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ABSTRACT

We study the effects of rotation on standing accretion shock instability (SASI) by performing three-dimensional
hydrodynamics simulations. Taking into account a realistic equation of state and neutrino heating/cooling, we
prepare a spherically symmetric and steady accretion flow through a standing shock wave onto a proto-neutron
star (PNS). When the SASI enters the nonlinear phase, we impose uniform rotation on the flow advecting from the
outer boundary of the iron core, whose specific angular momentum is assumed to agree with recent stellar evolution
models. Using spherical harmonics in space and Fourier decompositions in time, we perform mode analysis of the
nonspherical deformed shock wave to observe rotational effects on the SASI in the nonlinear phase. We find that
rotation imposed on the axisymmetric flow does not make any spiral modes and hardly affects sloshing modes, except
for steady l = 2,m = 0 modes. In contrast, rotation imposed on the nonaxisymmetric flow increases the amplitude
of spiral modes so that some spiral flows accreting on the PNS are more clearly formed inside the shock wave than
without rotation. The amplitudes of spiral modes increase significantly with rotation in the progressive direction.
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1. INTRODUCTION

Core-collapse supernovae are among the most energetic ex-
plosions in the universe, catastrophically destroying massive
stars. Because they are relevant to many astrophysical phenom-
ena (e.g., formations of compact stars such as neutron stars or
black holes, nucleosynthesis, neutrino, and gravitational emis-
sions), their physics has been of wide interest to the astrophysi-
cal community. Regardless of rigorous studies on core-collapse
supernovae, the explosion mechanism is still not completely
understood. Except for the lower mass progenitors, spherically
symmetric supernova simulations have not yet produced explo-
sions (e.g., Liebendörfer et al. 2005; Sumiyoshi et al. 2005, and
references therein). As a result of current observations revealing
the aspherical nature of the explosion (e.g., Wang et al. 2002;
Tanaka et al. 2007; Maeda et al. 2008), multidimensional studies
and simulations of core-collapse supernovae have explored var-
ious mechanisms of asphericity, such as the roles of convection
(e.g., Herant et al. 1994; Burrows et al. 1995; Janka & Mueller
1996), magnetic field and rapid rotation (e.g., Kotake et al. 2006,
references therein), standing accretion shock instability (SASI;
Blondin et al. 2003; Scheck et al. 2008; Blondin & Mezzacappa
2006; Ohnishi et al. 2006, 2007; Foglizzo et al. 2006; Ott et al.
2008), and g-mode oscillations of a proto-neutron star (PNS;
Burrows et al. 2006).

SASI, the hydrodynamic instability of a standing shock wave,
was originally studied in the context of accreting black holes
(Foglizzo 2001; Houck & Chevalier 1992). The main character-
istic of SASI is that lower l modes dominate the flow dynamics,
where l stands for the polar index of the spherical harmon-
ics Ym

l . The importance of SASI to the supernova dynamics
was first pointed out by Blondin et al. (2003), who demon-
strated that nonradial perturbations added to a standing super-
nova shock wave grow exponentially with time and lead to l = 1

or 2 mode deformations in the linear phase, and then the slosh-
ing motion of the shock wave induced more violent turbulent
flows in the nonlinear phase. Ohnishi et al. (2006) indicated
that SASI may be the key to the explosion mechanism because
SASI can decrease critical neutrino luminosity for the shock
revival. To date, most realistic axisymmetric two-dimensional
core-collapse simulations have revealed the appearance of SASI
in the initial phase of the explosion (Burrows et al. 2006; Marek
& Janka 2009). Moreover, it has been suggested that such a lower
mode explosion is favorable for reproducing the synthesized
elements of SN1987A (Kifonidis et al. 2006) and for explain-
ing the origins of kick (Scheck et al. 2004), spins (Blondin &
Mezzacappa 2007), and magnetic fields (Endeve et al. 2008) of
pulsars.

Reflecting the growing importance of SASI, the physics be-
hind SASI in supernova cores has recently drawn much atten-
tion. Two types of mechanisms are considered: the advective-
acoustic cycle (AAC) and the purely acoustic cycle (PAC). In
the AAC scenario, the entropy and vorticity perturbations ad-
vected toward PNS generate a sound wave at the location of the
largest velocity gradient of the stationary flow. The sound wave
propagates toward the shock wave and distorts its configura-
tion, depending on the nonradial distribution of the fluctuation
pressure. The deformed shock wave induces further amplifica-
tion of the entropy and vorticity perturbations (Foglizzo et al.
2007). For the PAC scenario, the standing pressure wave prop-
agates in the circumferential direction in the region between
the spherical accretion shock wave and PNS. When the post-
shock pressure is slightly higher than unperturbed pressure, it
pushes the shock wave outward. The outward displacement of
the shock wave leads to an increase of postshock pressure in the
inner region, while the postshock pressure immediately behind
the shock wave decreases. Thus, the amplitude of the pressure
fluctuation increases further (Blondin & Mezzacappa 2006). At
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this time, which mechanism really works in the supernova cores
is still a topic of debate.

