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ABSTRACT

We revise a magnetic buoyancy model that has recently been proposed as a mechanism for extra mixing in
the radiative zones of low-mass red giants. The most important revision is our accounting of the heat exchange
between rising magnetic flux rings and their surrounding medium. This increases the buoyant rising time by five
orders of magnitude; therefore, the number of magnetic flux rings participating in the mixing has to be increased
correspondingly. On the other hand, our revised model takes advantage of the fact that the mean molecular weight
of the rings formed in the vicinity of the hydrogen burning shell has been reduced by 3He burning. This increases
their thermohaline buoyancy (hence, decreases the total ring number) considerably, making it equivalent to the pure
magnetic buoyancy produced by a frozen-in toroidal field with Bϕ ≈ 10 MG. We emphasize that some toroidal
field is still needed for the rings to remain cohesive while rising. Besides, this field prevents the horizontal turbulent
diffusion from eroding the μ contrast between the rings and their surrounding medium. We propose that the necessary
toroidal magnetic field is generated by differential rotation of the radiative zone that stretches a preexisting poloidal
field around the rotation axis, and that magnetic flux rings are formed as a result of its buoyancy-related instability.
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1. INTRODUCTION

During their first ascent on the red giant branch (RGB), a
majority of low-mass stars (those with M � 2 M�) experience
extra mixing in their radiative zones separating the H burn-
ing shell from the bottom of convective envelope (Sweigart &
Mengel 1979; Charbonnel & Do Nascimento 1998;
Denissenkov & VandenBerg 2003). Despite 30 years of effort,
however, the underlying physical mechanism is still not under-
stood. Observationally, the RGB extra mixing manifests itself
through changes of the surface abundances of Li, C, N, and
of the isotopic ratio 12C/13C correlating with an increasing lu-
minosity (Gratton et al. 2000; Smith & Martell 2003). These
changes are produced by the joint operation of thermonuclear
reactions that take place in the vicinity of the H shell and a
nonconvective mixing process that transports reaction products
through the radiative zone to the convective envelope. Obser-
vations support the idea that this mixing process starts (or, gets
much more efficient) when an RGB star reaches a luminosity
at which the differential luminosity function for a population of
stars having the same age and chemical composition shows a
prominent bump (a local pile-up of stars). The luminosity bump
results from a temporary slowing down of the star’s evolution
caused by its structural readjustment. This happens when the
H shell crosses and erases a discontinuity in the H-abundance
profile left behind by the bottom of convective envelope at the
end of the first dredge-up. During the first dredge-up, which oc-
curs on the subgiant branch and the lower RGB, the convective
envelope grows in mass, which causes its bottom to penetrate
the layers whose chemical composition had been altered yet on
the main sequence (MS). This produces changes of the surface
abundances of Li, C, N, and of the 12C/13C ratio similar to but
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by far less substantial than those incurred from the subsequent
operation of the RGB extra mixing.

Until recently, it has been thought that the only reason
why the RGB extra mixing does not manifest itself below the
bump luminosity is a strong gradient of the mean molecular
weight μ caused by the onset of a deep convective envelope
(e.g., Charbonnel et al. 1998). Any mixing mechanism has
to overcome the stable thermal stratification of the radiative
zone, and in the presence of a positive ∇μ such mixing is
correspondingly more difficult. In an RGB star above the
bump luminosity, the H shell has already crossed the H-profile
discontinuity; therefore, the radiative zone is now chemically
uniform everywhere except in a very close neighborhood of
the H shell. This circumstance was repeatedly emphasized in
the past. In particular, it has been used to model the RGB
extra mixing with rotation-driven meridional circulation and
turbulent diffusion. It was not until recently that it has become
clear that rotational mixing fails to explain the chemical element
transport in the radiative zones of upper RGB stars (Chanamé
et al. 2005; Palacios et al. 2006). In short, this failure is due to
the following main causes: firstly, rotation period measurements
for young cluster stars and helioseismic data indicate that MS
stars with M � 1 M� lose a great amount of their initial
angular momentum via magnetized stellar winds and that they
most likely become slow and nearly solid-body rotators before
leaving the MS; secondly, the chemical element transport by
meridional circulation is strongly hindered by rotation-induced
horizontal turbulence in stellar radiative zones (Chaboyer &
Zahn 1992); thirdly, the vertical turbulent diffusion powered
by differential rotation in the radiative zones of RGB stars
operates at a low level too because it also redistributes the
angular momentum, thus reducing the degree of differential
rotation in a self-regulating way.

A new class of RGB extra mixing models has emerged
since Eggleton et al. (2006) noticed that a tiny μ-gradient

1823

http://dx.doi.org/10.1088/0004-637X/696/2/1823
mailto:dpa@astronomy.ohio-state.edu
mailto:pinsono@astronomy.ohio-state.edu
mailto:kmac@hao.ucar.edu


1824 DENISSENKOV, PINSONNEAULT, & MACGREGOR Vol. 696

inversion (∇μ ≈ −10−4) becomes visible at the outer tail of
the H burning shell precisely at the moment when the H shell
erases the H-profile discontinuity. This inversion is produced
by the reaction 3He(3He, 2p)4He that locally reduces the mean
molecular weight by Δμ ≈ μ2ΔX3/6, where X3 is the 3He mass
fraction. The mechanism can be effective in the low-mass RGB
stars because their MS progenitors synthesize large amounts
of 3He in their outer radiative cores through nonequilibrium
pp burning. Even though this 3He-rich material gets diluted in
the convective envelope during the first dredge-up, the radiative
zone of a low-mass RGB star above the bump luminosity can
still have X3 increased up to a value of 2 × 10−3 (the solar
initial 3He abundance is 3 × 10−5). For this mass fraction, the
3He burning leads to Δμ ≈ −10−4, assuming that μ ≈ 0.6
and ΔX3 ≈ −X3. Below the bump luminosity, the μ-gradient
inversion is overridden by the strong positive μ-gradient built
up on the MS. It shows up and may come into play only when
the 3He burning shell, advancing in mass in front of the major
H shell, finds itself in the chemically homogeneous part of the
radiative zone. This happens at the bump luminosity. Eggleton
et al. (2006) found that a rapid mixing process occurred in their
3D simulations above this point, although the underlying cause
was not identified (see Denissenkov & Pinsonneault 2008b).

Inspired by this work, Charbonnel & Zahn (2007a) have
proposed that the μ-gradient inversion maintained by the 3He
burning drives thermohaline convection in the radiative zones
of low-mass RGB stars above the bump luminosity and that
this is the long-sought physical mechanism for the RGB extra
mixing. Thermohaline convection is a mixing process triggered
by a double diffusive instability (e.g., Vauclair 2004). Consider
a stratified ideal gas with a stable temperature gradient (∇ ≡
d ln T/d ln P < ∇ad, where “ad” stands for adiabatic changes)
but with an unstable composition gradient (∇μ < 0). If we
isolate a gas blob and shift it up in the vertical direction
then its further motion will depend on how fast the blob
exchanges heat and composition with its surrounding medium
horizontally. Indeed, the relative difference in density between
the surrounding medium and the blob is Δρ/ρ ≈ Δμ/μ −
ΔT/T , assuming that ΔP = 0. For the blob to continue rising,
we need Δρ > 0. Our assumptions about the gradients mean
that Δμ > 0 and ΔT > 0 in the absence of both heat and
molecular diffusion. Because these differences grow when the
blob rises, Δρ may stay positive or it may ultimately become
negative depending on the ratio rμ = |∇μ|/(∇ad − ∇). In our
particular case, rμ � 1. Therefore, our idealized impermeable
and adiabatic blob will rise a short distance and then stop,
when the accumulated difference in T compensates that in μ.
In reality, the heat exchange, whose rate is specified by the
radiative diffusivity K, constantly works to reduce the difference
in T. On the other hand, molecular diffusion νmol tries to
smooth out the difference in μ. The double diffusive instability
may therefore develop only if K � νmol. In this case, the
blob’s rising speed can be estimated as v ∼ l/τth, where l is
the mean path that the blob travels before it gets dissolved,
while τth ∼ d2/K is the characteristic thermal timescale for a
spherical blob of the diameter d. An approximate expression
for the thermohaline diffusion coefficient can be obtained as
Dthc ∼ lvrμ ∼ Krμ(l/d)2. Charbonnel & Zahn (2007a)
and Denissenkov & Pinsonneault (2008b) have demonstrated
that the observed RGB mixing patterns can be explained by
stellar evolutionary models with the 3He-driven thermohaline
convection only if l/d � 10–30. A similarly large parameter
ratio for thermohaline convection in stellar radiative zones was

postulated by Ulrich (1972), as opposed to a ratio l/d ∼ 1
advocated by Kippenhahn et al. (1980). Besides, the double-
diffusive instability has been shown to result in formation of
elongated (large l to d ratios) structures known as “salt fingers”
in laboratory experiments with the saltier and warmer water
overlying the fresher and colder water (Stern 1960).

