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ABSTRACT

The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its
ejection from the galaxy core. We have carried out N-body simulations of the motion of a MBH = 3.7 × 106 M�
MBH remnant in the “Via Lactea I” simulation, a Milky Way-sized dark matter halo. The black hole receives a
recoil velocity of Vkick = 80, 120, 200, 300, and 400 km s−1 at redshift 1.5, and its orbit is followed for over 1 Gyr
within a “live” host halo, subject only to gravity and dynamical friction against the dark matter background. We
show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting
in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a
semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro–Frenk–White dark matter halo
plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion
tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas
drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible
effects. We find that MBHs ejected with initial recoil velocities Vkick � 500 km s−1 do not return to the host
center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial
mass ∼ MBH may shine as a quasar for a substantial fraction of its “wandering” phase. The long decay timescales
of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.
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1. INTRODUCTION

Intermediate-mass black holes may have formed at redshift
z � 15 at the bottom of shallow dark-matter potential wells
(Madau & Rees 2001). These seed holes may have grown
through gas accretion and binary coalescences to become the
supermassive variety that is ubiquitously found today at the
center of nearby galaxies (Kormendy et al. 1995; Richtsone
et al. 1998; Tremaine et al. 2002). In the context of cold dark
matter (CDM) cosmologies, where large halos are assembled via
the hierarchical assembly and accretion of smaller progenitors,
close MBH binaries inevitably form in large numbers during
cosmic history (Begelman et al. 1980; Volonteri et al. 2003).
The presence of a MBH binary with separation <1 kpc has been
revealed by Chandra observations of the nucleus of NGC 6240
(Komossa et al. 2003; Max et al. 2007).

The Very Long Baseline Array discovery in the radio galaxy
0402+379 of a MBH binary system with a projected separation
of just 7 pc and a combined mass of ∼1.5×108 M� was reported
by Rodriguez et al. (2006). A MBH binary may shrink owing
to stellar and/or gas dynamical processes (e.g., Mayer et al.
2007) and finally coalesce when gravitational wave radiation
dominates orbital energy losses.

Recent developments in numerical relativity (Pretorius 2005;
Campanelli et al. 2006; Baker et al. 2006) have allowed several
groups to simulate the coalescence phases of black hole binaries
(Baker et al. 2006; Herrmann et al. 2007; González et al. 2007).
Gravitational wave emission is typically anisotropic because
of asymmetries associated with the masses and spins of the
black holes, and causes the center of mass of the system to

4 Hubble Fellow.

recoil in order to balance the linear momentum carried away by
gravitational radiation (Bekenstein 1973; Fitchett & Detweiler
1984; Favata et al. 2004). The recoil velocity �Vkick depends on
the binary mass ratio qb = M1/M2 < 1 on the dimensionless
spin vectors of the pair �a1 and �a2 (0 < ai < 1) and on the orbital
parameters. All current numerical data on kicks can be fitted by
Baker et al. (2008):

�Vkick = vm �ex + v⊥(cos ξ �ex + sin ξ �ey) + v‖ �ez, (1)

vm = Aμ2
√

1 − 4μ (1 + Bμ), (2)

v⊥ = Hμ2(1 + qb)−1(a‖
2 − qba

‖
1

)
, (3)

v‖ = Kμ3(1 + qb)−1(qba
⊥
1 cos(φ1 − Φ1) − a⊥

2 cos(φ2 − Φ2)
)
,

(4)

where μ = qb/(1 + qb)2 is the symmetric mass ratio, θi is the
angle between the dimensionless spin vector �ai = �Si/M

2
i of

the ith black hole and orbital angular momentum vector, φi is
a projection angle between the spin vectors and a reference
angle that lies in the orbital plane, and Φ1(qb) = Φ2(1/qb) are
constants for a given value of qb. Here, A = 1.35×104 km s−1,
B = −1.48, H = 7540 ± 160 km s−1, ξ = 215◦ ± 5◦,
and K = (2.4 ± 0.4) × 105 km s−1. Assuming random spin
orientations, qb > 1/4, and a1 = a2 = 0.9, recoiling black
holes can get a kick velocity >500 km s−1 approximately 60%
of the time (see Table 3 of Baker et al. 2008). For qb > 0.1,
the percentage of kicks with >500 km s−1 decreases to ∼20%.
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Spins that are aligned with the orbital angular momentum vector
(as expected under the action of external torques provided by a
circumbinary accretion flow, see Bogdanović et al. 2007) yield
recoil velocities below 200 km s−1, while the configuration
producing the maximum recoil kick corresponds to equal-
mass maximally rotating holes with anti-aligned spins oriented
parallel to the orbital plane, Vkick = Kμ3 = 3750 km s−1

(Campanelli et al. 2007).
If not ejected from the host altogether, the recoiling MBH

will travel some maximum distance and then return to the center
subject to dynamical friction (Madau & Quataert 2004). Galaxy
mergers are also a leading mechanism for supplying gas to their
nuclear MBHs, and a recoiling hole can retain the inner parts of
its accretion disk, providing fuel for a continuing luminous phase
along its trajectory. Two possible observational manifestations
of gravitational-radiation ejection have then been suggested: (1)
spatially offset active galactic nuclei (AGNs) activity (Madau &
Quataert 2004; Blecha & Loeb 2008; Volonteri & Madau 2008);
and (2) broad emission lines that are substantially shifted in
velocity relative to the narrow-line gas left behind (Bonning et al.
2007). The effect of gravitational wave recoil in the mass buildup
of MBHs is more prominent at high redshifts (e.g., Volonteri
& Rees 2006; Tanaka & Haiman 2009) and therefore the
detection of offset nuclei is difficult. Observational evidence of
recoiling MBHs is scarce and highly controversial. A recoiling
supermassive black hole candidate at z = 0.71 was reported by
Komossa et al. (2008) in quasar SDSS J092712.65+294344.0.
The broad-line region of the quasi-stellar object (QSO), powered
by a 6×108 M� black hole, appeared to have a velocity offset of
2650 km s−1 with respect to the narrow-line region associated
with the galaxy. However, several authors have challenged this
hypothesis, proposing that the object is a MBH binary (Dotti
et al. 2008; Bogdanović et al. 2009) or an interacting galaxy
pair (Shields et al. 2009; Heckman et al. 2009).

