngals rich-
ness, without the additional cut on the r−i color of the
member galaxies.

5. N200, the original maxBCG richness estimator, measured in
a scaled radius r

gals
200 , with the color filter centered on cBCG.

Table 2 shows the scatter (in the top 2000 clusters) and
evolution parameters for these various richness estimators.
There are two key observations that we can make here. First,
when using the top-hat richness, centering around the model
color is significantly better than centering on the BCG color, in
terms of decreasing both the scatter and evolution of the richness
measure. Indeed, our Ntop−hat,model richness performs nearly as
well as our matched filter richness estimator, both in terms of
the scatter and evolution. Second, the smooth Gaussian filter
centered on the BCG color works almost as well as the Gaussian
filter centered on the model color. This is a significant result,
because it implies that not only are the resulting richnesses
more robust to moderate changes in the color filter parameters,
but also the richness measure itself is also robust to photometric
redshift errors. The reason for this robustness is simple: when
using a color top-hat selection, using the correct color model is
of paramount of importance since miscentering of the top-hat
will lead to underestimate of the richness. In the matched filter
framework, what is important is the relative galaxy density of
the cluster and field components, which can remain high even if
the centering of the ridgeline color is slightly displaced. Thus,
matched-filter richness estimates are much more robust to small
changes in the parameters of the color filter than estimates based
on simple color cuts. Because of this robustness, we believe then
that even though Ntop−hat,model performs similarly to λ, λ is still
a superior richness estimator.

As an illustration of this effect, Figure 6 shows the
color distribution of all galaxies brighter than 0.4 L∗ within
1 h−1 Mpc (solid black line) of the galaxy cluster SDSS
J082026.8+073650.1 at a redshift zspec = 0.22. This cluster
was selected because of the large discrepancy between N200 and
λ. The color of the cluster BCG (solid red line) is significantly
redder than the red sequence. The dotted vertical lines show the
±[(2σint)2 + σ 2

obs]
1/2 color cut, which does not include the peak

of the red sequence. As a result, N200 is significantly underes-
timated in this system. The blue curve shows the same galaxy
distribution, but weighing each galaxy by its membership prob-
ability as estimated using the matched filter approach. As we
can see, the matched filter effectively selects galaxies in the red
sequence.

We have demonstrated that the redshift evolution observed
in the LX–N200 relation is primarily caused by using a top-hat
filter centered on the color of the BCG. Why such a choice of
color filter results in the strong evolution we observe for N200 is
a complicated question, with at least two physical mechanisms
contributing to the problem at comparable levels. First, there is
the fact that even for a correctly centered top-hat filter, a ridgeline
galaxy can fall outside the color cuts due to photometric errors.
Since photometric errors increase with increasing redshift, a
color cut such as that of N200 will progressively lose more
galaxies as one moves the cluster to higher redshift. Second, the
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Figure 6. Color distribution of all the galaxies brighter than 0.4 L∗
within 1 h−1 Mpc (solid black line) of the central galaxy of cluster SDSS
J082026.8+073650.1 at a redshift of zspec = 0.22. The distribution is estimated
using a Gaussian Kernel Density Estimator (KDE), with the size of the kernel
selected to adequately sample the peak due to ridgeline galaxies. The cluster
BCG color (solid red line) is significantly redder than the red sequence (peak

of the black distribution). The dotted vertical lines show the ±
√

(2σint)2 + σ 2
obs

color cut (see text for details) used to estimate N200. Note this cut does not
include the bulk of the red sequence, implying that the number of red-sequence
galaxies is significantly underestimated. The blue curve is the KDE estimate
of the galaxy distribution, except every galaxy has been weighted by its mem-
bership probability as estimated using the matched filter approach. We can see
the matched filter richness estimate selects principally ridgeline galaxies. The
slightly lower height of the blue solid curve is primarily due to background
subtraction.

(A color version of this figure is available in the online journal.)

Table 2
Scatter (σln LX |N ) and Redshift Evolution (γ )

Richness σln LX |N a γ

λ 0.78 ± 0.02 0.7 ± 0.8
λBCG 0.82 ± 0.02 1.1 ± 0.8
Ntop−hat,model 0.80 ± 0.02 0.5 ± 0.8
Ntop−hat,BCG 0.99 ± 0.02 4.2 ± 0.7
N200 0.95 ± 0.02 6.0 ± 0.8

Note.
a For the top 2000 clusters.

E/S0 ridgeline is not flat, but has a slight tilt (∼ −0.04 mags
mag−1 in g − r versus i), such that brighter galaxies tend to
be redder (e.g., Visvanathan & Sandage 1977; Renzini 2006).
By centering the color filter on the BCG—by definition the
brightest and usually reddest cluster member—a small richness
bias is introduced: clusters with brighter BCGs have a color filter
centered redward of the average BCG color. Moreover, recent
work by J. Hao et al. (2009, in preparation) shows that with a
proper account for photometric errors, the ridgeline tilt evolves
with redshift, such that the ridgeline is steeper at z = 0.3 than
at z = 0.1. Consequently, a BCG-centered color cut becomes
increasingly offset from the true mean ridgeline color as we
increase redshift. Both of these systematics effects occur with
similar magnitude, and act in concert to produce the observed
evolution in N200. We emphasize, however, that our matched
filter richness estimator does not suffer from these systematic
effects.

