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ABSTRACT

We report the observations of the magnetohydrodynamic (MHD) waves propagating along magnetic flux tubes in
the solar photosphere. We identified 20 isolated strong peaks (8 peaks for pores and 12 peaks for intergranular
magnetic structure) in the power spectra of the line-of-sight (LOS) magnetic flux, the LOS velocity, and the
intensity for 14 different magnetic concentrations. The observation is performed with the spectro-polarimeter of
the Solar Optical Telescope aboard the Hinode satellite. The oscillation periods are located in 3–6 minutes for the
pores and in 4–9 minutes for the intergranular magnetic elements. These peaks correspond to the magnetic, the
velocity, and the intensity fluctuation in time domain with root-mean-square amplitudes of 4–17 G (0.3%–1.2%),
0.03–0.12 km s−1, and 0.1%–1%, respectively. Phase differences between the LOS magnetic flux (φB), the
LOS velocity (φv), the intensities of the line core (φI,core), and the continuum intensity (φI,cont) have striking
concentrations at around −90◦ for φB − φv and φv − φI,core, around 180◦ for φI,core − φB , and around 10◦ for
φI,core − φI,cont. Here, for example, φB − φv ∼ −90◦ means that the velocity leads the magnetic field by a
quarter of cycle. The observed phase relation between the magnetic and the photometric intensity fluctuations
would not be consistent with that caused by the opacity effect, if the magnetic field strength decreases with height
along the oblique LOS. We suggest that the observed fluctuations are due to longitudinal (sausage-mode) and/or
transverse (kink-mode) MHD waves. The observed phase relation between the fluctuations in the magnetic flux
and the velocity is consistent with the superposition of the ascending wave and the descending wave reflected at
chromosphere/corona boundary (standing wave). Even with such reflected waves, the residual upward Poynting
flux is estimated to be 2.7 × 106 erg cm−2 s−1 for a case of the kink wave. Seismology of the magnetic flux
tubes is possible to obtain various physical parameters from the observed period and amplitude of the oscillations.
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1. INTRODUCTION

Alfvén waves or more generally transverse magnetohydrody-
namic (MHD) waves would play a key role in coronal heating
and solar wind acceleration (e.g., Suzuki & Inutsuka 2006). Nu-
merous studies about generation, propagation, and dissipation of
the Alfvén waves have been carried out observationally and the-
oretically (e.g., Ryutova & Priest 1993). Alfvén waves would be
generated in the high-β region of the solar atmosphere. Its pre-
cise power spectra are, however, not observationally known. As-
cending Alfvén waves with wavelength longer than the Alfvénic
scale height may be reflected back at the chromospheric-coronal
boundary (Moore et al. 1991; An et al. 1989; Hollweg 1978;
Suzuki & Inutsuka 2005). It is poorly known how much Alfvén-
wave flux generated in the photosphere is propagated all the way
to the corona through the fanning-out flux tubes. High-quality
observations to obtain spectra of magnetic fluctuation are of cru-
cial importance to understand coronal heating and acceleration
of fast solar wind.

Ulrich (1996) made the first critical observations, and reported
the detection of the MHD oscillations with properties of the
Alfvén waves. He suggested that the observed phase relation
between the magnetic field and the velocity perturbation is
consistent with the outgoing Alfvén waves. The observing
aperture of 20′′ × 20′′ is, however, very large compared with
the spatial scale of the flux tubes along which the Alfvén
waves propagate. Such a large aperture may make it difficult
to identify the weak transverse waves with different frequency
and phase, which might become evident in higher resolution
observations. Velocity and magnetic field oscillations in the

sunspot umbra were detected by Bellot Rubio et al. (2000),
Lites et al. (1998), Norton et al. (1999), Rüedi et al. (1998),
Rüedi & Solanki (1999), Balthasar (1999), and Settele et al.
(2002). Rüedi et al. (1998) and Bellot Rubio et al. (2000)
obtained the phase difference of −90◦ and 90◦ between the
fluctuations of the line-of-sight (LOS) velocity and the magnetic
field strength φv − φB , respectively. They suggested that the
magnetic field fluctuation is caused by the opacity fluctuations
that move upward and downward the region where the spectral
line profiles are sensitive to magnetic fields. Norton et al.
(2001) obtained the center-to-limb dependence of the phase
angle between the magnetic and the velocity fluctuations with
the Michelson Doppler Imager aboard the SOHO satellite. They
reported that the phase angle is near −90◦ at the disk center
and near 0◦ at the limb, and made an important comment that
the Alfvén waves be more easily observed at the limb. They
suggested that the phase relation reported in the paper is not
due to the opacity effect. Khomenko et al. (2003) compared
the analytical solution of the MHD equations including gravity,
inclination of magnetic field, and effects of nonadiabaticity with
the observations reported by Bellot Rubio et al. (2000), and
concluded that the detected time variation in field strength could
be partly due to magnetoacoustic waves. Rüedi & Cally (2003)
suggested that most of the observed magnetic field oscillations
are due to the opacity effect caused by temperature and density
fluctuations associated with magnetoacoustic waves.

Recently apparent transverse oscillations, which are clear
evidence of the Alfvén waves, are detected in prominence
(Okamoto et al. 2007), in spicules (de Pontieu et al. 2007;
He et al. 2009) and in Ca jet (Nishizuka et al. 2008) with the

1443

http://dx.doi.org/10.1088/0004-637X/702/2/1443
mailto:daisuke.fujimura@nao.ac.jp


1444 FUJIMURA & TSUNETA Vol. 702

Solar Optical Telescope (SOT; Tsuneta et al. 2008a; Suematsu
et al. 2008; Ichimoto et al. 2008; Shimizu et al. 2008) aboard
the Hinode satellite (Kosugi et al. 2007). These Alfvén waves
have enough Poynting flux to potentially heat the corona. We,
however, cannot rule out the possibility that these waves are
the standing Alfvén waves. Transverse oscillations of coronal
loops are detected by Taroyan & Bradshaw (2008), Mariska
et al. (2008), and Van Doorsselaere et al. (2008) using the EUV
Imaging Spectrometer (Culhane et al. 2007) aboard the Hinode
satellite as well. Ubiquitous upward Alfvén waves in the corona
are detected by Tomczyk et al. (2007) using the Coronal Multi-
Channel Polarimeter without magnetic field information. We
stress that the observations of the magnetic field fluctuation
with the simultaneous velocity and photometric measurement
allow us to identify propagating hydromagnetic waves.

The literatures so far introduced are mainly concerned with
the pure Alfvén waves. The magnetic fields in the solar atmo-
sphere have a form of isolated magnetic flux tubes embedded in
a nearly field-free fluid. Such flux tubes carry the incompress-
ible torsional Alfvén waves, and the linearly polarized Alfvén
waves can exist only in the uniform media. The flux tubes also
carry the kink waves (transverse waves) and the sausage waves
(longitudinal waves; e.g., Stix 2002) instead of the linearly po-
larized Alfvén waves. Magnetic tension force of the flux tube is
the restoring force in the kink mode (e.g., Spruit 1981), and is es-
sentially incompressible. The sausage mode with the azimuthal
wave number m = 0, as first defined by Defouw (1976) and dis-
cussed, e.g., in Roberts & Webb (1978) and Ryutova (1981), is
related to a slow magnetoacoustic mode. In the sausage-shaped
perturbed boundary of the flux tube, where the flux-tube area
increases, the magnetic field decreases, whereas the plasma
pressure increases; vice versa. A fast magnetoacoustic mode
propagates across the flux tube, and is not localized radially in
the vicinity of the flux tube; we do not regard this as a mode
of flux tube oscillations. In this paper, we report a clear detec-
tion of magnetic, velocity, and photometric oscillations of the
magnetic flux tubes with the spectro-polarimeter (SP) of SOT.
The data are extensively analyzed in terms of both the linearly
polarized kink waves and the slow sausage waves, while we will
not discuss the torsional Alfvén waves due to our constraint in
the analysis as we explain later.

SOT/SP is ideally suited to detect the MHD waves propagated
along the flux tubes due to its high spatial and time resolution
and its high polarimetric and photometric precision (e.g., Ploner
& Solanki 1997). SOT/SP obtains two spectra of iron lines
(Fe i) with wavelengths of 630.15 nm and 630.25 nm, which
are suitable for observing lower photosphere (del Toro Iniesta
2003). Earlier studies about magnetic fluctuations were done
in sunspot umbra, since small-scale flux tube (∼1′′) fluctuations
might be difficult to detect. The high spatial resolution of Hinode
(∼0.′′16) allows us to detect the fluctuations in such small-scale
flux tubes. Furthermore, stable observations from space allow
us to detect clear intensity fluctuations for the first time, and to
obtain the phase relations among the fluctuations in the magnetic
flux, the velocity, and the intensity. This allows us to examine
the opacity effect more in detail.

