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ABSTRACT

One possible diagnostic of planet formation, orbital migration, and tidal evolution is the angle ψ between a planet’s
orbital axis and the spin axis of its parent star. In general, ψ cannot be measured, but for transiting planets one
can measure the angle λ between the sky projections of the two axes via the Rossiter–McLaughlin effect. Here,
we show how to combine measurements of λ in different systems to derive statistical constraints on ψ . We apply
the method to 11 published measurements of λ, using two different single-parameter distributions to describe the
ensemble. First, assuming a Rayleigh distribution (or more precisely, a Fisher distribution on a sphere), we find that
the peak value is less than 22◦ with 95% confidence. Second, assuming that a fraction f of the orbits have random
orientations relative to the stars, and the remaining fraction (1−f ) are perfectly aligned, we find f < 0.36 with 95%
confidence. This latter model fits the data better than the Rayleigh distribution, mainly because the XO-3 system
was found to be strongly misaligned while the other 10 systems are consistent with perfect alignment. If the XO-3
result proves robust, then our results may be interpreted as evidence for two distinct modes of planet migration.
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1. INTRODUCTION

In a planetary system, the angle ψ between the orbital axis and
the stellar rotation axis may provide clues about the processes
that sculpt planetary orbits. As an example, the angle between
the Sun’s rotation axis and the north ecliptic pole is ψ� = 7.◦15
(see, e.g., Beck & Giles 2005). The smallness of ψ�, along with
the small mutual inclinations between planetary orbits, is prima
facie evidence for formation in a spinning disk. The smallness
of ψ� has also been used to constrain the properties of any
“Planet X” or solar companion star (Goldreich & Ward 1972),
and to place upper bounds on violations of Lorentz invariance
(Nordtvedt 1987). That ψ� is not even closer to zero has been
interpreted as evidence for an early close encounter with another
star (Heller 1993) or a nonaxisymmetric, “twisting” collapse of
the Sun’s parent molecular cloud (Tremaine 1991).

For exoplanets, it has been recognized that ψ is a possible
diagnostic of theories of planet migration. Some of the mecha-
nisms that have been proposed to produce close-in giant planets
would preserve an initial spin–orbit alignment (Lin et al. 1996;
Ward 1997; Murray et al. 1998), while others would produce
at least occasionally large misalignments (Ford et al. 2001; Yu
& Tremaine 2001; Papaloizou & Terquem 2001; Terquem &
Papaloizou 2002; Marzari & Weidenschilling 2002; Thommes
& Lissauer 2003; Wu et al. 2007; Fabrycky & Tremaine 2007;
Chatterjee et al. 2008; Jurić & Tremaine 2008; Nagasawa et al.
2008). Tides raised on the star are not expected to play a major
role in altering ψ (Winn et al. 2005), but it is possible that copla-
narization is more efficient than expected (Mazeh 2008; Pont
2008). For example, if a hot Jupiter migrated inward before its
host star contracted onto the main sequence, the distended stel-
lar envelope could produce more pronounced tidal effects (Zahn
& Bouchet 1989; Dobbs-Dixon et al. 2004).

Independent of the interpretation, the angle ψ is a fundamen-
tal geometric property, and for this reason alone it is worth seek-
ing empirical constraints on ψ whenever possible. We regard

3 Michelson Fellow.

ψ to be on a par with the semimajor axis and the eccentricity:
all of them are basic orbital parameters for which accurate and
systematic measurements can lead to revealing discoveries and
statistical constraints on exoplanetary system architectures.

For a generic exoplanet discovered by the Doppler method,
no information about spin–orbit alignment is available. For tran-
siting exoplanets, one may exploit a spectroscopic phenomenon
known as the Rossiter–McLaughlin (RM) effect. During a tran-
sit, the planet hides part of the rotating stellar disk and causes
the stellar spectral lines to be slightly distorted. The distortion
is usually manifested as an “anomalous” Doppler shift of order
ΔV = −(Rp/Rs)2Vp, where Rp/Rs is the planet-to-star radius
ratio and Vp is the projected rotation rate of the hidden portion
of the stellar photosphere (Ohta et al. 2005; Giménez 2006;
Gaudi & Winn 2007). Because photometric observations give
a precise and independent measure of (Rp/Rs)2, spectroscopic
monitoring of ΔV reveals Vp(t), thereby allowing one to chart
the planet’s trajectory relative to the sky-projected stellar rota-
tion axis.