The observability of recoiling MBHs depends sensitively on
their dynamics in galaxy halos. The radial orbit of a recoil-
ing hole in a spherically symmetric potential was first studied
analytically by Madau & Quataert (2004) and numerically by
Boylan-Kolchin et al. (2004). These early studies showed that
large kicks (∼400 km s−1) can displace MBHs tens of kilopar-
secs away from the center of a Milky Way-sized stellar bulge and
that, after the kick, the MBH undergoes several oscillations be-
fore decaying back to the bottom of the potential. Most of the or-
bital energy is lost during the MBH passages through the center,
where dynamical friction is most efficient: the cuspy central stel-
lar density profile is flattened by the heating effect of dynamical
friction, and the MBH decay timescale correspondingly length-
ened. Gualandris & Merritt (2008) have recently substantiated
these results by performing direct summation N-body simula-
tions of MBH recoil in spherical galaxies with binary-depleted
cores. They found that initially the MBH loses its energy due
to dynamical friction as predicted by Chandrasekhar’s theory
(Chandrasekhar 1943). When the amplitude of the motion has
fallen to roughly the core radius, the MBH and core experi-
ence damped oscillations about their common center of mass,
which decay until the hole reaches thermal equilibrium with the
surrounding stars. Vicari et al. (2007) evaluated the effect of
nonspherical galaxy geometries on kicked MBHs using triaxial
models, and found significantly longer decay timescales than in
equivalent spherical systems, as in a nonspherical potential the
hole does not return directly through the dense center where the
dynamical friction force is highest. Blecha & Loeb (2008) stud-
ied the trajectories of kicked holes in a two-component galaxy

model that includes a spherical stellar bulge and a gaseous disk,
and found that kicks with initial velocity Vkick � 200 km s−1 in
the plane of the disk are quickly damped out in t � 106.5 yr.

In this paper, we revisit the problem using a different
approach. We carry out full N-body simulations of a recoiling
MBH that is subject only to gravity and dynamical friction
against the dark matter background, in a high-resolution, non-
axisymmetric, “live” potential. The host is the main halo of
the Via Lactea I (hereafter VL-I) cosmological simulation
(Diemand et al. 2007a, 2007b). We follow the MBH orbital
behavior starting at redshift z = 1.5 (when the kick is assumed
to occur) for more than 1 Gyr, as the host grows in mass and
changes its shape from prolate to triaxial. We show that, owing
to departures from axisymmetry in the dark matter potential, the
orbit of the hole is highly nonradial, resulting in a significantly
increased decay timescale compared to a spherical halo. The
simulations are used to construct a more realistic semi-analytic
model of the motion of the MBH in a time-varying triaxial
Navarro–Frenk–White (NFW) halo plus a fixed isothermal
stellar bulge, where the dynamical friction force is calculated
directly from the velocity dispersion tensor. Such a model should
offer a more realistic picture of the dynamics of kicked MBHs in
situations where gas drag, friction by disk stars, and the heating
effect of the returning hole on the central cusp are all negligible.

2. SIMULATIONS SETUP AND PROPERTIES OF
THE HOST

The VL-I simulation was performed with PKDGRAV (Stadel
2001) a cosmological tree code that includes gravitational
multipoles up to hexa-decapole order to reach high accuracy
in the force calculation. It employed multiple mass particle
grid initial conditions generated with the GRAFIC2 package
(Bertschinger 2001) in a WMAP 3-year cosmology (Spergel
et. al 2007). A bug in the original GRAFIC2 code caused the
power spectrum used for the VL-I refinements to be that of the
baryonic component, equivalent to an effective spectral index
of n = 0.90 instead of the intended 0.95. In this cosmology,
subhalo concentrations and peak circular velocities are slightly
lower than in WMAP 3-year, while σ8 and the main halo
properties remain the same.5 The high-resolution region was
sampled with 234 million particles of mass mp = 2.1×104 M�
and evolved with a force resolution of ε = 90 pc. It was
embedded within a periodic box of comoving size L = 90 Mpc,
which was sampled at lower resolution to account for the
large-scale tidal forces. The host halo mass at z = 0 is
M200 = 1.8 × 1012 M� within a radius of R200 = 389 kpc
(defined as the radius within which the enclosed average density
is 200 times the mean matter value). In this work, we rerun
VL-I using PKDGRAV from redshift zi = 1.54 to zf = 1.15,
and follow the orbits of all dark matter particles as well as a
new MBH particle placed at the center of the host. As in the
original VL-I simulation, we employ a gravitational softening
of 90 pc for the dark matter particles and the MBH, as well
as adaptive time steps as short as τ = 68,500 yr, sufficient to
ensure convergence in the density profile down to a radius of
rconv ∼ 1.0 kpc and to accurately sample the orbit of the MBH.
The time-stepping criterion is given by Δt < 0.2

√
ε/al , where

al is the local acceleration. The resolution of VL-I allows us to
adopt the mass of SgrA*, MBH = 3.7 × 106 M� (Ghez et al.