For the detection of weak magnetic fluctuations, we prefer
to use the Stokes V signal instead of the Stokes Q or U signal
because of its much higher sensitivity to magnetic flux. We, thus,
intentionally choose magnetic concentrations located away from
the disk center to observe possible fluctuation of the transverse
magnetic field in the Stokes V signal and the associated velocity
signal. We estimate the magnetic field fluctuation associated

Table 1
List of Observed Magnetic Flux Concentrations

Region Date Time Pore or IMSa xb yb θ c

ID (UT) (′′) (′′) (deg)

01 2007 Feb 3 13:18–14:28 Pore 410 45 25
02 2007 Feb 3 14:28–15:38 Pore 410 −11 25
03 2007 Feb 3 12:08–13:18 IMS 410 −5 25
04 2007 Feb 3 19:15–20:27 Pore 460 46 29
05 2007 Feb 3 19:15–20:27 Pore 460 41 29
06 2007 Feb 3 19:15–20:27 IMS 460 −1 29
07 2007 Feb 3 19:15–20:27 Pore 460 −7 29
08 2007 Feb 4 01:28–02:42 IMS 510 42 32
09 2007 Feb 4 01:28–02:42 IMS 510 38 32
10 2007 Feb 4 07:56–09:10 IMS 560 −21 36
11 2007 Feb 4 14:28–15:37 IMS 602 35 39
12 2007 Feb 4 12:45–13:54 IMS 602 −5 39
13 2007 Feb 4 13:31–14:40 IMS 602 −27 39
14 2007 Feb 5 06:56–08:08 IMS 725 −10 49

Notes.
a IMS: Intergranular magnetic structure.
b X–Y coordinate of the target region. X is to the west and Y is to the north.
c Heliolongitudinal angle from the meridional line.

with the Alfvén waves to be about δB = 10 G by substituting
typical values for the photosphere (magnetic field strength of
a flux tube B0 = 2000 G, Alfvén speed vA = 20 km s−1, and
velocity fluctuation δv = 0.1 km s−1) to the relation about the
Alfvén wave δv/vA = δB/B0 (e.g., Priest 1981). A detection
limit of the longitudinal and transverse magnetic fields observed
by the SOT is known to be 1–5 G and 30–50 G, respectively
(Tsuneta et al. 2008a). This exercise demonstrates that the SOT/
SP can detect the transverse MHD waves in the Stokes V signal
with high signal-to-noise ratio, if such MHD waves are present
in the photosphere.

2. OBSERVATIONS AND DATA ANALYSIS

2.1. Hinode Observation

The data used in this paper were taken on 2007 February 3–5.
The region that we observed was NOAA 10940, which moved
from west 25.2 to 49 deg in longitude during the course of
the observation. The region consists of pores and magnetic flux
concentrations located in the intergranular lanes (Ishikawa et al.
2007), which we hereafter call intergranular magnetic structure
(IMS). The integration time is 4.8 s, and the field of view is 1.′′92
(EW) by 81.′′92 (NS). The pixel size is 0.′′16. Periodic scanning
was done by the SOT/SP for 1 hr or 3 hr depending on the flux
tubes with cadence of 67 s. This time resolution allows us to
detect MHD waves with a period longer than 134 s according
to the Nyquist criteria.

We analyzed 14 magnetic flux concentrations as tabulated in
Table 1. All these magnetic flux concentrations are of positive
polarity (magnetic field vector toward the observer). The region
05 is shown in Figure 1 as an example of the data. The region
05 contains a pore in a plage region.

2.2. Time-profile Data Analysis

We use the Stokes I and V profiles of the Fe i 630.25 nm line
to derive the velocity, the LOS magnetic flux, and the intensity.
The LOS velocity fluctuation (δvLOS) is derived by measuring
the Stokes V zero cross-position λc. The Stokes V profiles
reflect the motion of the magnetic atmosphere better than the
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Figure 1. Top: SOT filtergraph (FG) image taken in the Fe I 630.25 nm line
at 19:45 (UT) on 2007 February 3. The field of view is 217.′′1 (EW) × 108.′′5
(NS). The pixel size is 0.′′108. Exposure time is 90 ms. The black rectangular
box indicates the region 05 (Table 1). Bottom: zoomed SP images (Stokes I and
V) for the region 05 taken at 19:15–20:18 (UT) on 2007 February 3. Periodic
scanning was done by SP for about 1 hr with a cadence of 67 s. The integration
time is 4.8 s. The field of view is 2.′′08 (EW) × 81.′′92 (NS), part of which is
shown here. The pixel size is 0.′′16. The black region in the Stokes I map, which
corresponds to the white region in the Stokes V map, is a pore. These images
show that the pore lives for at least 1 hr.

Stokes I profiles, which also contain the information of the
nonmagnetic atmosphere. The LOS magnetic flux fluctuation
(δΦLOS) is derived with the help of weak field approximation
(Landi degl’Innocenti & Landolfi 2004) rather than relying on
the standard Milne-Eddington inversion (e.g., del Toro Iniesta
2003). The Milne-Eddington least-squares fit is performed to
the observed Stokes profiles of the Fe i 630.15 nm and Fe i

630.25 nm with 12 parameters, which may be subject to noise
that impedes the detection of fluctuation with amplitude as
small as δB/B0 ∼ 0.4%. In the weak field approximation, the
LOS magnetic flux is proportional to the degree of the circular
polarization CP defined by

CP ≡
∫ λc

λc−d1
V (λ)dλ − ∫ λc+d1

λc
V (λ)dλ

Icont
, (1)

where V (λ) is the Stokes profile observed with the SOT/SP,
λc is the measured zero cross-position of the observed Stokes
V profiles as described above, d1 is 43.2 pm, and Icont is the
continuum intensity. The observed Stokes I and V profiles
for the region 05 (Table 1) are shown in Figure 2 as an
example. Since the integration is done with respect to λc, and
the integration range is wide enough to encompass the entire
profiles, the integral should not have any cross talk with the
velocity. Intensity fluctuations in the line core (δIcore) and in the
continuum (δIcont) are derived from the line core intensity Icore
and continuum intensity Icont defined by

Icont ≡ 4

(∫ λc−d1

λc−d2

I (λ)dλ +
∫ λc+d2

λc+d1

I (λ)dλ

)
, (2)
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Figure 2. Stokes I profile (top) and Stokes V profile for the region 05 (Table 1).
Wavelength positions from a through g define the integration ranges specified
by λc , d1, d2, d3 in Equations (1)–(3). a through g indicate a: λc −d3, b: λc −d2,
c: λc − d1, d: λc , e: λc + d1, f: λc + d2, and g: λc + d3, respectively.

Icore ≡ 4

(∫ λc

λc−d3

I (λ)dλ +
∫ λc+d3

λc

I (λ)dλ

)
, (3)

where I (λ) is the Stokes I profile observed with the SOT/SP, d2
and d3 are 54.0 pm and 10.8 pm, respectively, and a factor of 4
is to adjust the difference in the integration range between CP
and I.

The intrinsic magnetic field strength (B0) and the filling
factor f are derived from the Milne-Eddington inversion to
accurately determine the Alfvén speed. The intrinsic magnetic
field strength B0 is used only for this purpose. The filling factor
is defined as the fraction of area occupied with the magnetic field
in a pixel (Orozco Suárez et al. 2007). The 12 free parameters
are intrinsic field strength (B0), inclination and azimuth for
magnetic field vector, line strength, Doppler width, damping
factor, Doppler velocity, source function, source gradient, macro
turbulence, filling factor (stray-light factor), and the Doppler
shift of the stray-light profile.