However, there appears to exist observational and theoretical
arguments challenging this model. First of all, a large number
of old metal-poor MS stars with M � 0.9 M�, both in globular
clusters and in the halo field, which had accreted He- and C-rich
high-μ material from their evolved cluster or binary compan-
ions do not seem to have been thoroughly mixed by thermoha-
line convection (Newsham & Terndrup 2007; Denissenkov &
Pinsonneault 2008a; Aoki et al. 2008), as it would be expected
even if the less efficient prescription by Kippenhahn et al. (1980)
were used for Dthc. Second, thermohaline convection is expected
to be suppressed by the rotation-induced horizontal turbulence
that works together with the molecular diffusion to reduce the
μ contrast between the rising gas blob and its surroundings
(Denissenkov & Pinsonneault 2008b). Third, strong differen-
tial rotation is predicted to hinder thermohaline convection as
well, because the “salt fingers” may be tilted by the rotational
shear so rapidly that they will get damped before they produce
significant mixing (Canuto 1999, and references therein). We
anticipate that a similar effect is also produced by the Coriolis
force in a uniformly rotating radiative zone. Contrary to these
expectations, a much larger fraction of Li-rich objects has been
found among rapidly rotating (v sin i � 8 km s−1) K giants
than among their more common slowly rotating (v sin i � 1 km
s−1) counterparts (Drake et al. 2002). The Li-rich K giants are
low-mass stars located above the bump luminosity (Charbonnel
& Balachandran 2000) in which large amounts of Li are thought
to be synthesized via the 7Be-transport mechanism (Cameron &
Fowler 1971). To be efficient, this mechanism needs a 10 to 100
times faster mixing than that required to reproduce the abun-
dance patterns in the majority of upper RGB stars (Denissenkov
& Herwig 2004). It is not clear how thermohaline convection
can explain the phenomenon of Li-rich K giants given that its
efficiency should be lower in the more rapidly rotating stars.
These arguments have motivated our search for an alternative
RGB mixing mechanism.

In this paper, we use a simple model of toroidal magnetic
field generation in a differentially rotating radiative zone of
a bump luminosity RGB star to obtain order-of-magnitude
estimates demonstrating that the buoyant rise of magnetic flux
rings being formed close to the local minimum in μ may be a
good alternative to the 3He-driven thermohaline convection. A
similar model has recently been proposed by Busso et al. (2007)
(hereafter, referred to as BWNC). However, they assumed
that a rising ring always stays in thermal equilibrium with its
surrounding medium, and we argue that this leads to a substantial
overestimate of the ring’s radial velocity. We account for the
impact of μ gradients and discuss the origin of the magnetic
rings. We show that, as a mechanism for the RGB extra mixing,
magnetic buoyancy has some advantages over thermohaline
convection and, therefore, it is worth further investigating by
means of multidimensional MHD simulations.

2. THE RGB STELLAR MODEL

Our background RGB stellar model, in the radiative zone of
which the formation and buoyant rise of magnetic flux rings
are studied, represents a typical metal-poor upper RGB star. It
has the initial mass M = 0.8 M�, helium and heavy-element
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Figure 1. (a) Element mass fractions, (b) the mean molecular weight, and (c)
its logarithmic (with respect to the pressure) gradient as functions of the radius
in the vicinity of the H burning shell in our bump luminosity RGB model. The
vertical solid line shows the observationally constrained depth of the RGB extra
mixing rmix = 0.05 R�, the right dotted line—the radius rmin of the minimum
μ, while the left dotted line is placed at r = rmin − HP .

(A color version of this figure is available in the online journal.)

mass fractions Y = 0.24 and Z = 0.0005, and the luminosity
log L/L� = 2.085 corresponding to the age of 13.65 Gyrs.
The RGB extra mixing is free to work in this star because the H
burning shell has already erased the H-profile discontinuity in it.
The model has been computed using the stellar evolution code
described by Denissenkov et al. (2006). Its chemical element
mass fraction, μ, and ∇μ profiles immediately above the H shell
are plotted in Figure 1.

For extra mixing to dredge up material deficient in C but not
enriched in Na, as required by the observed abundance patterns
in the metal-poor field RGB stars (Gratton et al. 2000), it has to
reach a depth between 0.045 R� and 0.055 R� (Figure 1(a)).
We will assume the mixing depth rmix = 0.05 R� (shown

by the vertical solid line in Figure 1). In previous works (e.g.,
Denissenkov & Weiss 1996; Denissenkov & VandenBerg 2003),
the mixing depth was specified using either the relative mass
coordinate δMmix = (Mmix−Mc)/(Mbce−Mc) or the logarithmic
temperature difference Δ log T = log T (rc)−log T (rmix), where
the subscripts “c” and “bce” refer to the He core boundary and
to the bottom of convective envelope, respectively. However, we
have noticed that, when plotted as functions of r, the abundance
profiles remain nearly stationary in spite of the slow mass inflow
from the radiative zone that feeds the H burning shell. Therefore,
we have decided to simply use the radius for the RGB mixing
depth specification. The value of rmix = 0.05 R� corresponds
to δMmix = 0.135 and Δ log T = 0.245.

For subsequent estimates of various quantities characterizing
the efficiencies of magnetic flux ring formation and buoyant rise
in the radiative zone of our RGB model, we need to know some
of its structure parameters at r = rmix. These are summarized
in Table 1 along with the parameter values at r = rbce. We
have also listed the values used by BWNC. Note that they have
considered a half-solar metallicity bump luminosity model with
the initial mass of 1.5 M�.

3. ROTATION IN THE RADIATIVE ZONE

In our magnetic buoyancy model, it is assumed that a toroidal
magnetic field in the radiative zone of an RGB star is generated
by its differential rotation that stretches a preexisting poloidal
field around the rotation axis. To elaborate on the model, we
therefore need an estimate of the degree of differential rotation
in the radiative zone. For this, we use the rotation profile M2
presented by Palacios et al. (2006) in their Figure 2 (the dotted
curve in upper panel C). It shows the angular velocity Ω as a
function of δM = (Mr −Mc)/(Mbce −Mc) in the radiative zone
of a bump luminosity model with initial values of M, Y, and
Z almost identical to ours. The model’s rotational evolution
was computed using the stellar evolution code STAREVOL
designed for 1D simulations of the angular momentum and
chemical element transport in stellar radiative zones (Siess et al.
2000; Palacios et al. 2003). The code takes proper account
of the rotation-induced meridional circulation, horizontal and
vertical turbulent diffusion, as well as atomic diffusion and
mass loss. The initial zero-age MS model for the M2 run has
been assumed to be a slow solid-body rotator with the surface

Table 1
RGB Model Structure Parameters

Parameter Units Our Model BWNC Model

rmix = 0.0500 R� rbce = 0.996 R� rmix = 0.0495 R� rbce = 0.912 R�
Mr M� 0.309 0.331 0.252 0.256
HP r 0.257 0.449 0.371 0.622
μ AMU 0.593406 0.593474
T K 2.16 × 107 2.02 × 106 2.51 × 107 2.26 × 106