For the past few years, the nonaxisymmetric features of
SASI have been investigated with three-dimensional simulations
(Blondin & Mezzacappa 2007; Iwakami et al. 2008). The
modes of SASI are divided into sloshing and spiral modes.
Axisymmetric m = 0 modes thus far studied in two-dimensional
axisymmetric models (symmetric axis is z-axis) and degenerate
|m| = l modes (symmetric axes are x-axis, y-axis, and so on) are
classified as sloshing modes, where m stands for the azimuthal
index of the spherical harmonics Ym

l . When we impose random
perturbation or rotating flow on these axisymmetric flows, the
degeneracy is broken and the rotational modes emerge. In this
situation, the +m modes have different amplitudes than the
−m modes. Such rotating nonaxisymmetric m �= 0 modes are
called spiral modes. The sloshing modes can be expressed as
degenerate spiral ±m modes which have the same amplitudes
as each other. The growth of spiral modes in the linear phase
has been examined by simulation with a two-dimensional polar
grid of a thin wedge over the entire equatorial plane (Blondin
& Shaw 2007). A deformed shock wave resulting from the
growth of the spiral modes produces a spiral accretion flow
inside the shock wave, which transfers the angular momentum
onto the PNS. A three-dimensional SASI simulation by Blondin
& Mezzacappa (2007) demonstrated that the spiral mode of
m = 1 grew dominantly and generated a strong rotational flow,
continuing to develop in the nonlinear phase when random
perturbations were imposed on the nonrotating or rotating
progenitor. However, our previous work (Iwakami et al. 2008)
revealed that the rotational flow did not develop as much for
nonrotational models. An equipartition was nearly established
among different m modes on a time average in the nonlinear
phase. In the flow, high-entropy blobs were produced inside
the shock wave. High-velocity accreting matter ran outside the
blobs, and circulating flows formed inside the blobs. The high-
entropy blobs repeatedly came and went during the nonlinear
phase. In contrast with the outcomes of Blondin & Mezzacappa
(2007), our results were similar to those obtained by the
Garching group (Woosley & Janka 2005), which revealed that
large bubbles of radiation formed inside the shock wave. Why
these results differed so much has not yet been understood.

The SASI for the rotating progenitor model has also been
studied. Blondin & Mezzacappa (2007) demonstrated that the
rotation of the infalling gas helped the spiral modes of SASI to
arise, and the rotation axis of the flow was roughly aligned with
the spin axis of the progenitor star. Laming (2007) derived an
approximate dispersion relation for oscillations of the spherical
accretion shock wave, and computed growth rates for each AAC
and PAC at various ratios of the radius at the shock wave to
the radius at inner boundary where the pressure is constant. He
concluded that the AAC dominates for non-rotating cases, while
the difference in frequencies and growth rate due to rotation, in
the limit of slow rotation, is caused by the addition of a PAC.
Nagakura & Yamada (2008) did the numerical simulation on
the equatorial plane for the rotating black hole with the outer
shock wave. They also obtained the results which suggested that
PAC works for their models; note, however, that the reflection
point is not clear. On the other hand, Yamasaki & Foglizzo
(2008) used perturbative analysis with WKB approximation for
the cylindrical shock wave, and advocated that the AAC plays
a prominent role in the growth of rotational SASI. Although
they are divided over the problem of which mechanism to work
dominantly for rotational SASI, both of them found that the

growth rate of the modes rotating in the same direction as the
flow was increased by rotation.

In our preliminary paper (Iwakami et al. 2009), we imposed
a perturbed rotation on the spherically symmetric flow in three
dimension and confirmed the linear growth of spiral modes. In
the present study, we investigated the effect of rotation on SASI
in the nonlinear phase. We introduced a rotation whose axis
was along the z-axis into the perturbed flow in the nonlinear
phase. We conducted mode analysis expanding the deformation
of the shock wave with spherical harmonics in space and Fourier
series in time to distinguish between +m and −m modes. If the
features in the nonlinear phase were similar to the results of
linear analysis by Laming (2007) and Yamasaki & Foglizzo
(2008), it was expected that for clockwise rotation of ωφ < 0
the m < 0 modes should grow much more than the m � 0
modes.

The organization of this paper is as follows. We describe
the numerical models and formulations for mode analysis in
Section 2, present the results of computations in Section 3, and
make a summary and discussion of this study in Section 4.

2. METHODS OF COMPUTATION AND ANALYSIS

2.1. Numerical Models

The numerical method is exactly the same as that used in
our previous paper (Iwakami et al. 2008). Employing the
ZEUS-MP/2 code (Hayes et al. 2006) for the hydro solver,
we solve the dynamics of an accretion flow of matter attracted
by the PNS and irradiated by neutrinos emitted from the PNS.
The Shen EOS (Shen et al. 1998) is implemented according to
the prescription in Kotake et al. (2003). To treat the neutrino
heating and cooling, we use the light bulb approximation (see
Ohnishi et al. 2006, for details) in which the neutrino heating
is estimated under the assumption that neutrinos are emitted
isotropically from the central object with a fixed neutrino flux,
and that the matter outside the PNS is optically thin. For simplic-
ity, we consider only the interactions of electron-type neutrinos
and antineutrinos. Their temperatures are constantly assumed to
be the typical values in the postbounce phase (i.e., Tνe = 4 MeV
and Tν̄e = 5 MeV). The neutrino luminosity is fixed at
Lν = 6.0 × 1052 erg s−1. The mass of the central object is
assumed to be Min = 1.4 M�, and the mass accretion rate is set
to be Ṁ = 1 M� s−1.