We should track the region of interest (ROI), for which the
wave analysis is performed, in a Lagrangian way for an extended
period of time. In the case of pores, the overall magnetic
structure is maintained over 1 hr as shown is Figure 1. In this
case, we set the ROI to cover a portion of a pore. The size of
the ROIs for pores is typically 2′′ × 2′′ to 2′′ × 5′′. The physical
parameters are averaged inside the ROI. On the other hand,
IMSs are generally not maintained for 1 hr: magnetic elements
may combine, split, or decay within a time period of several tens
of minutes. Thus, we set the ROI in this case large enough to
encompass the entire magnetic flux concentration in the spatial
and temporal domain, and average the physical parameters of
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Figure 3. Boxes in each image indicate the ROI for the wave analysis. Left:
SOT/SP images for the region 05 (Table 1). The ROI with size of 1.′′28 (EW)
× 0.′′64 (NS) is located inside the pore. Right: SOT/SP images for the region
10. The ROI contains IMS. The images show that the IMS is not maintained for
1 hr. The size of the ROI is 2.′′08 (EW) × 3.′′52 (NS).

the pixels with CP larger than 0.01 inside the ROI. The size of
the ROIs for IMSs is typically 1′′ × 1′′ to 2′′ × 4′′. Examples of
SP images for a pore (ID 05) and an IMS (ID 10) are shown in
Figure 3. The average LOS magnetic flux ΦLOS is given by

ΦLOS =
∑N

i=1 CPi

λN
, (4)

where N is the number of pixels inside the ROI for which CP is
larger than 0.01. λ is the conversion coefficient for converting
CP to magnetic flux. λ is estimated to be 4.16 × 10−5 G−1 in
the Appendix. Positive values for the LOS magnetic flux and
velocity indicate that they are directed toward the observer.

3. POWER SPECTRA AND PHASE RELATION

The top panels of Figure 4 show the time profiles of the LOS
magnetic flux, the LOS velocity, and the line core intensity for

the region 04 (Table 1). We applied the Fourier Transform to
all time profiles. The result for the region 04 is shown in the
bottom panels of Figure 4. The power spectra generally show
one or two isolated sharp peaks in the shorter periods, while
broader peaks are found in the longer periods, corresponding to
a gradual rise and fall in the time profiles. Some of the peaks
have the same period in the magnetic and velocity field, and the
photometric intensity. We found 20 such common peaks, which
are all tabulated in Table 2. We analyzed 29 flux tubes, and such
common peaks are found in 14 (48%) flux tubes, which are all
tabulated in Table 1.

We derive the root-mean-square (rms) amplitudes of the LOS
fluctuation in magnetic flux (δΦLOS,rms) and velocity (δvLOS,rms),
the line core intensity fluctuations (δIcore,rms), and the continuum
intensity fluctuations (δIcont,rms) at the peak periods in the
power spectra. We also obtain phase difference between the
fluctuations in the magnetic flux (φB), the velocity (φv), the line
core intensity (φI,core), and the continuum intensity (φI,cont);
φB − φv , φv − φI,core, φI,core − φB , and φI,core − φI,cont, all for
the peak periods. The phase relations between the fluctuations
in the magnetic flux, the velocity, and the intensity fluctuations
are of critical importance to identify modes and properties of
MHD waves as we will see later.

When xn is the raw time profile (0 � n � N − 1, where N
is the number of data points), then the complex amplitude Xk at
the frequency k in the frequency domain is converted to the rms
value of the wave amplitude Ak,rms and the phase θk as follows:

Xk = 1

N

N−1∑
n=0

xn exp

(
−2πikn

N

)
, (5)

Ak,rms =
√

2|Xk|, (6)

θk = arctan

[
Im(Xk)

Re(Xk)

]
. (7)

magnetic flux velocity intensity

time(min)l.o
.s

.m
ag

ne
tic

flu
x

(G
)

time(min)

l.o
.s

.v
el

oc
ity

(k
m

/s
)

time(min)no
rm

al
iz

ed
i n

te
ns

ity

period(min)

po
w

er
of

m
a g

ne
t ic

f lu
x

(G
2 /

m
in

)

period(min)

po
w

er
of

ve
lo

ci
ty

((k
m

/s
)2

/m
in

)

period(min)po
w

er
of

in
te

n s
i ty

(1
/m

in
)

Figure 4. Top: time profiles for the region 04 of Table 1: the LOS magnetic flux (left); the LOS velocity (center); and the line core intensity (right) as defined by
Equation (3). The intensity profile is normalized to the peak value of the time profile. Images of the region 04 are shown in Figure 1. Bottom: the power spectra of the
LOS magnetic flux (left), the LOS velocity (center), and the normalized line core intensity (right). The circles indicate the common, isolated peaks.
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Table 2
Physical Parameters Corresponding to the Principal Peak in the Power Spectra of All ROIs (Shown in Table 1) with Common Peaks in the Magnetic Flux, the

Velocity, and the Photometric Intensity

Region δΦLOS,rms
a Φ0,LOS

b δΦLOS,rms
Φ0,LOS

fc δvLOS,rms
d δIcore,rms

Icont
e δIrms,cont

Icont
e Pf φB − φv

g φv − φI,core
g φI,core − φB

g φI,core − φI,cont

ID (G) (103 G) (%) (m s−1) (%) (%) (minute) (deg) (deg) (deg) (deg)

01 17.1 1.16 1.48 0.77 70 0.58 0.38 4.0 −67 −103 170 −3
02 8.8 1.05 0.84 0.75 60 0.32 0.17 5.2 −57 −74 131 43
. . . 8.3 . . . 0.79 . . . 68 0.55 0.25 4.9 −58 −123 −179 16
. . . 9.4 . . . 0.90 . . . 57 0.59 0.29 4.0 −54 −110 164 15
03 8.9 0.78 1.14 0.65 86 0.47 0.36 5.2 −74 −70 145 −5
04 10.0 1.02 0.98 0.73 36 0.57 0.28 3.4 −94 −107 −159 −12
05 13.8 0.97 1.42 0.81 120 0.97 0.89 4.9 −57 −73 130 14
06 4.4 0.67 0.66 0.56 76 0.27 0.11 5.2 −71 −47 118 12
07 9.8 1.08 0.91 0.72 67 0.36 0.34 7.6 −67 −41 108 19
. . . 7.7 . . . 0.71 . . . 59 0.35 0.25 4.3 −96 −76 172 11
08 3.9 0.54 0.72 0.49 77 0.37 0.30 7.6 −58 −61 119 14
. . . 3.5 . . . 0.65 . . . 62 0.28 0.12 6.8 −58 −120 178 22
09 4.8 0.46 1.04 0.46 98 0.74 0.53 5.7 −60 −85 145 14
10 4.5 0.51 0.88 0.57 34 0.19 0.12 7.6 −105 −156 −99 −21
11 7.4 0.47 1.57 0.52 35 0.92 0.58 7.6 −102 −87 179 16
12 4.5 0.58 0.78 0.53 44 0.25 0.15 5.7 −38 −46 84 16
. . . 3.5 . . . 0.60 . . . 82 0.41 0.30 5.2 −48 −100 148 8
13 5.1 0.73 0.70 0.61 73 0.39 0.18 5.2 −48 −71 118 4
. . . 6.4 . . . 0.88 . . . 47 0.47 0.26 4.5 −55 −93 138 21
14 6.4 0.39 1.64 0.43 40 0.20 0.11 8.5 −77 −88 165 −7

Notes.
a rms (root mean square) LOS (line-of-sight) magnetic flux amplitude.
b LOS magnetic flux from Milne-Eddington inversion.
c Average filling factor.
d rms LOS velocity amplitude.
e rms intensity fluctuation normalized by the average intensity for line core and continuum.
f Period.
g Phase difference between magnetic, velocity, line core intensity, and continuum intensity fluctuations.

We calculate these values for all the peaks, and Table 2 lists
the LOS magnetic flux Φ0,LOS = B0,LOSf , where B0,LOS is
the LOS magnetic field and f is the average filling factor,
both of which are derived from Milne-Eddington inversion,
the rms LOS magnetic flux fluctuations (δΦLOS,rms),

δΦLOS,rms

Φ0,LOS
,

the rms LOS velocity fluctuations (δvLOS,rms), the rms line
core and continuum intensity fluctuations normalized by the
average intensity, δIcore,rms

Icore
and δIcont,rms

Icont
, and the phase difference

among magnetic, velocity, and intensity fluctuations; φB − φv ,
φv − φI,core, φI,core − φB , and φI,core − φI,cont derived from
Equation (7).

There are 8 cases for pores and 12 cases for IMSs where
magnetic, velocity, and intensity fluctuations have strong power
at the same periods. The histograms of the phase difference and
period for 20 such common peaks are shown in Figure 5. The
histograms for the phase difference show striking concentrations
at around −90◦ for φB − φv and φv − φI,core, at around 180◦
for φI,core − φB , and at around 10◦ for φI,core − φI,cont. Here,
for instance, φB − φv ∼ −90◦ means that the velocity leads the
magnetic field by a quarter of cycle. The periods are around 3–5
minutes for pores, while the periods are around 4–9 minutes for
IMSs. There is no power between 134 s (the detection limit due
to the Nyquist criteria, see Section 2.1.) and 204 s (region 04 in
Table 2).