An important limitation of the RM technique is that it is
sensitive only to the angle λ between the sky projections of
the orbital and rotational axes.4 We refer to ψ as the spin–orbit
angle and to λ as the projected spin–orbit angle. In general the
line-of-sight component of the stellar rotation axis is unknown.
When |λ| is small, then |λ| is a lower limit on ψ . (The situation
is a bit more complex for large |λ|, as is shown in this paper.)
While the finding of a large value of λ implies that there is a
large spin–orbit misalignment, with consequent implications for
the system’s dynamical history, the finding of a small value of
λ has a more ambiguous interpretation.

4 Strictly speaking, the RM signal depends more directly on the angle λ′
between the transit chord and the sky-projected stellar rotation axis. For an
eccentric orbit, this angle may differ from the angle λ between the sky
projections of the orbital axis and the stellar rotation axis. It is straightforward
to relate λ to λ′ when the orbital eccentricity and argument of pericenter are
known from the Doppler orbit of the star. For the systems considered in this
paper, the maximum difference between λ and λ′ is approximately 2◦ (for
HAT-P-2) and is in all cases much smaller than the measurement uncertainty
in λ.
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Table 1
Summary of RM Measurements

Exoplanet Projected Spin–Orbit Angle λ (deg) References

HD 189733b −1.4 ± 1.1 1
HD 209458b 0.1 ± 2.4 2, 3, 4, 5, 6�

HAT-P-1b 3.7 ± 2.1 7
CoRoT-Exo-2b 7.2 ± 4.5 8
HD 149026b 1.9 ± 6.1 9, 6�

HD 17156b 9.4 ± 9.3 10, 11�

TrES-2b −9.0 ± 12.0 12
HAT-P-2b 1.2 ± 13.4 13�, 14
XO-3b 70.0 ± 15.0 15
WASP-14b −14.0 ± 17.0 16
TrES-1b 30.0 ± 21.0 17

References: (1) Winn et al. (2006); (2) Queloz et al. (2000); (3) Bundy & Marcy
(2000); (4) Wittenmyer et al. (2005); (5) Winn et al. (2005); (6) J. N. Winn &
J. A. Johnson (2009, in preparation); (7) Johnson et al. (2008); (8) Bouchy
et al. (2008); (9) Wolf et al. (2007); (10) Narita et al. (2008); (11) Cochran
et al. (2008); (12) Winn et al. (2008); (13) Winn et al. (2007b); (14) Loeillet et al.
(2008); (15) Hebrard et al. (2008); (16) Joshi et al. (2009); (17) Narita et al.
(2007). Where multiple references are given, the quoted result is taken from the
starred reference.

The way to overcome this limitation and draw general infer-
ences about spin–orbit alignment is to consider the ensemble of
RM results. The situation is similar to the early days of Doppler
planet detection. Doppler measurements give only Mp sin io,
where Mp is the planet’s mass and io is the orbital inclination.
When there were only a few detections, it was impossible to
draw firm conclusions about the mass distribution of the plan-
ets, or even to be completely certain that they were planets
and not brown dwarfs in face-on orbits (Mazeh et al. 1998;
Stepinski & Black 2000). However, once tens of systems were
known with precise measurements of Mp sin io, the planetary
mass distribution came into focus (Jorissen et al. 2001; Zucker
& Mazeh 2001; Tabachnik & Tremaine 2002), under the reason-
able assumption that the orbits are randomly oriented in space.