ρ g cm−3 14.8 1.03 × 10−2 5.19 2.55 × 10−3

P dyn cm−2 4.49 × 1016 2.93 × 1012 1.87 × 1016 8.49 × 1011

K cm2 s−1 9.35 × 107 8.15 × 1010

N2
T s−2 5.40 × 10−4 1.13 × 10−9

N2
μ s−2 1.48 × 10−7 0.00

νmol cm2 s−1 1.80 × 102 6.76 × 102

νrad cm2 s−1 1.74 × 102 1.43 × 104

η cm2 s−1 19.3 6.90 × 102

κ cm2 g−1 0.382 0.728
|ṙ| cm s−1 3.91 × 10−5 8.50 × 10−5

Ω rad s−1 10−3 10−6
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rotational velocity of 5 km s−1. This choice is a reasonable
replacement for detailed computations of the pre-MS and early
MS evolution during which a low-mass star experiences a strong
magnetic breaking of its much faster initial surface rotation
and a core-envelope rotational coupling leading to its nearly
uniform internal rotation on a much shorter timescale than its
MS lifetime.

Another important assumption made by Palacios et al. (2006)
is uniform specific angular momentum distribution in the RGB
convective envelope. This is required to explain the origin of
rapidly rotating red horizontal branch stars (Sills & Pinsonneault
2000). This empirical demand for a strong differential rotation
in the convective envelopes of low-mass RGB stars is supported
by recent 3D hydrodynamic simulations of the interaction of
turbulent convection and rotation performed by Palacios & Brun
(2006).

The M2 bump luminosity model has Ω(rbce) ≈ 10−6 rad s−1,
and Ω(rmix) ≈ 10−3 rad s−1. We will use these values in our
following discussion. So, in the absence of transport processes
other than those considered by Palacios et al. (2006), the angular
velocity in the radiative zone of our RGB stellar model could
vary with the radius approximately as Ω(r) = Ω(rmix)(rmix/r)2.
This steep rotation profile results from the conservation of
angular momentum in the mass inflow and modest angular
momentum redistribution by meridional circulation and vertical
turbulent diffusion.

4. SUPPRESSION OF THERMOHALINE CONVECTION
BY HORIZONTAL TURBULENCE

Denissenkov & Pinsonneault (2008b) have derived a general
criterion for convective instability in the presence of a negative
∇μ and strong horizontal turbulence, the latter being character-
ized by a diffusion coefficient Dh � νmol. They have allowed
for a possibility that a convective element of the diameter d can
travel a distance l > d. One of the consequences of this crite-
rion is that thermohaline convection may be suppressed by the
horizontal turbulent diffusion unless

|∇μ|
∇rad − ∇ad

>
1

3

Dh

K + Dh
, (1)

where ∇rad is the radiative temperature gradient (compare this
inequality with condition 5 from Vauclair 2004). Note that
a similar result can be obtained from the dispersion relation
(10) derived and analyzed by Ulrich (1972). One should only
take into account that, in the presence of the strong horizontal
turbulence, Ulrich’s molecular diffusion coefficient D has to be
replaced with Dh. Then, for the thermally limited modes, one
readily finds

Dthc ≈ DUlrich ×
(

1 − Dh

K

∇rad − ∇ad

|∇μ|
)

, (2)

where DUlrich is Ulrich’s original thermohaline diffusion coeffi-
cient. From the last expression it follows that thermohaline con-
vection may operate (Dthc > 0) only when |∇μ|/(∇ad −∇rad) >
Dh/K , which is close to the requirement (1), provided that
Dh < K . The difference in the right-hand-side ratios be-
tween the two conditions comes about from the fact that, unlike
Denissenkov & Pinsonneault (2008b), Ulrich neglected the con-
tribution of D to the heat diffusion. That was warranted for the
nonrotating case considered by him, in which Dh = 0, and
therefore D = νmol � K .

Palacios et al. (2006) have shown that Dh always stays com-
parable to K at r ≈ rmix in their M2 RGB model. Moreover,
the ratio Dh/K turns out to be larger than ∼10−3 at all radii
between rmix and rbce, both in the bump luminosity model
and in the more evolved model shown in their Figure 5 (pan-
els C and D). Given that the 3He burning can make the ratio
|∇μ|/(∇rad −∇ad) ∼ 10−3 at most, while the RGB extra mixing
will necessarily reduce it below this limit (by smoothing out
the μ-gradient), the linear analysis predicts that thermohaline
convection may be suppressed in these models, especially in the
vicinity of rmix. It would be inconsistent to ignore this prediction
because similar eroding effects of the horizontal turbulence on
the model rotational and mixing properties have already been
included in the simulations performed by Palacios et al. (2006).
They are responsible for the significant reduction of the effi-
ciency of mixing by meridional circulation (Chaboyer & Zahn
1992) and for the erasing of the latitudinal differential rotation,
the latter effect allowing to consider Ω as a function of r alone
(Zahn 1992). Besides, Zahn’s concept of the rotation-induced
anisotropic turbulence in stellar radiative zones, with horizontal
components of the turbulent viscosity strongly dominating over
those in the vertical direction, was repeatedly used in stellar evo-
lution computations to facilitate the penetration of μ-gradient
barriers by the vertical turbulent diffusion in both MS stars and
upper RGB stars (Talon & Zahn 1997; Talon et al. 1997; Maeder
2003; Palacios et al. 2003, 2006).

5. GENERATION OF TOROIDAL MAGNETIC FIELD

Following Mestel & Weiss (1987), we assume that, like in
the solar-type MS stars, the differential rotation in the radiative
zone of the RGB star creates a toroidal magnetic field Bϕ by
shearing a preexisting constant poloidal field Bp = {Br, Bθ , 0}
(we use the spherical polar coordinates). As a result of its
buoyancy-related undular instability (e.g., Acheson 1978; Spruit
& van Ballegooijen 1982), the toroidal field is prompted to form
magnetic flux rings that will rise toward the bottom of convective
envelope, thus producing chemical mixing and also participating
in angular momentum redistribution.

At the stellar equator (θ = 90◦), the momentum and induction
equations (Charbonneau & MacGregor 1993) can be reduced to

∂Ω
∂t

= ω2
A,r

∂b

∂r
, (3)

∂b

∂t
= r2 ∂Ω

∂r
, (4)

where ωA,r = Br/(
√

4πρ r) is the local Alfvén frequency
associated with the radial field component Br, and b = rBϕ/Br .
In Equations (3) and (4), we have omitted the viscosity and
magnetic diffusivity, for these will be shown to work on
much longer timescales than the formation and buoyant rise of
magnetic rings. For the sake of simplicity, we have additionally
assumed that the poloidal field’s configuration is such that
Bθ = 0 at the equator. Neglecting changes with the radius of the
coefficients in Equations (3) and (4), we find that the variations
of Ω and b can locally be described by the same Alfvén wave
equation

∂2f

∂r2
− 1(

r2ω2
A,r

) ∂2f

∂t2
= 0.