5 Note that this problem does not affect the more recent “Via Lactea II” and
“GHALO” simulations (Diemand et al. 2008; Stadel et al. 2008).
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Table 1
VL-I Halo Parameters

a ρs Rs R200 M200 Vmax vesc

(106 M� kpc−3) (kpc) (kpc) (1012 M�) (km s−1) (km s−1)

0.393 0.16 38.0 194.3 1.03 160.53 488.5
0.423 0.21 36.7 213.1 1.13 163.7 498.2
0.465 0.41 31.3 233.8 1.19 167.9 510.9
0.507 0.54 30.8 250.9 1.22 166.7 507.3
0.549 0.72 29.7 271.5 1.31 170.4 518.4
0.591 0.99 28.1 292.5 1.43 176.4 536.7
0.633 1.40 26.2 311.8 1.54 182.6 555.8
0.675 1.87 25.1 327.4 1.61 186.4 567.2
0.762 2.40 26.0 356.6 1.76 189.2 575.6
0.877 3.54 26.2 376.2 1.77 187.0 569.0
0.901 3.67 26.7 379.2 1.77 185.6 564.8
0.950 4.51 26.2 384.9 1.77 185.9 565.5
1.000 5.33 25.8 389.3 1.77 185.1 566.2

2005), for the central MBH particle: this implies a MBH-to-
particle mass ratio of 175, enough to accurately reproduce the
effect of dynamical friction.

Large kicks can displace MBHs sufficiently far away that
their decay times become a significant fraction of the age of the
universe. It is interesting to look at the evolution of the host halo
in terms of its time-varying spherically averaged density profile
and shape parameters. The fitting formula proposed by Navarro
et al. (1997) provides a reasonable approximation to the density
profile,

ρ(x) = ρs

x(1 + x)2
, (5)

where x = r/Rs and Rs is the scale radius. The mass profile is
given by M(< x) = M200f (x)/f (c), where f (x) ≡ ln(1 + x) −
x/(1 + x) and c ≡ R200/Rs is the concentration parameter. The
escape speed from the halo center is

v2
esc(0) = 2

∫ ∞

0

GM(< r)

r2
dr = 2V 2

200c

f (c)
, (6)

where V 2
200 ≡ GM200/R200. The quantities ρs, Rs, R200,M200,

Vmax (the maximum circular velocity of the host) and vesc(0) are
given in Table 1 at different scale factors, starting with the time
when the kick is imparted.

CDM halos are known to show significant departures from
sphericity (for a recent summary, see Allgood et al. 2006). As
detailed in Kuhlen et al. (2007), we approximate the shape of
the VL-I host potential by diagonalizing the unweighted kinetic
energy tensor

Kij = 1

2

∑
n

vi,nvj,n, (7)

where Kij is related to the potential energy tensor Wij =∑
xidΦ/dxj through the tensor virial theorem

1

2

d2Iij

dt2
= 2Kij + Wij . (8)

Here,

Iij =
∑

n

xi,nxj,n

r2
n

, (9)

and rn = √
(x2

n + (yn/q)2 + (zn/s)2). We assume d2Iij /dt2 = 0
so that the eigenvectors of Kij reflect the principal axes of the
potential ellipsoid. The latter is significantly rounder than the

Figure 1. Host halo (potential) shape parameters as a function of redshift at
different ellipsoidal radii. Intermediate-to-major axis ratio q (solid points),
minor-to-major axis ratio s (empty circles), and triaxiality parameter T (insets).
Insets have the same x-axis range as the main plots.

(A color version of this figure is available in the online journal.)

mass distribution, and neither its shape nor orientation varies
much with the radius (Kuhlen et al. 2007). The degree of
triaxiality of the halo potential, T, is given by (Franx et al.
1991)

T = 1 − q2

1 − s2
, (10)

where q = b/a and s = c/a are the time-dependent
intermediate-to-major and minor-to-major axis ratios, respec-
tively (a � b � c). A halo is said to be oblate for T < 1/3,
triaxial for 1/3 < T < 2/3, and prolate for T > 2/3. Figure 1
shows the evolution of the potential shape parameters with red-
shift at different radii. In the inner regions, the axis ratios remain
approximately constant after around z = 0.8, but before z = 1
there are significant changes in the outer regions, as the halo be-
comes more spherical. The triaxiality parameter remains mostly
in the prolate regime (> 2/3) in the inner regions, while in the
outer halo evolves from prolate at z � 1 to triaxial or slightly
oblate at 0.7 � z � 1, to back to prolate at later times. Note that
the VL-I host accretes some fairly massive subhalos between
z = 1 and z = 0.5. Dynamical friction causes these subhalos to
spiral in to the center over a few orbits, and they lose most of
their mass in this process. The associated redistribution of ma-
terial probably contributes to the observed shape adjustments.
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Figure 2. Response of a MBH = 3.7 × 106 M� MBH to a kick at zi = 1.54
in the aspherical potential of the “live” VL-I Milky Way-sized halo. The radial
distance R of the hole from the center is plotted vs. time for Vkick = 80, 120,
200, 300, and 400 km s−1. Each orbit was sampled with 10,000 points.

(A color version of this figure is available in the online journal.)

3. DYNAMICS OF RECOILING HOLES

3.1. Orbits in Numerical Simulations

We placed the MBH particle at the position of the densest
point of the main VL-I halo at an initial redshift zi = 1.54,
300 Myr after the last major merger. At this epoch the host
has M200 = 1.02 × 1012 M� and R200 = 187 kpc. The kick
was oriented at an angle of 20◦ to the minor axis of the host
halo at zi . The MBH orbit was tracked at every time step in
our simulations, and its position and velocity were measured
with respect to the central position and center of mass velocity,
respectively. The five halo+MBH runs—corresponding to kick
velocities Vkick = 80, 120, 200, 300, and 400 km s−1 and labeled
VL080 to VL400—were evolved for 1.15 Gyr (i.e., until a final
redshift zf = 1.15). All kick velocities are below the escape
speed at zi , vesc(r = 0, zi) = 488 km s−1. Each run consumed
13,000 CPU hours on the Pleiades Supercomputer Cluster at
UCSC, and followed the MBH for 10,000 time steps.

