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ABSTRACT

We analyze the distribution of stars of arbitrary mass function ξ (m) around a massive black hole (MBH). Unless ξ
is strongly dominated by light stars, the steady-state distribution function approaches a power law in specific
energy x ≡ −E/mσ 2 < xmax with index p = m/4M0, where E is the energy, σ is the typical velocity
dispersion of unbound stars, and M0 is the mass averaged over mξx

p
max. For light-dominated ξ , p can grow as

large as 3/2—much steeper than previously thought. A simple prescription for the stellar density profile around
MBHs is provided. We illustrate our results by applying them to stars around the MBH in the Milky Way.
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1. INTRODUCTION

A massive black hole (MBH) of mass M• dominates the
dynamics of stars within its radius of influence rh = GM•/σ 2 =
2.3(M•/3×106M�)(σ/75 km s−1)−2 pc, where σ is the typical
star velocity dispersion at r � rh and values quoted correspond
to the Milky Way center (Alexander 2005). The steady-state
distribution function (DF) of such stars, first derived (for simple,
discrete stellar mass functions, MFs) by Bahcall & Wolf (1976,
1977; henceforth BW76,77), is useful in the study of galactic
centers and possibly globular clusters. In the simple case where
all stars have equal mass, BW76 showed that an n ∝ r−7/4

density cusp forms; a somewhat flatter cusp was subsequently
identified around SgA* (Alexander 1999; Genzel et al. 2003;
Schödel et al. 2007).

Significant mass segregation is expected for realistic MFs
(Miralda-Escudé & Gould 2000; Schödel et al. 2007; O’Leary
et al. 2008, and references therein), as dynamical friction
slows heavy stars that sink toward the MBH, while light
stars are pushed outwards. This effect is essential in modeling
various physical processes, such as tidal disruption (Lightman
& Shapiro 1977; Magorrian & Tremaine 1999; Syer & Ulmer
1999) and gravitational wave emission (Hopman & Alexander
2006; Freitag et al. 2006; Hopman et al. 2007), and may be
used for example to test if intermediate-mass black holes exist
in globular clusters (Gill et al. 2008). Recently, Alexander
& Hopman (2009, henceforth AH09) showed strong mass
segregation in the limit of a strongly bimodal MF when the
mass ratio is large and massive stars are rare.

In spite of extensive numerical studies of mass segregation
around an MBH (AH09 and references therein), analytical
modeling (BW77) is limited to simple, discrete, and extreme
MFs where the most massive species alone constitutes more
than half of the star population. Most results are limited to
few stellar species and to a narrow mass range. In this Letter,
we analytically study the steady-state single-star DF f within
r < rh, for an arbitrary, continuous MF. We confirm our results
numerically for a wide range of MFs.

Following BW76,77, we assume (i) spherical spatial symme-
try; (ii) isotropic velocities; (iii) Keplerian orbits; (iv) binaries

5 Einstein Fellow.

are negligible; (v) small angle, uncorrelated, local scatterings;
(vi) loss cone effects can be neglected; (vii) isothermal distri-
bution of unbound stars with temperature μσ 2; (viii) stars are
destroyed when their specific energy drops below a threshold
x ≡ −E/mσ 2 = xmax, with E the energy.

2. EQUAL-MASS STARS

Consider the case where all stars have mass m. The dimen-
sionless diffusion rate of stars through x is (BW76)

Q(x) =
∫ xmax

−∞

f (x)f ′(x ′) − f ′(x)f (x ′)
[Max(x, x ′)]3/2 dx ′ = const. (1)

The boundary conditions are f (x < 0) = exm/μ and f (x >
xmax) = 0. Equation (1) with these boundary conditions
uniquely determines f and Q as shown below. The spatial
number density of stars is given by (BW76)

n(r) ∝
∫ rh/r

−∞
dxf (x)

√
rh

r
− x. (2)

Equation (1) describes the balance between diffusion toward
the MBH and replenishment by new stars. BW76 found that Q is
essentially determined by the diffusion rate at a bottleneck near
xmax, where the replenishment rate diminishes. As Q � 8/xmax
is typically small, one can approximately solve Equation (1) by
setting Q = 0.