As pointed out in Section 2.2, no cross talk should be expected
in the LOS magnetic signal from the velocity fluctuations.
Furthermore, the phase difference between the magnetic flux
and the velocity fluctuations, φB − φv , if caused by the cross
talk, should be 0◦ or 180◦, while the observed phase difference

shows a strong concentration at around −90◦. A similar phase
relation is obtained by Bellot Rubio et al. (2000) for sunspot
umbrae. On the other hand, Rüedi & Solanki (1999) and Norton
et al. (1999) came to an opposite conclusion that the magnetic
field leads the velocity by about a quarter of a cycle.

4. INTENSITY FLUCTUATION

Previous authors (e.g., Bellot Rubio et al. 2000) detected
fluctuations in the magnetic field strength and the velocity for
a sunspot umbra, and obtained a phase difference of ∼90◦.
They concluded that the observed fluctuations in magnetic field
strength is mainly caused by the opacity effect. Temperature
and density fluctuations associated with the propagation of a
hydrodynamic (acoustic) or MHD (magnetoacoustic) wave may
cause the opacity fluctuation that moves the line formation layer
upward or downward, resulting in an apparent magnetic field
fluctuation, if the magnetic field has a gradient with geometrical
height (dB/dz). This is called the opacity effect.

In this section, we consider whether the observed fluctuation
is due to the opacity effect. The photometric intensity that we
observe is given by

I =
∫ τ

0

σT (τ )4

π
e−τ dτ, (8)

where T is the local temperature at the optical depth τ . The
intensity modulation can take place due either to change in the
temperature or to change in the optical depth, which depends
on the density and the temperature in the optical path. The
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Figure 5. Left: histograms of the phase difference between fluctuations in the magnetic flux, the velocity, the line core intensity, and the continuum intensity, φB − φv

(top left), φv − φI,core (top right), φI,core − φB (bottom left), and φI,core − φI,cont (bottom right). Solid lines indicate the phase difference for pores and IMSs, while
dashed lines indicate the phase difference for pores only. The histograms show striking concentrations at around −90◦ for φB − φv and φv − φI,core, at around 180◦
for φI,core − φB , and at around 10◦ for φI,core − φI,cont. Right: histogram of the periods of the common peaks in the power spectra. The peak periods are around 3–
5 minutes for pores, while the peak periods for IMSs are around 4–9 minutes.

opacity effect involves the second term (e−τ ). Fluctuation in
intensity indicates a compressive nature of the fluctuation due
to the first term ( σT (τ )4

π
) and/or due to the second term (e−τ )

in Equation (8). Thus, waves with low intensity fluctuation,
especially those with an intensity fluctuation close to zero, can be
considered to be a incompressible mode (such as the kink mode),
while those with high intensity fluctuation can be considered to
be a compressible mode (such as the sausage mode).

The top panels of Figure 6 show the histograms of the line core
(δIcore,rms) and the continuum (δIcont,rms) intensity fluctuations
normalized by the average intensity Icore and Icont;

δIcore,rms

Icore
(core

fluctuation) and δIcont,rms

Icont
(continuum fluctuation) for all the peaks.

The relation between the core and the continuum fluctuations is
shown in the bottom panel of Figure 6. The scatter plot indicates
that the fluctuation at the line core is larger than the continuum
fluctuation for all the peaks, and that the line core and the
continuum fluctuations are linearly correlated. A linear fitting
between the line core and the continuum fluctuations is given
by

δIcont,rms

Icont
= 0.79

δIcore,rms

Icore
− 0.00066. (9)

The cross-correlation coefficient is 0.91. Figure 5 shows that
phase difference between the intensity fluctuation in the core
and in the continuum, φI,core − φI,cont, has a concentration at
around 10◦ ± 14◦.

We here consider the opacity effect due either to the density or
to the temperature fluctuations. First we assume only the density
fluctuation (without the temperature fluctuation). Magnetic field
strength is smaller with height (dB/dz < 0) because of the
canopy structure of magnetic flux tubes. Since the observations
are carried out with 25.◦2–49◦ deg away from the normal, we
simply assume here that the magnetic field strength along

continuum line core
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Figure 6. Top: histograms of continuum δIcont and line core δIcore intensity
fluctuations normalized by the average intensity Icont and Icore, δIcont,rms

Icont
(left)

and δIcore,rms

Icore
(right; solid lines). Dashed lines indicate histograms for pores.

Bottom: scatter plot between the intensity fluctuations δIcont,rms

Icont
and δIcore,rms

Icore
.

The solid line indicates the linear regression line.

the LOS decreases with height in the following discussion.
The temperature is lower with height below the temperature
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minimum. When the atmosphere in the line formation layer is
compressed (or decompressed), the line formation layer moves
upward (downward), because the opacity along the LOS in
the flux tube increases (decreases). When the line formation
layer moves upward (or downward), both the magnetic field
strength and the intensity decrease (increase). Therefore, the
observed magnetic field strength and the constant temperature
intensity fluctuation caused by the opacity effect should have
had the phase difference of 0◦, while the observed phase
differences φI,core − φB have a concentration at around 180◦.
Thus, the observed phase difference is not consistent with
that caused by the opacity effect, if the opacity effect is
caused only by the density fluctuation without temperature
fluctuation.

On the other hand, the line formation layer may be com-
pressed (or decompressed) under the adiabatic condition. We
here consider the opacity effect due to temperature, assuming
that the optical depth τ depends only on the temperature. The
dominant absorber in the visible wavelengths is the H− ion (e.g.,
Stix 2002). The populations of H− and H i are related with the
Saha equation (Rutten 2003; Equation (8.2)):

log
N (H I)

N (H−)
= − 0.1761 − log Pe + log

U (H I)

U (H−)

+ 2.5 log Te − 5040χ

Te

, (10)

where Pe is the electron pressure, Te is the electron temperature,
χ is the ionization energy from H− to H, N (H−) and N(H i)
are the population densities of H− and H i, and U (H−) and
U(H i) are the partition function of H− and H i. Equation (10)
indicates that the population of H− depends highly on the
temperature, and decreases with the temperature in the case of
the adiabatic compression, while the population depends weakly
on the pressure, and increases with the pressure in the constant
temperature case. Thus, we cannot determine the population of
H− in the actual situation without employing a model taken
into account the radiation exchange between the inside and the
outside of the flux tubes.

We point out that regardless of mechanism to change the
opacity, the phase difference between the fluctuations in the
magnetic field and the intensity (φI − φB) depends only on
the sign of magnetic gradient along the LOS when the line
formation height moves upward or downward due to the lateral
expansion and the contraction of the tube. The flux tubes that we
observed were located 25.◦2–49◦ deg away from the sun center.
If the magnetic field strength decreases with height along the
oblique LOS, the phase difference between the fluctuations in
the magnetic field and the intensity, φI − φB, should have been
0◦, whereas we obtained φI − φB ∼ 180◦. Therefore, the phase
relation between the fluctuations in the magnetic field and the
intensity from the observation would not be consistent with
that caused by the opacity effect under the assumption of the
decreasing field strength with height along the LOS.

If the effect of the adiabatic compression (or decompression;
first term in Equation (8)) is larger than the opacity effect due
to the density and/or temperature fluctuation (second term in
Equation (8)), the phase difference between the magnetic field
strength and the intensity fluctuation is 0◦ for the case of the
fast-mode wave, while that is 180◦ for the case of the slow-
mode wave. Thus, we can rule out the fast-mode wave, since
the observed phase difference is close to 180◦.

z

l.o.s.
l.o.s.

Figure 7. Left: kink-mode MHD wave. Right: sausage-mode MHD wave.

5. KINK-MODE MHD WAVES

In this chapter, we examine whether the observed properties of
waves are consistent with the kink-mode MHD waves (Figure 7).
Though the magnetic and velocity fluctuations that we observe
could be either parallel or perpendicular to the flux tubes, we
here consider the possibility that the observed fluctuations are
transverse to the magnetic field. As discussed in Section 4,
Figure 6 shows that some of the fluctuations has very small
intensity fluctuation. Since the kink mode is essentially of
noncompressive nature, those fluctuations with little intensity
fluctuation may dominantly have properties of the kind mode.