Finally, we can now also explain why N200 exhibits stronger
evolution than Ntop−hat,BCG. Recall that the aperture used to
estimate N200 is itself based on the richness measure Ngals, which

is very similar to Ntop−hat,BCG. Since Ntop−hat,BCG systematically
underestimates the richness for high redshift clusters due to the
increasing tilt of the ridgeline, the aperture r

gals
200 , which scales

with Ntop−hat,BCG, is also underestimated. This compounds the
effect of incorrect centering of the color box and results in
stronger redshift evolution.

7. SUMMARY AND CONCLUSIONS

We have introduced a new matched filter richness estimator λ
whose correlation with mass as estimated by X-ray luminosities
is significantly tighter (σln LX

= 0.69 versus σln LX
= 0.86) than

that of N200, the original maxBCG richness estimator. Relative to
other matched filter estimates, our estimator has two significant
differences.

1. The richness is measured on a scale that is optimized in the
sense that it minimizes the scatter in LX at fixed richness.

2. In addition to a radial and magnitude filters, we include a
color filter. This is of crucial importance for differentiating
between member and non-member (projected) galaxies.

The first point is important since we have demonstrated that a
poor choice of aperture increases the scatter in mass at fixed
richness (see also Popesso et al. 2004; Lopes et al. 2006),
while the latter minimizes the impact of projection effects in
richness estimates. Of the two, however, the improved treatment
of galaxy color is the principal reason for the marked reduction
of the scatter in the LX–richness relation.

Our procedure for aperture optimization can easily be general-
ized to any mass tracer for which one can construct a calibrating
data set. In our particular case, we minimize the scatter in the
LX–λ relation by measuring both LX and λ within an aperture
Rc(λ) = R0(λ/100)β , and varying the model parameters R0 and
β. Given the small richness range probed by our sample, we
have not been able to isolate unique values for R0 and β, find-
ing instead a degeneracy region corresponding to a fixed mean
cluster radius for the clusters in the sample. Based on a priori
assumptions about the radius–richness scaling, we have fixed
β = 1/3, which yields a normalization of R0 = 1.27 ± 0.03.
We note, however, that the degeneracy region intersects β = 0
at R0 ≈ 850 h−1 kpc. Although we expect that this fixed scal-
ing will not be ideal at the rich group/poor cluster scale, it
does work as a “first guess” richness and may be applicable
to future cluster finding techniques. At this point, it is unclear
whether the cluster radii selected by our technique reflects a
true physical property of the maxBCG clusters, or whether it is
driven primarily by a compromise between the increase signal
one expects at larger aperture, and the smaller noise one expects
for smaller apertures. Regardless of the source, it is likely that
similar aperture dependences exist for other mass tracers.

We have also found our new richness estimator has scaling
relations whose redshift evolution is much milder than those
exhibited by N200. This difference arises due to two effects:
first, N200 uses a top-hat filter to select cluster galaxies, where
as our matched filter estimator λ uses Gaussian color filters.
Second, N200 centered its color filter at the color of the BCG,
whereas λ centered its color using an observationally calibrated
color–redshift relation. The fact that the color of the BCG does
not always agree with the observationally calibrated redshift–
color relation leads to a systematic difference between the two
richness measures sourced by those galaxies outside the off-
center color cut. Moreover, we also found that the sharp edges
of the top-hat filter result in a richness estimator that is very
sensitive to the details of the color model, whereas our Gaussian
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filter is much more robust to moderate changes in the model
parameters.

Restricting ourselves to the clean cluster sample, which ex-
cludes cooling flow clusters and clusters with obvious fore-
ground contamination in their X-ray luminosities, we have found
that the scatter in the LX–richness relation of the 2000 richest
clusters is σln LX |λ = 0.69 for λ, compared to σln LX |N200 = 0.86
for N200. Assuming a slope of ≈ 1.6 for the LX–M relation
(Stanek et al. 2006; Rykoff et al. 2008a; Vikhlinin et al. 2009a),
these amount to a logarithmic scatter in the mass–richness rela-
tion of ≈ 0.43 and 0.54, respectively. While this is a very sig-
nificant improvement, we expect that further tightening of the
scatter in mass at fixed richness must be possible. For instance,
assuming the intrinsic scatter in the richness–mass relation is
Poisson, the logarithmic scatter possible for clusters with 20
galaxies or so should be roughly ≈ 0.2.

