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ABSTRACT

Relativistic radiative transfer problems require the calculation of photon trajectories in curved spacetime. We
present a novel technique for rapid and accurate calculation of null geodesics in the Kerr metric. The equations of
motion from the Hamilton–Jacobi equation are reduced directly to Carlson’s elliptic integrals, simplifying algebraic
manipulations and allowing all coordinates to be computed semianalytically for the first time. We discuss the method,
its implementation in a freely available FORTRAN code, and its application to toy problems from the literature.
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1. INTRODUCTION

Efficient and accurate computation of null geodesics in the
vicinity of spinning black holes is important for studies of active
galaxies, X-ray binaries, and other accreting black hole systems.
The radiated flux from accretion disks mostly originates in
the innermost radii, where relativistic effects are important for
understanding observations. Proper calculation of the bending
of light requires integration along rays (Broderick 2006). In
general, propagation through the plasma will influence the
photon trajectories, leading to nongeodesic paths (Broderick
& Blandford 2003, 2004). However, these effects are mostly
important at low frequencies, comparable to the expected plasma
and cyclotron frequency. When plasma effects can be neglected,
the rays correspond to null geodesics, and these circumstances
are assumed throughout this paper.

The first applications of general relativistic radiative trans-
fer to accreting systems were of two main types. Cunningham
(1975) packaged all radiative effects for optically thick, geo-
metrically thin disks as a transfer function to go from local
emissivity to that observed at infinity. Luminet (1979) used the
simple relationships between impact parameters at infinity and
constants of the motion to shoot rays backward in time from an
observer’s photographic plate to the object under study. More
recently, Viergutz (1993) and Beckwith & Done (2005) con-
sidered the so-called emitter–observer problem. That is, given
locations of the emitter and the observer, determine the con-
stants of the motion for null geodesics connecting the two. This
approach is much more efficient when the source is highly lo-
calized, such as an orbiting star or hot spot. Here, backward ray
shooting is impractical since most of the rays miss the target.

Such techniques have been applied to the study of emission
lines and spectra from active galactic nucleus (AGN) accretion
disks and tori (Cadez et al. 1998; Wu & Wang 2007) as well
as their quasi-periodic oscillations (QPOs; Schnittman et al.
2006). Li et al. (2005) used a ray-tracing approach to study the
spectra of X-ray binaries. Noble et al. (2007) created images
of galactic center black hole candidate Sagittarius A* (Sgr
A*) using axisymmetric general relativistic MHD (GRMHD)
simulations, and Bromley et al. (2001) studied its polarization
from a simplified accretion model. Broderick & Loeb (2006)
modeled the frequency dependence of its centroid position,
and Reid et al. (2008) used ray tracing to compare hot spot
accretion models with the observed astrometric motion of its
mean position as a function of wavelength. Finally, although

the spacetime surrounding neutron stars only asymptotically
approaches the Kerr metric, using its null geodesics for ray
tracing has still found application in modeling spectra of neutron
stars (Braje et al. 2000).

Despite all of this work, numerical integration of Kerr null
geodesics is computationally expensive in certain applications.
Rauch & Blandford (1994, hereafter RB94) described a method
for calculating null geodesics in the Kerr metric semianalytically
using the Hamilton–Jacobi formulation of the equations of
motion and used it to study the primary caustic. Bozza (2008)
used a similar method to investigate caustics of all orders,
building on earlier analytic work (Bozza 2002). Fanton et al.
(1997) used a fast analytic version for creating line profiles and
accretion disk images, and Agol (1997) applied this method to
the case of polarization from thin disk accretion. Falcke et al.
(2000) went on to use this code along with a simple model for
the Galactic center black hole to create images of its accretion
flow.

All of this work used Legendre’s formulation of elliptic
integrals (e.g., Abramowitz & Stegun 1965), and treated the
φ and t coordinates numerically, if at all. The tables given
in Carlson (1988, 1989, 1991, 1992) greatly simplify the
reductions of the equations of motion to elliptic integrals. The
primary aim of this paper is to use Carlson’s integrals to calculate
all geodesic coordinates semianalytically for the first time.

Section 2 gives the geodesic equations in Kerr spacetime.
Sections 3 and 4 present the reductions to elliptic integrals and
the specifics of our implementation. Section 5 outlines a variety
of checks performed to ensure its validity and accuracy, and
discusses the speed improvement that should be expected from
using an analytic code. Section 6 provides an overview of our
code for readers who are not interested in all of its detail, and
the code is applied to toy problems and test cases in Section 7.
Finally, Section 8 discusses future work both in extending the
code and in applying it to more realistic astrophysical situations.

2. GEODESIC EQUATIONS OF MOTION

In Boyer–Lindquist coordinates (t,r,θ ,φ), the Kerr line ele-
ment can be written as

ds2 = − ρ2 Δ
Σ2

dt2 +
Σ2

ρ2

(
dφ − 2ar

Σ2
dt

)2

sin2 θ

+
ρ2

Δ
dr2 + ρ2dθ2, (1)
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with the definitions

Δ = r2 − 2r + a2, ρ2 = r2 + a2 cos2 θ, (2)

Σ2 = (r2 + a2)2 − a2Δ sin2 θ, (3)

where a is the angular momentum of the black hole and we use
units with G = c = M = 1.

Carter (1968) demonstrated the separability of the Hamilton–
Jacobi equation for geodesics,

− 2
∂S

∂λ
= gμν ∂S

∂xμ

∂S

∂xν
, (4)

where S is Hamilton’s principal function (the classical action)
and λ is an affine parameter. The separation reduces the equa-
tions of motion to quadratures (Chandrasekhar 1983) relating
the coordinates r and θ :∫ r dr√

R
=

∫ θ dθ√
Θ

, (5)

where

R = [(r2 + a2)E − aLz]
2 − Δ[Q + (Lz − aE)2 + δ1r

2] (6)

Θ = Q − [a2(δ1 − E2) + L2
z csc2 θ ] cos2 θ; (7)

and the constants of the motion are the angular momentum about
the black hole spin axis, Lz, the energy, E, and Carter’s constant
Q. δ1 = 0(1) for null (timelike) geodesics.

The equations of motion for the cyclic coordinates are

t = λE + 2
∫ r

r[r2E − a(Lz − aE)]
dr

Δ
√

R
(8)

φ = a

∫ r

[(r2 + a2)E − aLz]
dr

Δ
√

R

+
∫ θ

(Lz csc2 θ − aE)
dθ√

Θ
, (9)

with

λ =
∫ r r2

√
R

dr + a2
∫ θ cos2 θ√

Θ
dθ. (10)

The signs of the integrals in r and θ are independent and
arbitrary, but are fixed for a given geodesic. It may seem odd
that these equations lend themselves to the choice of r or θ as
independent variable to determine the cyclic coordinates t and
φ. However, this is the natural outcome of the separation of the
Hamilton–Jacobi equation.

3. REDUCTION TO CARLSON INTEGRALS

In reducing the equations of motion from the previous section,
we closely follow the treatment given in Appendix A of RB94.
First, change variables to (t, u, μ, φ) with μ = cos θ , u = 1/r .
This set is more useful computationally, since the location of an
observer at infinity is mapped to u = 0. The domain of u is then
0 � u � u+ � 1, where u+ is the location of the event horizon.
Similarly, −1 � μ � 1. Then, the definitions q2 ≡ Q/E2,

l ≡ Lz/E, and γ ≡ E/m put the equations of motion in the
dimensionless form. The integral equation relating u and μ is

sμ

∫
dμ√
M(μ)

= su

∫
du√
U (u)

, (11)

where

M = q2 + (ã2 − q2 − l2)μ2 − ã2μ4 (12)

U = (1 − γ −2) + 2γ −2u + [a2(1 − γ −2) − q2 − l2]u2

+ 2[(a − l)2 + q2]u3 − a2q2u4, (13)

and ã2 = (1−γ −2)a2. This paper only considers null geodesics,
so that γ −2 = 0 throughout. The arbitrary signs have been
written explicitly, and are chosen to be sx = sign(ẋ), where a
dot refers to a derivative with respect to affine parameter. This
is done so that both sides of Equation (11) are always positive.
The equations for the other coordinates become

t − t0 = sμ

∫
a2μ2 dμ√

M

+ su

∫
2a(a − l)u3 + a2u2 + 1

u2(u/u+ − 1)(u/u− − 1)

du√
U

(14)

φ − φ0 = sμ

∫
lμ2

1 − μ2

dμ√
M

+ su

∫
2(a − l)u + l

(u/u+ − 1)(u/u− − 1)

du√
U

, (15)

where u± = [1 ± √
1 − a2]−1. The limits of integration have

been omitted due to complications in accounting for turning
points. This is discussed in more detail below.