5.1. Reflection of Kink Waves

The dispersion relation of the kink mode neglecting grav-
itational stratification is given by (e.g., Spruit 1981; Edwin
& Roberts 1983; Moreno-Insertis et al. 1996; Ryutova &
Khijakadze 1990)

ck = ω

k
= vA

√
ρi

ρi + ρe

, (11)

where ck is the phase speed of the kink mode, ω is the
frequency, k is the wave number, vA is the Alfvén speed, ρi is
the density inside the flux tube, and ρe is the density outside
the flux tube. The transverse displacement of the flux tube
δx with geometrical height z and time t can be expressed
as δx(z, t) = x0 cos(ωt ± kz), where x0 is the amplitude of
the transverse displacement. The transverse magnetic field and
velocity component are given by

δB = B0
∂(δx)

∂z
= ∓B0k sin(ωt ± kz), (12)

δv = ∂(δx)

∂t
= −ω sin(ωt ± kz), (13)

where B0 is the vertical magnetic field strength. From Equa-
tions (11)–(13), we obtain

δB

B0
= ± δv

ω/k
, (14)

δB = ±
√

4π (ρi + ρe)δv. (15)
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The phase relation of the kink mode is the same as that of
the Alfvén mode. Magnetic field is directed away from the
Sun in our case. If the kink wave propagates to the direction
same as that of magnetic field vector, minus sign should be
taken, and vice versa. If a pure ascending or descending kink
wave propagates toward the observer along magnetic field,
phase difference between the magnetic field and the velocity
fluctuations (φB − φv) should, therefore, have been 180◦ or 0◦,
respectively. Figure 5 shows that this is not the case.

We then consider a superposition of the ascending kink wave
and the descending waves, which is the reflected ascending
wave at the photosphere-chromosphere boundary. When the
ascending and the descending kink waves coexist in the line
formation layer, the superposed wave form is determined by
six variables δBu, δvu, φu, δBd, δvd , and φd , which indicate the
amplitude of the magnetic field fluctuation (δB), the amplitude
of the velocity field fluctuation (δv), and the initial phase (φ)
of upward (subscript u) and downward (subscript d) waves.
When magnetic field vector is toward the observer, the transverse
magnetic field and velocity displacement of the superposed kink
wave are given by

δB = −δBu cos(ωt + φu) + δBd cos(−(ωt + φd )), (16)

δv = δvu cos(ωt + φu) + δvd cos(−(ωt + φd )). (17)

Note that the phase difference between magnetic and velocity
fluctuations in the ascending kink wave is 180◦, while that in
the descending kink wave is 0◦. This fact is reflected in the sign
of each term in Equations (16) and (17). We can rewrite these
equations as follows:

δB = δBs cos(ωt + φB), (18)

δv = δvs cos(ωt + φv), (19)

where δBs and δvs are the magnetic and the velocity amplitudes
of the superposed kink wave, and φB and φv are phases of the
magnetic field and the velocity of the superposed kink wave. In
Equations (18) and (19), δBs , δvs , φB , and φv are given by

δBs =
√

δB2
u + δB2

d − 2δBuδBv cos(φu − φd ), (20)

cos φB = δBu sin φu − δBd sin φd

δBs

, (21)

sin φB = −δBu cos φu + δBd cos φd

δBs

, (22)

δvs =
√

δv2
u + δv2

d + 2δvuδvv cos(φu − φd ), (23)

cos φv = −δvu sin φu − δvd sin φd

δvs

, (24)

sin φv = δvu cos φu + δvd cos φd

δvs

. (25)

From Equation (15), we obtain δv
δB

= 1√
4π(ρi+ρe)

. Therefore,
we obtain the following relation among the quantities in

Equations (16) and (17):

δvu

δBu

= δvd

δBd

. (26)

Using Equations (20)−(26), the following phase difference
between magnetic and velocity fluctuations is obtained:

cos(φB − φv) = cos φB cos φv + sin φB sin φv,

= −δBuδvu + δBdδvd

δBsδvs

= δBu/δvu

δBsδvs

(−δv2
u + δv2

d

)
= δvu/δBu

δBsδvs

(−δB2
u + δB2

d

)
. (27)

This equation shows that the phase difference between the
magnetic and the velocity fluctuations (φB − φv) should be
−90◦ or 90◦ when the amplitude of the reflected descending
kink wave is exactly the same as that of ascending kink wave
(i.e., δvu = δvd and δBu = δBd ). The observed phase relation
is consistent with this prediction.

5.2. Standing Kink Waves

The transverse displacement of magnetic field line in the
presence of upward (δxu) and downward (δxd ) kink wave is
written as a function of height (z) and time (t):

δxu(t, z) = xu0 cos(ωt + kz + φu), (28)

δxd (t, z) = xd0 cos(ωt − kz + φd ), (29)

where xu0, xd0, φu, and φd are the transverse amplitude and the
initial phase of the magnetic field line fluctuation in the presence
of the upward (subscript u) and the downward (subscript d)
kink wave. When xu0 = xd0 ≡ x0, which corresponds to the
case for perfect reflection, the transverse displacement δxs of
the magnetic field line in the presence of the superposed kink
waves is given by

δxs(t, z) = δxu(t, z) + δxd (t, z)

= 2x0 cos

(
ωt +

φu + φd

2

)
cos

(
kz +

φu − φd

2

)
.

(30)

Equation (30) shows that the superposed kink wave, if with
perfect reflector, is a standing wave. Sketches of standing kink
wave are shown in Figure 8. Whether the phase difference is 90◦
or −90◦ depends on the distance from the reflection boundary
(node).

5.3. Phase Difference

We here give one interpretation for the concentration of
the phase difference at around −90◦ (Figure 8). When the
ascending kink wave is reflected back at chromosphere-corona
boundary, and the ascending and the descending kink waves
coexist in the line formation layer beneath the reflector, the phase
difference between the magnetic and the velocity fluctuations
should have been either 90◦ or −90◦, while observed phase
angle concentrates at around −90◦. Whether the phase angle
is 90◦ or −90◦ depends on the distance between the reflector
and the line formation layers (Figure 8). The concentration
at −90◦ indicates that the separation between the reflecting
boundary and the line formation layer is fixed for all the flux
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(e)

(b)

(c)

(d)

(f)
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(h)

B0

(1) (2) (3) (4)

node nodeanti-node anti-node

node/boundary

(a)

(1) (2) (3) (4)

Figure 8. Top: standing kink wave along magnetic field line B0 is divided into
four parts (1) through (4) each separated by nodes and antinodes. Bottom: time
evolution of the standing kink waves. The wave evolves from (a) to (h), and
goes back to (a). The arrows with filled box indicate velocity vector, while the
arrows with circle indicate perturbed component of magnetic field vector. The
length of the arrows indicates the magnitudes of the vector at certain space and
time points. Schematic representation of the standing kink wave shows that the
phase difference between magnetic and velocity fluctuations (φB −φv) is −90◦
at the portions (1) and (3), and 90◦ at the portions (2) and (4).

tubes such that it corresponds to −90◦ phase difference. If we
perform similar observations with different absorption lines with
different formation height, and the difference in height is larger
than the quarter of the wavelength (800 km), this conjecture can
be verified.

5.4. Leakage of Poynting Flux to Corona

The Poynting flux above the reflecting layer is the Poynting
flux of the ascending kink wave minus the Poynting flux of
the descending kink wave in the line formation layer. We here
estimate the effective or residual upward-directed Poynting flux
along a flux tube above the reflector. The Poynting flux of

the kink wave is given by F = f B0

4π
(δBrmsδvrms), so that the

difference of the Poynting flux between the ascending and the
descending kink waves is given by

	F = f B0

4π
(δBu,rmsδvu,rms − δBd,rmsδvd,rms), (31)

where δBu,rms = δBu/
√

2, δvu,rms = δvu/
√

2, δBd,rms =
δBd/

√
2, and δvd,rms = δvd/

√
2. Using Equation (27), we can

rewrite the equation as follows:

	F = −f B0

4π
(δBs,rmsδvs,rms) cos(φB − φv), (32)

where δBs,rms = δBs/
√

2, and δvs,rms = δvs/
√

2. It turns out
that the effective upward-directed Poynting flux is proportional
to cos(φB − φv). δBs,rms and δvs,rms in Equation (32) are related

boundary (node)

z

line formation layer

(a)

(b)

(a)

(b)

(a)

O (b)

(a)

(b)

(a)

(b)

(a)

Figure 9. Standing kink wave (left) and the standing slow sausage wave (right).
The phase difference between the fluctuations in the magnetic field and the
velocity (φB −φv) is 90◦ in the sector (a) and −90◦ in the sector (b). The arrows
indicate the transverse motion of the magnetic fields at the antinodes.

to the observables, assuming that the fluctuations are transverse
(i.e., normal to the flux tubes):

δBs,rms = δΦLOS,rms

f sin θ
, (33)

δvs,rms = δvLOS,rms

sin θ
, (34)

where θ is heliolongitudinal angle from the meridional line.
If the phase difference from −90◦ is just 6◦ as an exercise,
i.e., φB − φv = −96◦, we obtain 	F = 2.7 × 106 erg cm−2

s−1 by substituting B0 = 1.7 × 103 G, δΦLOS,rms = 7.7 G,
δvLOS,rms = 0.059 km s−1, f = 0.73, and θ = 29◦ (region 07).
Therefore, even if we observe the considerable reflected wave
in the photospheric layer with SOT/SP, there will be substantial
leakage of the upward kink wave toward chromosphere and
corona in terms of the energy flux required for the coronal
heating (∼3 × 105 erg cm−2 s−1 for the quiet Sun; Withbroe &
Noyes 1977).