A staggered mesh in the spherical polar coordinates system
is used. The mesh has 300 radial mesh points to cover rin � r �
rout, and 30 polar and 60 azimuthal mesh points to cover the
entire solid angle. Here, rout = 2000 km is the radius of the outer
boundary at which the flow was supersonic, and rin ∼ 50 km is
the radius of the inner boundary located roughly at the neutrino
sphere. This angular resolution is enough to investigate the
characteristics of SASI being dominated by lower modes (see
Iwakami et al. 2008, for resolution tests).

Essentially, we impose the fixed-inflow condition on the
outer boundary and the free-outflow condition on the inner
boundary. In the ZEUS-MP/2 code, ghost zones are spread
outside the computational region. In the ghost zones, the
evolution equations are not solved, but the values for the
dependent variables on the ghost points are used to specify
the derivative of the variables for both the boundary condition
and the higher order interpolation methods (see details in Stone
& Norman 1992). In this study, the density, internal energy,
electron fraction, and velocity in the outer ghost boundary are
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Table 1
Summary of All Models

Model Perturbation βa
φ L [cm2 s−1]b

A0 none · · · · · ·
A1 none 0.0100 4.6 × 1015

A2 none 0.0125 5.8 × 1015

A3 none 0.0150 6.9 × 1015

A4 none 0.0200 9.2 × 1015

B0 l=1, m=0 · · · · · ·
B1 l=1, m=0 0.0100 4.6 × 1015

B2 l=1, m=0 0.0125 5.8 × 1015

C0 random · · · · · ·
C1 random 0.0100 4.6 × 1015

C2 random 0.0150 6.9 × 1015

Notes.
a Parameter for rotation in Equation 4.
b Specific angular momentum on the equatorial plane.

substituted into the respective variables at the outer boundary,
and the density, internal energy, electron fraction, vφ and vθ

at the inner boundary are done into them in the inner ghost
boundary, where vφ and vθ denote the φ and θ components of
the velocity, respectively. As a special case, vr at the points on
the inner boundary is fixed with the value of the initial flow in
order to obtain a steady flow at the onset of calculation, where vr
is the radial velocity. At the points on the inner ghost boundary,
vr is determined to satisfy vr,0 = vr,1r

2
1 /r2

0 (vr,0 > vr,1), which
means the conservation of mass flux for one-dimensional flow,
where vr,0 is the vr at r0 and vr,1 is the vr at r1 (r0 < r1). We
confirmed the influence of inner ghost boundary condition to
change the relational expression to the fixed-outflow condition
(vr,0 = vr,1) or the fixed-initial-flow condition (vr,0 < vr,1). The
change of the relational expression in the ghost boundary made
little difference in the essential features of the flow.

We use the spherically symmetric steady flow as the initial
condition (Yamasaki & Yamada 2005). The radial distributions
of various variables for the unperturbed flows are given in
our previous paper (Iwakami et al. 2008). In order to induce
non-spherical instability, we add radial velocity perturbation,
δvr (θ, φ), to the steady spherically symmetric flow according to
the following equation:

vr (r, θ, φ) = v1D
r (r)(1 + δvr (θ, φ)), (1)

where v1D
r (r) is the unperturbed radial velocity. In this study,

we consider two types of perturbation: (1) an axisymmetric
l = 1,m = 0 single-mode perturbation

δvr (θ, φ) ∝
√

3

4π
cos θ, (2)

and (2) a nonaxisymmetric random multimode perturbation

δvr (θ, φ) ∝ r and (0 � r and < 1), (3)

where rand is a pseudorandom number. These perturbation
amplitudes are set to be less than 1% of the unperturbed velocity.

2.2. Introduction of Rotation

In contrast with a spherically symmetric accretion flow, the
method to construct the stationary rotational accretion flow
running through the rotationally deformed shock for core-
collapse supernovae has apparently not been developed thus far.
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Figure 1. Radial distributions of the φ component of velocity along the
equatorial plane (θ = 90◦, φ = 0◦) for Model A1. The initial flow was
the steady spherically symmetric one. The rotation for βφ = 0.01 is imposed
on the outer boundary at t = 0 ms. The plots of t = 200 ms and t = 300 ms
overlap.

(A color version of this figure is available in the online journal.)

Hence, to investigate the effects of rotation, we impose rigid
rotation on only the outer boundary. The imposed rotation is
advected toward the shock wave by the accreting flow. In our
preliminary work (Iwakami et al. 2009), we added the perturbed
rotation to the spherically symmetric initial flow, and found
the growth of spiral modes in the linear phase. However, this
model of perturbed rotation generates the shock oscillation with
a l = 2,m = 0 mode after rotational flow collides with the
shock wave, and the other m = 0 modes grow numerically in
very earlier phase just after entering the nonlinear phase. For
these reasons, we consider that the above model is unsuitable
for the analysis of SASI in the nonlinear phase for rotational
models. So we introduce a rotational flow into the flow field
in which SASI has already developed in the nonlinear phase
instead of the above model. We then analyze the difference
between the result with the introduction of the rotation and
that without. We focus only on the nonlinear phase in this
study.