Given initial and final values of u and μ, we can compute
t and φ. Since the μ integral is easier to invert and this
method is of more general utility, u is taken as the independent
variable and the goal is to solve for μf given μ0, u0, and uf .
In certain applications, it is more convenient to choose μ as
the independent variable. For example, in the case of thin disk
accretion we know the inclination angle as well as the value of μ
where the geodesic intersects the disk. Section 4 gives solutions
for uf given μ0, μf , and u0 to handle these cases.

3.1. Reduction of Iu

Call the left-hand side and right-hand side of Equation (11)
Iμ and Iu, respectively, and start with the reduction of Iu:

Iu = su

∫
du√
U (u)

. (16)

Except in the special case with a = l, q2 = 0, U (u) is either a
quartic or cubic and its roots are denoted by ui with i = 1–3, 4,
and ordered increasingly. If real, u1 < 0 and in the quartic
case, u4 > 1 or u4 < 0. They are of no physical significance.
When all roots are real, the allowed regions for the integrand
are u > u3 and u < u2 so that U is positive. Thus, the roots
are the turning points for null geodesics starting outside u2 and
inside u3, respectively, in both the cubic and quartic cases. There
can be no more than one turning point, since the allowed region
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Table 1
Reduction of Iu

No. Case Parameter Range Arguments (ai , bi );(fj , gj , hj ) uε[, ] RB94

1 Cubic (3 real) a = 0, q2 + l2 � 27 or u � u2 (−u1, 1), (u2, −1), (u3, −1) [0, u2]a 1, 3, 8, 10
a �= 0, q2 = 0, |l| �= |a,

2 Cubic (3 real) a = 0, q2 + l2 � 27 or u � u3 (−u1, 1), (−u2, 1), (−u3, 1) [u3, u+)b 2, 4, 9, 11
a �= 0, q2 = 0, |l| �= |a,

3 Cubic (1 real) a = 0, q2 + l2 < 27 or a �= 0, q2 = 0, l �= a (−u1, 1); (2u1[(a − l)2 + q2]
−1

, f/u1, 1) [0, u+) 5, 7, 12
4 No roots q2 = 0, l = a · · · [0, u+) 6
5 Quartic (2 real) a �= 0, q2 > 0 (−u1, 1), qs (u4, −1)c;([−a2q2u1u4]−1, [u−1

1 + u−1
4 ]f, 1) [0, u+) 13,19

6 Quartic (0 real) a �= 0, q2 < 0
(
e−1/2, d

e(h2−h1) , h
d
1

)
, (e−1/2,−g1, h

−1
1 ) [0, u+) 14

7 Quartic (4 real) a �= 0, q2 �= 0, u � u2 (−u1, 1), (u2,−1), (u3,−1),(u4, −1) [0, u2]a 15, 17
8 Quartic (4 real) a �= 0, q2 �= 0, u � u3 (−u1, 1), (−u2, 1), (−u3, 1),(u4, −1) [u3, u+)b 16, 18

Notes.
a When u2 = u3, the domain of u is [0, u2).
b When u2 = u3, the domain of u is (u3, u+).
c qs = sign(q2).
d h1 is found from solving Equation (21) and selecting one of the two real roots. d, e are defined in Equation (22).

is bounded on one side either by infinity or the event horizon.
When one or both pairs of roots are complex, there is no turning
point in u.

Upon encountering a turning point, the sign of u is reversed,
so that the total integral is the sum of the integral from u0 to the
turning point and that from uf to the turning point. The idea is
to ensure that the integrals in u and μ monotonically increase
along a geodesic. In a sense this allows the independent variable
to take the place of the affine parameter, which cannot be used
since it is a function of u and μ.

Carlson (1988, 1989) contain formulae for evaluation of
integrals of the form

[p] =
∫ x

y

5∏
i=1

(ai + bit)
pi/2dt; (17)

with all quantities real, x > y, and ai + bit > 0 for y < t < x.
The form of a given integral is described by the vector [p],
which contains the powers, pi, of the factored roots. Cases with
one or two pairs of complex roots are handled in Carlson (1991,
1992), where they are written in terms of real quantities as

[p] =
∫ x

y

(f + gt + ht2)p2/2
∏

i=1,4,5

(ai + bit)
pi/2dt (18)

for one pair of complex roots or

[p] =
∫ x

y

2∏
i=1

(fi + git + hit
2)pi/2(a5 + b5t)

p5/2dt (19)

for two. In using this form, it is assumed that each power pi of
an irreducible quadratic is written twice in the vector [p]. In
other words, when one pair of roots is complex, p2 = p3. When
all roots are complex, p2 = p3 and p1 = p4.

To ensure that x > y in cases where a turning point may
be present, integrals are written in pieces involving the relevant
turning point, u∗, and the number of turning points along the
portion of the geodesic being followed, Nu (either 0 or 1):

Iu = su

(∫ u∗

u0

du√
U

− (−1)Nu

∫ u∗

uf

du√
U

)
. (20)

The Carlson papers reduce all elliptic forms to a set of four
fundamental integrals, known as the R-functions (Press et al.
1992), which replace Legendre’s integrals of the first, second,
and third kinds. They are all integrals from 0 to ∞ and hence do
not require a limit of integration to be a turning point, greatly
simplifying complex root cases where no physical turning point
is present. This is one of many advantages of Carlson’s approach.
As is the case for Legendre’s formulation, any elliptic integral
can be reduced to a sum of Carlson’s R-functions. Where
Legendre integrals are used in this paper, they are calculated
in terms of the R-functions using the formulae in Press et al.
(1992). The integrals encountered in this paper are always
of the form p = [−1,−1,−1,−1, p5] for quartic cases and
p = [−1,−1,−1, p5] for cubic cases. Thus, the form of
coordinate integrals in the following will be specified by p5
alone.

To maintain as much generality as possible, all integrals are
written as above in terms of their roots. In cubic cases the roots
are found from solving the cubic equation, while for quartic
cases they are found numerically using the routine zroots.f
from Press et al. (1992). Finally, instead of writing out the
explicit formulae from Carlson’s papers and going through the
algebra separately in each case, we have written routines for
each case. This is much simpler and of more general utility, since
numerous integrals must be done to calculate the coordinates of
a point along a geodesic.

The integral Iu has p5 = 0 and is given by Carlson (1989,
Equation (2.12)) for real roots for cubic cases. Quartic cases
are found in Carlson (1988, Equation (2.13)) for real roots
and Carlson (1992, Equation (2.36)) for all complex roots. The
quartic and cubic cases with a single pair of complex roots
are given by Carlson (1989, Equation (3.8)). The necessary
arguments to the Carlson routines are listed by case in Table 1,
along with case definitions, appropriate domains of u, and the
corresponding cases in Appendix A of RB94.