So, at a given radius, the initial (continuing while t � ω−1
A,r )

decrease of Ω and increase of |b| can be approximated as
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Ω(t, r) ≈ Ωmax(r) cos(ωA,r t), and b(t, r) ≈ bmax(r) sin(ωA,r t).
From Equations (3) and (4), we can also estimate the ratio of
the wave amplitudes Ωmax/bmax ≈ ωA,r/r , hence (Bϕ)max ≈
Br (Ωmax/ωA,r ). This ensures that the sum of the rotational
kinetic and toroidal field potential energy (per unit gram) is
conserved,

1

2
(rΩ)2 +

B2
ϕ

8πρ
= 1

2
(rΩmax)2 . (5)

Substituting the values of r = rmix and ρ = ρ (rmix) from our
RGB model (Table 1) into the above relations, we find that

ω−1
A,r = 1.50 × 103 B−1

r yr rad−1, (6)

(Bϕ)max = 4.75 × 105 (Ωmax)−5 Br, (7)

where (Ωmax)−5 ≡ Ωmax/(10−5 rad s−1). Equation (7) gives
an order-of-magnitude estimate of the toroidal field maximum
strength that may be generated by the differential rotation at r =
rmix, while Equation (6) estimates its growth time. For example,
we may expect (from Equation (4)) that, after a time Δt � ω−1

A,r ,
a toroidal field Bϕ ≈ ΩmaxBr q Δt ≈ (Bϕ)max ωA,r q Δt =
3.16 × 102(Ωmax)−5Br q Δt will be created, where q =
(∂ ln Ω/∂ ln r) < 0 is the initial rotational shear, and Δt is ex-
pressed in years. Assuming that Ωmax = Ω(rmix) = 10−3 rad
s−1 (Table 1) at the moment when the differential rotation begins
to stretch the poloidal field, we obtain the estimate

Bϕ(Δt, rmix) ≈ 3.16 × 104Br q Δt, (8)

where Δt � 1.50 × 103 B−1
r yrs. The relative decrease of

Ω for the same period of time is |ΔΩ/Ωmax| ≈ 4.42 ×
10−7 B2

r q2 (Δt)2 � 1. In the general case of Bθ �= 0 and
Ω = Ω(r, θ ) we would have Bϕ ≈ r sin θ (∇Ω, Bp) Δt for
Δt � ω−1

A,r (Spruit 1999), i.e., both poloidal field components
would be involved into the winding up of toroidal field.

If the uniform rotation of the solar radiative core and the core-
envelope rotational coupling in the low-mass MS stars are both
produced by the back reaction of the azimuthal component of the
Lorentz force emerging in the process of generation of toroidal
magnetic fields by the shearing of preexisting poloidal fields,
as proposed by Charbonneau & MacGregor (1993), then the
MS progenitors of low-mass RGB stars are required to possess
poloidal magnetic fields with strengths of the order of 0.01 G
to 10 G in their radiative interiors. The low magnetic diffusivity
η ∼ 102 sm2 s−1 in the low-mass MS stars excludes the ohmic
dissipation of these fields. Therefore, the post-MS contraction
of the H-exhausted core from its MS radius of ∼ 0.2 R� down
to its RGB radius rc ≈ 0.02 R� and magnetic flux conservation
might lead to the amplification of Br up to the values 17 G to
1 kG. From the same considerations, it also follows that Br
in the radiative zone of the RGB star may decrease with the
radius as Br ≈ Br (rmix) (rmix/r)2. It is true that the mass inflow
in the radiative zone may sweep the frozen-in poloidal field
toward the H burning shell on a long timescale of the order of
Δr/|ṙ| = (rbce − rmix)/|ṙ| ∼ 3 × 107 yrs (Table 1). However,
the poloidal field may be replenished by a dynamo operating
at the bottom of convective envelope. It may then be entrained
and redistributed all over the radiative zone by the mass inflow,
which could also produce the dependence Br ∝ r−2. These
estimates will be used in our further analysis.

6. THE BUOYANT RISE OF MAGNETIC FLUX RINGS

6.1. General Results

Because we assume a differential rotation in the radiative
zone, the inertial frame of reference has been chosen. The
magnetic flux rings are assumed to be axisymmetric with respect
to the rotation axis. In the spherical polar coordinates, their radial
and latitudinal accelerations are

dur

dt
= u2

θ

r
+

(
u2

ϕ

r
− Ω2r sin2 θ

)
+

ρe − ρ

ρe + ρ

(
GMr

r2

−Ω2r sin2 θ
) − B2

ϕ

4πr(ρe + ρ)
− CD

πa

ρe

ρe + ρ
ur

√
u2

r + u2
θ , (9)

duθ

dt
= − uruθ

r
+

(
u2

ϕ

r
cot θ − Ω2r sin θ cos θ

)

− ρe − ρ

ρe + ρ
Ω2r sin θ cos θ − B2

ϕ

4πr(ρe + ρ)
cot θ

− CD

πa

ρe

ρe + ρ
uθ

√
u2

r + u2
θ . (10)

These equations (Choudhuri & Gilman 1987; MacGregor &
Cassinelli 2003; MacDonald & Mullan 2004) take into account
the centrifugal reduction of the local gravitational acceleration,
the buoyant force, the magnetic tension force, and the aerody-
namic drag force (we employ the drag coefficient CD = 1).
They are supplemented with the equation

d

dt
(uϕr sin θ ) = 0 (11)

describing the conservation of the azimuthal component of
the specific angular momentum. The subscript “e” means that
the respective quantity is referred to the external medium
surrounding the rings, while all other quantities, except Ω, refer
to ring properties.

At its starting position (r0, θ0), a ring is specified by its initial
cross-section radius a0, the strength of the frozen-in toroidal
magnetic field Bϕ,0, and internal thermodynamic properties P0,
T0, ρ0, and μ0. The dynamic equilibrium between the ring and
its surrounding medium requires that

Pe = P +
B2

ϕ

8π
, or

ΔP

Pe
≡ (Pe − P )

Pe
= 1

(1 + β)
≈ 1

β
, (12)

where β ≡ P/(B2
ϕ/8π) � 1 is the ratio of the thermodynamic

to magnetic pressure in the ring. The conservation of mass and
magnetic flux of the ring determine how its radius and toroidal
field evolve during its motion(

a

a0

)2

= ρ0r0 sin θ0

ρr sin θ
= Bϕ,0

Bϕ

, (13)

where r0 � r � rbce. For the equation of state, we use the ideal
gas law. Finally, the entropy change in the ring is described by
the simple equation

dS

dt
= 32(γ − 1)σT 4

e

3κeρea2P
δT = 2γK

δT

a2
(14)

derived by MacGregor & Cassinelli (2003). Here, S =
ln [(P/P0)(ρ0/ρ)γ ], δT = (Te − T )/Te, and γ = 5/3.
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Table 2
Magnetic Flux Ring Parameters

Parameter Units Our Model (Δμ = 5 × 10−5) BWNC Model (Δμ = 0)

Br = 7.3 G Br = 73 G RGB-1 RGB-2

a0 cm 1.3 × 107 9.7 × 106 6.5 × 106 1.5 × 107

a0 HP 1.5 × 10−2 1.1 × 10−2 5.1 × 10−3 1.2 × 10−2

tb yr 2.9 × 102 1.6 × 102 0.19 1.1
〈vb〉 cm s−1 7.3 13 9.8 × 103 1.8 × 103

(Bϕ )0 kG 254 254 380 48
β0 1.8 × 107 1.8 × 107 3.3 × 106 2.0 × 108

(Bϕ )bce kG 3.5 3.5 3.5 0.44
N 1.3 × 102 1.3 × 102 1.0 1.0
Ṅ = N/tb yr−1 0.45 0.83 5.3 0.91
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Figure 2. Motion of the equatorial magnetic flux rings with the cross-
section radii a0 = 10−4 HP (solid and dotted curves) and a0 = 10−3 HP

(dashed curves). The powers of ten show the specified values of β0, while
the numbers in parentheses give the corresponding strengths (in MG) of the
frozen-in toroidal magnetic field. The dotted curve corresponds to the ring with
β0 = 1010 (Bϕ ≈ 11 kG) whose mean molecular weight has been reduced by
Δμ = 5 × 10−5.

The initial conditions for the ring are specified by r0 =
rmix = 0.05 R�, 0 < θ0 � 90◦, ur = 0, uθ = 0,
uϕ = r0 sin θ0 Ω(r0, θ0), β = β0, a = a0, S = 0, δP ≡
(Pe − P )/Pe = (1 + β0)−1, δρ ≡ (ρe − ρ)/ρe = (1 + β0)−1, and
δT = 0. The ring’s radius a will be measured in units of the local
pressure scale height HP = Pe/gρe, where g = GMr/r2 is the
gravitational acceleration. The implicit assumption of uniform
pressure inside the ring requires that a � HP (the thin ring
approximation). For brevity, we will denote a ≡ (a/HP ) and,
given the previous remark, will only consider cases with a � 1.