There are now 11 exoplanetary systems for which RM
measurements have been reported. The results are summarized
in Table 1. The time is ripe to undertake an analogous study
of the statistical constraints on spin–orbit alignment. It is worth
drawing attention to the entries for HD 209458 and HD 149026,
for which we are using updated determinations of λ by J. N.
Winn & J. A. Johnson (2009, in preparation). For HD 209458,
the revision is due to an improved analysis method taking into
account correlated errors in the radial-velocity data. For HD
149026, a better transit light curve led to enhanced precision
in λ.

The results in Table 1 are easily summarized: each individual
system besides XO-3 is consistent with perfect spin–orbit
alignment within 2σ . However, it is not obvious what exactly
is ruled out by these results, or what we may conclude about
the “typical” value of ψ among the transiting planets. The
purpose of this paper is to provide a statistical framework
for understanding statistical constraints on spin–orbit alignment
that follow from RM observations, and apply it to the current
data. We are primarily concerned with the empirical information
about the distribution of ψ , rather than the interpretation in terms
of migration theories or tidal effects, which will be the subject
of future studies.

This paper is organized as follows. The geometry of this
problem is defined in Section 2. The relevant probability
distributions for individual systems are derived in Section 3.

Figure 1. Two useful coordinate systems. (a) An “observer-oriented” coordinate
system, in which Ẑ points toward the observer and the X–Y-plane is the sky plane.
(b) An “orbit-oriented” coordinate system in which the Ŷ ′-axis is the orbital axis,
and the X̂′–Ẑ′-plane is the orbital plane. The two coordinate systems are related
by a rotation of π/2 − io about the X̂=X̂′-axis.

Constraints on ψ based on an ensemble of RM observations
are discussed in Section 4. Section 5 gives a summary of the
results, a discussion of some limitations of our analysis, and
some suggestions for future work.

2. SPHERICAL GEOMETRY OF THE
ROSSITER–MCLAUGHLIN EFFECT

Let no and ns denote the unit vectors in the directions of
the orbital angular momentum and stellar rotational angular
momentum, respectively. The angle between no and ns is the
“spin–orbit angle,” denoted by ψ . This is presumably the
only angle of intrinsic physical significance in this problem,
possibly bearing information about the initial condition for
planet formation, the endpoint of planet migration, or the result
of tidal evolution. However, ψ is not directly measurable, and
we must introduce some other angles.

Figure 1 shows two useful coordinate systems. In the
“observer-oriented” coordinate system shown in the left panel,
Ẑ points at the observer, X̂ points along the line of nodes of the
planetary orbit, and Ŷ completes a right-handed triad. The as-
cending node of the planet (the location where the planet pierces
the sky plane with Ż > 0) is at X < 0. In this coordinate system,
no is in the YZ-plane and is specified by the inclination angle
io = arccos(no · Ẑ), which ranges from 0 to π . Specifying ns

requires two angles, the inclination angle is = arccos(ns · Ẑ)
and an azimuthal angle, which by the convention of Ohta et al.
(2005) we take to be λ, measured clockwise on the sky from the
Y-axis to the sky projection of ns. In summary,

no = Ŷ sin io + Ẑ cos io, (1)

ns = X̂ sin is sin λ + Ŷ sin is cos λ + Ẑ cos is. (2)

For a transiting planet, io is measurable via transit photometry,
λ (the “projected spin–orbit angle”) is measurable via the RM
effect. Usually there is no direct measurement of is, although it is
possible to constrain is via asteroseismology (Gizon & Solanki
2003) or by combining estimates of the stellar radius, stellar
rotation period, and projected rotational velocity (see, e.g.,
Winn et al. 2007a). By symmetry, a configuration (io, λ) cannot
be distinguished from a different configuration (π − io,−λ).
Because of this degeneracy, we restrict io to the range [0, π/2]
and allow λ to range from −π to +π . A positive (negative) value
for λ means that, from the observer’s perspective, the projected
stellar spin axis is rotated clockwise (counterclockwise) with
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respect to the projected orbit normal. Values of |λ| greater than
π − io correspond to retrograde orbits.