The resulting trajectories are shown in Figure 2, the orbits’
parameters are listed in Table 2, and the three-dimensional
rendering of the orbits in simulations VL120, VL200, and
VL300 is shown in Figure 3. Only Vkick > 300 km s−1

trajectories actually sample the outer halo with pericenter
distances Rmax � 30 kpc, and only Vkick < 120 km s−1

Table 2
N-body Simulation Results

Run Name Vkick Rmax Rmin tend Rend treturn

(km s−1) (kpc) (kpc) (Gyr) (kpc) (Gyr)

VL080 80 1.18 0.03 1.15 0.09 1.16
VL120 120 2.49 0.56 1.15 1.90 2.78
VL200 200 7.69 0.72 1.15 3.71 8.45
VL300 300 28.21 1.51 1.15 14.93 > tH
VL400 400 83.65 22.95 1.15 22.95 > tH

Notes. Columns 2, 3, 4, 5, 6, and 7 list the initial kick velocity, the MBH
apocenter, its pericenter, the end time of the simulation, the distance of the
MBH from the halo center at tend, and the return time calculated using a triaxial
NFW model, respectively. The return time, treturn, is defined as the time it takes
for the MBH to lose all but 0.1% of its initial total energy and decay to within
1 pc of the center of the halo.

trajectories return within 0.5 kpc from the center during the
duration of the simulation. The motion of the hole remains
nearly rectilinear for one or two oscillations only, as the
y- and z-components of its orbit become rapidly important due to
asphericities in the halo potential. This increases the MBH decay
timescale compared to a spherical model, as we show below.
Dynamical friction has only a weak effect on the maximum
displacement of the MBH. This can be seen in Figure 3 (right
top panel), where a sixth simulation was carried out with the
recoiling hole treated as a massless test particle of initial kick
velocity Vkick = 80 km s−1. A comparison with VL080 shows
how, for the first 2–3 oscillations, dynamical friction does not
strongly influence the motion of the hole, and the maximum
displacement is similar to that of the energy-conserving orbit. It
is only at later times that the effect of friction sets in, reducing
the amplitude and period of the oscillations and bringing the
hole back to the center. Note how, for Vkick � 120 km s−1, and
because of the aspheric nature of the halo, the MBH spends
most of its time > 0.8 kpc away from the center and does not
have a significant dynamical heating effect on the dark matter
distribution in the nucleus.

3.2. Orbits in a Spherical NFW Halo

It is interesting at this stage to compare the results of our
numerical simulations with a semi-analytic model of the motion
of a recoiling MBH in an NFW halo. Such a model will allow
us to follow the trajectory of a recoiling black hole for a Hubble
time or until it returns to the center. We define the return time,
treturn, as the time it takes for the MBH to decay to within r = 1
pc of the center of the halo with |E/Ein| < 0.001, where E
is the total energy (kinetic + potential) of the MBH and Ein is
its initial energy. The energy condition is set to ensure that the
MBH is not simply going through a close periastron passage.

We start by approximating the potential as spherically sym-
metric and static, with the z = 0 host halo parameters given in
Table 1. Under these assumptions the trajectory is purely radial,
and the damping force from the background dark matter can be
approximated by the classical Chandrasekhar dynamical fric-
tion formula (Chandrasekhar 1943; Binney & Tremaine 1987).
The corresponding equation of motion is

d �v
dt

= − GM(< r)

r3
�r − 4πG2 ln Λρ(r)MBH

v3

×
[

erf(X) − 2X√
π

e−X2

]
�v, (11)

where X ≡ v/
√

2σ .
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Figure 3. Left top, left bottom, and right bottom panels: three-dimensional orbits of the recoiling MBHs in the VL120, VL200, and VL300 simulations. The first
0.5 Gyr are plotted in yellow, the following 0.5 Gyr in red, and the remaining 0.1 Gyr in purple. Box sizes are 2.5, 7.6, and 25.1 kpc, respectively. Right top panel:
comparison between orbits in VL080 (yellow) and the corresponding energy-conserving orbits in the massless hole simulation (green).

(A color version of this figure is available in the online journal.)

The proper definition of the Coulomb logarithm, ln Λ,
has been extensively debated. It is generally defined as
ln (bmax/bmin), where the maximum impact parameter bmax is
the scale radius Rs of the dark matter distribution, and the min-
imum impact parameter bmin is the radius of influence of the
MBH, RBH = GMBH/σ 2. Several studies (e.g., Colpi et al.
1999; Hashimoto et al. 2003) have shown that a dynamically
varying value for ln Λ provides a better estimate of dynamical
friction than a constant value when compared to N-body sim-
ulations. Here we follow the treatment of Maoz (1993), and in
the approximation of a spherical NFW host write the Coulomb
logarithm as

ln Λ →
∫ Rs

d

ρ(r)

ρ0r
dr = ρs

ρ0

∫ 1

x0

dx

x2(1 + x)2

= ρs

ρ0

[
2 ln

(
x + 1

x

)
− 2x + 1

x(x + 1)

]1

x0

, (12)

where ρ0 is the central mass density, x = r/Rs , d can be inter-
preted as the minimum impact parameter of the Chandrasekhar
formula. Throughout this paper we use ρ0 = ρ(r = 20 pc) and
set d = RBH, the radius of influence of the MBH.