We yield the rotation described as follows on the outer
boundary:

v2D
φ (r, θ ) = v1D

r (r)βφ sin θ, (4)

where v2D
φ (r, θ ) denotes the unperturbed φ component of veloc-

ity and βφ denotes the rotation parameter. We examine the flow
characteristics for βφ = 0.005–0.050, which corresponds to the
specific angular momentum L ∼ (0.2–2.3) × 1016 cm2 s−1 on
the equatorial plane. Table 1 lists all the models used in this
study. The L of these models is chosen to be reconciled with the
results of the recent presupernova calculations of rotating stars
with magnetic fields by Heger et al. (2005).

Figure 1 illustrates the evolution of radial distributions of vφ

along the equatorial plane (θ = 90◦, φ = 0◦) for Model A1 by
which one can see how the rotation given to the outer boundary
was advected toward the PNS. At first, vφ is zero everywhere
when the rotational flow for βφ = 0.01 is introduced into the
outer boundary at t = 0 ms. The rotational flow with vφ is then
advected from the outer boundary to the PNS with increasing
its value by compression for t = 20–100 ms. At t = 100 ms,
the rotational flow reaches the surface of the PNS, and vφ hardly
changes for t = 150–300 ms, where the plot for t = 200 ms
overlaps with that for t = 300 ms.
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Figure 2. Time evolutions of the average shock radius RS in the unperturbed
flow for Models A0, A1, A2, A3, and A4. The time denoted by a dashed line
corresponds to the time of rotation arrival at the inner boundary.

(A color version of this figure is available in the online journal.)

Figure 2 depicts the time evolutions of the average shock
radius RS for the unperturbed flow. The average shock radii
for Models A0, A1, A2, and A3 are almost constant from
150 ms to 300 ms. The average shock radii for the rotating
flow of Models A1, A2, and A3 are slightly larger than that for
nonrotational Model A0 because of the centrifugal force. When
we apply more rapid rotation like Model A4, the shock wave
continues to expand outward. The models for βφ � 0.015 are
the nonexploding models for the unperturbed flow, and allow us
to analyze clearly the role of rotational SASI in flow dynamics.
Thus, we focus mainly on the models for βφ � 0.015.

Figure 3 displays the side views of the entropy isosurfaces
with the velocity vectors in the equatorial section. The entropy
is expressed in the eight isosurfaces shifting from the white to
the red end of the spectrum with the increasing value, and the
velocity is denoted by the elongated trigonal pyramids shifting
from white to blue. The hemispheres (π/2 � θ � π ) of eight

entropy isosurfaces are superimposed on one another, and the
outermost surface almost corresponds to the shock front. The
central region represents the physical quantities on the spherical
surface corresponding to the inner boundary. An unperturbed
flow remains spherically symmetric at least until t ∼ 300 ms
(Figure 3(a)). When we introduce the clockwise rotation into
the unperturbed flow at t = 0 ms, the rotating flow is advected
inward and arrive at the inner boundary at t ∼ 100 ms.
Following that, even though the shock wave slightly oscillates,
the flow remains axisymmetric at least until t ∼ 300 ms. This
result indicate that no spiral modes are generated numerically
(Figure 3(b)).

2.3. Formulation for Mode Analysis

This section explains the mode analysis method used in this
study. The deformation of the shock surface can be expanded
as a linear combination of the spherical harmonics components
Ym

l (θ, φ):

RS(θ, φ, t) =
∞∑
l=0

l∑
m=−l

cm
l (t) Ym

l (θ, φ), (5)

where Ym
l (θ, φ) is expressed by the associated Legendre poly-

nomial P m
l (cos θ ) and a constant Km

l given as

Ym
l (θ, φ) = Km

l P m
l (cos θ ) eimφ, (6)

Km
l =

√
2l + 1

4π

(l − m)!

(l + m)!
. (7)

The expansion coefficients are obtained by

cm
l (t) =

∫ 2π

0
dφ

∫ π

0
dθ sin θ RS(θ, φ, t) Ym∗

l (θ, φ), (8)

where the superscript * denotes the complex conjugate. Instead
of the expansion coefficients cm

l (t), we use the normalized
amplitudes cm

l (t)/c0
0(t) for the analysis.

Figure 3. Entropy isosurfaces and velocity vectors in the equatorial section at t = 300 ms in the unperturbed flow (a) without rotation for Model A0 and (b) with
rotation for Model A1. The length of each side of a panel corresponds to 5.0 × 107 cm.

(A color version of this figure is available in the online journal.)
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Figure 4. Time evolutions of the normalized amplitudes |cm
l (t)/c0
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imposed (a) axisymmetric l = 1,m = 0 perturbation for 2D Model B1 and
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symmetric flow at t = 0 ms. The dotted line indicates the starting time to impose
rotation on the outer boundary, the dashed line indicates the time of rotation
arrival at the inner boundary, and the dot-dashed line indicates the onset of the
rotation phase.

(A color version of this figure is available in the online journal.)