In the “orbit-oriented” coordinate system X′Y ′Z′ shown in
the right panel of Figure 1, we define Ŷ ′ ≡ no. This system is
related to XYZ by a rotation of π/2 − io about the X-axis. We
define ψ and Ω as the polar and azimuthal angles of ns in this
system, namely,

ns = X̂′ sin ψ sin Ω + Ŷ ′ cos ψ − Ẑ′ sin ψ cos Ω = 0. (3)

Equation (2) may also be rewritten using the rotation transfor-
mation equations

X′ = X, (4)

Y ′ = Y sin io + Z cos io, (5)

Z′ = −Y cos io + Z sin io, (6)

giving

ns = X̂′ sin is sin λ

+Ŷ ′(sin is cos λ sin io + cos is cos io)

+Ẑ′(cos is sin io − sin is cos λ cos io). (7)

Setting the components of Equation (3) equal to those of
Equation (8), we obtain three relations

sin is sin λ = sin ψ sin Ω, (8)

cos ψ = sin is cos λ sin io + cos is cos io, (9)

sin ψ cos Ω = sin is cos λ cos io − cos is sin io, (10)

which will be used in the following sections to derive constraints
on ψ based on measurements of io and λ and on reasonable
assumptions regarding is and Ω.

3. GIVEN ψ , WHAT WILL RM OBSERVATIONS SHOW?

Suppose an observer has measured the orbital inclination of
a planetary system to be io and is about to measure the RM
effect. If the spin–orbit angle of the system is ψ , then what is
the probability distribution for the projected spin–orbit angle λ
that the observer will measure? In this section, we calculate this
function, p(λ|ψ, io), which will play an important role in the
calculations to follow.

We assume that for a given ψ , the probability distribution of
the azimuthal angle Ω is uniformly distributed between −π and
+π . This is self-evident for a circular orbit, as there is no physical
reason to distinguish any particular azimuth. For an eccentric
orbit, it is conceivable that Ω is correlated with the direction of
pericenter, but this possibility seems unlikely for hot Jupiters,
because the torque exerted on the stellar rotational bulge by the
planetary orbit will cause Ω to precess. The precession period for
a hot Jupiter orbit is much shorter than the age of the system, and
the secular evolution of both the argument of pericenter and the
longitude of the ascending node—both defined with respect to
the stellar equator—is linear in time (Roy 2005, Section 11.4.2,
to lowest order in stellar shape parameters). We therefore expect
an ensemble of stellar spins to have a uniform distribution in
Ω, even if their orbits are eccentric. Conversely, the spin–orbit
angle ψ remains constant over the precession cycle (Roy 2005,
Section 11.4.2).

To derive p(λ|ψ, io), we first express λ in terms of ψ , io, and
Ω by eliminating is from Equations (8)–(10):

λ(ψ, io, Ω) = arctan

(
sin ψ sin Ω

cos ψ sin io + sin ψ cos Ω cos io

)
.

(11)

Since λ(−Ω, ψ, io) = −λ(Ω, ψ, io), to calculate probabilities
of λ and ψ we need only consider Ω and λ in the range [0, π ].
The results will apply to negative values of λ as positive and
negative values occur with equal probability.

Next, making use of p(Ω) = π−1, we transform variables
from Ω to λ:

p(λ|ψ, io) =
N∑

i=1

p(Ωi |ψ, io)

∣∣∣∣dΩ
dλ

∣∣∣∣
Ω=Ωi

= 1

π

N∑
i=1

∣∣∣∣dΩ
dλ

∣∣∣∣
Ω=Ωi

(12)

where the sum ranges over the N solutions Ωi of Equation
(11), for a given choice of λ, ψ , and io. We now find those
solutions.