As can be seen from Table 1, writing formulae in terms of the
roots of U has the advantage of unifying many disparate cases
from previous work. Equal roots cases, which describe orbits
approaching the unstable circular photon orbits, cannot strictly
speaking be treated identically to other real roots cases as shown
in the table. Here, integration to the turning point diverges. The
code flags for these cases and integrates them directly from
u0 to uf , and the arguments listed in the table are still valid.
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In practice, however, except for the well-known Schwarzschild
unstable circular orbits with q2 + l2 = 27, equal roots cases
are almost impossible to trigger. This is because the Carlson
routines as written maintain accuracy until |u2 − u3| � 10−12,
which is usually more precise than the determination of the
imaginary parts of the roots.

For one pair of complex roots, the arguments f, g, and h are
found by setting U (u) = qs(u4 − u)(u − u1)(f + gu + hu2),
where qs = sign(q2), and matching powers of u. When all roots
are complex, setting U (u) = (f1 + g1u + h1u

2)(f2 + g2u + h2u
2)

yields five nonlinear equations for our six unknown coefficients.
The degree of freedom is used to simplify the equations, and a
sixth degree polynomial is solved numerically for h1:

h6
1 − c√

e
h5

1 −h4
1 +

√
e

[
2
c

e
−

(
d

e

)2
]

h3
1 −h2

1 − c√
e
h1 +1 = 0,

(21)
where

c = a2 − l2 − q2, d = 2[(a − l)2 + q2], e = −a2q2. (22)

The only pair of real solutions to this equation corresponds to
the values of h1, h2.

As a full example of one of these reductions, consider case
5 from Table 1 with u0 < uf (su = 1). This is the Kerr case
with no physical turning points. From Equation (18), we see
that b1 = 1, b4 = −qs , a1 = −u1, a4 = qsu4, x = uf , y = u0.
The sign qs is used to keep each factor positive. Matching the
powers of U (u) as described above gives f = −qs/(u1u4e),
g = (u4 + u1)/(u1u4)f , h = 1. Following Carlson (1991), we
define

Xi =
√

ai + bix, Yi =
√

ai + biy, (23)

ξ =
√

f + gx + hx2, η =
√

f + gy + hy2, (24)

cij = √
2f bibj − g(aibj + ajbi) + 2haiaj , (25)

M = (X1Y4 + Y1X4)
√

(ξ + η)2 − h(x − y)2/(x − y), (26)

L2
± = M2 + c2

14 ± c11c44. (27)

Then,

Iu = 4√
e
RF (M2, L2

−, L2
+). (28)

RF is computed using the routine from Press et al. (1992).
Equations for Carlson elliptic integrals with p5 �= 0 can
similarly be found in the Carlson papers listed above.

3.2. Inversion of Iμ

Next, the Iμ integral needs to be inverted to solve for μf . As
with U (u), the roots of the biquadratic M(μ), M±, determine
the physical turning points in μ. When M− > 0, there are
four real roots and the orbit cannot cross the equatorial plane.
The physical turning points correspond to the two roots with
the same sign as μ0 and are denoted by μ± = sign(μ0)

√
M±.

When M− < 0, the physical turning points are μ± = ±√
M+

and are symmetric about the equatorial plane. We can calculate
the number of times the geodesic has crossed a μ turning point
from the magnitude of the Iu integral. This is done by noting
that the maximum value of

∫ μ+

μf
is

∫ μ+

μ−
and its minimum value

is zero. In this derivation the integrand dμ/
√

M , common to all
integrals, is omitted. Then, for sμ = 1,

∫ μ+

μ0

+(N − 1)
∫ μ+

μ−
� Iu �

∫ μ+

μ0

+N

∫ μ+

μ−
, (29)

where N is the number of turning points reached in μ, and
μ± are the upper and lower turning points in μ. The integrals
are written in these pieces so that they are always positive, as
required for use with Carlson’s integrals. This condition can be
written more concisely as

N =
⌈

Iu − ∫ μ+

μ0∫ μ+

μ−

⌉
, (30)

where �	 is the ceiling function. If sμ = −1, then the first turning
point reached is μ−. The condition can then be written as

−
[∫ μ−

μ0

+(N − 1)
∫ μ−

μ+

]
� Iu � −

[∫ μ−

μ0

+N

∫ μ−

μ+

]
. (31)

Using
∫ μ−
μ0

= ∫ μ+

μ0
− ∫ μ+

μ−
, we can rewrite this in terms of the

same integrals used above:

−
∫ μ+

μ0

+ N

∫ μ+

μ−
� Iu � −

∫ μ+

μ0

+ (N + 1)
∫ μ−

μ+

. (32)

Finally,

N =
⌊

Iu +
∫ μ+

μ0∫ μ+

μ−

⌋
, (33)

and 
� is the floor function. To write out the general solution
for Iu = Iμ for arbitrary number of turning points and sμ, we
include coefficients for the various pieces of the Iμ integral:

Iu = α1

∫ μ+

μ0

+ α2

∫ μf

μ−
+ α3

∫ μ+

μ−
. (34)

The coefficients are functions of sμ and N determined by
writing down specific cases. For example, α1 reflects whether
the integration is positive or negative from μ0 to μf and is
easily seen to be α1 = sμ. Similarly, α2 reflects whether the last
turning point reached is μ− or μ+. Thus, the coefficient is α2 =
sμ(−1)N . The third coefficient is slightly more complicated and
turns out to be

α3 = 2

⌊
2N + 3 − sμ

4

⌋
− 1. (35)

Armed with the number of turning points and the coefficients,
we solve for μf by inverting the second integral on the right-hand
side of Equation (34):

∫ μf

μ−

dμ√
M

= 1

α2

(
Iu − α1

∫ μ+

μ0

−α3

∫ μ+

μ−

)
. (36)
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Calling the right-hand side I and writing out the square root on
the left-hand side for the general case (a �= 0, q2 �= 0) gives

I = 1

|a|
∫ μf

μ−

dμ√
(M+ − μ2)(μ2 − M−)

. (37)

Carlson (2005) contains a table for inverting integrals of the
form

I =
∫ x

y

dt√
(a1 + b1t2)(a2 + b2t2)

, (38)

where all quantities are real, x > y, 0 � y < x and either
y = 0, x = ∞ or one limit is a root of the integrand. The latter
case applies here.

3.2.1. M− > 0

When M− > 0, all requirements are met as written, and

μf = μ−nd(J, k), J = μ+|a|I, k2 = 1 − μ2
−

μ2
+

, (39)

where nd(J, k) = 1/dn(J, k) and dn is a Jacobi elliptic
function. The μ integral terms in I are calculated as∫ μf

μ0

dμ√
M(μ)

= 1

A
F (x, k), (40)

where F(x, k) is Legendre’s integral of the first kind (Abramowitz

& Stegun 1965), x =
√

M+−μ2
0

M+−M−
, A = |a|μ+, and k is the same as

above. The integral between turning points is just the complete
integral K(k).

3.2.2. M− < 0

When M− < 0, y < 0 in Equation (38) so that Equation (39)
is no longer valid. Since the integrand is an even function of μ,
we can write

I = 1

|a|
∫ μ+

−μf

dμ√
(μ2

+ − μ2)(μ2 − M−)
, (41)

which is in the correct form, except that −μf can be negative.
This causes no problems. In this case,

μf = μ−cn(J, k), J =
√

μ2
+ − M−|a|I, k2 = μ2

+

μ2
+ − M−

,

(42)
and we have used μ− = −μ+ for M− < 0. The μ terms in I
are computed the same as in Equation (40), with k defined in

Equation (39), x =
√

1 − μ2
0

μ2
+
, and A = |a|√M+ − M−.

3.2.3. q2 = 0

A special case is encountered when q2 = 0. M(μ) has a
double root at μ = 0, causing Iμ to diverge there, and preventing
these orbits from reaching the equatorial plane. Hence, they have
at most one physical turning point. In this case Iμ is elementary,
and the solution for μf is

μf = μ+sech
[|aμ+|Iu − sμs1sech−1(μ0/μ+)

]
, (43)

where s1 = sign(μ0).