The one-dimensional velocity dispersion σ for an NFW
profile can be solved numerically from the Jeans equation or
approximated analytically for x = r/Rs between 0.01 and 100
by the function (Zentner & Bullock 2003)

σ 2(x) = V 2
200

c

f (c)
x(1 + x2)

∫ ∞

x

f (x ′)
x ′3(1 + x ′)2

dx ′ (13)

� V 2
max

(
1.4393x0.354

1 + 1.1756x0.725

)2

. (14)

We integrate the equation of motion numerically using an
adaptive Adams–Bashforth–Moulton integration scheme. The
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Figure 4. Decay histories of recoling MBHs. The radial distance R from the
center is plotted as a function of time for a spherical NFW (left panel) and
a triaxial NFW halo (right panel). The N-body simulation results (red curves)
are superposed to the semi-analytic orbit integrations according to model A
(orange). The insets are a close-up of the respective orbit over a timescale of
1.1 Gyr.

(A color version of this figure is available in the online journal.)

resulting radial orbits for kick velocities Vkick = 80, 120,
and 200 km s−1 are shown in Figure 4 (left panels). The
decay timescale of a recoiling hole in a spherical potential
is significantly shorter compared to the results of N-body
simulations, mainly because of the efficiency of dynamical
friction during each passage through the nuclear regions. In
the Vkick = 120 km s−1 case, for example, the MBH is back
to the center after 0.6 Gyr in the spherical case, while it is still
wandering close to Rmax in the simulations. A self-consistent
estimate of the decay timescale must include the flattening of
the cuspy central density profile by the oscillating hole. Such a
cumulative heating effect, however, is negligible in this case,
since due to the triaxiality of the potential the MBH does
not affect the central density and velocity dispersion profiles
dramatically.

3.3. Orbits in a Triaxial NFW Halo

The next-order approximation is to model the motion of the
recoiling hole in a triaxial, dynamically evolving NFW dark
matter halo, using the VL-I halo parameters given in Table 1
and the potential shape parameters plotted in Figure 1. The orbit
of the hole is fully specified by the conservative force of the
dark matter potential ∇Φ and the damping frictional term:

d �v
dt

= −�∇Φ + �fDF, (15)

where

Φ = −GM200

f (c)

ln(1 + re/Rs)

re

, (16)

and

re ≡
(

x2 +
y2

q2
+

z2

s2

)1/2

(17)

is the ellipsoidal radius. Here q and s are the time- and radial-
dependent axis ratios defined in Section 2, and x, y, z are
Cartesian coordinates along the principal axis of the potential
ellipsoid. Equation (11) is no longer valid in a triaxial system,
where the velocity dispersion is nonisotropic and the velocity
distribution deviates from Maxwellian. We adopt the Pesce
et al. (1992) generalization of the dynamical friction formula
to triaxial systems (see also Vicari et al. 2007),

�fDF = −ΓaVaêa − ΓbVbêb − ΓcVcêc, (18)

where Vi are the components of the black hole velocity along the
principal axes êi = {êa, êb, êc} of the local velocity dispersion
ellipsoid with a > b > c, and Γi are the dynamical friction
coefficients. These are given by

Γi = 2
√

2πG2ρ(re) ln Λ(MBH)

σ 3
1

× Bi( �V , σ ), (19)

where the velocity dispersion integral is given by

Bi =
∫ ∞

0

exp
( − ∑3

i=1
V 2

i /2σ 2
i

ε2
i +u

)
√(

ε2
1 + u

)(
ε2

2 + u
)(

ε2
3 + u

) 1

ε2
i + u

du, (20)

εi ≡ σi/σ1, σ 2
i = {σ 2

a , σ 2
b , σ 2

c } is the velocity dispersion along
the direction {êa, êb, êc}, σ1 is the largest eigenvalue, and ρ(re)
is the local mass density at the MBH’s elliptical radius. In order
to calculate the triaxial density profile, we deform the spherical
density contours in such a way that the volume is preserved.
In this approximation, the characteristic elliptical radius of the
halo becomes Re,200 = (qs)−1/3R200.

A correct estimate of the velocity dispersion as a function
of radius and redshift is crucial in the calculation of dynamical
friction. Here, we take the following approach. First, we measure
the “true” shape and orientation of the local velocity dispersion
ellipsoids directly from the VL-I simulation (model A; see
Section 3.3.1 for details). Next, we construct a model to calculate
the velocity dispersion from the Jeans equation (model B; see
Section 3.3.2). In model B, we neglect streaming motions and
assume that the local velocity dispersion ellipsoids are aligned
with the global potential shape, which results in an overestimate
of the velocity dispersion integral Bi given by Equation (20).
To normalize model B to the fiducial model A, we introduce
a linear fitting factor η where Bmodel A

i = ηBmodel B
i . The main

characteristics of the MBH orbits are well reproduced by models
A and B for a large range of recoil velocities using η = 0.5 (see
Section 3.3.2).

The resulting orbits are shown in the right panels of Figure 4.
The triaxial halo model qualitatively reproduces the results of
the simulations, the highly nonradial MBH trajectories, and the
extended wandering times of kicked holes. Return timescales
exceed 10 Gyr already for Vkick = 200 km s−1 (see the last
column of Table 2).
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Figure 5. Properties of the VL-I main halo at z = 0. Left: local density averaged over an ensemble of spheres at discrete radii from the VL-I halo center (asterisks)
and best-fit NFW profile (solid line). Right: average local velocity dispersion along the principal axes of the local velocity dispersion ellipsoids as a function of radius
(asterisks) and best-fit velocity dispersion profile (solid line). The error bars represent the dispersion around the mean value.