5.5. Seismology of Photospheric Flux Tubes

We show in this chapter that various physical parameters
that characterize the magnetic flux tubes are obtained simply
from the amplitude and period of the magnetic and velocity
fluctuations. We estimate the physical parameters for the region
02. The intensity fluctuation is 0.17%–0.25% in continuum
(Table 2), and we assume that the observed fluctuation is due to
the superposition of upward and downward kink waves.

We define the coronal/chromospheric boundary, which is
considered to be a reflector, to be the origin of the z-axis, which
is normal to the solar surface (away from the Sun). A schematic
behavior of the standing kink wave is shown in the left panel
of Figure 9. Substituting φu+φd

2 = 0 (without losing generality)
and φu−φd

2 = π
2 (to make the height at z = 0 the node) into

Equation (30), the transverse displacement of the flux tube is
given by

δxs(t, z) = 2x0 cos(ωt) sin(kz). (35)
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The transverse components of the magnetic field and the velocity
are given by

δBs(t, z) = B0
∂δxs

∂z
= 2B0x0k cos(ωt) cos(kz), (36)

δvs(t, z) = ∂δxs

∂t
= −2x0ω sin(ωt) sin(kz). (37)

Equations (36) and (37) indicate that the phase difference
between the fluctuations in the magnetic field and the velocity,
φB − φv , is{

90◦ for
(
n + 1

2

)
π � kz � (n + 1)π (sector (a) in Figure 9),

−90◦ for nπ � kz �
(
n + 1

2

)
π (sector (b) in Figure 9),

(38)

where n = −1,−2,−3, . . .. Equation (38) indicates that the
observed phase difference φB − φv ∼ −90◦ is consistent with
the situation that the line formation height is located in the sector
(b). From Equations (11), (36), and (37), we have

|δvs |
|δBs | = ω/k

B0
| tan(kz)| = | tan(kz)|√

4π (ρi + ρe)
, (39)

ρi + ρe =
( |δBs |

|δvs |
)2 | tan(kz)|2

4π
, (40)

where |δBs | and |δvs | are the amplitude of the fluctuations in the
magnetic field and the velocity, and are the function of height z.
|δBs | and |δvs | in Equation (40) are related to the observables:

|δBs | =
√

2δΦLOS,rms

f sin θ
, (41)

|δvs | =
√

2δvLOS,rms

sin θ
. (42)

Assuming that the flux tubes that we observe here are in pressure
equilibrium, and do not have a helical structure (azimuthal
component), the equation for the pressure equilibrium for the
flux tube is simply expressed as

B2
i

8π
+

ρi

m
kBTi = B2

e

8π
+

ρe

m
kBTe, (43)

ρeTe − ρiTi = m

8πkB

(
B2

i − B2
e

)
, (44)

where B, ρ, and T are the magnetic field strength, the mass
density and the temperature, and the subscripts i and e indicate
the inside and the outside of the flux tube, respectively, m is the
average particle mass, and kB is the Boltzmann constant. From
Equations (40) and (44), we can determine ρi and ρe assuming
that outside the flux tube is field-free (Be = 0 G), as is inferred
by the observations.

The line formation height in the umbra is deeper than that
in the quiet Sun, because of the lower temperature and density
(e.g., Stix 2002). The Wilson depression for the flux tube with
B ∼ 2000 G reaches about 300–400 km (Deinzer 1965; Mathew
et al. 2004). The temperature and the average molecular weight

at the height ∼ −350 km is Te = 1.0 × 104 K and μ = 1.2
(from Table 2.4, Stix 2002). Since the temperature inside the flux
tube is lower than that outside the flux tube in the subsurface
region (Maltby et al. 1986), we assume Ti = 7.0 × 103 K.
We choose kz = −496◦ (see Section 6.3 for justification to
choose the value). Substituting m = μmp = 1.9 × 10−24

g, where mp is the proton mass, kB = 1.4 × 10−16 erg K−1,
Bi = B0 = 1.9 × 103 G, δΦLOS,rms = 8.8 G, δvLOS,rms = 0.060
km s−1, f = 0.75, and θ = 29◦, we obtain mass densities
ρi = 5.1 × 10−8 g cm−3 and ρe = 2.3 × 10−7 g cm−3.
The number densities inside and outside the flux tube are
ni = ρi

m
= 2.7 × 1016 cm−3 and ne = ρe

m
= 1.2 × 1017

cm−3, respectively. The mass density for the height of −300
to −400 km is ρe = 3.5–4.5 × 10−7 g cm−3 (from Table 6.1,
Stix 2002). This is consistent with our estimation within a factor
of 2.

We also estimate other physical parameters associated with
the flux tube: (1) Alfvén speed inside the flux tube vA,i = Bi√

4πρi
;

(2) plasma β = ρikBT /m

B2
i /8π

inside the flux tube in the line formation

layer; (3) wavelength of the kink mode L = vA,i

√
ρi

ρi+ρe
P ,

where P is the fluctuation period; (4) propagation time of fast
magnetoacoustic wave across the flux tube τ = R√

v2
A,i+c2

s

, where

R is the tube radius; and (5) distance between the boundary
and the line formation layer d = L

|kz|
360 . Other obvious useful

parameters are the pressure scale height H = kBT
mg

, where g
is the gravity in the solar surface, and the sound speed in the

photosphere cs =
√

γ kBT

m
, where γ is the adiabatic coefficient.

Substituting Bi = 1.7 × 103 G, ρi = 5.1 × 10−8 g cm−3,
ρe = 2.3 × 10−7 g cm−3, g = 2.7 × 104 cm s−2, P = 312 s,
γ = 5/3, and R = 2000 km (case 02), we obtain vA,i = 24 km
s−1, β = 0.18, L = 3.1 × 103 km, τ = 75 s, d = 4.3 × 103

km, H = 3.9 × 102 km, and cs = 11 km s−1. The propagation
time of the fast magnetoacoustic wave across the flux tube τ is
less than the oscillation period P, and this is consistent with the
assumption of the kink wave.

Mathew et al. (2004) calculated the physical parameters
(magnetic pressure, gas pressure, Wilson depression, and plasma
β) for a sunspot by performing an inversion to infrared SP
profiles, and the derived plasma beta for the umbra β ∼ 0.5.
Rüedi et al. (1992) also performed an inversion to the infrared
lines, and obtained the plasma β ∼ 0.25 at z = 0 km
in the plage region. The plasma beta is generally higher at
z = −350 km, following the increase in the mass density
(Stix 2002).

As demonstrated here, we are potentially able to obtain all
the physical parameters of the flux tube from the information
on the MHD fluctuations. This indicates that seismology of
magnetic flux tubes is possible with multiple lines corresponding
to different height (photosphere and chromosphere) of the solar
atmosphere.