We convert Equation (1) to an ordinary differential equation
(ODE) by repeated operations of differentiation with respect
to x and isolation of integral terms. This yields a nonlinear,
fourth-order ODE for f,

qf 2 (B + 4pA) = x3/2QC. (3)

Here we defined the local power-law index of f, p ≡
d ln f/d ln x = xw, the local power-law index of w ≡ (ln f )′,
q ≡ d ln w/d ln x, and the operators

A(f, x) ≡ 4q2 − 5q − 2x2w′′/w, (4)

B(f, x) ≡ 5q − 12x3w′′2/(w′w) + 8x3w(3)/w,
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C(f, x) ≡ pA2D

3

[
B

A2
− 4

D
+

3

q

+
2

A

(
10 + 2q − 2p +

5

D

)]
,

where D(f, x) ≡ q + p − 5/2. The boundary conditions at
x = 0 fix f and f ′ there, so the non-exponential solution f (x)
is completely determined for given Q. A unique value of Q
guarantees that f vanishes (for the first time) at xmax, proving the
uniqueness of the steady-state solution (an “exercise left for the
reader” by BW76).

For a power-law DF f = f0x
p0 , Equation (3) becomes

3f 2
0 (p0 − 1/4) = Qx3/2−2p0p0 (p0 − 1) (p0 − 5/2) . (5)

This compactly reproduces the BW76 results: although a finite,
energy-independent flow requires p0 = 3/4 (Peebles 1972,
implying a flow of stars away from the MBH, see BW76), a
steady-state with p0 = 1/4 is closer to the actual DF because
Q is negligibly small. Note that the power-law assumption
becomes inconsistent at high energies, where Qx3/2−2p0 ∝ x
is large.

Henceforth, we assume Q = 0, justified for single mass
stars if xmax 	 1. An exponential DF with q = 0 solves
Equation (3), but does not satisfy the boundary conditions. For
q 
= 0, Equation (3) becomes a third-order nonlinear ODE,

B + 4pA = 0, (6)

with general solution of the form

w = c1

x−3/2 − c2
+ c3 + c1c3W (x; c1, c2, c3), (7)

with c1, c2, c3 constants.
Useful results can be deduced directly from Equations (6)

and (7), without determining the analytic properties of W.
When p is much smaller (larger) than 1/4, Equation (6)
becomes approximately B � 0 (A � 0), which corresponds
to taking W (taking c3) to zero in Equation (7). In this case
f (x 	 1) ∝ exp[

∫ x
w(x ′)dx ′] is either nearly constant, or

(super-)exponential in x. In order to maintain reasonable stellar
densities, there must be an approximate balance between the
two terms, implying that p � 1/4 far from the boundaries. Note
that for p = 1/4, the six terms of A and B in Equation (4)
precisely cancel in pairs.

For small x, where 0 � p = xw � 1, Equation (6)
becomes B � 0; this corresponds to Equation (7) with W → 0,
and c3 = m/μ according to the boundary conditions at
x = 0. At intermediate energies where approximately f ∝ xp0 ,
Equation (3) becomes −12w′′2 + 8w(3)w′ � 0, with all other
terms smaller by factors � 5 (� 10) for |p0| < 1/2 (|p0| <

1/4), so w � p0(x + x1)−1 + x−1
2 . At high energies near the

disruption energy, p is large and negative, Equation (6) becomes
A � 0 and so c3 = 0; the boundary condition at xmax then
yields c2 = c1/(3n) = x

−3/2
max with n ∈ N. Smoothly combining

these approximate solutions yields an approximation for the
equal-mass case,

feq �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 + xm

p0μ

)p0

ex/x2 if x < xta;

f̃
[

(
√

xmax−
√

x)2

xmax+
√

xmaxx+x

]n

exp
[

3nx
xmax

+ 2n
√

3 arctan
(

1√
3

+
√

4x
3xmax

)] if x > xta ,

(8)
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Figure 1. DF of equal-mass stars around an MBH with xmax = 104 and
μ/m = 1, according to (i) exact (Q � 8 × 10−4, solid) and (ii) approximate
(Q = 0, dashed) numerical solutions of Equation (1), (iii) Equation (8) (dash-
dotted), and (iv) f ∼ 2x1/4 (dotted). Logarithms are base 10 and convergence
is better than 1%, henceforth.

with constants x2, xta and f̃ determined, for example, by
continuity of f , 3nx

−5/2
max /(x−3/2 − x

−3/2
max ) = p0x

−1 + x−1
2 and

its first derivative evaluated at the turn-around energy xta. The
results depend weakly on n; it is natural to fix n = 1. The
previous paragraph suggests that p0 → 1/4 as xmax increases.
Numerically solving Equation (1) yields p0 = (1/4)ρ(xmax),
where the correction factor ρ ∼ 1 approaches unity as xmax
becomes large, e.g., ρ(104) = 1.18 and ρ(108) = 1.08. It
also depends weakly on the energy range used to measure p
(here x

1/3
max < x < x

1/2
max, henceforth). Figure 1 illustrates the

approximation.