3.2.4. a = 0

Finally, when a = 0 (the Schwarzschild case), the μf integral
is again elementary. The solution for μf is then

μf = μ− cos

[
1

α2

(√
d

2
Iu − α1 cos−1

(
μ0

μ+

)
− α3π

)]
.

(44)

3.3. t and φ Coordinate Integrals

Given the solution for μf , equations for the coordinates t and
φ can be reduced to elliptic integrals as well. Each coordinate is
expressed as a sum of integrals over u and μ. As is done above,
the u terms are reduced to Carlson’s formulation and the μ terms
to Legendre’s.

The μ integral term in Equation (14), which we will denote
by Tμ, can be written as a single Legendre integral of the second
kind. For example, the μ0 term in the M− < 0 case is reduced
as follows:

Tμ = |a|
∫ μ+

μ0

μ2dμ√
(μ2

+ − μ2)(μ2 − M−)
(45)

= |a|μ+

∫ x

0
dt

1 − t2√
(1 − t2)(1 − t2 − M−

μ2
+

)
(46)

= A

∫ x

0
dt

1 − t2 − M−
μ2

+√
(1 − t2)(1 − t2 − M−

μ2
+

)
+ a2M−Iu (47)

= AE(x, k) + a2M−Iu, (48)

where E(x,k) is the Legendre integral of the second kind
with arguments x and k defined in the previous section. The
substitution t = √

1 − μ0/μ+ is made between lines one and
two, and M−/μ2

+ is added and subtracted from the numerator
between lines two and three. In the M− > 0 case, Tμ is given by
the first term of the above formula, with the arguments A, k, x
for that case given with the solution for μf in Subsection 3.2.1.

The μ term in the φ component formula (Equation 15) can
be reduced to a Legendre integral of the third kind in analogous
fashion. For the M− < 0 case, we proceed as follows:

Φμ = − lIu+
l

|a|
∫ μ+

μ0

1

1 − μ2

dμ√
(μ+

2 − μ2)(μ2 − M−)
(49)

= − lIu +
l

|a|μ+

∫ x

0

1

1 − μ2
+ + μ+

2t2

× dt√
(1 − t2)((1 − M−

μ2
+

) − t2)
(50)

= − lIu +
l

A(1 − M+)
Π(n; x, k), (51)

where Π(n; x, k) is the Legendre integral of the third kind

and n = μ2
+

1−μ2
+
. The formula for the M− > 0 case is the
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same, with n = M+−M−
1−M+

and the other arguments defined in
Subsection 3.2.1.

Tu, the u integral term in Equation (14), is expanded with
partial fractions, and after a little algebra is written as

Tu = suur

[ (
2a(a − l) +

a2

u+
+

1

u3
+

) ∫
1

(u/u+ − 1)

du√
U

−
(

2a(a − l) +
a2

u−
+

1

u3−

) ∫
1

(u/u− − 1)

du√
U

+

(
1

u2−
− 1

u2
+

) ∫
du

u
√

U
+

1

ur

∫
du

u2
√

U

]
, (52)

where ur ≡ u+u−
u+−u−

= −(2
√

1 − a2)−1 is negative. Three of the
terms have p5 = −2 and one has p5 = −4. When a limit of
integration is at infinity (u = 0), this integral blows up, as it
should. In practice, the code picks a finite starting radius large
enough that the geodesic trajectories from infinity to the starting
radius differ negligibly from their flat space counterparts.

Then,

Φu = suur

[(
l

u+
+ 2(a − l)

)∫
1

(u/u+ − 1)

du√
U

−
(

l

u−
+ 2(a − l)

) ∫
1

(u/u− − 1)

du√
U

]
, (53)

where both integrals are already calculated as part of Tu.
Finally, the dimensionless affine parameter can also be

calculated along the path from Equation (10) without any
additional integrals:

λ′ = su

∫
du

u2
√

U
+ a2sμ

∫
μ2dμ√

M
. (54)

The first term is from Tu and the second term is Tμ.
Component integrals are calculated the same way as Iu or

Iμ, respectively. That is, μ component integrals are calculated
in pieces using the appropriate coefficients as described above
while u component integrals are calculated with reference to the
physical turning point, if one exists. These are all the integrals
required to compute null geodesics in Kerr spacetime. These
equations for the φ, t coordinates are written in Boyer–Lindquist
coordinates. For certain applications, Kerr–Schild coordinates
are used instead. We note here for completeness the analytic
transformations between our Boyer–Lindquist coordinates and
these Kerr–Schild coordinates (t̃ , ũ, μ̃, φ̃) (Font et al. 1999),

t̃ = t + log Δ − ur log

(
1 − u[1 +

√
1 − a2]

1 − u[1 − √
1 − a2]

)
, (55)

φ̃ = φ − aur log

(
1 − u[1 +

√
1 − a2]

1 − u[1 − √
1 − a2]

)
, (56)

ũ = u, (57)

μ̃ = μ. (58)

The transformations are valid outside the event horizon,
where Δ and the numerator of the other log terms are positive.

4. SOLUTION FOR UF

For some applications, it is preferable to use μ as the
independent variable and solve for uf given u0. In particular,
consider geodesics connecting an observer at infinity with
a thin, equatorial accretion disk. The initial polar angle is
the inclination of the observer. The final polar angle is π/2
(μf = 0), and we solve for the radial coordinate where the
ray intersects the disk. This method, however, is of less general
utility than that described above. Even in simple geometries, the
number of turning points in μ along a geodesic is not known
in advance as it must be to use μ as the independent variable.
One way around this is to calculate all geodesics connecting the
observer with the disk for a fixed number of μ turning points
(Cunningham & Bardeen 1973; Viergutz 1993).

The approach in solving for uf is the same as in solving for
μf . The integral Iμ is computed as a Legendre integral of the
first kind. Given the number of turning points, Iμ is computed
in pieces as shown above using the coefficients α1,2,3.

After finding Iμ, we invert Iu. This inversion ranges from rela-
tively straightforward to algebraically formidable. As examples,
we discuss cubic and quartic real roots cases in detail. Table 2
gives the solution for uf in all cases (see Table 3 for auxiliary
constants used in Table 2). This problem was first addressed by
Agol (1997) and the solutions here are from its Table 5.2 with
some modification.

For our first example, consider the first two cases of Table 1
where there are three real roots. The integral to invert is

Iμ = su

(∫ u+

u0

du√
U (u)

±
∫ u+

uf

du√
U (u)

)
, (59)

where u+ is the relevant turning point: u2 or u3. Denote the first
term by Iu+ , and write the second term in terms of the roots of
the integrand:

Iμ − Iu+ = ± su√
d

∫ u+

uf

du√
(u − u1)(u − u2)(u − u3)

, (60)

where d = 2[(a − l)2 + q2]. This can be put in the form
Equation (38) with the substitution z = √

u − u1:

± I =
∫ √

u+−u1

√
uf −u1

dz√
[z2 + (u1 − u2)][z2 + (u1 − u3)]

, (61)

where

I ≡
√

d

2

(
Iμ − Iu+

)
, (62)

and Iu+ is determined from the same Carlson formulae as for Iu
above.