Letting u ≡ cos Ω, Equation (11) is equivalent to a quadratic
equation in u:

u2 [sin2 ψ(1 + tan2 λ cos2 io)
]

+ 2u
[
tan2 λ sin ψ cos ψ sin io cos io

]− sin2 ψ cos2 io. (13)

When ψ < io and sin λ < sin ψ/ sin io, this equation has two
roots:

u1,2 = cos Ω1,2

= − tan2 λ cos ψ sin io cos io ± secλ
√

sin2 ψ − sin2 io sin2 λ

sin ψ(1 + tan2 λ cos2 io)
.

(14)

Figure 2(a) shows the geometrical interpretation of this two-
root case. The ellipse on the sky that is traced out by ns as Ω
takes on all values (the “ns ellipse”) has two intersections with
the ray that corresponds to the given value of λ (the “λ ray”).
When ψ < io and sin λ > sin ψ/ sin io, there are no real roots
of Equation (14). Geometrically, the ns ellipse is too small to
intersect with the λ ray. The last case is io � ψ � π − io,
for which Equation (14) has one real root. Figure 2(b) shows
an example of this case. The ns ellipse encloses the origin,
and there is one intersection point with each λ ray. This single
root corresponds to Ω1 in Equation (14). Thus, in Equation
(12), N = 0, 1, or 2, depending on the values of ψ , io,
and λ.

Because of the derivatives |dΩ/dλ| in Equation (12), it is
easier to derive the cumulative distribution P (λ < λc|ψ, io)
than to solve directly for p(λ|ψ, io). The results are

P (λ < λc|ψ, io)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 + 1
π

(Ω1 − Ω2), ψ < io and λc < arcsin(sin ψ/ sin io)
1, ψ < io and λc � arcsin(sin ψ/ sin io)
Ω1
π

, io � ψ � π − io
1
π

(Ω1 − Ω2), ψ > π − io and
λc > π − arcsin(sin ψ/ sin io)

0, ψ > π − io and
λc � π − arcsin(sin ψ/ sin io)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

(15)

where Ω1,2 from Equation (14) are evaluated at λc, ψ , io.
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Figure 2. Geometry of the roots of Equation (14). For given values of ψ and io there are either 0, 1, or 2 possible values of λ. In these panels, the dashed line is the
ellipse on the sky (the “ns ellipse”) that is traced out as ns (thin vectors) sweeps around no (thick vector), with Ω taking on all values, and the dotted line is the ray
corresponding to a given value of λ (the “λ ray”). (a) ψ < io and sin λ < sin ψ/ sin io. There are two intersections of the ns ellipse and λ ray. (b) io < ψ < π − io.
There is only one intersection. For ψ < io and sin λ > sin ψ/ sin io (not shown), the ns ellipse is too small to intersect the λ ray.

The probability densities are obtained by differentiation. First,
we evaluate the derivatives dΩi/dλ:

dΩ1,2

dλ
=
( 2 tan λ sec2λ

sin Ω1,2 sin ψ(1 − tan2 λ cos2 io)

)
×
(

cos ψ sin io cos io + sin ψ cos2 io cos Ω1,2

± cos λ(sin2 io − sin2 ψ)

2(sin2 ψ − sin2 io sin2 λ)1/2

)
. (16)

Finally, we calculate p(λ|ψ, io) by inserting these derivatives
into Equation (12). The full expressions are too large to
reproduce here; instead we give the expressions into which
Equation (16) may be substituted:

p(λ|ψ, io) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π

(
dΩ1
dλ

− dΩ2
dλ

)
, sin ψ < sin io and

sin λ < sin ψ/ sin io
0, sin ψ < sin io and

sin λ � sin ψ/ sin io
1
π

dΩ1
dλ

, sin ψ � sin io

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(17)

For a transiting planet, io is always close to π/2. When
io = π/2 exactly, the results are simplified as

P (λ < λc|ψ, io = π/2)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
π

arccos

[
1

sin ψ

(
1 − cos2 ψ

cos2 λc

)1/2
]

, |λ − π/2|
� |ψ − π/2|

1, ψ � λc < π/2
0, ψ > λc > π/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(18)

and

p(λ|ψ, io = π/2)

=
{

2
π

cos ψ

cos λ(cos2 λ−cos2 ψ)1/2 , |λ − π/2| � |ψ − π/2|
0, |λ − π/2| < |ψ − π/2|

}
. (19)

In the degenerate case io = π/2 and ψ = π/2, λ is observed to
be either −π/2 or π/2 with equal probability.