Fortunately, there are still many options left for us to explore
in our quest to define optical mass proxies that can be com-
petitive with other mass tracers in terms of the tightness of the
correlation with mass. As we have defined it here, our richness
estimates only makes use of the number of galaxies in the cluster.
One could, for instance, weigh our cluster richness by other op-
tical mass tracers such as the luminosity of the brightest cluster
galaxy (Reyes et al. 2008), the abundance of baryons contained
in the intracluster light (e.g., Gonzalez et al. 2007), or other
aspects of the cluster galaxy morphology (e.g., Bautz-Morgan
Type, Bautz & Morgan 1970). In addition, one could weigh
each galaxy’s contribution to the richness by physical observ-
ables such as galaxy luminosity. Such a luminosity-weighted
richness estimate would be a measure of the optical luminosity
of the cluster as a whole, and might be better correlated with
mass than richness itself (see also Lin et al. 2003; Miller et al.
2005 Popesso et al. 2005). It is also likely that further improve-
ments in richness estimates can arise with more accurate filters,
a possibility we intend to explore in future work. Finally, we
know that even with today’s filters, part of the scatter we ob-
serve must be due to systematic effects such as failures of the
cluster finding algorithm in identifying the correct center of a
cluster, a problem which we have not addressed in this work. For
time being, the fact that naive theoretical expectations result in a
scatter much lower than previously observed, and the fact that on
our first attempt at defining a better richness estimator resulted
in a highly significant (≈ 11σ ) improvement over N200, suggest
that the future is rife with opportunities for this kind of work.
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APPENDIX

A MAXIMUM LIKELIHOOD DERIVATION OF MATCHED
FILTER RICHNESS ESTIMATORS

Here, we derive Equation (2) using a ML approach, focusing
first in the case where the filters u(x|λ) are richness independent.
The derivation is as follows: we pixelize the observable space
x into infinitesimal pixels of “volume” Δx such that every pixel
contains at most one galaxy. The likelihood that a given galaxy
realization occurs is simply

L ∝
∏

occupied

(λu + b)Δx
∏

empty

(1 − (λu + b)Δx), (A1)

where the first product is over all occupied pixels, while the
second product is over all empty pixels. We have neglected
terms that do not depend on λ as they will not contribute to the
ML richness estimator. Setting ∂ lnL/∂λ = 0, and taking the
limit Δx → 0 we find that the ML richness estimator λ̂ML is
given by the solution to

1 =
∑ u

λu + b
, (A2)

where the sum is over all galaxies in the cluster field. This
expression is identical to our naive richness estimator from
Equation (2).

We wish to briefly consider how richness-dependent filters
u(x|λ) affect the ML richness estimator. To do this, we go back to
Equation (A1). Taking the derivative of the log-likelihood with
respect to λ and setting it to zero we find that the generalization
of Equation (2) is given by

1 +
∫

dx λ
∂u

∂λ
=

∑ u + λ(∂u/∂λ)

λu + b
. (A3)

We emphasize that the integral over x and the derivative ∂/∂λ
do not always commute. Indeed, consider the approach taken
in this paper, in which u is taken to have a finite spatial extent
of radius Rc, which is itself linked to richness via Equation (3).
The fact that u is zero for R > Rc(λ) implies that the integration
region for u is λ dependent, and thus the integral and derivative
signs do not commute.

To assess the impact of a richness-dependent profile, we
consider here a simple isothermal filter u(R|λ) = 1/Rc, where
Rc(λ) is given by Equation (3).26 For this filter, we have then

λ
∂u

∂λ
= λ

∂u

∂Rc

∂Rc

∂λ
= −βu, (A4)

where β is the slope of the radius–richness relation in
Equation (3). Our expression for the ML richness estimator
becomes

(1 − β) =
∑

R<Rc(λ)

(1 − β)u

λu + b
. (A5)

26 The two-dimensional density profile is, of course, Σ(R) ∝ 1/R, but the
radial probability density is u(R) = 2πRΣ(R) = 1/Rc .

http://www.sdss.org/
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We see that the 1 − β prefactors cancel on both sides of the
equation, and thus our final expression for the ML richness
estimator for λ is still given by Equation (4), even though u
is explicitly richness dependent. This suggests that our naive
estimator is in general very close to the true ML estimator.
We defer a detailed study of whether the more complicated
structure of the true ML richness estimator for more elaborate
cluster profiles can lead to a significant improvement over the
naive richness estimator from Equation (4) to future work.
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G., Gottlöber, S., & Holz, D. E. 2008, ApJ, 688, 709
Tucker, D. L., et al. 2006, Astron. Nach., 327, 821
Vikhlinin, A., et al. 2009a, ApJ, 692, 1033
Vikhlinin, A., et al. 2009b, ApJ, 692, 1060
Visvanathan, N., & Sandage, A. 1977, ApJ, 216, 214
Voges, W., et al. 1999, A&A, 349, 389
Warren, M. S., Abazajian, K., Holz, D. E., & Teodoro, L. 2006, ApJ, 646, 881
Weinmann, S. M., van den Bosch, F. C., Yang, X., & Mo, H. J. 2006, MNRAS,

366, 2
Wu, H.-Y., Rozo, E., & Wechsler, R. H. 2008, ApJ, 688, 729
Yee, H. K. C., & Ellingson, E. 2003, ApJ, 585, 215
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