The above differential and algebraic equations have been
solved numerically. The motion of the ring in the equatorial
plane (θ0 = 90◦) is shown in Figure 2 for our assumed rotation
law Ω(r, θ ) = Ω(rmix)(rmix/r)2, in which case θ (t) = θ0. Solid
curves correspond to the initial value of a0 = 10−4, while dashed
curves have a0 = 10−3. The powers of ten near the curves give
their specified values of β0, the respective toroidal field strengths
(in MG) being displayed in parentheses. Our computations have
shown that for β0 � 108 (in other words, for (Bϕ)0 � 0.1 MG)
and a0 � 2 × 10−4 the dependence of the total buoyant rising

time on β0 and a0 can be approximated as

tb ≈ 1.4 × 102

(
β0

108

) ( a0

10−4

)2
yr. (15)

This is transformed into the average buoyant velocity

〈vb〉 = Δr

tb
= (rbce − rmix)

tb
≈ 15

(
108

β0

) (
10−4

a0

)2

cm s−1,

(16)

which is nearly five orders of magnitude smaller than the
appropriately scaled average velocity used by BWNC (for the
scaling, we have used the data from the fifth column of Table 1
and the column RGB-1 of Table 2). We have tested that this
big difference is entirely caused by the assumption of thermal
equilibrium between the ring and its surroundings made in the
cited paper.

The dashed and dot-dashed curves in Figure 3 show the
dependences of tb on a0 for β0 = 108 and β0 = 107 obtained
by solving Equations (9)–(11), while the dotted lines represent
their approximations by (15). It is seen that the exact solutions
strongly deviate from the approximate ones at a0 � 2 × 10−4.
This limit corresponds to a regime in which the aerodynamic
drag force comes into play. Indeed, the last terms on the right-
hand sides of Equations (9) and (10), which describe the drag
force, are negative and inversely proportional to a. They lead to
a slowing down of the ring’s buoyant rise at small a, which is
not reflected in Equation (15).

6.2. Rings with μ Reduced by 3He Burning

Our numerical computations can optionally take into account
the fact that the rings carrying the nuclear processed material
are necessarily formed in the region of the local μ depression
maintained by the 3He burning (Figure 1(b)). They must
therefore have a lower μ than the bulk of the radiative zone
through which they move. As a result, their average buoyant
velocity is found to weakly depend on the toroidal field strength.
However, the frozen-in toroidal field is still needed for them to
remain cohesive while rising.

The dotted curve in Figure 2 shows the path of a ring with
Δμ = μe − μ = 5 × 10−5, a0 = 10−4, and β0 = 1010

that corresponds to (Bϕ)0 ≈ 11 kG. Its buoyant rising time
is tb ≈ 1.3 yrs. Approximately, the same short time is obtained
for a ring with (Bϕ)0 ≈ 1.1 kG (β0 = 1012). If those two
rings had μ = μe then their rising times would be much longer
and vastly different, namely, tb ≈ 104 yrs and tb ≈ 106 yrs,
respectively (Equation (15)). This means that their buoyancy is
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Figure 3. Dashed and dot-dashed curves show the dependences of the buoyant
rising time on the ring cross-section radius for the rings with β0 = 108 and
β0 = 107, respectively, whose chemical composition has not been changed by
nuclear reactions (Δμ = μe − μ = 0), while the solid curve corresponds to the
ring with β0 = 1010 and Δμ = 5 × 10−5 (μ reduced by 3He burning). These
three curves represent our numerical solutions of Equations (9)–(11). The dotted
lines give their corresponding approximations by Equation (15), in which β0
has been replaced by βeff = δμ−1 = (μ/Δμ) for the third case.

now controlled by the μ difference alone. Let us neglect, for a
moment, the difference in temperature between the surrounding
medium and the ring, δT ≡ (Te − T )/Te ≈ 0. The buoyant
acceleration is ab ≈ gδρ. In the case of Δμ = 0, the initial
positive difference in density δρ ≈ δP ≈ β−1

0 is simply due
to the excess magnetic pressure inside the ring (Equation (12)).
On the other hand, in the case of Δμ > 0, and for a weak
toroidal field (δP ≈ 0), we have δρ ≈ δμ ≡ Δμ/μe. We can
introduce the effective toroidal magnetic field Beff associated
with a specified value of δμ such that δμ = β−1

eff . It turns out
that Beff ≈ 9.8 MG for Δμ = 5 × 10−5 at r = rmix in our
RGB model. Hence, toroidal magnetic fields with (Bϕ)0 � Beff
will have a negligible effect on the motion of the ring with the
reduced μ. For Δμ = 5 × 10−5, β0 = 1010, and a0 = 10−3

the rising time tb ≈ 1.6 yrs is still short. However, it increases
up to tb ≈ 33 yrs and tb ≈ 132 yrs for rings with the initial
radii a0 = 5 × 10−3 and a0 = 10−2, respectively, following the
dependence tb ∝ a2

0 for the thicker rings (Equation (15)).
The role that the reduced μ plays in the acceleration of the

buoyant rise of the ring containing a weak magnetic field can be
elucidated if we consider, for simplicity, that the ring’s vertical
motion consists of the following recurring sequence. Initially,
let the ring have δT = 0 but δμ > 0, hence δρ = δμ+β−1

0 > 0.
Now, let the ring rise adiabatically until the accumulated
difference in T compensates that in ρ, i.e., δT = δρ. At this
moment, the ring stops and waits a while for the heat exchange
to make δT = 0 before starting to rise adiabatically again, and so
on. But the waiting time is in fact the thermal time τth; therefore,
it is inversely proportional to the heating rate dS/dt that linearly
depends on the ratio δT /a2 (Equation (14)). When the ring stops,
it has δT = δμ + β−1

0 . Therefore, if δμ � β−1
0 then δT ≈ δμ;

hence we have tb ∝ τth ∝ δμ−1 a2 = βeff a2. On the other
hand, if δμ � β−1

0 then δT ≈ β−1
0 , and tb ∝ τth ∝ β0 a2

(Equation (15)). The transition from the one to the other regime
occurs at β−1

0 ≈ δμ = β−1
eff .

We have checked that Equation (15) gives a correct order-of-
magnitude estimate (this time, at a0 � 8 × 10−4 though) for
the buoyant rising time of a ring with a reduced μ provided that
β0 is replaced by βeff = δμ−1 (the dotted line approximating
the solid curve in Figure 3). It is also important to note that
the coefficients in Equations (15)–(16) have been obtained for a
particular RGB model (our model from Table 1); therefore, they
are model dependent. For example, given that tb is expected to
be inversely proportional to the thermal diffusivity K as well
(Equation (14)), the latter being roughly proportional to the
luminosity, we predict that these coefficients should change by
a factor of 10 (tb decreases, while 〈vb〉 increases) toward the
RGB tip (log L/L� ≈ 3.3). This scaling is indeed confirmed
by our computations.