Figure 3 shows the probability densities and cumulative
distributions for io = 90◦ and io = 80◦ and some representative

values of ψ . To gain an intuitive appreciation of the results,
consider an edge-on orbit with ψ < 90◦, shown in the left
halves of the upper two panels. In this case, the spin–orbit angle
ψ is an upper bound on its sky-projected version λ. For ψ = 30◦,
the chance of observing λ to be smaller than ψ by a factor of
2 is approximately 35%. In contrast, for ψ = 85◦, the chance
of observing λ smaller than ψ by a factor of 2 is only ≈5%. In
this sense, λ is a more faithful indicator of ψ when ψ is large.
For orbits that are not viewed edge-on (the lower panels), the
maximum value of λ is increased, and for a nonedge-on orbit
with ψ near 90◦, it is possible to observe any value of λ.

3.1. Given λ from RM Observations, What May Be Inferred
About ψ?

Suppose an observer has just measured io and λ for a
particular transiting system. What may be reasonably in-
ferred about the spin–orbit angle ψ? We appeal to Bayes’s
theorem:

p(ψ |λ, io) ∝ p(λ|ψ, io)p(ψ), (20)

where p(λ|ψ, io) was calculated in the previous section, and
p(ψ) is the “prior” distribution, quantifying the observer’s
assumptions prior to the measurement. In this section, we adopt
a prior distribution p(ψ) = sin ψ , implying that ns and no
are uncorrelated and ns is randomly oriented in space. This
is the most uninformative or conservative assumption, in the
sense that if no and ns are instead highly correlated (with
consequent implications for the theory of planet migration or
tidal evolution), this fact should be demonstrated based on the
data, rather than assumed from the outset. Hence, p(ψ |λ, io)
may be obtained by multiplying Equation (17) by sin ψ and
renormalizing. For brevity, we give here only the analytic results
for the case of an edge-on orbit and λ < π/2, measured with no
error:

p(ψ |λ, io = π/2) =
{

0, ψ < λ
cos ψ sin ψ

cos λ(cos2 λ−cos2 ψ)1/2 , ψ � λ

}
(21)

and the corresponding cumulative probability function is

P (ψ < ψc|λ, io = π/2) =
{

0, ψc < λ(
1 − cos2 ψc

cos2 λ

)1/2
, ψc � |λ|

}
.

(22)



1234 FABRYCKY & WINN Vol. 696

Figure 3. Probability distributions for the projected spin–orbit angle λ conditioned on the true spin–orbit angle ψ and the orbital inclination io. See Equations (14)–(19).
The upper panels show results for an edge-on orbit (io = 90◦) and various choices of ψ . The lower panels show results for a nearly edge-on orbit (io = 80◦) and
various choices of ψ .

These results are plotted in Figure 4 for some representative
choices of λ. When λ is observed to be small, the a posteriori
probability distribution of ψ has a very narrow spike near λ and
extends broadly from ψ = λ to 90◦. When λ is observed to be
large, it is more likely that ψ is close to λ. Just as Mp cannot be
constrained strongly by Mp sin io for a Doppler-detected planet,
we find that ψ cannot be constrained strongly by λ for an RM-
detected planet, although the nature of the constraint is more
complex in the latter case. In particular, for the edge-on case,
it is possible to distinguish whether an orbit is prograde or
retrograde without ambiguity, even though the value of ψ is
quite uncertain.