3. CONTINUOUS MASS FUNCTION

Consider stars with variable mass m in some range ML <
m < MH . We generalize the discrete, multiple-mass version of
Equation (1) (BW77) to the continuum limit,

Q(m) =
∫ MH

ML

m′ dm′
∫ xmax

−∞
dx ′ [Max(x, x ′)]−3/2 (9)

× [mf (x,m)∂x ′f (x ′,m′) − m′∂xf (x,m)f (x ′,m′)],

where f is now the DF in x − m phase space. Assuming
unbound stars with MF ξ (m), f (x < 0,m) = ξ (m) exm/μ.
The density nm(r) is related to f (x, m) as in Equation (2), such
that nm(r � rh) ∼ ξ (m).

3.1. Negligible Flow

Consider the negligible flow limit Q → 0, which holds if
the MF is not strongly dominated by light stars (AH09), as
shown in Section 3.2. Dividing Equation (9) by mf (x,m) and
differentiating with respect to m we find ∂m[(mf )−1∂xf ] = 0,
implying that f must have the functional form

f (x,m) = ξ (m)h(x)m = ξ (m)emk(x), (10)

with k ≡ ln h. Equation (10) implies that the local power-law
index of f, p(x,m) ≡ d ln f/d ln x = mxk′(x), is linear in m
for fixed x. This result, valid for negligible Q, generalizes the
BW77 result p(x,m1)/m1 = p(x,m2)/m2 to a continuous MF.

Setting Q = 0 in Equation (9), using Equation (10), and
repeatedly differentiating with respect to x and isolating integral
terms, yields an ODE which, for q 
= 0, becomes

B + (p/P )A = 0. (11)

Here, p, A, and B are functionals of f (m, x) and x, defined as in
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the equal-mass case (e.g., Equation (4)), and we defined

P (x,m) ≡ m/4M0, (12)

ML < M0 ≡ 〈m2〉f /〈m〉f = 〈m〉mf < MH , (13)

with 〈X〉Y ≡ ∫
X(m)Y (m) dm/

∫
Y (m) dm averaging. The full

distribution may be found by solving Equation (11) for k(x)
under the boundary conditions k(x � 0) = x/μ and k → −∞
as x → xmax.

Note that P (x,ML) � 1/4 and P (x,MH ) � 1/4. If the mass
range is sufficiently narrow or ξ is sufficiently dominated by
high masses such that P (x,MH ) � 1/4, we recover the equal-
mass case Equation (6) for the most massive stars. The full
distribution then becomes

f (x,m;μ) � ξ (m)feq(x;μ)m/MH , (14)

with feq(x;μ) the DF of equal-mass stars (Figure 1).
In the general case we may proceed as in Section 2: f

will be constant, vanish, or diverge unless the two terms in
Equation (11) are approximately balanced, i.e., p � P . If P
depends only weakly on x, this implies a power-law DF, f ∝ xP .
Thus, stars with mass equal to the weight-averaged mass M0
tend to have a p = 1/4 cusp as in the equal-mass case. Taking
some typical energy xa

max with a � 1 in Equation (13), we may
calibrate a against numerical solutions of Equation (9). This
yields a � 1 for a wide range of MFs tested. Hence

p(m) � ρ(xmax)m/4M0, M0 = 〈m〉
mξx

p(m)
max

, (15)

and the full distribution is approximately

f (x,m;μ) � ξ (m)feq (x;μ)m/M0 . (16)

Equations (15) and (16) agree (to better than a factor of 2 in f)
with numerical solutions of Equation (9) for various MFs, such
as the discrete MFs tested by BW77 and AH09, the Salpeter
MF (see Figure 2) and a wide range of power-law MFs (see
Figure 3).