Comparing Equation (61) with Equation (38), we see that
a1 = u1 − u2, a2 = u1 − u3, and b1 = b2 = 1. If u+ = u3, then
the limits of integration must be switched, since by definition
x > y. These integrals correspond to the third row, the third
and fourth columns of Table 1 from Carlson (2005), and the
solutions for uf are

uf = u1 + (u2 − u1)cd2(J, k), u0 � u2 (63)

= u1 + (u3 − u1)dc2(J, k), u0 � u3, (64)
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Table 2
Solution for uf

No. ua
f J b m1 c1 c2 c3

1 u1 + u21cd
2J c1[Iμ − Iu(u0, u2)] u32

u31

√
u31d
2 · · · · · ·

2 u1 + u31dc2J c1[Iμ + Iu(u3, u0)] u32
u31

√
u31d
2 · · · · · ·

3 c2+u1−(c2−u1)cnJ
1+cnJ

c1[Iμ + Iu(u1, u0)] 1
2 + 6u1+c3

8c2

√
2dc2

√
u1(3u1 + c3) a+l

a−l

4 · · · · · · · · · · · · · · · · · ·
5 u4c5+qsu1c4−(qsu4c5−u1c4)cnJ

(c4−qs c5)cnJ+qs c4+c5

c
c1[Iμ + Iu(ub, u0)] qs

(c4+qs c5)2−(u4−u1)2

4c4c5

√
ec4c5 · · · · · ·

6 c3 +
n(1+c2

2)scJ
1−c2scJ

suc1[Iμ + Iu(c3, u0)]
(

c4−c5
c4+c5

)2 √
e

2 (c4 + c5)

√
4n2−(c4−c5)2

(c4+c5)2−4n2 m + c2n
d

7 u2−c2u3sn2J

1−c2sn2J
c1[Iμ − Iu(u0, u2)] u41u32

u42u31

√
ec3
2

u21
u31

u42u31

8 u3−c2u2sn2J

1−c2sn2J
c1[Iμ + Iu(u3, u0)] u41u32

u42u31

√
ec3
2

u43
u42

u42u31

Notes.
a snJ = sn(J,m1), cnJ = cn(J,m1), scJ = sn(J,m1)/cn(J,m1), and m1 = 1 − k2 is used instead of k. uxy ≡ ux − uy .
b Iu(y, x) = su

∫ x

y
du√
U (u)

.
c qs = sign(q2). If qs = 1 then ua = u4, ub = u1. Otherwise ua = u1, ub = u4.
d Complex roots are written as m ± in, p ± ir and are ordered so that m > p and n > 0.

with

J ≡ √
u3 − u1I, k2 = u2 − u1

u3 − u1
, dc(J, k)

≡ dn(J, k)

cn(J, k)
, cd(J, k) ≡ cn(J, k)

dn(J, k)
, (65)

where cn, dn are Jacobi elliptic functions. Note that the result
does not depend on whether or not a turning point has been
reached, since both cn and dn are even in J.

When U (u) has four real roots and u � u2,

Iμ − Iu+ = ± su√
e

∫ u2

uf

du√
(u − u1)(u − u2)(u − u3)(u4 − u)

,

(66)

where e = |aq|. With the substitution z =
√

u2−u
u3−u

, this becomes

± I =
∫ √

u2−uf

u3−uf

0

dz√
[z2 + (u1 − u2)][z2 + (u1 − u3)]

, (67)

where

I ≡
√

e

2

(
Iμ − Iu+

)
. (68)

Again comparing with Equation (38) and using Carlson (2005),
we find

uf = u3(u2 − u1)sn2 − u2(u3 − u1)

(u2 − u1)sn2 − (u3 − u1)
, (69)

where

sn = sn(J, k), J =
√

(u4 − u2)(u3 − u1)I, k2

= (u4 − u3)(u2 − u1)

(u4 − u2)(u3 − u1)
. (70)

Again the result is independent of whether or not a turning point
is present. In Equation (59), the sign of the second term on the
right-hand side depends on whether a turning point is present.
This allows us to determine the number of turning points in u.

When complex roots are present, the reduction to standard
form Equation (38) is much more difficult. It is discussed in
Erdélyi et al. (1981), and relevant formulae for the inversion can

Table 3
Auxiliary Constants Used in Table 2

No. c4 c5

5
√

(m − u4)2 + n2
√

(m − u1)2 + n2

6
√

(m − p)2 + (n + r)2
√

(m − p)2 + (n − r)2

be found there and in Byrd & Friedman (1971). In particular,
our cases 3, 5 are from Byrd & Friedman (1971, Equations
(239.00) (p 86) and (259.00), (260.00) (pp 133, 135)). Our
formula for case 6 is based on Erdélyi et al. (1981, Table 2,
pp 310, 311). The intricacy of these reductions demonstrates the
advantage of Carlson’s method. The computation of integrals is
equally efficient with complex or real roots. Unfortunately, when
inversion is required, Carlson (2005) is only a somewhat more
compact version of Legendre’s original notation and offers no
real advantage over previous work.

5. CODE CHECKS AND SPEED TESTS

Using the solution for μf , the equality of Iμ and Iu has been
checked to machine accuracy (at least 14 significant digits in
all cases). Once found, μf can be used as an input to recover
uf . In this way, the two routines have been shown to agree
in all cases. Precision in the calculation is limited by error
in the determination of the roots of U (u). An advantage of
using Carlson’s formulation is that all component integrals are
computed without reference to the complex roots, which often
have less numerical precision than real ones. Formulae for uf ,
discussed in Section 4, are also written in terms of real quantities
leading to much higher accuracy.

Certain special cases can be integrated analytically for all
components, providing independent checks on component in-
tegral formulae. These include μ cases with q2 = 0, u cases
with q2 = 0, l = a and u cases with equal physical real roots,
corresponding to unstable circular photon orbits. In all of these
cases, the component integral formulae above agree with the
analytic results to machine accuracy. The component integral
formulae above also reduce to those derived separately for the
Schwarzschild case, a = 0. All of the formulae given here for μf
agree with those in Tables 1–2 of RB94. The Schwarzschild for-
mulae were also tested against the approximate formulae given
by Beloborodov (2002).



No. 2, 2009 A NEW CODE FOR COMPUTING PHOTON ORBITS 1623

Further, the implementations of Carlson’s integral tables have
been checked extensively using the Mathematica NIntegrate
function. The same is true of the t and φ formulae, as well as
the individual integral components Iu, Tu, and Iμ, Tμ, Φμ.

The R-function routines maintain accuracy until a � 10−5 or
q2 � 10−10. If such parameters are encountered, the code will
give a warning and set the offending value to zero.

The geodesic computations have been checked against cal-
culations done by the code used in Falcke et al. (2000) and are
found to be in excellent agreement. The FORTRAN implemen-
tation of our code is found to be faster than that one by a factor
of about 5, due to the fact that our code computes the minimum
number of R-functions possible and shares them between rou-
tines when necessary. The code from Agol (1997) was found
to be ∼100 times faster than numerical integration in the case
of tracing geodesics from infinity to a thin disk. This is an op-
timal problem for an analytic code, since we can solve for the
point where μ = 0, whereas a numerical code must integrate
the geodesic from infinity until it reaches that point, and then
zoom in on the intersection to find an approximate solution to
the desired accuracy. In addition, this example did not include
the t and φ coordinates, which are sped up by a much smaller
factor than u and μ.

As a lower bound for the speed improvement of our code
over numerical integration, a routine was written to integrate
the photon four momentum for all coordinates with respect
to affine parameter using the implementation of the Bulirsch–
Stoer method from Press et al. (1992). We then compared the
integration of many points along a single geodesic starting from
infinity with this numerical code and our analytic one. This is
the ideal case for numerical integration, since the intermediate
points calculated along the ray are no longer wasted as in the
first example. For the case considered with no turning points in
u or μ, the analytic code was found to be faster by a factor of
∼3.

However, our numerical code for integrating geodesics is
much simpler than a complete code would have to be. It cannot
handle turning points, and requires knowledge of the affine
parameter on the ray in order to know where the region of interest
in the integration is. In practice, turning points would have to be
detected and a scheme for determining the region of interest in
affine parameter implemented. Alternatively, a somewhat more
complicated scheme such as the Hamiltonian method described
in Schnittman & Bertschinger (2004) could be adopted. In any
case, these additions would slow down geodesic computation.
We conservatively estimate, then, that the lower bound for the
speed advantage of our analytic code over numerical integration
is a factor of ∼5. A similar test for the case of integrating
down to the thin disk yielded a speed difference of a factor of
∼300, leading to an upper bound on the speed advantage of
∼500, which is in good agreement with the naive estimate of
multiplying the speedup found by Agol (1997) by the speedup
factor between our code and that presented there. Then the range
of speedup that can be expected by using the analytic code
described here is a factor between 5 and 500 depending mostly
on the application, but also on the specific implementation of
the numerical integration code.