As mentioned in Section 2, in principle one may obtain the
missing information about is via asteroseismology, or via the
combination of estimates of the stellar radius Rs, projected
rotation velocity v sin is, and stellar rotation period Ps. Although
asteroseismology has never been undertaken for a transiting
exoplanetary system, the other method has been employed for
HD 189733 (Winn et al. 2007a; Henry & Winn 2008) and
CoRoT-Exo-2 (Bouchy et al. 2008), and in both cases it was
found that sin is is consistent with 1 (i.e., the equator is edge-
on). However, near sin is = 1 a small error in the measured
sin is leads to a big error in is. Therefore, the data exclude only
highly misaligned systems (ψ � 45◦). In the calculations to
follow regarding the entire ensemble, we chose not to make use
of these constraints specific to HD 189733 and CoRoT-Exo-2,
for simplicity and because the extra information does not lead
to significantly more powerful constraints.

Figure 4. Probability distributions for the true spin–orbit angle ψ conditioned
on the projected spin–orbit angle λ, assuming an edge-on orbit (io = 90◦) and
random spin–orbit alignment. See Equations (21)–(22).
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Even when the rotation period is not available, one may
exclude very nearly pole-on configurations of the star because
they would require the star to be rotating unrealistically rapidly.
Certainly, the rotation rate cannot exceed the breakup speed,
although in practice we find that in realistic cases, applying
this constraint does not make a perceptible difference in the
distribution for ψ . One might go further by applying an a
priori constraint on is to enforce agreement with the “typical”
rotation rate for a star of the given spectral type and age. For
the present study, we chose not to apply any such constraint, to
avoid complications due to the uncertainties in the stellar types
and ages, the intrinsic scatter in rotation rates, and the possibility
that the rotation rates of stars hosting close-in giant planets may
be systematically different from stars in general (due to tidal
torques, earlier generations of “swallowed” planets, or other
unforeseen effects).

4. INFERENCES FROM AN ENSEMBLE OF SYSTEMS

We have seen that ψ cannot be tightly constrained in an
individual system, even when λ has been measured to within
a few degrees, and even when sin is is constrained by a
measured rotation period, stellar radius, and projected rotation
rate. The purpose of this section is to derive stronger constraints
by combining the results from different systems. The first
such attempt, by Winn et al. (2006), demonstrated that the
three measurements of λ available at that time were strongly
inconsistent with an isotropic distribution of spin–orbit angles.
This conclusion has been strengthened with the addition of many
more systems with small values of |λ|, and it is now clear that
ns and no are correlated. The next natural question is: given
the RM data, what is the distribution of spin–orbit angles? For
instance, (1) is there a “typical” value which describes the mean
and dispersion, and (2) is a single smooth distribution a good
description of the data, or is there evidence for more than one
population?

To answer these question, we suppose that the spin–orbit
angles of the systems under consideration were drawn from
a probability distribution p(ψ) (the “model”), and we use the
data to constrain the mathematical form of p(ψ). Winn et al.
(2006) already showed that the isotropic model, pI = 1

2 sin ψ ,
is untenable. A good theory of planet formation, migration, and
evolution should be able to supply p(ψ), or at least its general
form. We will not attempt to develop such a theory here. Instead,
we will use simple mathematical forms of p(ψ |a) with a few
free parameters and derive the probability distribution for those
parameters, conditioned on the data.

Let the model parameters form a vector a. The data consist
of measurements of λ and io for Ns = 11 systems. These
“measurements” are themselves probability distributions for
λ and io. We neglect the error in io and denote by pobs,k(λ)
the probability distribution for λ based on the observations of
system k (from Table 1). We approximate the measurements as
Gaussian distributions with the quoted λ and σλ as the mean
and standard deviation.5 The model p(ψ |a) implies a certain

5 In some cases, even when the radial-velocity measurement errors are
Gaussian, the posterior distribution pobs,k(λ) is not Gaussian. This is especially
true of systems with slow stellar rotation rates or small transit impact
parameters (see, e.g., the TrES-2 system (Winn et al. 2008) or the HAT-P-2
system (Winn et al. 2007b; Loeillet et al. 2008)). We investigated the
sensitivity of our results on the assumption of a Gaussian distribution in λ by
using the actual posterior distribution for λ whenever we had enough
information to compute it. We found that the ensemble results were not
significantly affected, because the most non-Gaussian cases were those with
large errors, which were already downweighted in the Bayesian analysis.