Equation (15) implies that for any MF, p(m) is a decreasing
function of xmax. In particular, the power-law index of the
most massive species, pH , asymptotically approaches 1/4 as
xmax → ∞, so f approaches Equation (14). In cases where we
may approximate f ∼ ξ in Equation (13), for example if mξ is
strongly peaked in a mass range where f/ξ = hm varies little,
we have M0 � 〈m〉mξ .

For concreteness, consider unbound stars with a power-law
MF ξ (m) ∝ mα in some mass range ML < m < MH = ζML.
In this case, we recover Equation (11) with

P = −Mk

4

Γ(2 + α,−MH k,−MLk)

Γ(3 + α,−MH k,−MLk)
, (17)

and Γ(a, b, c) = ∫ c

b
ta−1e−t dt the incomplete Γ-function. The

power-law index p(m) may be found from Equation (15),

Γ(3 + α, MH

m
ln x

−ap
max , ML

m
ln x

−ap
max )

Γ(2 + α, MH

m
ln x

−ap
max , ML

m
ln x

−ap
max )

= ln x−a/4
max (18)

(for one mass, then using p ∝ m). Indices pL, pH calculated
from Equation (18) are illustrated in Figure 3 in the ζ −α plane.
For small (very negative) α we may estimate p using the k → 0
limit where M0 ∼ 〈m〉mξ , whence6

pH � ζ (α + 3)(ζ 2+α − 1)

4(α + 2)(ζ 3+α − 1)
. (19)

6 Special cases: pH (α = −2) � ζ ln ζ
4(ζ−1) and pH (α = −3) � ζ−1

4 ln ζ
.

Figure 2. Unevolved Salpeter MF ξ ∝ M−2.35 with MH /ML = 100,
μ = (MLMH )1/2, and xmax = 104. DF shown (top to bottom) for m/ML =
100, 67, 34, and 1.5, found by numerically solving Equation (9) (solid) and
from Equation (16) (dashed). Also shown for reference are power-law curves
6x1/2 and 2x1/4 (dotted).

Figure 3. Power-law MFs ξ (ML < m < MH = ζML) ∝ mα in the ζ −α phase
space for xmax = 104 and μ = (MLMH )1/2. Shown are spectral indices pL, pH

of the lightest, heaviest (color scale, black contours) stars, found by numerically
solving Equation (9). The power-law assumption f (x, MH ) ∝ xpH fails (p-
value of χ2 fit larger than 1/2, henceforth) in the region enclosed by red contours.
The linear scaling p ∝ m breaks down beneath the dashed yellow contour (wavy
appearance of these contours is a resolution effect). Approximation Equation
(15) for pH is shown (dashed blue contours) outside the δ < 0 (see Equation
(23)) region, which is enclosed by thick blue contours.

3.2. Non-Negligible Flow

When Q cannot be neglected, we may eliminate the x ′ integral
in Equation (9) by repeated operations of differentiation with
respect to x and isolation of integral terms. If we assume, in
addition, a power-law energy dependence f � ξ (m)xp(m), we
arrive at a generalization of Equation (5),

ξ (m)
∫ MH

ML

[
m

(
p′ + 1

) (
p′ − 1

2

)
+ m′p

(
3

2
− p′

)]
× m′ξ (m′)x− 3

2 +p+p′
dm′

= 2

3
p (p − 1)

(
p − 5

2

)
Q(m), (20)
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with abbrev. p = p(m) and p′ = p(m′). For Q = 0 and p ∝ m,
this reproduces the results of Section 3.1, p = m/4M0.

Equation (20) suggests that p < 3/2 in all cases, otherwise
the left-hand side becomes large and strongly x-dependent.
Figure 3 shows that the p � 3/2 limit is indeed realized if the
MF is sufficiently broad and light-dominated. It corresponds
to mass segregation even stronger than the saturation value
pH = 5/4 predicted by AH09 in the limit of a strongly bimodal,
light-dominated MF where light stars are expected to assume
pL = 1/4.

A variant of Equation (20) with Q eliminated is∫ MH

ML

dm′xp′
m′ξ (m′)

(
3

2
− p − p′

)
(21)

×
[
m

(
p′ + 1

) (
p′ − 1

2

)
+ m′p

(
3

2
− p′

)]
= 0.