Moreover, the normalized amplitudes cm
l (t)/c0

0(t) can be
expanded to the Fourier series as follows:

cm
l (t)/c0

0(t) =
∫ ∞

−∞
dω ĉm

l (ω) e−iωt , (9)

where ω is a real number denoting an oscillation frequency.
Thus, we can rewrite Equation (5) as

RS(θ, φ, t)/c0
0(t) =

∞∑
l=0

l∑
m=−l

∫ ∞

−∞
dω ĉm

l (ω)

× Km
l P m

l (cos θ ) e−i(ωt−mφ). (10)

Therefore, the Fourier expansion coefficients ĉm
l (ω) are calcu-

lated as

ĉm
l (ω) = 1

te − ts

∫ te

ts

dt

∫ 2π

0
dφ

∫ π

0
dθ sin θ

[
RS(θ, φ, t)

/
c0

0(t)
]

× Km
l P m

l (cos θ ) ei(ωt−mφ), (11)

where ts is the starting time of sampling, and te is the ending
time. The Fourier expansion of cm

l (t)/c0
0(t) allows ĉm

l (ω) to
distinguish between +m and −m modes.

3. RESULTS

In this study, we introduce the rotation described above into
axisymmetric (two-dimensional) and nonaxisymmetric (three-
dimensional) flows in the nonlinear phase at t = 400 ms
to observe the behavior of the flow in only the nonlinear
phase. We make both two-dimensional and three-dimensional
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Figure 5. Time evolutions of the average shock radius RS without rotation for
Model B0 and with rotation for Models B1 and B2. The times denoted by the
dotted line, dashed line, and dotted-dashed line are the same as in Figure 4.

(A color version of this figure is available in the online journal.)

flows in the nonlinear phase with three-dimensional simula-
tion as follows. Figure 4 presents the plots of the normalized
amplitudes |cm

l (t)/c0
0(t)| as a function of time for the two-

dimensional Model B1 and three-dimensional Model C1. In
the two-dimensional Model B1 (Figure 4(a)), the axisymmetric
l = 1,m = 0 perturbation is imposed on the initial flow. As we
described in our previous paper (Iwakami et al. 2008), the ampli-
tude of the l = 1,m = 0 mode grows exponentially in the linear
phase, and the growth of amplitudes of all axisymmetric modes
is saturated in the nonlinear phase. In the three-dimensional
Model C1 (Figure 4(b)), the nonaxisymmetric random perturba-
tion is imposed on the initial flow. As we mentioned in the same
paper, the amplitudes of all modes grow from the beginning,
and then the flow enters the nonlinear phase. For both the two-
dimensional and three-dimensional flows, we impart the rotation
on the outer boundary at t = 400 ms (dotted line). At that time,
the flow is completely in the nonlinear phase. The rotational flow
is carried by an accretion flow and arrives at the inner boundary
around t = 500 ms (dashed line). Following that, the flow inside
the shock wave changes, reflecting the infalling rotational flow.
We define the period from 600 ms (dot-dashed line) to 1000 ms
as the rotation phase. We integrate the shock radii RS(θ, φ) from
600 ms to 1000 ms in Equation (11) for the Fourier expansion.

3.1. Axisymmetric Rotational Model

First, we discuss the results of axisymmetric flows. All the
simulations are carried out in three dimensions even for the
axisymmetric flow. We dare to term the axisymmetric flow
as the two-dimensional flow not to confuse the axisymmetric
flow with the axisymmetric mode. When we introduce the
l = 1,m = 0 perturbation into the nonrotational flow, only
m = 0 modes grow, and the flow retains symmetry with respect
to the z-axis even in the nonlinear phase. In other words, the
sloshing modes grow, but the spiral modes do not (Iwakami et al.
2008). Confirming that only sloshing modes appear even for the
rotational models, hereafter, we focus on the effect of rotation
on the sloshing modes in the nonlinear phase. Furthermore, we
examine that the results of the new mode analysis presented
in Section 2.3 to expand the geometry of the deformed shock
wave with spherical harmonics in space and Fourier transform
in time, which are consistent with those of the previous mode
analysis to expand with only spherical harmonics in space at the
given time.
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Figure 6. Partial cutaway view of the entropy isosurfaces and the velocity vectors on the cutting plane at t = 917 ms with rotation for Model B1. (a) The object having
three cutting planes (θ = 90◦, φ = 0◦, 250◦) viewed from the side of −y direction and (b) its equatorial section of θ = 90◦ viewed from z direction.

(A color version of this figure is available in the online journal.)

Figure 5 depicts the time evolutions of the average shock
radius RS for two-dimensional Models B0, B1, and B2. The
average shock radius initially increases with the growth of SASI,
and then it remains roughly constant until 500 ms with little
fluctuation. After 500 ms, rotation affects the flow dynamics for
Models B1 and B2. The magnitudes of average shock radii are
not as different between the nonrotational Model B0 and the
rotational Models B1 and B2. However, the shock wave bursts
suddenly if we impose more rapid rotation on the flow. In this
paper, we focus only on the nonexploding Models B1 and B2.

The flow fields for the two-dimensional rotational Model B1
are presented in Figure 6. The velocity vectors are superimposed
on the cutting plane of the partial cutaway view of the entropy
isosurfaces. As with the nonrotation, the flow field retains
symmetry with respect to the z-axis even in the flow rotating
globally (Figure 6(a)). No spiral flows form, so the flow just
rotates clockwise (Figure 6(b)). Thus, it is clear that the sloshing
modes grow and no spiral modes originated with numerical
errors emerging.