In addition to being faster, the analytic formulation is much
more flexible. It can calculate an arbitrary number of points
beginning and ending anywhere on any geodesic, provided that
the constants of the motion can be calculated. This is exploited
in the thin disk toy models below, where we solve for the
point μf = 0. It could also allow, for example, a calculation

of Compton scattering by tracing rays out from every point
on a geodesic, and computing the scattered intensity into that
point as a separate ray-tracing computation. In any event, the
flexibility inherent to an analytic method could allow for more
sophisticated calculations in the future, which would not be
possible with a numerical code. The main disadvantage of using
an analytic code is that the affine parameter cannot be used as
an independent variable, which may be desirable for adaptive
integration techniques in radiative transfer applications, for
example.

6. IMPLEMENTATION

This section provides an overview of the various routines
used by the code described above, and examples of their use.
The README file online covers everything in this section
in greater detail. The FORTRAN 77 source file geokerr.f
contains the main program as well as the key routines, geomu,
geor and geophitime, and supporting functions. Inputs are
given through command line prompt or a text file. Inputs from
previous command line runs may be saved for future use. These
inputs include constants of motion for the desired geodesics,
initial and final u and initial μ, the number of turning points in u
(ignored if the constants do not admit physical turning points),
and the sign of u̇ and μ̇. Constants of the motion are required
and may be specified either as the impact parameters at infinity
(α, β), as is most convenient in ray-tracing applications, or as
the dimensionless angular momentum, l, and Carter’s constant,
q2. When any other information is not provided, the program
assumes geodesics which trace out the entire domain of u, from
the starting point and back or until the event horizon is reached.

The program calls the main subroutine, geokerr, which
calls geomu to fill in missing inputs and calculate μf . Alter-
natively, geokerr can solve for μf using geor. Subsequently,
geophitime calculates the φ and t integrals using the Carlson
routines. The program loops over constants of the motion for a
chosen initial polar angle and black hole spin. Results are writ-
ten to standard output by default, and should be redirected from
the terminal to a text file for large runs. It is also possible to in-
put the name of the desired output file. The subroutine geokerr
encapsulates most of the code functionality, and can fairly eas-
ily be adapted to another front end other than the program used
here. See the README file for more details.

As an example use of the code, consider tracing rays over
a rectangular grid in −4 � α � 8, −6 � β � 6 for a near
extreme black hole, a = 0.998. The observer is at infinity in the
equatorial plane (μ0 = 0, u0), and 20 rays will be traced over
each dimension. The input file for this situation can be found
online.3

Output is arranged as follows. The constants of the motion
are listed for each geodesic in the top line, followed by columns
giving uf , μf , Δt , Δφ, λ. The format used for output can be
changed with a tiny modification to the source code. Plotting
the affine parameter evaluated at either the event horizon, or
once the geodesic returns to its initial radius, as a function of
impact parameters for this data with 160,000 geodesics produces
Figure 2 as explained below.

For less standard batch runs, it may be necessary to generate
the input file from a simple program. Consider a set of geodesics
in the Schwarzschild metric (a = 0) to study the unstable
circular photon orbits. The given parameters are chosen to be

3 http://www.astro.washington.edu/agol/geokerr/exfiles/abgrid.in

http://www.astro.washington.edu/agol/geokerr/exfiles/abgrid.in
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Figure 1. Change in time vs. radial coordinate in the Schwarzschild metric for
geodesics near the circular photon orbit (dashed line), as described in Section 6.

Figure 2. Image of a near extreme (a = 0.998) Kerr black hole viewed from the
equatorial plane. Image intensities are taken to be the affine parameter evaluated
upon termination at the black hole or after returning to the starting radius.
Intensities are scaled linearly from the minimum value outside the shadow to
the maximum.

u0 = 1/30, uf = u+ = 0.5, μ0 = 0.9, β = 0, and an array of
values for α near

√
27.

The piece of code to write an appropriate input file is available
online.4 Plotting the change in time as a function of final radial
coordinate produces Figure 1.

7. APPLICATIONS/VALIDATION

We next describe a couple of relatively simple applications
of the code to ray-tracing problems as further validation and
as examples of its utility. The first is the simplest illustration
of the black hole shadow, which tests the determination of
the roots of U (u) and qualitatively parts of the time integral.
Next are examples from the standard model of thin disk
accretion. The disk image and simple spectrum from line
emission test the routine that solves for uf . The projection
of a uniform grid at infinity onto the equatorial plane of the
black hole also tests the calculation of φ, and hot spot emission
provides a time-dependent test. Finally, spectra and images of
synchrotron radiation from spherical accretion quantitatively
test our radiative transfer routines.

Ray tracing utilizes the simple relationship between points
on an observer’s instrument and the constants of motion of
null geodesics. Consider the photographic plate at infinity as

4 http://www.astro.washington.edu/agol/geokerr/exfiles/inputex.f

Figure 3. Projection of a uniform Cartesian grid in the image plane to the
equatorial plane of the black hole for μ0 = 1 (top) and μ0 = 0.5 (bottom).
Black hole spin is a = 0 (left) and a = 0.95 (right), and the area inside the
horizon is removed from each image. Compare to Figure 2 of Schnittman &
Bertschinger (2004).

a function of the impact parameters α, β, perpendicular and
parallel to the black hole spin axis, respectively. Images can be
created by tracing rays backward from points on the plate to the
black hole. The parameters α, β are easily expressed in terms of
q2, l using (Cunningham & Bardeen 1973)

l = − α(1 − μ2
0)1/2 (71)

q2 = β2 + μ2
0(α2 − ã2), (72)

so that each point on the observer’s photographic plate corre-
sponds to a unique geodesic.

7.1. Image in Affine Parameter

As a first application of ray tracing, we can determine the
appearance of the simplest possible black hole shadow. The
image “intensities” are taken to be the affine parameter evaluated
at the termination of the geodesic—either when it terminates
at the black hole or reaches a turning point and re-emerges
to the starting radius. Affine parameter is a good proxy for the
emission in this case, since it is related to the proper length along
a geodesic, which would be the observed intensity for constant
emissivity and neglecting absorption. The dimensionless affine
parameter, λ′, is given by Equation (54). The equatorial plane
result for a Kerr black hole with a = 0.998, to be compared
to Bardeen (1973) Figure 6, is shown in Figure 2. The image
shown here is 400 × 400.

7.2. Thin Disk Accretion

The next set of applications imagines the emitting source as
an infinitesimally thin disk in the equatorial plane of the black
hole (e.g., Page & Thorne 1974; Shakura & Sunyaev 1973).

http://www.astro.washington.edu/agol/geokerr/exfiles/inputex.f
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Figure 4. Image of an optically thick standard relativistic accretion disk around
a near extremal black hole (a = 0.998). The disk has outer radius rout = 18,
and the observer’s inclination is 85◦.

Figure 5. Normalized spectra of line emission from a thin accretion disk at an
inclination of 30◦ for various black hole spins. The emissivity is taken to be
proportional to u2

f between the marginally stable orbit and Rout = 15. Compare
to Figure 3 of Schnittman & Bertschinger (2004).