6.3. Comparison with Results Obtained by BWNC

Given that one rising magnetic flux ring carries the mass
mb = 2π2r0 a2

0 ρ0 sin θ0 = 2π2ra2ρ sin θ , N such rings present
in the radiative zone at the same time will provide chemical
mixing with the mass rate

Ṁb = Nmb

tb
, (17)

where tb is their buoyant rising time. The quantity Ṁb has to
match the observationally constrained rate of the RGB extra
mixing Ṁmix ≈ 4×10−8 M� yr−1 (BWNC). The right-hand side
of Equation (17) is a function of the ring parameters N, a0, and
(Bϕ)0. For a ring with a reduced μ, the third parameter should be
replaced with Δμ, unless δμ � 1/β0 (Section 6.2). In the case of
Δμ = 0, considered by BWNC, the equating of Ṁb to Ṁmix gives
a relationship between N, a0, and (Bϕ)0. To estimate a reasonable
value of a0 at r = rmix, they have referred to the characteristic
dimension a� ∼ 1000–2000 km of magnetic flux tubes that are
believed to exist deep in the solar convective zone. Besides
the RGB model, they have also considered a representative
model for low-mass asymptotic giant branch (AGB) stars, whose
structure above the H burning shell resembles that of upper RGB
stars. There is indirect evidence, such as distinctive 18O/16O,
17O/16O, 12C/13C, and N/C abundance ratios in the meteorite
grains of AGB circumstellar origin (Wasserburg et al. 2006)
and in the atmospheres of carbon-enhanced metal-poor stars
(Ryan et al. 2005; Sivarani et al. 2006; Masseron et al. 2006;
Denissenkov & Pinsonneault 2008a; Lebzelter et al. 2008),
indicating that extra mixing may also operate in the radiative
zones of these stars (Nollett et al. 2003). In their RGB-1 and
RGB-2 magnetic buoyancy models, BWNC have employed the
values of a0 obtained assuming that a(rbce) = a� and using
Equation (13) with the stellar structure parameters from their
AGB and RGB stellar models, respectively. These values are
listed in our Table 2 along with the corresponding estimates for
our RGB model.

BWNC have also assumed that there is only one magnetic
flux ring floating in the radiative zone at any time. Substituting
the number N = 1 together with the values of a0 from Table 2
and Ṁmix = 4×10−8 M� yr−1 into Equation (17) constrains the
required values for tb and 〈vb〉 (Table 2). Under the assumptions,
made by BWNC, that the ring always stays in the thermal
equilibrium with its surrounding medium (δT = 0) and that
the only force impeding its motion is the aerodynamic drag
force, it is easy to show that tb ∝ √

β0/a0 ∝ (Bϕ)0/
√

a0.
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It is from the last relation that BWNC have determined the
toroidal field strengths needed to drive the RGB extra mixing
by magnetic buoyancy (Table 2, (Bϕ)0 is transformed to (Bϕ)bce
using Equation (13)). They pointed out that these results are
consistent with existing observations of magnetic fields in red
giants (e.g., Blackman et al. 2001).

However, as we have noted, BWNC underestimated the
ring’s rising time by assuming that the heat exchange between
the surrounding medium and the ring occurs instantaneously,
which maintains ΔT = 0 all the time. Our more conservative
assumption explicitly takes into consideration the radiative heat
exchange, which leads to a much longer ring’s rising time, as
approximated by Equation (15). Employing the values of a0, tb,
and β0 from columns RGB-1 and RGB-2 of Table 2, we find
that the rising times have been underestimated by the factors
6 × 104 and 4 × 106 for these buoyancy models. To keep the
same estimates for the toroidal field strength, the ring number
N has to be increased by the corresponding factors. However,
the volume occupied by ∼105–106 rings is comparable to the
total volume of the radiative zone, in which case the stellar
structure would be greatly disturbed, especially at the bottom
of convective envelope where the rings encounter turbulent
convection. Here, the frozen-in toroidal field is either quickly
dissipated via the strong turbulent diffusion, thus depositing
its energy at the radiative/convective interface, or it inhibits
convective motions if its potential energy exceeds the turbulent
kinetic energy (Moss 2003). In either case, the stellar structure
would be strongly modified. In the next section, we will show
that a reasonably small number of N can be obtained only for
rings with a reduced μ.

6.4. There Still May Be a Solution

By assigning N = 1, BWNC have implicitly assumed that
the average time tform needed to form a magnetic flux ring is
equal to its buoyant rising time tb. Indeed, instead of (17) the
buoyancy mixing mass rate ought to be calculated as Ṁb =
mb/tform = Nmb/tb, where N = tb/tform. We assume that, like
in the case of the solar tachocline (e.g., Schmitt & Rosner 1983),
the appropriate MHD mechanism responsible for the formation
of magnetic flux rings in the vicinity of the H burning shell is the
undular buoyancy instability. The criterion for its development
has been extensively discussed in the literature, e.g., by Ache-
son (1978), Spruit & van Ballegooijen (1982), Spruit (1999),
and Fan (2001). It has been shown that a diffusive toroidal
magnetic field gets broken into distinct arching flux tubes
when

Bϕ > (Bϕ)crit ≈
√

4πρ r2N2
HP

r

η

K
, (18)

provided that (∂ ln Bϕ/∂ ln r) = O(1). A profile of (Bϕ)crit in
the radiative zone of our RGB model is plotted with the dashed
curve in Figure 4(a). Its corresponding profile of βcrit is shown
with the dot-dashed curve. At r = rmix (log rmix/R� ≈ −1.30),
the critical toroidal field is 254 kG and βcrit = 1.8 × 107

(Table 2).
In the presence of rapid rotation, such that Ω � ωA,ϕ ≡

Bϕ/(
√

4πρ r), the Coriolis force reduces the instability’s growth
rate ωA,ϕ by the factor ωA,ϕ/Ω (Pitts & Tayler 1985; Spruit
1999). In our RGB model, Ω(rmix) = 10−3 rad s−1 strongly
exceeds ωA,ϕ (rmix) = 2.11×10−11 Bϕ rad s−1 for all reasonable
strengths of Bϕ � 47 MG. Therefore, we use the estimate of
tinst ≈ Ω/ω2

A,ϕ for the instability growth time. The winding
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Figure 4. (a) Critical toroidal field (the dashed curve) and parameter β (the
dot-dashed curve) for the triggering of the buoyancy instability (Equation (18))
and the evolution of the toroidal field strength in the rising ring (the solid curve,
Equation (13)). (b) The timescales for the winding up of the critical toroidal
field (Δtcrit) and for the development of the buoyancy instability (tinst), as well
as the total ring-formation time (tform = Δtcrit + tinst). These timescales should
be shorter than the toroidal field growth time ω−1

A,r . In these computations, it

has been assumed that Br = 7.32 (rmix/r)2 G, which makes (Δt)crit = tinst at
r = rmix, where log(rmix/R�) ≈ −1.30.

up of a toroidal field by differential rotation continues until
Bϕ ≈ ΩBrΔt q reaches the critical value (18). This takes
(Δt)crit ≈ 3.17 × 10−3 (Bϕ)crit/(Br Ω−5 q) years. After that, it
will take another tinst ≈ 1.93 × 1010

[
ρ (r/R�)2 Ω−5

]
/(Bϕ)2

crit
years for the buoyancy instability to occur and assemble the
rings. So, the total ring-formation time is tform = (Δt)crit + tinst.
For our simple estimates to be true, tform should be shorter
than ω−1

A,r = 7.82 × 103 √
ρ (r/R�)/Br yrs, which allows

us to consider that the rotational shear is nearly constant
and that, for our assumed rotation law in the radiative zone
Ω−5 = 102 (rmix/r)2, q = O(1). For this case, and assuming
that Br = 7.32 (rmix/r)2 G, the four characteristic timescales are
plotted in Figure 4(b). In particular, we have tform = 2.20 yrs
at r = rmix. Note that (Δt)crit ∝ (BrΩ)−1, tinst ∝ Ω, and
ω−1

A,r ∝ B−1
r . We have used the parameter Br (rmix) = 7.32 G for

which the timescales (Δt)crit and tinst coincide. Its value scales
as Ω−2(rmix). At a fixed value of Ω(rmix), Br (rmix) determines
which of the two timescales, (Δt)crit or tinst, makes a predominant
contribution to tform.
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It is very likely that the buoyancy instability forms not just one
but a number n > 1 of magnetic flux rings during the time tform,
therefore N = n(tb/tform). The equating of Ṁb = nmb/tform
to Ṁmix = 4 × 10−8 M� yr−1 constrains the ring’s minimum
radius as a function of tform, n, and the initial colatitude(

a0

HP

)2

= Ṁmix tform

n 2π2r3
0 ρ0 sin θ0

(
HP

r0

)−2

= 9.78 × 10−5 tform

n sin θ0
, (19)

where r0 = rmix, and tform is expressed in years.
For the values of tform = 2.20 yrs, n = 1, and θ0 = 90◦, we cal-

culate a0 = 1.47 × 10−2 (in units of HP, as usual), and the total
number of rings in the radiative zone N = 0.454 tb. As men-
tioned before, the ring with the radius a0 = 10−2 and μ reduced
by Δμ = 5 × 10−5 has the buoyant rising time tb ≈ 132 yrs.
This means that the ring with a0 = 1.47 × 10−2 and
the same mean molecular weight would cross the radia-
tive zone in tb ≈ (1.47)2 × 132 = 285 yrs (Equation
(15)). Hence, we have N = 129. Note that this number
does not change if the values of the parameters tform and
n are varied, provided that our buoyancy mixing mass rate
is still constrained to match Ṁmix. Indeed, in this case both
the ratios tform/n (Equation (19)) and tb (Equation (15))
are proportional to a2

0 , which leads to its cancellation in the
relationship N = n(tb/tform).