Adopting a typical specific energy, xb
max with b � 1, one can

solve this equation for p(m) with arbitrary ξ (m), an approximate
procedure far simpler than solving Equation (9). However,
Equation (21) typically becomes unstable when the underlying
power-law assumption f ∼ xp fails.

The linear scaling p(m) ∝ m remains approximately valid
even when the flow is only marginally negligible. Using this
Ansatz in Equation (21), p(m) becomes a root of the quadratic
equation

4p2〈m2〉 − p(7 − 4p)m〈m〉 + (3/2 − p) m2 = 0, (22)

with averages weighted by mξx
bp
max. For light-dominated MFs

and massive stars with m 	 {〈m〉, 〈m2〉1/2}, the last term
dominates and p(m) peaks at 3/2. For a strongly peaked
MF where 〈m2〉 � 〈m〉2, Equation (22) yields two solutions:
the Q = 0 limit p = m/4〈m〉, and a steep solution p =
(3/2)(1 + 〈m〉/m)−1.

Equation (22) suggests the following, numerically supported
picture. For MFs peaked at relatively massive stars, the DF
is approximately given by the Q = 0 result. For more light-
dominated MFs, M0 is shifted toward lower masses so the DF
becomes gradually steeper at any given mass. If the MF is
sufficiently extended (large ζ ) and light-dominated (e.g., small
α), each stellar species of mass m 	 ML eventually achieves
maximal steepness p(m) � 3/2. The transition between the
Q = 0 and the saturation regimes involves in general an
intermediate range of parameters in which the DF of this
species is no longer a power law in x. We may roughly
identify this region with the absence of real solutions to
Equation (22),

δ(m) = (m/〈m〉 − 5)2 − 24(〈m2〉/〈m〉2 − 1) < 0, (23)

illustrated as areas delimited by solid curves in Figure 3. After
reaching maximal steepness f (m) continues to evolve, but its
maximal value remains ∼ f (x = 1)x3/2

max.

4. CONCLUSIONS

We have analyzed the distribution of an arbitrary, continuous
MF ξ of stars around an MBH. For equal-mass stars, we derive
a simple approximation for the DF f, see Equation (8) and
Figure 1. For MFs not strongly dominated by light stars, where

the mass flow can be neglected, we generalize the BW77 linear
scaling p ∝ m to continuous MFs. We then derive approximate
solutions for p (including its normalization, Equation (15)) and
f (Equation (16)) and confirm them numerically; see Figures 2
and 3.

Our results provide a simple yet accurate alternative to solv-
ing the full integro-differential Equation (9). Equation (15) re-
produces and generalizes previous Fokker–Planck calculations
such as BW77, which were limited to a narrow range of param-
eters. As an illustration, consider SgA* with xmax = 104 and
a model MF with main-sequence stars, white dwarfs, neutron
stars, and black holes, of masses M/M� = 1, 0.6, 1.4, 10, and
relative abundances 1 : 10−1 : 10−2 : 10−3. Equation (15) then
gives M0 = 4.8M� so pH = 0.52 for black holes and p < 0.08
for the other species, in agreement with the numerical results of
Hopman & Alexander (2006) and AH09.

The DF becomes gradually steeper with decreasing M0, as
long as δ in Equation (23) remains positive. For very light
dominated MFs, the power-law assumption f ∼ ξxp eventually
fails at high masses, roughly where δ(m) < 0 (contour-enclosed
regions in Figure 3). As the MF peak shifts to even lower masses,
δ(m) > 0 and the power-law behavior are eventually restored
at the high-mass end and the DF remains very steep, peaking at
p = 3/2. This behavior is illustrated in Figure 3.

Power-law DFs f ∝ xp correspond to n(r) ∝ r−3/2−p. As
long as the MF is not very light dominated, stars of mass M0
have p0 = 1/4 (up to a ρ correction) and an equal-mass like
cusp n0 ∝ r−7/4, while other stars have nm/n0 ∝ r−(m−M0)/4M0 .
If the MF is broad and heavy-dominated, light stars tend toward
an energy-independent distribution n ∝ r−3/2 while heavy stars
approach n ∝ r−7/4. In the opposite, maximally steep limit,
heavy stars develop a cusp as steep as n ∝ r−3, harder than any
reported previously, and the number of stars in the cusp depends
(logarithmically) on the disruption cutoff.
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