7.2.1. Grid Projection

The first check of the code for this case is in visualizing
the projection of a uniform grid at infinity onto the equatorial
plane of the black hole. This is done by solving for the final
radius, uf , and azimuth where the geodesic intersects μf = 0.
Then, the new grid points are calculated using pseudo-Cartesian
coordinates (Schnittman & Bertschinger 2004):

x =
√

r2 + a2 cos φ, y =
√

r2 + a2 sin φ. (73)

The result of this projection for two different initial observer
inclinations and black hole spins is shown in Figure 3, and
agrees with Figure 2 of Schnittman & Bertschinger (2004). The
gravitational lensing effect can be seen in the pictures with
μ0 = 0.5 as the bunching of grid points behind the black hole,
while frame dragging is evident in those with a = 0.95

7.2.2. Thermal Disk Images

As a next step, we can use the standard thin disk results
for the radial temperature profile (e.g., Krolik 1998) to produce
images of the disk at various inclinations assuming it is optically
thick everywhere, so that the intensity is that of a blackbody.
Finding the radii of emission from a grid in impact parameters
and calculating the intensity at each of these points produces an
image of the disk as seen by a distant observer. The result for
an inclination of 85◦ and black hole spin a = 0.998 is shown
in Figure 4. The image shows the effects of relativistic beaming
of the emission from gas moving toward the observer versus the

Figure 6. Spectrogram of a circular hot spot of radius Rspot = 0.5 at the
marginally stable orbit of a Schwarzschild black hole. The observer is inclined
at θ0 = 60◦. Compare to Figure 4 of Schnittman & Bertschinger (2004).

redshift of that moving away, as well as the bending of the light
from gas behind the black hole.

7.2.3. Line Emission

Next, following Schnittman & Bertschinger (2004) and
Bromley et al. (1997) we consider monochromatic emission
from the disk, and give it an inner (outer) radius, Rin = Rms
(Rout = 15), where Rms is the location of the marginally sta-
ble circular orbit (e.g., Page & Thorne 1974). The emissivity is
weighted by u2

f , physically motivated by the fact that we expect
the temperature of gas in the disk to increase with decreasing
radius. The observed intensity is computed by exploiting the
invariance of Iν/ν

3 (Misner et al. 1973),

Iν0 = g3Iν, (74)

where g ≡ ν0/ν is the redshift and ν0 (ν) is the observed
(emitted) frequency. To see the effect of black hole spin on
the emission in this case, we calculate Iν0 as a function of g
for several values of a by calculating the intensity of rays at a
location with redshift in a certain range of g, and integrating
them over the photographic plate. The result is plotted in
Figure 5, and is in excellent agreement with Figure 3 of
Schnittman & Bertschinger (2004). At higher black hole spin,
the marginally stable orbit is much closer to the black hole
where the redshift is much stronger, leading to a higher relative
magnitude and broadening of the low-frequency peak (“red
wing”).

7.2.4. Rotating Hot Spot

Finally, to test the time dependence of the code, consider a
circular hot spot of finite radius Rspot = 0.5 orbiting in the
equatorial plane of a Schwarzschild black hole at its marginally
stable radius (Rms = 6). The emissivity of the spot is taken to be
Gaussian in the locally flat space near the hot spot (for details,
see Schnittman 2006),

j (x) ∝ exp

[
−|x − xspot(t)|2

2R2
spot

]
, (75)
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Figure 7. Light curves of the hot spot described in Figure 6 for various
inclination angles. Intensities are normalized individually to the integrated
intensity over each orbit and scaled to the maximum intensity from all
inclinations. Compare to Figure 6 of Schnittman & Bertschinger (2004).

where j is the monochromatic emissivity. For some observer
coordinate time, t, the time delay and azimuthal position from
the observer to points on the disk are used to determine where on
the photographic plate the separation between geodesic and hot
spot is less than 4Rspot. For these points, the Gaussian emissivity
and observed frequency (redshift) are tabulated. Repeating this
procedure over a period of the motion gives a time-dependent
spectrum, which is shown in Figure 6 for an observer inclination
of 60◦ (μ0 = 0.5). This figure is in good agreement with Figure
4 of Schnittman & Bertschinger (2004).

Integrating over frequency (redshift), or equivalently over the
impact parameters, gives the light curve. Figure 7 shows the
light curves of the hot spot for several inclination angles. As the
observer approaches edge-on viewing, the light curve becomes
sharply peaked by a combination of the Doppler beaming of the
spot as it moves toward the observer and the large gravitational
lensing of the spot as it goes behind the black hole. The plot
here is in excellent agreement with Schnittman & Bertschinger
(2004).

7.3. Radiative Transfer

In more realistic astrophysical applications, the source is not
a delta function at a given inclination, and the intensity along a
ray can be written more generally as

Iν0 =
∫

ray

(ν0

ν

)3
dIν. (76)

If absorption can be neglected, dIν = jνdl where dl =
−pαuαdλ is the proper length differential measured along the
ray, pα is the photon 4-momentum, uα is the 4-velocity of the
emitting particle, and λ is an affine parameter.

The observed intensity is then

Iν0 =
∫ λ

λ0

jνg
2dλ, (77)

where jν is the emission coefficient in the rest frame of the gas
and λ is now the dimensionless affine parameter used above. It
is calculated from Equation (54) and used as the independent
variable along the ray. When absorption is included, the solution
to the radiative transfer equation between affine parameters λ0

and λ reads (Fuerst & Wu 2004)

Iν0 (λ) = g3Iν(λ0)e−τν (λ0) +
∫ λ

λ0

e−(τν (λ′)−τν (λ0))g2jνdλ′, (78)

where τν ≡ ∫
ανdl is the optical depth. Throughout this

paper we neglect scattering contributions to the emission and
absorption coefficients.

7.4. Synchrotron Radiation from Spherical Accretion

The code described above in conjunction with a routine to
perform radiative transfer along rays is now applied to the
particularly simple case of a stellar mass black hole at rest with
respect to the interstellar medium with a temperature at infinity
of 104 K and a density at infinity of 1 cm−3. Ionized hydrogen
accretes onto the black hole, and the magnetic field threading the
gas effectively creates collisions, so that the accreting gas can
be considered a perfect fluid. In the model, magnetic turbulence
establishes an equipartition of magnetic and gravitational energy
(Zeldovich & Novikov 1971). Then

B2

8π
= GMρ

r
, (79)

and cgs units are most convenient in the analytic calculation. We
assume an adiabatic equation of state with a piecewise adiabatic
index (Shapiro & Teukolsky 1983, p 663),

γ = 5

3
,

3

2

mp

me

T � 1

= 13

9
,

3

2

mp

me

T > 1, (80)

where mp, me are the proton and electron masses and T is
the temperature in units of proton rest energy. Then the fluid
equations are nonlinear and can be solved numerically (Michel
1972) to find the temperature and fluid velocity as functions of
coordinate radius.

The dominant form of radiation produced is synchrotron radi-
ation from the inner part of the accreting sphere, where the elec-
trons are ultrarelativistic (Shapiro 1973b). In this case, the emis-
sivity can be well approximated analytically. Shapiro (1973a)
performed the relativistic radiative transfer by approximating
the photons as traveling on null geodesics in Minkowski space-
time, and calculating gravitational redshifts as well as the photon
Doppler shifts along these paths.

Shapiro’s formula for the radiated spectrum is

Lν0 = 8π2
∫ r∗

2m

drr2
∫ cos Θc

−1
d(cos Θ′)jν

1 − v2

(1 − v cos Θ′)2
(81)

ν0 = ν

√
(1 − v2)(1 − 2m/r)

1 − v cos Θ′ ,

where v(r) is the proper velocity seen by a stationary observer
and

| cos Θc| =
[

27

4

(
2m

r

)2 (
2m

r
− 1

)
+ 1

]1/2

(82)

is the critical angle at which the light is recaptured by the black
hole.
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Figure 8. Spectrum of synchrotron radiation from optically thin spherical
accretion onto a stellar mass black hole. The solid line is the ray-tracing result,
and the plotted points are the analytic results. The two curves agree to within
5% at low frequencies, where the radiation originates at larger radii and the
bending of light should be unimportant.