We have shown that the reduced mean molecular weight in
the magnetic flux rings formed in the region of 3He burning
accelerates their buoyant rise quickly enough for their total
number needed to maintain the RGB extra mixing to be
reasonably small (N ≈ 102 rings would only occupy ∼10−3–
10−4 part of the radiative zone). However, the estimated value
of N ≈ 1.3×102 is in fact a lower limit obtained under the most
favorable assumptions. In particular, we have silently assumed
that all rings have the same formation time and cross-section
radius related by Equation (19), and that no rings are formed
above the radius rmix. These assumptions are obviously not true.
Relaxing either of them will certainly increase the total ring
number in the radiative zone. To figure out what effect may be
produced by relaxing the first assumption, we would have to
determine a relationship between tform and a0 for a spectrum of
rings created by the buoyancy instability, e.g., like it has been
done for the solar tachocline by Schmitt & Rosner (1983). This
problem is out of scope of the present preliminary study.

We find it more important to address here the second issue.
Indeed, given that the critical strength of toroidal magnetic field
for triggering the buoyancy instability decreases rapidly with
the radius (the dashed curve in Figure 4(a)), while our estimated
ring-formation time stays much shorter than the toroidal field
growth time ω−1

A,r (Figure 4(b)), the formation of magnetic flux
rings at r0 > rmix appears to be unavoidable. These rings would
contribute to the total ring number present in the radiative zone
at the same time but they would not participate in the chemical
element transport because their constituent material has not been
nuclearly processed. In fact, the buoyancy of these “parasitic”
rings should be reduced compared to the buoyancy of the rings
originating at r ≈ rmix because their mean molecular weight
does not differ from that of the surrounding medium through
which they rise. On the other hand, they are formed in a region
where the thermal diffusivity K is higher than at r = rmix and,
therefore, their heat exchange with the surroundings goes faster,
which should accelerate their buoyant rise. Our computations

show that the rings formed in the region of constant μ (at
r � rmix + 0.05 R�) rise 103 to 104 times slower than the rings
formed in the μ-depression domain. Given that their formation
takes between 10 and 100 yrs (the solid curve in Figure 4(b)), a
number of the “parasitic” rings present in the radiative zone at
the same time may be as large as 105. Unfortunately, our model
is too simple to be able to predict if and how the “parasitic”
rings could impede the large-scale magnetic buoyancy mixing,
but we do realize that they may create a real problem for the
mechanism proposed by BWNC that has been revised in our
paper. Indeed, although BWNC did not discuss a formation of
magnetic rings, it is difficult to understand why the rings cannot
be formed at r > rmix as easily as they are created at r = rmix.

7. DISCUSSION

Our approximate analysis of the magnetic flux ring formation
and buoyant rise in the differentially rotating radiative zone of
the bump luminosity RGB star gives some support to a combined
“magneto-thermohaline” mode of the RGB extra mixing, as
opposed to the pure thermohaline and pure magnetic buoyancy
modes proposed by Charbonnel & Zahn (2007a) and BWNC,
respectively. A key component to the operation of our mixing
mechanism, which is certainly present in all upper RGB and
low-mass AGB stars, is the mass inflow in the radiative zone.
It makes two important things. First, the conservation of the
specific angular momentum in the mass inflow results in a
steep Ω-profile with a rotational shear q ≈ O(1) that does not
appear to be strongly reduced by the meridional circulation and
turbulent diffusion (Denissenkov & Tout 2000; Palacios et al.
2006). Second, the mass inflow entrains a diffusive magnetic
field that is probably generated via an α–Ω or α2 dynamo just
beneath the bottom of convective envelope (Nordhaus et al.
2007; Nordhaus & Blackman 2007; Mestel 2001). A very high
ratio of the ohmic dissipation time to the average inflow time
((Δr)2/〈η〉)/(Δr/〈|ṙ|〉) ≈ 1.2 × 104 guarantees that this field
will be redistributed over the whole radiative zone. Because
the volume occupied by this field is squeezed when the flow
approaches the H burning shell, the field may become stronger
at a smaller radius. In general, this random field has an unstable
configuration that will decay on a short Alfvén timescale (Spruit
1999). However, in their 3D MHD simulations Braithwaite &
Nordlund (2006) have shown that such unstable random field
may evolve into a stable “twisted torus” configuration with
toroidal and poloidal field components of comparable strength.
The poloidal field lines get wrapped around an axisymmetric
torus, thus forming an approximate dipole. These simulations
have provided the first plausible explanation of the origin and
stability of dipole magnetic fields in presently nonconvective
stars. It is assumed that the seed random magnetic field in those
stars had been a dynamo left over from the period of their
protostellar convective contraction.

Our RGB extra mixing model has much in common with the
solar magnetic spindown model that postulates the presence of
a weak poloidal field in the solar radiative core (Mestel & Weiss
1987; Charbonneau & MacGregor 1993). Note that even the
values of rbce = 0.996 R� and Ω(rbce) = 10−6 rad s−1 used
in our RGB model are close to the corresponding solar values.
The important difference is the assumption of strong differential
rotation in the radiative zone of our model, while the present-
day Sun is known to be a nearly solid-body rotator, at least
above r = 0.2 R� (Couvidat et al. 2003). However, the young
Sun did possess a strong differential rotation in the core which
had resulted from its spinning up during the pre-MS contraction
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and angular momentum loss from the surface via a magnetized
stellar wind. The magnetic spindown model assumes that the
differential rotation in the young Sun was broken by the back
reaction of the Lorentz force that emerged when the differential
rotation was winding up a toroidal field from the preexisting
poloidal field (Charbonneau & MacGregor 1993), or by the
magneto-rotational instability (Menou & Le Mer 2006).

Whereas an important role in damping large-scale toroidal
field oscillations in the young Sun is thought to be played by
the phase mixing (Charbonneau & MacGregor 1993), we do not
think that this is also true for our magnetic buoyancy model.
Indeed, the phase mixing timescale at r = rmix in our RGB
stellar model is

tp =
(

3π3r2

ηω2
A,rq

2
A

)1/3

≈ 2.9 × 105 yrs, (20)

where we have used an estimate of tp obtained by Spruit (1999),
assuming that qA = 1. This is comparable with the time
needed for the whole radiative zone to be thoroughly mixed,
tmix = (Mbce −Mmix)/Ṁmix ≈ 5.5×105 yrs. Hence, long before
the toroidal field oscillations on neighboring magnetic surfaces
get out of phase, the magnetic buoyancy instability will come
into play, the magnetic flux rings will be formed and reach the
convective envelope.

Compared with the pure thermohaline mixing, our model
has the following advantages. First, the horizontal turbulent
diffusion is unlikely to hinder the buoyant rise of magnetic
flux rings with a reduced μ because the frozen-in toroidal
field will not allow turbulence to penetrate plasma in the rings
and decrease the μ contrast between the ring and surrounding
material. On the contrary, there is nothing to prevent the
horizontal turbulent diffusion from eroding the μ contrast in
thermohaline convective elements (Section 4).