Figure 7 presents the Fourier-transformed normalized ampli-
tudes |ĉm

l (ω)| of m = 0 modes for two-dimensional Models
B0, B1, and B2. The m = 0 modes with ω �= 0 express slosh-
ing shock waves with oscillation frequency ω, that is, sloshing
modes with ω. The steady m = 0 modes with ω = 0 express
symmetric components with respect to the z-axis of a time-
averaged distortion of the shock front from t = 600 ms to
t = 1000 ms estimated by Equation (11). The results of the new
mode analysis indicate that the lower modes tend to be domi-
nant, consistent with the feature obtained by the previous mode
analysis presented in Figure 4(a). The magnitude of the maxi-
mum amplitudes of l = 1 mode and its oscillation frequency ω
are almost the same between the nonrotational Model B0 and
rotational Models B1 and B2. These results indicate that the
rotation hardly affects the characteristics of the sloshing modes
in SASI. However, the steady l = 2,m = 0 mode with ω = 0
is much smaller for the rotational Models B1 and B2 than for
the nonrotational Model B0. This may come from the fact that
centrifugal force acted more strongly on the matter around the
equatorial plane than near the poles. The vertically long ellip-

soidal shock wave for Model B0 may be transformed into the
more spherical configuration of Models B1 and B2 by rotation.

Real parts of the Fourier-transformed normalized amplitude
of l = 2,m = 0 modes for Models B0, B1, and B2 are plotted
in Figure 8. The values of the amplitudes are distinguishable
between positive ones and negative ones in Figure 8, while they
are not in Figure 7. The positive amplitudes of l = 2,m = 0
decrease with increasing rotation rates; in other words, the
vertically long ellipsoidal shock wave for a nonrotational model
tends to become a spherical shock wave for a rotational model.
We consider that the appearance of l = 2,m = 0 modes for a
nonrotational model might be derived from the averaged shock
deformation by the nonlinear effect in the nonlinear phase. If
the spherical shock wave would be transformed with harmonic
oscillation, the shock wave deformation averaged during one
period should be zero. On the other hand, in the case, the
deformation of the shock wave deviates from the harmonic
oscillations so that the averaged deformation of the shock
wave might not be zero. For the axisymmetric models, the
shock wave oscillates up and down along the z-axis, and is
deformed to be vertically long ellipsoidal one on the average
during the nonlinear phase. As the core rotates faster, the shock
wave becomes more spherical one, which might be due to the
centrifugal forces.

3.2. Nonaxisymmetric Rotational Model

Next, we consider the results of nonaxisymmetric flows. Here,
we call the nonaxisymmetric flow the three-dimensional flow.
When we impose a random perturbation on the nonrotational
flow, both axisymmetric m = 0 modes and nonaxisymmetric
m �= 0 modes grow (Iwakami et al. 2008). In this situation, both
sloshing modes and spiral modes can be generated. However,
our previous mode analysis is not able to distinguish between
sloshing modes and spiral modes for nonaxisymmetric m �= 0
modes, because the spectra are obtained from the instantaneous
deformation of the shock wave. So we use a new mode analysis
in an attempt to confirm whether spiral modes are actually
generated. Furthermore, we investigate the effect of rotation
on sloshing and spiral modes in the nonlinear phase.
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Figure 7. Fourier-transformed normalized amplitude |ĉm
l (ω)| of m = 0 modes without rotation for (a) Model B0 and with rotation for (b) Model B1 and (c) Model

B2. Normalized amplitudes were estimated by integrating the shock deformation during the rotation phase.

(A color version of this figure is available in the online journal.)
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of l = 2, |m| = 0 modes for Model B0, B1 and B2.

(A color version of this figure is available in the online journal.)

Figure 9 plots the average shock radius RS as a function of
time for three-dimensional Models C0, C1, and C2. As with the
two-dimensional Model B0, the average shock radius increases
with growing SASI from 100 ms, and then it remains nearly
constant until 500 ms. At 500 ms, the flow starts to come under
the influence of rotational flow falling to the PNS for Models
C1 and C2. Unlike the two-dimensional models, the faster the
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Figure 9. Time evolutions of the average shock radius RS without rotation for
Model C0 and with rotation for Models C1 and C2.

(A color version of this figure is available in the online journal.)

rotation, the larger the average shock radius tends to be. When
we impose more rapid rotation to the flow than in Model C2,
the expansion of the shock wave continuously proceeds to the
outer boundary. In this study, we therefore focus only on the
nonexploding models of Models C1 and C2.

Figure 10 illustrates the flow fields for the nonrotational three-
dimensional Model C0 and for the rotational three-dimensional
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Figure 10. Partial cutaway view of the entropy isosurfaces and the velocity vectors on the cutting plane at t = 800 ms (a), (b) without rotation for Models C0 and (c),
(d) with rotation for Model C1. One can see (a), (c) the object having three cutting planes from the −y direction and (b), (d) its equatorial section from the z-direction.

(A color version of this figure is available in the online journal.)