6. SAUSAGE-MODE MHD WAVES

We here consider the alternative possibility that the observed
magnetic and velocity fluctuations are due to the longitudinal
MHD waves or the slow sausage-mode oscillation (Figure 7;
M. P. Ryutova 2009, private communication; Defouw 1976;
Roberts & Webb 1978; Ryutova 1981).
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6.1. Phase Relation for Propagating Wave

We consider a slow-mode perturbation propagating along
a cylindrical flux tube, neglecting gravitational stratification,
following M. P. Ryutova (2009, private communication). We
assume that the magnetic and velocity fluctuations with higher
intensity fluctuation (Figure 6) may have the sausage-mode
nature. The momentum equation perpendicular to the flux tube
is given by

B0‖δB‖
4π

+ δp = 0, (45)

where the subscript 0 means these values in unperturbed state,
and δ means perturbation of these values. We have the relation
under the adiabatic condition

δp = c2
s0δρ, (46)

and the flux conservation is given by

B0‖δS + δB‖S0 = 0. (47)

The momentum equation parallel to the flux tube is (substituting
Equation (46))

ρ0
∂δv‖
∂t

= −∂δp

∂z
= −c2

s0
∂δρ

∂z
, (48)

and the continuity equation is

∂

∂t
(δρS0 + δSρ0) + S0ρ0

∂δv‖
∂z

= 0, (49)

where S = πR2, B‖, ρ, p, and v‖ are the cross section of the flux
tube, the longitudinal magnetic field, the density, the pressure,
and the longitudinal velocity, respectively, and cs,0 is the sound
speed. From Equations (44)–(47), we have

δB‖ = −4πδp

B0‖
= −4πc2

s0

B0‖
δρ, (50)

δS = −S0
δB‖
B0‖

= S0
4πc2

s0

B2
0‖

δρ. (51)

The continuity equation (Equation (49)) becomes(
1 +

4πc2
s0ρ0

B2
0‖

)
∂δρ

∂t
+ ρ0

∂δv‖
∂z

= 0. (52)

Taking the time derivative, and substituting Equation (48), we
have the dispersion relation:(

1 +
4πc2

s0ρ0

B2
0‖

)
∂2δρ

∂t2
− c2

s0
∂2δρ

∂z2
= 0. (53)

We therefore obtain the phase velocity of the slow sausage-mode
cT (c.f. Edwin & Roberts 1983),

c2
T = c2

s0v
2
A

c2
s0 + v2

A

, (54)

where vA is the Alfvén velocity.

Hereafter, we define positive as away from the solar surface.
We consider a simple sinusoidal wave propagating upward
(k > 0) or downward (k < 0) along the flux tube of positive
(B‖ > 0) or negative (B‖ < 0) polarity:

δρ = δρ̃cos(ωt − kz) (ω = kcT ), (55)

where δρ̃ is the amplitude of the density fluctuation. Substituting
Equation (50), we have

δB‖ = −4πc2
s0δρ

B‖
= −4πc2

s0

B‖
δρ̃cos(ωt − kz), (56)

and we have from Equation (48)

ρ0
∂δv‖
∂t

= −c2
s0kδρ̃sin(ωt − kz). (57)

Taking the integration with time (neglecting integration con-
stant), we have

δv‖ = c2
s0

cT

δρ̃

ρ0
cos(ωt − kz). (58)

Assuming that the flux tube has an axisymmetric sausage
oscillation, the transverse velocity averaged over the whole
pixels within the flux tube should be canceled out. Thus, what
we detect as a clear strong peak in the LOS velocity must be
longitudinal, if the fluctuation is due to the propagating slow
sausage mode.

From Equations (55), (56), and (58), we have the phase
relations between the fluctuations in the magnetic field, the
velocity, and the density:

δρ

δB‖
= − B‖

4πc2
s,0

, (59)

δB‖
δv‖

= −4πcT ρ0

B‖
, (60)

δv‖
δρ

= c2
s,0

cT ρ0
. (61)

Equation (60) indicates that the phase difference between
the fluctuations in magnetic field and the velocity, φB − φv ,
in the propagating wave with slow sausage mode is 0◦ or
180◦, depending on the direction of magnetic field and wave
propagation, whereas we observed φB − φv ∼ −90◦. Thus, we
can rule out the possibility that the observed fluctuations are due
to the propagating wave with slow sausage mode.

6.2. Phase Relation for the Standing Sausage Wave

We here consider the superposition of the ascending and the
descending slow sausage waves with the same amplitude of the
density fluctuation, assuming B‖ > 0 from our observation

δρ = δρ̃[cos(kcT t − kz + φu) + cos(kcT t + kz + φd )]

= δρ̃cos

(
kcT t +

φu + φd

2

)
cos

(
kz +

φu − φd

2

)
, (62)

where φu and φd are the initial phases of the upward and
downward propagating waves with slow sausage mode, and
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k > 0 without losing generality. From Equations (50) and (62)
we have

δB‖ = −4πc2
s0

B‖
δρ̃cos

(
kcT t +

φu + φd

2

)
cos

(
kz +

φu − φd

2

)
,

(63)

and from Equations (48) and (62) we have

δv‖ = c2
s0

ρcT

δρ̃sin

(
kcT t +

φu + φd

2

)
sin

(
kz +

φu − φd

2

)
.

(64)

Equations (62) and (63) indicate that the phase difference
between the fluctuations in the magnetic field and the density is
180◦.

Equations (63) and (64) indicate that the phase difference
between the fluctuations in the magnetic field and the velocity,
φB − φv , is 90◦ or −90◦, depending on the location of the line
formation layer (right panel of Figure 9). The observed phase
relation between the fluctuations in the magnetic field and the
velocity is −90◦.

In the previous section, we discussed that waves with low
intensity fluctuation be considered to be a incompressible mode
(such as the kink mode), while those with high intensity
fluctuation is considered to be a compressible mode (such as
the sausage mode). However, Equation (62) indicates that the
density fluctuation and the resultant intensity fluctuation are
zero at the nodal points for the standing sausage wave. Thus,
there may be cases that the standing sausage wave may not show
intensity fluctuation with large amplitude.

6.3. Seismology of Photospheric Flux Tubes

We here show that the seismology of magnetic flux tubes is
also possible for the sausage MHD oscillation. We assume that
the observed fluctuation is due to the superposition of upward
and downward compressible sausage waves for the region 05.
This is justified by the fact that the region 05 has very high
intensity fluctuation (Table 2).

A schematic behavior of the standing sausage wave is shown
in the right panel of Figure 9. Substituting φu+φd

2 = 0 (without
losing generality) and φu−φd

2 = π
2 (to make the height at z = 0

the node) into Equations (62)–(64), the variations of the density,
the longitudinal magnetic field, and the longitudinal velocity are
given by

δρ = −δρ̃cos(kcT t)sin(kz), (65)

δB‖ = 4πc2
s0

B‖
δρ̃cos(kcT t)sin(kz), (66)

δv‖ = c2
s0

ρcT

δρ̃sin(kcT t)cos(kz). (67)

Equations (66) and (67) indicate that the phase difference
between the fluctuations in the magnetic field and the velocity,
φB − φv , is given by{

90◦ for nπ � kz �
(
n + 1

2

)
π (sector (a) in Figure 9),

−90◦ for
(
n + 1

2

)
π � kz � (n + 1)π (sector (b) in Figure 9),

(68)

where n = −1,−2,−3, . . .. Equation (68) indicates that the
observed phase difference φB − φv ∼ −90◦ is consistent
with the situation that the line-forming layer is located in the
sector (b).

Equations (66) and (67) are reduced to

|δB‖|
|δv‖| = 4πc2

s,0δρ̃| sin(kz)|/B‖
c2
s,0δρ̃| cos(kz)|/ρcT

= 4πρcT | tan(kz)|
B‖

, (69)

where |δB‖| and |δv‖| are amplitudes of longitudinal fluctuations
in the magnetic field and the velocity. B‖, |δB‖|, and |δv‖| are
related to the observables:

B‖ = B0, (70)

δB‖ =
√

2δΦLOS,rms

f cos θ
, (71)

δv‖ =
√

2δvLOS,rms

cos θ
. (72)

Since cs =
√

γ kBT

m
and vA = B‖√

4πρ
,

c2
T = c2

s v
2
A

c2
s + v2

A

= γ kBT B2
‖

4πργ kBT + B2
‖m

. (73)

From Equations (69) and (73), we have

( |δB‖|
|δv‖|

)2
= (4πρ)2γ kBT | tan(kz)|2

4πργ kBT + B2
‖m

. (74)

Equation (74) leads to a second-order equation for ρ:

a1ρ
2 − a2ρ − a3 = 0, (75)

a1 = (4π |δv‖|)2γ kBT | tan(kz)|2, (76)

a2 = 4πγ kBT |δB‖|2, (77)

a3 = (B‖|δB‖|)2m. (78)

Since ρ > 0, we can take only ρ = a2+
√

a2
2 +4a1a3

2a1
. This indicates

that we can determine the mass density inside the flux tube
with the additional knowledge of tan(kz) for the line-forming
height. However, there are multiple solutions due to ambiguity
in tan(kz). The regions that we chose for the photospheric
seismology (region 02 with the assumption of the kink wave
and 05 with the assumption of the sausage wave) are both
pores, whose magnetic field strength is almost the same. We
assume that the parameters of the flux tube (the mass density,
plasma beta, and Alfvén velocity) and distance between the
boundary and the line formation layer derived from the analysis
of the region 05 (sausage-wave dominant) should be consistent
with those derived from the analysis of the region 02 (kink-
wave dominant, Section 5.5). The choice of kz = −619◦
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for Equation (40) and kz = −496◦ for Equation (76) in the
following exercise is based on the assumption.