3.3.1. Model A: Local Velocity Dispersions Measured in VL-I

The local properties of the halo relevant to the calculation of
dynamical friction were measured from the VL-I simulation as a
function of redshift for 10 snapshots in the range 0 < z < 1.54,
following the method of Zemp et al. (2009). At each redshift
seven distances r = 1, 8, 25, 50, 100, 200, 400 kpc from the
halo center were randomly sampled with 10 spheres of radius

rsph(r) = rsph(8 kpc)

[
ρ(8 kpc)

ρ(r)

]1/3

, (21)

where rsph(8 kpc) = 0.5 kpc and ρ(r) is the spherically aver-
aged mass density at radius r. In each sphere, we measure the
local density and calculate the six components of the symmetric
velocity dispersion tensor, σ 2

ij ≡ 〈vivj 〉 − 〈vi〉〈vj 〉 (here the in-
dices i and j indicate the components along the principal axes of
the global potential ellipsoid). We then diagonalize the disper-
sion tensor to obtain a set of eigenvalues and eigenvectors. The
eigenvalues, {σ 2

a , σ 2
b , σ 2

c }, are the components of the velocity
dispersion in the êi basis.

For computational convenience, we fit an analytical function
to the mean value of the local velocity dispersion in all spheres
at each radii. This function has the form (Pesce et al. 1992) for
model A:

σ 2
i,A(r) = Ai

[
1 + Bir

mi

1 + Dirni

]
e−r/Ci , (22)

where Ai through Di and mi, ni are the best-fit values to
the velocity dispersion profile in the ith direction at a given
redshift. The parameters at z = 0 are given in Table 3, and the
corresponding best-fit curves for σi,A are shown in Figure 5(b).

The orientation of the local velocity ellipsoids with respect to
the global shape was also measured as a function of radius and
redshift. Table 4 shows the angles between the major, medium,
and minor axes of the velocity dispersion ellipsoid and their
counterparts in the global potential ellipsoid (ᾱ, β̄, γ̄ respec-
tively) averaged over the ensemble of spheres. The principal

Table 3
Best-fit Parameters to the Velocity Dispersion Profile at z = 0

A B C D m n
(km2 s−2) (kpc−m) (kpc) (kpc−n)

σ 2
a 2.24 × 104 1.145 172.21 0.0026 −4.87 × 103 1.1132

σ 2
b 7.16 × 102 0.567 153.55 14.300 −1.29 × 102 0.1217

σ 2
c 3.65 × 102 0.4102 117.02 22.698 −0.19 × 102 0.1646

axes of the velocity ellipsoid show significant misalignment
with the principal axes of the global potential shape: the dis-
tribution of orientation angles is quite isotropic and cannot be
fit by a simple function. In our fiducial semi-analytical model
(model A), the orientation of the local velocity dispersion is
obtained by interpolating a grid of mean orientation angles as
a function of position and redshift at each time step of the nu-
merical integration. Then a random value is drawn in the range
allowed by the dispersion associated with the mean.

The local density profile is shown in Figure 5(a). The points
represent the average local measurement, ρ̄, and the error bars
are the dispersion around ρ̄, labeled σ (ρ̄) in Table 4. The solid
line represents the best-fit NFW profile to the local density
average at z = 0 (see Table 1).

3.3.2. Model B: A Simple Treatment of Local Velocity Dispersion

While our fiducial model accurately reproduces important
features of the orbits of MBHs in a triaxial potential, hav-
ing a simple prescription to calculate the velocity dispersion
analytically would allow us to generalize our model and in-
clude the effect of other galactic components (see below).
In this toy model, we assume that the local velocity disper-
sion ellipsoids are aligned with the potential shape: therefore
{êa, êb, êc} = {êx, êy, êz} and all off-diagonal terms of the lo-
cal velocity tensor vanish. We further assume that the halo is
in steady state at each snapshot and that there are no stream-
ing motions. Under these assumptions we solve for the velocity
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Figure 6. Left: maximum displacement distance in model A (fiducial) compared to model B for kick velocities in the range 80 km s−1 < Vkick < 600 km s−1

(asterisks). Right: return times of models A and B for kick velocities 80 km s−1 < Vkick < 250 km s−1 (asterisks). Colors represent the magnitude of the recoil
velocity from Vkick = 80 km s−1 (blue) to Vkick = 600 km s−1 (red).

(A color version of this figure is available in the online journal.)

Table 4
Summary of Local Properties at z = 0

r (kpc) 1 8 25 50 100 200 400

ρ̄ (M� pc−3) 7.90 × 10−2 6.65 × 10−3 5.64 × 10−4 2.80 × 10−4 3.35 × 10−5 3.65× 10−5 1.76 × 10−6

σ̄a (km s−1) 102.1 148.0 143.7 148.1 126.9 121.1 79.31
σ̄b (km s−1) 83.38 125.1 124.5 116.4 85.98 79.60 50.06
σ̄c (km s−1) 77.99 113.4 116.4 106.3 77.26 63.54 38.71
ᾱ (◦) 19.82 53.19 61.45 62.30 36.57 34.79 45.19
β̄ (◦) 69.17 48.28 57.47 50.43 54.81 54.66 57.69
γ̄ (◦) 84.10 69.04 69.31 66.32 54.63 58.78 56.22
σ (ρ̄) (M� pc−3) 5.88 × 10−2 1.67 × 10−3 1.16 × 10−3 9.09 × 10−5 3.13 × 10−5 5.37 × 10−5 1.26 × 10−6

σ (σ̄a) (km s−1) 14.27 7.253 4.468 19.15 10.48 19.58 16.61
σ (σ̄b) (km s−1) 11.36 5.470 14.94 8.877 8.874 26.34 15.64
σ (σ̄c) (km s−1) 10.21 2.463 10.97 9.450 11.45 29.42 13.71
σ (ᾱ) (◦) 32.56 37.80 29.52 25.96 24.41 14.58 15.43
σ (β̄) (◦) 36.66 35.48 26.46 29.98 16.02 33.27 27.06
σ (γ̄ ) (◦) 7.58 12.59 22.23 21.99 25.78 29.95 17.58