Model C1. Symmetry with respect to the z-axis is broken for
both models (Figures 10(a) and (c)). Many large high-entropy
blobs are observed inside the shock wave. The blobs with
circulating flow arise and expand with growing SASI, and
push away the shock wave outward. Matter infalling from a
triple point on the shock wave runs through the interstices of
the blobs with high velocity, and the stream accretes on the
PNS in an arc (Figures 10(b) and (d)). A triple point is the
connection point (or segment) of two shock waves propagating
from both sides. When rotation is not imposed, no specific
rotation axis is observed in the flow. On the other hand, as a
result of introducing the rotation whose axis corresponded to the
z-axis, the flow inside the shock wave rotates globally around
the z-axis, and accreting spiral flows have higher velocity
than that for nonrotational models because of φ component
of velocity. After the accreting flows turn in the rotational
direction near the PNS, the flows go up inside the high-entropy
blobs with higher velocity than that for nonrotational models

(Figure 10(d)). This is favorable for the shock expansion.
Moreover, after the upward flow with high velocity turns in
the rotational direction along the shock front, the centrifugal
forces act on the flow so that the shock wave could be pushed
away furthermore (Figure 10(d)). These flow behaviors might
explain that why the average shock radii for rotational three-
dimensional models tend to be larger than that for nonrotational
ones (Figure 9), while the average shock radii are not different
so much between rotational and nonrotational two-dimensional
models (Figure 5). The flows accreting from the triple points
with high velocity are developed in the θ direction for two-
dimensional models (Figure 6(a)). Thus, the flows running in
the rotational direction for two-dimensional rotational models
do not have so much high velocity as that for three-dimensional
ones (Figure 6(b)). Centrifugal forces, therefore, act less on the
two-dimensional flow than the three-dimensional one so that
the shock wave might hardly expand for the two-dimensional
models.
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Figure 11. Fourier-transformed normalized amplitude |ĉm
l (ω)| of m �= 0 and m = 0 modes without rotation for (a) Model C0 and with rotation for (b) Model C1 and

(c) Model C2.

(A color version of this figure is available in the online journal.)

The upper panels in Figure 11 demonstrate the Fourier-
transformed normalized amplitudes |ĉm

l (ω)| of |m| = l modes
for the three-dimensional Models C0, C1, and C2. The basis
function of |m| = l modes does not have any node point in the
θ direction. The amplitudes of the m > 0 modes are plotted
on the right-hand side of the graph, and those of the m < 0
modes are plotted on the left-hand side. The m > 0 modes
express spiral modes rotating in the positive φ direction with
ω, and the m < 0 modes express spiral modes rotating in the
negative φ direction with ω. As a specific case, sloshing modes
which are symmetric with respect to the x-axis (y-axis) could
appear if m > 0 and m < 0 modes with respect to each ω
for the real part (imaginary part) has equal amounts. Therefore,
the mode analysis can distinguish between m = 0 sloshing
modes and m = l sloshing modes made up of equal amounts
of m > 0 and m < 0 modes with ω. In this study, however,
we have to mind that we use time-averaged values of mode
amplitudes and absolute ones which is a square root of the sum
of the square of the real part and the square of the imaginary
part. If the distribution of |ĉm

l (ω)| is completely symmetric with
respect to ω = 0 in this figure, this result can be interpreted

in three ways: (1) only sloshing ±m modes (i.e., degenerate
spiral ±m modes) grow; (2) a spiral +m mode and a spiral −m
mode emerge with the same probability; (3) both (1) and (2)
occur during sampling time. On the other hand, an asymmetric
distribution of |ĉm

l (ω)| suggests that the spiral m modes with
a larger amplitude is dominant. Additionally, the modes with
ω = 0 are considered as symmetric components with respect to
the x-axis or y-axis of a time-averaged distortion of the shock
front from t = 600 ms to t = 1000 ms using Equation (11).
The real (imaginary) part of the amplitude of m = l with
ω = 0 describes the magnitude of the symmetric shock
deformation with respect to the x-axis (y-axis). The upper panel
in Figure 11(a) plots the nonrotational three-dimensional Model
C0, revealing asymmetries in the distribution. We recognize that
spiral modes are generated in the randomly perturbed flow even
for the nonrotational model. However, the maximum amplitudes
are roughly same between m > 0 modes and m < 0 modes.
We assume that sloshing ±m modes dominated, or spiral +m
modes and spiral −m modes would appear almost equal from
600 ms to 1000 ms. Figures 11(b) and (c) present the results of
the rotational Models C1 and C2. The m < 0 modes grow more
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(A color version of this figure is available in the online journal.)

than the m > 0 modes. Furthermore, the amplitude of the m < 0
modes becomes larger with increasing rotation. We introduce
the clockwise rotation in the same direction as m < 0 modes.
Therefore, the faster the rotation, the larger the amplitudes of
the mode rotating in the same direction as a globally rotational
flow tends to be.