Substituting B0 = 1.7 × 103 G, δΦLOS,rms = 13.8 G,
δvLOS,rms = 0.12 km s−1, f = 0.81, θ = 29◦, γ = 5/3, kB =
1.4 × 10−16 erg K−1, T = 1.0 × 104 K, and m = 1.9 × 10−24 g,
we obtain the mass density inside the flux tube, ρ = 4.4×10−8 g
cm−3. We then derive the values associated with the flux tube:
(1) Alfvén speed vA = B0√

4πρ
; (2) plasma beta β = ρkBT /m

B2
0 /8π

;

(3) phase speed of the slow sausage mode cT ; (4) wavelength
of the slow sausage mode L = cT P , where P is the observed
oscillation period; and (5) distance between the boundary and
the line formation layer d = L

|kz|
360 . Substituting P = 294 s, we

obtain vA = 23 km s−1, β = 0.18, cT = 8.5 km s−1 (sound
speed cs = 11 km s−1), L = 2.5 × 103 km, and d = 4.3 ×
103 km.

The set of parameters derived here satisfy the condition that
ρ (or ρi), β, vA, and d derived here are consistent with those
derived in Section 5.5. The distance between the boundary and
the line formation layer, d = 3.6 × 103 km, is consistent with
the distance between the line formation height and the transition
region. This indeed indicates that the transition region is the
reflecting layer for such waves. Note that the wavelength L is
much larger than the scale height H = kBT

mg
∼ 3.9 × 102 km,

and the effect of the gravity has to be taken into account for
more rigorous treatment.

7. DISCUSSIONS

We have detected clear signatures of the MHD waves prop-
agating along the magnetic flux tubes in a form of velocity,
magnetic, and intensity sinusoidal waves with exactly the same
period. One or two strong and sharp peaks with common pe-
riods in the power spectra of the LOS magnetic flux, the LOS
velocity, and the intensity time profiles are evident in the pores
(8 peaks) and the IMSs (12 peaks). We note that only about half
of the observed flux tubes have such common peaks. Periods of
the peaks concentrate at around 3–6 minutes for pores and 4–9
minutes for IMSs. Phase difference between the LOS magnetic
flux (φB), the LOS velocity (φv), the line core intensity (φI,core),
and the continuum intensity (φI,cont) have striking concentra-
tions at around −90◦ for φB − φv and φv − φI,core, around 180◦
for φI,core − φB , and around 10◦ for φI,core − φI,cont (Figure 5).
These fluctuations are associated with the intensity fluctuations
δIcont,rms

Icont
and δIcore,rms

Icore
. The amplitude of the intensity fluctuations

amount to 0.1%–1.0% of the average intensity level. Some flux
tubes have a very small intensity fluctuation, and the wave mode
for such flux tubes is considered to be the incompressible kink
mode. On the other hand, flux tubes with higher intensity fluc-
tuation may have the compressible sausage mode.

The phase relation φI − φB ∼ 180◦ from the observation
would not be consistent with that caused by the opacity effect
(e.g., Bellot Rubio et al. 2000), if the magnetic field strength
decreases along the LOS toward the observer. We propose that
the longitudinal and/or transverse MHD waves propagating
along the flux tube are responsible for the fluctuations. The
observed phase difference φB − φv ∼ −90◦ is consistent with
the phase relation of the superposition of the ascending and the
descending kink wave. This indicates that the ascending kink
wave is substantially reflected at the chromospheric-coronal
boundary. The superposed waves have the property of the
standing waves. In addition to the standing kink mode, the
observed phase relation between the fluctuations in the magnetic

flux and the velocity is consistent with the phase relation for
the superposition of the ascending and the reflected descending
slow-mode sausage waves.

So far our analysis is based on the assumption that the either
the kink mode or the sausage mode is dominant in the flux
tubes. Both the kink mode and the slow sausage mode may be
excited in the same flux tube. Torsional waves are not discussed
in this paper. The ROI encompasses the entire magnetic flux
concentrations in the spatial and temporal domain (i.e., in the
case of IMSs), and we average the physical parameters inside
the ROI. Thus, we are probably unable to detect the torsional
Alfvén waves, even if they exist, because the perturbation of the
magnetic flux and the velocity is averaged over the whole flux
tube, and are canceled out.

We derive the various physical parameters of the flux tubes
only from the observed period and the amplitudes of magnetic
and velocity oscillations. Such parameters include (1) mass
density inside and outside the flux tube, (2) plasma β inside
the flux tube, (3) Alfvén speed inside the flux tube, (4) phase
speed, (5) wavelength, (6) distance between the boundary and
the line formation layer, and (7) propagation time of fast
magnetoacoustic wave across the flux tube. In the examples
presented in this paper, we choose similar sets of kz as defined
in Sections 5.5 and 6.3 for both cases (the kink-wave dominant
case and the sausage-wave dominant case) such that the derived
physical parameters of the flux tubes coincide. The choice
determines the distance d between the boundary (node) and
the line formation layer. The derived mass density outside the
flux tube is consistent with that of the standard solar model in
the case of the kink wave. Note that we can not derive the mass
density outside the flux tube in the case of the slow sausage
mode, because the flux tube is not in the pressure equilibrium.
This exercise demonstrates that the seismology of magnetic flux
tubes is possible with the observations of the oscillation period
and amplitudes for various photospheric and chromosheric lines,
and may open a new channel for the diagnostics of the magnetic
flux tubes.

MHD waves are believed to play a vital role in the acceleration
and heating of the fast solar wind. However, it has been thought
that the Alfvén speed rapidly increases with height due to the
rapid decrease in the plasma density, resulting in significant
reflection at the chromosphere-corona boundary. We indeed
show that this may be the case in this paper: the upward
propagating kink and/or sausage waves must be significantly
reflected back above the line formation layer. Deviation in the
phase difference between the magnetic and velocity fluctuations
from −90◦ as seen in Figure 6 may indicate residual waves
propagating to the corona. Indeed, the upward Poynting flux
above the reflecting layer is estimated to be 2.7 × 106 erg
cm−2 s−1 in one case (kink wave), and is by no means
negligible flux in terms of heating and acceleration of the upper
atmosphere.

Tsuneta et al. (2008b) conjectures that a rapid decrease in the
magnetic field strength associated with the rapidly expanding
flux tube near the chromosphere-corona boundary for the polar
kG patches reduces the vertical change in Alfvén speed, and the
Alfvénic cutoff frequency be lower in the polar flux tubes. MHD
waves generated in the photosphere may be more efficiently
propagated to the corona through such fanning-out flux tubes
with large expansion factor observed in the polar coronal holes.
On the other hand, the observations presented here suggest
significant reflected waves. It would therefore be interesting
to see whether the reflectivity of the MHD waves depends on
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Figure 10. Scatter plot indicating the relation between the LOS magnetic flux
Φ0,LOS (see the text) and the circular polarization CP as defined in Equation (1).
The solid line indicates a linear regression line.

the locations or environment, e.g., coronal holes versus the quiet
Sun.

Two interpretations addressed here (kink and sausage MHD
modes) cannot be distinguished in the present study. The flux
tubes that we analyzed are located with angular distance of
25◦–49◦ from the Sun center for high sensitivity magnetic
observations. It is important to compare the wave properties
for the flux tubes located further away from the Sun center
with those of the flux tubes around the disk center to separate
individual modes of waves (Norton et al. 2001). These topics
will be addressed in our subsequent paper.
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APPENDIX

We here determine the conversion coefficient λ to convert
the circular polarization CP to the LOS magnetic flux in

Equation (4). Figure 10 shows the scatter plot for the circular
polarization derived by Equation (1) with the LOS magnetic
flux. The LOS magnetic flux Φ0,LOS = B0,LOSf is determined
from the LOS magnetic field strength B0,LOS and the filling
factor f, both obtained with the Milne-Eddington inversion. The
data used here are the plage region 05 (Table 1) taken at 19:15 UT
on 2007 February 3. We notice a good linear correlation between
the two quantities. The linear regression is given by

CP = (4.16 × 10−5)Φ0,LOS + 0.0016. (A1)

The correlation coefficient is 0.96. We use the conversion
coefficient λ = 4.16 × 10−5 G−1 for the analysis presented
in this paper.
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