Notes. Halo local properties averaged over an ensemble of 10 spheres at each radius. The rows show the mass density ρ̄, the average
velocity dispersion components, (σ̄a, σ̄b, σ̄c), along the principal axes of the velocity dispersion ellipsoid, and the angles, (ᾱ, β̄, γ̄ ),
between the major, intermediate, and minor axes of the local velocity and the global potential ellipsoids. Also listed are the dispersions
of the above quantities.

dispersion along the ith coordinate from a simplified Jeans equa-
tion

σ 2
i,B = 1

ρe

∫ ∞

xi

ρ(re)
∂Φ(re)

∂x ′
i

dx ′
i , (23)

where ρe is the density at the elliptical radius corresponding to
the position of the MBH. We normalize the velocity dispersion
integral (Equation (20)) to ηBi( �V , �σB) in order to match the
results of model A. Figure 6 shows a comparison of models A
and B: maximum displacement distance and return times are
accurately reproduced by model B for a large range of kick
velocities with η = 0.5. This analytical representation of the
velocity dispersion in a triaxial potential proves useful in the
construction of the composite potential described below.

3.4. Orbits in a Triaxial NFW Halo Plus a Stellar Bulge

A realistic study of the trajectories of recoiling holes must
include the gravitational and frictional effect of a stellar bulge.
Our final set of semi-analytic orbit integrations uses a two-
component galaxy model consisting of a time-varying triaxial

halo (with same parameters as above) and a fixed spherical bulge
of stellar density

ρ∗(r) = σ 2
∗

2πG
(
r2 + r2

c

) , (24)

with isotropic stellar velocity dispersion σ∗ = 75 km s−1,
suitable for a Milky Way-sized host. In the inner regions of
the bulge, where stars are the dominant source of dynamical
friction, the sphere of influence of the black hole is given by
RBH = GMBH/σ 2

∗ . The stars within this radius are bound
to the black hole and do not exert dynamical friction, and
therefore a MBH traveling through the very center of the
bulge will experience an effective core radius rc = RBH. We
truncate the bulge profile at an outer radius of rb = 3 kpc in
order to obtain a finite bulge mass at large radii, where the
dark matter halo dominates the potential. In this model, the
mass of the stellar bulge within the outer truncation radius is
M∗(< rb) = 8 × 109 M�.
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Table 5
Semi-analytic Model Results

Vkick Rmax Rmin treturn

(km s−1) (kpc) (kpc) (Gyr)

200 0.0406 0.0010 0.0016
280 0.2707 0.0010 0.0415
300 0.4512 0.0010 0.0791
360 2.2022 0.0010 0.4735
380 3.7714 0.0010 1.6275
400 6.8619 0.0010 3.4846
420 10.5830 0.0010 8.0657
440 17.9090 0.0010 10.4097
460 24.0626 0.0010 > tH
500 37.2263 1.2189 > tH
560 84.6069 1.2555 > tH
600 137.3806 17.4473 > tH
680 786.7245 276.3753 > tH

Notes. Columns 1, 2, 3, and 4 list the initial kick velocity, the MBH apocenter,
its pericenter, and the return time within 1 pc from the center calculated using
a triaxial NFW + isothermal spherical bulge model (see the text for details).

To find the velocity dispersion tensor of the composite profile,
σ 2

ij , we solve the Jeans equations under the assumption that the
velocity ellipsoid is aligned with the axes of the (dynamically
evolving) triaxial NFW potential. Thus, the three principal
components of the velocity dispersion tensor are given by

σ 2
i,tot = 1

ρtot

∫ ∞

xi

ρtot
∂Φtot

∂xi

dxi, (25)

where ρtot and Φtot are the total (NFW halo + stellar bulge)
density and potential. We calculate the Coulomb logarithm
from Equation (12) using the total mass density and d =
GMBH/σ 2, where the composite velocity dispersion is now

given by σtot =
√

σ 2
a + σ 2

b + σ 2
c (with σi given by Equa-

tion (25)). As in Section 3.3.2, we normalize the veloc-
ity dispersion integral to ηBi( �V , �σtot), where Bi( �V , �σtot) is
the velocity dispersion integral of the composite potential.
We assume that the spherical stellar bulge fully dominates
the potential in the region r < 100 pc and therefore dy-
namical friction is well approximated by the Chandrasekhar
formula. We fit for η by comparing orbits obtained with
Equation (11) with those obtained with Equation (18) for
Vkick < 250 km s−1. The best fit yields η = 0.1.

Table 4 gives the MBH apocenter, its pericenter, and the
return time calculated using our two-component model. (1) For
Vkick > 460 km s−1, we stopped numerical integration after
a Hubble time tH, while the hole was still wandering tens to
hundreds of kiloparsecs away from the center. (2) For kick
velocities below 380 km s−1, dynamical friction against bulge
stars now efficiently damps the motion of the MBH already
on the first outward trajectory, and reduces the decay timescale
to less than 2 Gyr. Recoiling holes do not leave the bulge.
(3) For the maximum kick velocities predicted in the case of
non-rotating holes, Vkick � 200 km s−1, the MBH reaches a
maximum distance of only 40 pc from the center and decays
back within 2 Myr. (4) Black holes that leave the stellar bulge
and enter the triaxial dark matter halo do not return to the
center within a Hubble time. The pericenter distances, apocenter
distances, and the return times of MBHs are shown in Figure 7
for a dark matter only potential and a more realistic dark matter
+ bulge potential. According to the latter model, a MBH which

Figure 7. Upper panel: A set of apocenter distances (solid line) and pericenter
distances (dashed line) for a recoiling MBH of mass M• = 3 × 106 M� in a
triaxial Milky Way-sized dark matter only host (green) and dark matter + bulge
host (blue). The colored areas show the corresponding regions in the R–Vkick
plane occupied by the wandering holes. Lower panel: return timescales of a
MBH in a dark matter only host (green line) and a dark matter + bulge potential
(solid blue line). Also shown is the time it takes to the hole to reach its apocenter
(dashed-dotted blue line).