The lower panels of Figure 11 depict the Fourier-transformed
normalized amplitudes |ĉm

l (ω)| of m = 0 modes. The lower
panel of Figure 11(a) presents the results of the nonrota-
tional three-dimensional Model C0. Lower modes are domi-
nant. The amplitudes for the three-dimensional Model C0 tend
to be smaller than those for the two-dimensional Model B0
(Figures 7(a) and 11(a)). These results also do not conflict with
those of previous mode analyses (Figures 4(a) and (b)). The
lower panels of Figures 11(b) and (c) present the results of
the rotational three-dimensional Models C1 and C2. The steady
l = 2,m = 0 modes with ω = 0 grew significantly. The spher-
ical shock wave for nonrotational models might change into
a horizontally long ellipsoidal one because of the centrifugal
forces. The amplitudes of the sloshing modes with ω �= 0 also
became somewhat large in response to the increase of rotational
velocity, perhaps due to the nonlinear effects of coupling the
m = 0 and m �= 0 modes.

To compare the results of the axisymmetric models and that of
the nonaxisymmetric models on the steady l = 2,m = 0 modes
with ω = 0, we present the real part of Fourier-transformed
normalized amplitudes of l = 2,m = 0 modes for Models
C0, C1, and C2 in Figure 12. The small positive amplitude of
l = 2,m = 0 appears in the nonrotational flow for Model C0,
but the negative amplitude of l = 2,m = 0 grows with the
increasing rotation for Models C1 and C2. That is to say, the
shape of the shock wave for nonrotating models, which is nearly
spherical, tends to be ellipsoidal for rotating models due to the
elongation along the equatorial direction. This is because of the
centrifugal force acting strongly on the equatorial plane.

4. SUMMARY AND DISCUSSION

We investigated the effects of rotation on SASI in the nonlin-
ear phase with three-dimensional hydrodynamics simulations,
for the purpose of application to the supernova core in the post-
bounce phase. When the SASI entered the nonlinear phase, we
imposed rigid rotation at the outer boundary of the iron core,
whose specific angular momentum on the equatorial plane was
assumed to agree with the recent stellar evolution calculations

with magnetic fields. After the rotational flow arrived at the
shock wave, rotation began to influence the SASI in the nonlin-
ear phase. Focusing on this stage, we performed mode analysis
for the nonspherical deformation of the shock front, using spher-
ical harmonics in space and Fourier decompositions in time.

First, we examined the effects of rotation on SASI for the
axisymmetric flow in which only sloshing modes existed before
rotation was added. In the ranges of rotational strength not
enough to explode, the average shock radius hardly changed
with increasing angular momentum. Moreover, mode analysis
revealed that the sloshing modes were also insensitive to rotation
except for the l = 2,m = 0 mode with ω = 0. Combining
our results with the outcomes obtained in the linear analyses
by Laming (2007) and Yamasaki & Foglizzo (2008), rotation
should barely affect the growth rates of sloshing modes. The
decrease of the steady l = 2,m = 0 modes might be a result of
the centrifugal force, acting to deform the vertically long prolate
configurations so that they became spherical.

Moreover, we studied the effects of rotation on SASI for the
nonaxisymmetric flow in which both sloshing and spiral modes
existed before rotation was added. In contrast with the axisym-
metric models, the shock radius tended to expand more with
increased rotation. As faster rotation was added to the flows,
spiral flows ran with higher velocity from the triple points to
near the PNS, and then flows circulated with higher velocity
inside the high-entropy blobs. Large centrifugal force acted on
the circulating flows inside the blobs, and the flows running
in the rotational direction might push the shock wave further
outward. As with the axisymmetric models, the effect of rota-
tion on the m = 0 modes became prominent for the steady
l = 2,m = 0 mode. The increase of the l = 2,m = 0
mode might be attributed to the centrifugal force which de-
formed the spherical shock wave to the horizontally long pro-
late ellipsoidal one. We observed that the other m = 0 modes
also grew slightly with increasing rotational velocity. This re-
sult might be due to nonlinear effects of the coupling of the
m �= 0 modes and m = 0 modes. The effect of rotation on the
|m| = l modes became as remarked below. For nonrotational
models, sloshing ±m modes were dominant, or spiral +m modes
and spiral −m modes emerged with almost the same probabil-
ity. However, for rotational models, the spiral modes rotating
in the same direction as the rotational flow developed signifi-
cantly with faster rotation. These results agreed with the linear
analyses of SASI by Laming (2007) and Yamasaki & Foglizzo
(2008).

It should be noted that the simulations highlighted in this
paper are a first step toward realistic three-dimensional mod-
eling of supernova explosions. The approximations adopted in
this paper (e.g., the replacement of the PNS by the fixed inner
boundary and the light-bulb approach with the constant neu-
trino luminosity) need improvement. It is important to clarify
how rotational SASI impacts neutrino heating, but transport
schemes beyond the light-bulb approaches are unquestionably
needed. Confirming the outcomes of this paper will require
consistent simulations in three dimensions, covering the entire
stellar core and starting from gravitational collapse with bet-
ter neutrino transport, which is computationally prohibitive at
present. Additionally, understanding the effects of rotation on
the linear growth of SASI and constructing steady accretion
flows with rotation are major undertakings. The generation of
pulsar spins by SASI has been addressed by Blondin & Mezza-
cappa (2007). Currently, we are systematically investigating a
possible correlation between the kick and spin of the PNS, and
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our results will be presented in a forthcoming paper, along with
the discussions of magnetic effect on SASI (Iwakami et al. in
preparation).
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