Second, thermohaline convection may fail to explain the
operation of enhanced extra mixing in rapidly rotating Li-
rich K-giants, which is needed to activate the Cameron–Fowler
mechanism, because one would expect that the growth of “salt
fingers” is impeded by rotation (Canuto 1999). Oppositely,
it would be natural to suppose that magnetic flux rings are
formed more efficiently in the more rapidly rotating stars. This
hypothesis is supported by the fact that the fastest rotators
among young cluster solar-type stars appear to have the shortest
timescale of rotational coupling between the core and envelope
(e.g., Irwin et al. 2007).

Third, whereas the efficiency of thermohaline convection in
upper RGB stars is dependent exclusively on the abundance
of 3He left in the radiative zone, magnetic buoyancy can, in
principle, be driven by differential rotation alone, provided
that it succeeds in winding up a sufficiently strong toroidal
field. By the end of the RGB evolution of a low-mass star, its
envelope 3He abundance gets depleted by a factor of ten or
more (Charbonnel & Zahn 2007a). So, what will then drive
extra mixing in this star on the AGB? The higher rate of heat
exchange between “salt fingers” and their surrounding medium
increased in proportion to the luminosity will not help because
the evolutionary timescale decreases inversely proportional to
the luminosity which cancels the former effect. Thus, there is a
need for an additional driving parameter that would not let extra
mixing die out. Such parameter might be the rotational velocity.
Indeed, it is known that a surprisingly fast rotation has somehow
survived in red horizontal branch stars in spite of the RGB mass

loss (Peterson 1983; Sills & Pinsonneault 2000; Behr et al.
2003). It could be used on the subsequent AGB evolutionary
phase to drive our magneto-thermohaline mixing. The much
lower (compared to the RGB phase) 3He abundance left in these
stars could be compensated by a stronger toroidal magnetic
field or a larger number of magnetic flux rings generated in the
presence of a higher mass inflow rate (Ṁmix ≈ 10−6 M� yr−1,
according to BWNC).

Fourth, thermohaline convection cannot penetrate below the
radius rmin ≈ 0.063 R� at which μ has a minimum (the right
vertical dotted line in Figure 1). However, mixing down to
this depth would be too shallow to reduce the surface carbon
abundance (Figure 1(a)), as required by observations (Gratton
et al. 2000; Smith & Martell 2003). An overshooting on a
length scale of order HP could solve the problem (the left
vertical dotted line in Figure 1 is placed at a distance HP below
rmin) but then thermohaline “fingers” would have to penetrate
a region of higher μ where they experience a strong breaking.
It should also be noted that the penetration of a region with
the positive ∇μ below rmin would reduce the average mixing
rate Dthc ∝ |∇μ| by decreasing the slope of the negative ∇μ

in the mixed radiative zone. In the magnetic buoyancy model,
there is at least a potential possibility to dredge up the nuclearly
processed material from below rmin. This can be done by rings
with a frozen-in magnetic field of a few MG if such are formed
closer to the major H burning shell. Of course, all the above
assumptions need to be verified by more rigorous models.

Fifth, it is interesting to note that the operation of our RGB
mixing mechanism seems to produce environment in which the
functioning of the 3He-driven thermohaline convection is impos-
sible. Indeed, Charbonnel & Zahn (2007b) have estimated that a
toroidal magnetic field of Bϕ ≈ 100 kG would entirely suppress
the thermohaline mixing at r ≈ rmix, while a field of 10 kG
would be sufficient to inhibit the thermohaline instability in
the upper one-third of the narrow μ-depression domain. These
fields are weaker than those needed for our mechanism to work.

It is also important to note that the flux rings considered in
our paper are a convenient proxy for the more realistic Ω-shaped
loops that are the likely products of the magnetic buoyancy
instability that operates in a layer of strong toroidal field (e.g.,
Caligari et al. 1995). Downflows/upflows that take place in the
loop legs during formation and rise may affect the efficiency of
transport of processed material relative to the behavior obtained
in the case of a flux ring. It is not clear how the strong rotational
shear that is present within the radiative zone would affect this
process. In principle, the only place where significant shear is
required is within the layers where μ is depressed and flux tube
formation takes place. If the overlying portion of the radiative
zone were in a state of near-uniform rotation, the loop legs
might form a kind of conduit connecting the region containing
processed material with the bottom of the convection zone. In
any case, it is difficult to give an airtight argument for what the
rotational state of the radiative zone should be, either differential
rotation of the kind assumed in our paper or near-uniform
rotation enforced by the fields that permeate the region.

Another aspect of our computations that should be noted is
that the results of Sections 6.1 and 6.2 were obtained for rings
initially in thermal equilibrium with their surroundings, a state
of maximal initial buoyancy. If, alternatively, the rings were in
an initial mechanical equilibrium state (zero net force), the rise
would be slower by virtue of the heating required to overcome
the neutral buoyancy at t = 0. This would also increase the total
ring number.
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8. CONCLUSION

In this work, we have presented a simple model of the
formation and buoyant rise of magnetic flux rings in the radiative
zone of the bump luminosity RGB star. Our model is based on
ideas and equations published by Spruit & van Ballegooijen
(1982), Schmitt & Rosner (1983), Mestel & Weiss (1987),
Choudhuri & Gilman (1987), Charbonneau & MacGregor
(1993), Spruit (1999), Eggleton et al. (2006), BWNC, and
Denissenkov & Pinsonneault (2008b). It qualitatively describes
a possible mechanism for the RGB extra mixing, which we
call the magneto-thermohaline mixing, as an alternative to the
pure 3He-driven thermohaline convection that has recently been
proposed by Charbonnel & Zahn (2007a). For our mechanism
to work, the radiative zone has to possess a strong differential
rotation and a poloidal magnetic field Bp � 1–10 G. We assume
that the differential rotation stretches the poloidal field around
the rotation axis, thus creating a strong toroidal magnetic field
Bϕ ≈ 0.1–1 MG. When the latter exceeds a critical value, the
buoyancy-related undular instability comes into play to form
magnetic flux rings. These rings turn out to be buoyant, therefore
they rise toward the bottom of convective envelope.

We have shown that, when the radiative heat exchange
between the ring and its surrounding medium is taken into
account, the ring’s buoyant rising time increases by about five
orders of magnitude compared to the case considered by BWNC,
when the ring and its surrounding medium are assumed to be in
thermal equilibrium all the time. However, given that our model
still neglects possible internal heating of the ring’s material by
residual nuclear reactions and anisotropic thermal exchanges in
the presence of strong oriented magnetic field, while it uses the
aerodynamic drag coefficient that is 20 times as large as the one
employed by BWNC, it is fair to say that BWNC might have
fixed a safe upper limit while our paper fixes a conservative
lower limit for the magnetic ring’s rising velocity.

We have found that the number of rings needed to be
present in the radiative zone at the same time to produce the
observationally constrained rate of the RGB extra mixing is
unrealistically large unless these rings originate from the region
of the μ inversion maintained by the 3He burning. Such rings
have a deficit of the mean molecular weight compared to the
bulk of the radiative zone through which they move. Their
buoyancy is mainly caused by the difference in μ rather than
by a deficit in density due to the excess magnetic pressure. The
frozen-in toroidal magnetic field is still needed for the rings
to remain cohesive while rising. That is why we have coined
the term “magneto-thermohaline” mixing. Our model has some
advantages over the pure thermohaline mixing model, the most
important of which being the robustness of the magnetic rings
against the eroding effect produced by the horizontal turbulent
diffusion. Leaving aside the problem of the “parasitic” rings that
are formed at r � rmix + 0.05 R�, our model looks promising.
However, because it is based on a number of assumptions whose
legality is impossible to confirm in the framework of our 1D
computations we call for its future verification by 3D MHD
simulations.
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NNG05 GG20G. The National Center for Atmospheric Re-
search is sponsored by the National Science Foundation.
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