The synchrotron emissivity for thermal, ultrarelativistic elec-
trons averaged over polarization and solid angle assuming
isotropic emission in the rest frame is given by (Pacholczyk
1970)

jν(T ) = ν
ne2

2
√

3c

(
mec

2

kT

)2

I
( xM

sin θ

)
, (83)

I (x) ≡ 1

4π

∫
dΩ

1

x

∫ ∞

0
dzz2 exp(−z)F

(
x

z2

)
, (84)

with xM = ν
νc

,

νc =
(

3eB

4πmec

)(
kT

mec2

)2

, (85)

and where

F (x) ≡ x

∫ ∞

x

K5/3(y)dy (86)

is the synchrotron function. Mahadevan et al. (1996) have ap-
proximated I(x) above analytically by matching the asymptotic
forms for large and small x. They find

I
( xM

sin θ

)
� 4.0505

x
1/6
M

(
1 +

0.40

x
1/4
M

+
0.5316

x
1/2
M

)
exp(−1.8899x

1/3
M ).

(87)
Note that this function is denoted by I ′(x) by Mahadevan et al.
(1996), and has a maximum error of ≈ 2.7%. The spectrum is
calculated by integrating Equation (81) numerically.

To compare with these results, the ray-tracing code is used to
create an image of the synchrotron radiation from the infalling
gas in the same way as done previously with affine parameter.
To create an image, one specifies a grid of points in α, β and
calculates q2 and l. This fully specifies the geodesic, and we
can calculate the spacetime coordinates at which it intersects
the accreting gas. The intensity along each geodesic represents
a point in the image, which is why it is so important to be able
to calculate geodesics rapidly.

The redshift is calculated using Viergutz (1993). Here, the
flow is spherically symmetric and

g = (γ e−η[1 − eμ1+ηvrρ−2rsgn

√
R])−1, (88)

Figure 9. Spectrum of synchrotron radiation from spherical accretion onto
a stellar mass black hole. The solid line is the ray-tracing result including
absorption. The spectrum is heavily attenuated at ν0 � 1011 Hz, and in this
region follows the optically thick approximation of thermal emission from the
τ = 1 surface. The spectrum agrees well with the emission-only model for
ν0 � 1012 Hz.

with

e2η ≡ Δρ2Σ−1, e2μ1 = ρ2Δ−1, γ = (1 − vr 2)−1/2, (89)

and vr is the radial component of the 4-velocity. Written in terms
of u in the Schwarzschild metric, this simplifies to

g =
√

1 − 2u

γ [1 + su(−1)Nuvu
√

U ]
. (90)

When the u-component of the 4-velocity, vu, vanishes, this
reproduces the standard gravitational redshift (Hartle 2003).

We first ignore absorption and compare radiated spectra with
the analytic calculation. The result is shown in Figure 8. Shapiro
(1973b) points out that the synchrotron radiation is dominated
by a thin spherical shell of gas with ν � νc. Then the first part
of the spectrum, where Lν0 ∼ ν1/3, originates from the outer
part of the sphere. The bending of light should be negligible in
that region and the ray tracing should agree with the analytic
result, which it does to within �5%. At higher frequencies, the
radiation is originating in the innermost radii, and the bending
of light becomes significant. The difference is �15% at high
frequencies.

Next, absorption is included. Figure 9 compares the spectra
calculated with and without absorption. The radiation is heavily
attenuated at frequencies �1011 Hz. At these frequencies, the
luminosity is dominated by the innermost optically thin radius,
which we take to be the radius where τ = 1. Blackbody emission
at the temperature of gas at this radius, converted to a luminosity
by integrating over impact parameter, is labeled “Thermal” in
Figure 9 and is a decent approximation to the full spectrum
when the fluid is optically thick.

From ν0 � 108 Hz to ν0 � 1010 Hz, the gas is optically thick
everywhere. Then only thermal emission from the outermost
radius is seen, and the spectrum follows a Rayleigh–Jeans curve
with Lν0 ∼ ν2

0 . From ν0 � 1010 Hz to ν0 � 1012, the innermost
optically thin radius is changing, and the luminosity begins
to turn over. Starting at ν0 � 1012 Hz, the gas is optically
thin to the synchrotron radiation, and the spectrum reduces to
that of emission only (labeled “Emission” in Figure 9). This
result agrees reasonably well with the assertion made by Shapiro
(1973b) that absorption is negligible when ν � 1011 Hz.
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Figure 10. Image of a spherically accreting Schwarzschild black hole at
ν = 1012 Hz as a contour plot and a one-dimensional profile.

Also of interest is the black hole shadow produced by various
accretion models (Falcke et al. 2000). Figure 10 shows the
shadow of the spherically accreting Schwarzschild black hole as
a two-dimensional contour plot and a one-dimensional profile.
The shadow is produced at α2 + β2 = 27, and is caused by
the difference in proper length of geodesics which intersect the
horizon and return to infinity, as well as the blueshift of radiation
from infalling gas behind the black hole relative to the red shift
of that nearest the observer. The asymmetry in Figure 2 is not
seen here due to the spherical symmetry of the Schwarzschild
metric.

8. FUTURE WORK

The code presented here is the first to calculate all coordinates
of Kerr null geodesics semianalytically. This work’s natural
extension is to timelike geodesics, which involves many more
cases, but only straightforward generalizations of the formulae
given here (RB94, Appendix A). The main challenge is that for
bound orbits it is difficult to specify the number of radial turning
points in advance. Ideally, the affine parameter could be used as
an independent variable to indicate how far along the geodesic

to trace. However, it is a function of u and μ which cannot be
inverted.

8.1. Advantages of Analyticity

The main advantages of using a semianalytic code such as that
presented here for tracing geodesics are speed, accuracy, and
flexibility. The speed increase from our code depends greatly on
the application considered. For ray-tracing applications, a lower
bound is a factor of 5 in the case where all coordinates are being
calculated, and the entire ray is being traced. The maximum
speed increase is probably a factor between 100 and 500 in the
case where the code is solving for geodesic coordinates at a
specific point.

The importance of speed in tracing geodesics depends on
the computational expense of their construction relative to that
of the rest of the desired calculation. For the simple radiative
transfer applications considered here, time spent computing
geodesics dominates in creating Figures 2–4. The construction
of geodesics and radiative transfer parts are about equally
expensive in creating Figure 10 and geodesic speed is relatively
unimportant in the calculations leading to Figures 5–9. In the
latter cases, this is because the same geodesics can be re-used
at many time steps, frequencies, or both.

The trend from these toy problems is that the simpler cases
benefit most from rapid geodesic calculation. However, there
is reason to expect that for more realistic calculations rapid
geodesic construction will again be important. Most accretion
flows transition from optically thin to thick. To accurately
compute radiative transfer from such flows, it is often necessary
to take small steps in the vicinity where the optical depth is about
unity. This requires calculating extra geodesic trajectories in this
region. Since the region where the optical depth changes rapidly
depends on frequency, and for a time-dependent accretion model
on time as well, new geodesics must be computed at each time
step and frequency, and hence they cannot be re-used as is the
case for the time-independent, optically thin models considered
in almost all our examples.

The precision of our code is also extremely high over a broad
range of geodesic parameters. This is currently less important
in radiative transfer applications where the dynamical models
are uncertain, but it is important in caustic calculations such as
those in RB94 and Bozza (2008). Finally, our code can compute
arbitrary sections of geodesics in any direction. This flexibility
allows extra points to be calculated in regions where the optical
depth is changing rapidly or to check convergence on the fly. It
may also be useful in a future method for computing Compton
scattering, in which rays are traced outward from each point on
the geodesic to calculate the scattered intensity into that point.

Unlike previous analytic work, our code makes no assumption
of time independence or axisymmetry in the accretion flow and is
therefore well suited to the geometries used in three-dimensional
GRMHD simulations. Computationally expensive observables
such as polarization and variability will be much more tractable
given the speed and flexibility of this code.
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Institute of Theoretical Physics at the University of California,
Santa Barbara, under NSF grant PHY05-51164.
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