(A color version of this figure is available in the online journal.)

is kicked with initial velocity Vkick = 400 km s−1 reaches Rmax
before 108 yr, a time comparable with the typical QSO lifetime,
and spends most of its time orbiting at a distance r > 1 kpc
away from the center of the bulge.

4. SUMMARY

Coalescing MBH pairs will give origin to the loudest grav-
itational wave events in the universe, and are one of the pri-
mary targets for the planned Laser Interferometer Space An-
tenna (LISA; e.g., Sesana et al. 2004). The anisotropic emission
of gravitational waves also removes net linear momentum from
the binary and imparts a kick to the center of mass of the system.
The outcome of this “gravitational rocket” has been the subject
of many recent numerical relativity studies. Nonspinning holes
recoil with velocities below 200 km s−1 that only depend on the
binary mass ratio, while much larger kicks require rapidly rotat-
ing holes. Little is known about the masses of MBH binaries and
their spins: the distribution of all binary mass ratios expected in
some hierarchical models of the co-evolution of MBHs and their
hosts is found to be relatively flat (Volonteri & Madau 2008):
if it is not ejected from the host altogether, the recoiling MBH
will travel some maximum distance and then return towards the
center on a decay timescale that depends on the shape of the
potential and on the effectiveness of gas drag and dynamical
friction against the stars and the dark matter of the host galaxy.

We have carried out a detailed study of the fate of bound
recoling holes in Milky Way-sized potentials, running N-body
simulations of the motion of a MBH = 3.7×106 M� MBH rem-
nant in the “Via Lactea I” dark matter halo. In the simulations,
the MBH receives a kick velocity of Vkick = 80, 120, 200, 300,
and 400 km s−1 following the coalescence of its progenitor bi-
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nary, and moves within the “live” host subject only to gravity and
dynamical friction against the dark matter background. We have
used these calculations to build realistic semi-analytic models
of the hole’s trajectory in a time-varying triaxial NFW potential,
where the dynamical friction force is calculated directly from
the velocity dispersion tensor, and in a two-component triaxial
halo+spherical bulge model. The latter case should offer a more
realistic picture of the dynamics of kicked MBHs in situations
where gas drag, friction by disk stars, and the heating effect of
the returning hole on the central cusp are all negligible. Our re-
sults on the trajectories of recoiling MBHs can be summarized
as follows.

1 Owing to asphericities in the dark matter potential, the black
hole’s orbits are highly nonradial, resulting in a significantly
increased decay timescale compared to the spherical case.
This is in qualitative agreement with earlier results by Vicari
et al. (2007).

2 In a triaxial NFW halo return timescales to the center exceed
5 Gyr already for Vkick = 200 km s−1, and are longer than
the Hubble time for Vkick � 250 km s−1.

3 In a triaxial halo+spherical bulge potential, decay
timescales are much shorter than in the bulgeless case.
For kick velocities Vkick < 380 km s−1, dynamical fric-
tion against bulge stars now efficiently damps the motion
of the MBH already on the first outward trajectory, and
reduces the decay timescale to less than 2 Gyr. For recoil
velocities Vkick > 500 km s−1, the MBH does not return to
the center of its host within a Hubble time. Recoling black
holes do not leave the bulge and remain within a few tens
of parsecs from the center for Vkick � 200 km s−1.

A kicked MBH can retain the inner parts of its accretion
disk, providing fuel for a continuing luminous phase along
its trajectory. Let us assume all recoiling holes accrete at a
fraction fE of the Eddington rate ṀE = 4πGMBHmp/(cσT ε),
where ε is the radiative efficiency. The duration of the luminous
phase depends on the amount of disk material out to the radius
Rout ≈ GMBH/V 2

kick that is carried by the hole. In the case of
an α-disk, this is given by (Loeb 2007)

Mdisk ≈ (1.9 × 106 M�)α−0.8
−1 (ε−1/fE)−0.6M2.2

7 V −2.8
3 , (26)

where ε−1 ≡ ε/0.1, M7 ≡ MBH/107 M�, V3 ≡
Vkick/103 km s−1, and α−1 ≡ α/0.1 is the viscosity parame-
ter. The condition Mdisk � MBH then requires

Vkick � 550 km s−1α−0.28
−1 (ε−1/fE)−0.21M0.43

7 . (27)

For lower kick velocities Mdisk = MBH, corresponding
to an AGN lifetime of tQSO = εcσT /(4πGmpfE) ≈
4.5 × 107 yr (ε−1/fE). A recoiling hole/disk system with
(M7, α, ε, fE,Mdisk) = (1, 0.1, 0.1, 1,MBH) could then be
shining for half a Gigayear as an off-center quasar over a large
fraction of its “wandering” phase. Thus, cases where the recoil
kick is large enough to launch the MBH into the triaxial halo
are favorable for the detection of off-nuclear quasars. However,
if the MBH is initially embedded in a gas-rich environment, gas
drag may damp its motion significantly (Guedes et al. 2008),
even for moderate kicks, lowering the detection probability. Fur-
thermore, the spins of both black holes in a MBH binary tend
to align due to torques induced by the surrounding gas, reduc-
ing the kick velocity to vkick < 200 km s−1 (Bogdanović et al.
2007). The motion of a recoiling MBH in a gas-rich merger in-
cluding a stellar and dark matter component will be the subject
of a subsequent paper.
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