probability distribution for λ, given by

p′(λ|io, a) =
∫ π

0
p(λ|ψ, io)p(ψ |a)dψ, (23)

where p(λ|ψ, io) is given by Equation (17). In practice, this
integral is problematic because it integrates over the singularities
visible in Figure 3, but we found that the singularity handlers
in Mathematica are able to perform the integral numerically.
For edge-on orbits (io = π/2), the simplified version of
p(λ|ψ, io = π/2) given by Equation (21) is applicable, and
the transformation

y =
(

1 − cos2 ψ

cos2 λ

)1/2
(24)

removes the singularity. This provided a useful check on the
ability of Mathematica to handle the singularities; for io = π/2
the numerical integrals were identical whether or not the
transformation of Equation (24) was employed.

We may write the conditional probability as

p(data|a) =
Ns∏

k=1

∫ +π

−π

pobs,k(λ)p′(λ|ip,k, a)dλ, (25)

and then use Bayes’s theorem,

p(a|data) ∝ p(data|a)p(a), (26)

where p(a) is the prior probability density that is assigned to
the parameters a. Next, let us choose distributions to test.

4.1. A Fisher Distribution

If ψ were a Cartesian coordinate instead of a polar angle, one
might model p(ψ) as a Gaussian distribution with zero mean
and variance σ , and derive the probability distribution for σ
conditioned on the data. In the theory of directional statistics,
the function that plays the same widespread and suitably generic
role as the Gaussian distribution is the Fisher (1953) distribution

pF(ψ |κ) = κ

2 sinh κ
exp(κ cos ψ) sin ψ, (27)

where κ is the concentration parameter, a measure of the
concentration of the probability distribution around ψ = 0.
For κ = 0, the distribution becomes the isotropic distribution
pI(ψ) = 1

2 sin ψ . For κ 	 1 and ψ → 0, the distribution
becomes a Rayleigh distribution

pR(ψ |σ ) = ψ

σ 2
exp

(
− ψ2

2σ 2

)
(28)

with a width parameter σ = κ−1/2. Mathematical properties of
the Fisher distribution, and its relation to other distributions,
can be found in Watson (1982). Some examples of Fisher
distributions are plotted in Figure 5.

Let us assume that the spin–orbit angles are drawn from a
Fisher distribution, and derive the probability distribution for κ
conditioned on the data. We choose a prior distribution p(κ) ∝
(1 + κ2)−3/4. This has the desirable limits p(κ) → constant
for κ → 0 (for broad distributions it is uninformative in κ),
and p(σ ) → constant for κ → ∞ (for narrow, Rayleigh-
like distributions it is uninformative in σ = κ−1/2). The
particular values of κ for which the distributions are illustrated in
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Figure 5. Fisher probability distribution (see Equation (27)), for some rep-
resentative values of the concentration parameter κ . For κ → 0, the Fisher
distribution becomes an isotropic distribution ( 1

2 sin ψ), and for κ → ∞ and
ψ → 0 the Fisher distribution becomes a Rayleigh distribution with width
parameter σ = κ−1/2. The displayed curves have κ = 0.0, 0.4, 0.9, 1.6, 3.1,
7.1, and 29. These values were chosen because our prior, p(κ) ∝ (1 + κ2)−3/4,
assumes equal probability for each interval between adjacent values of κ .

Figure 5 were chosen because each interval in κ is equally likely,
according to our prior.

The probability density for each value of κ , conditioned on
the data, is the product of the prior and the probability density
of the data given the value of κ , according to Equation (26).
Figure 6(a) shows the resulting function p(κ|data), based on the
11 available RM measurements. It has been suitably normalized
to unit probability. (The prior p(κ) is also displayed in Figure
6(a), for reference.) Based on this result, we find that the
characteristic concentration parameter is κ > 7.6 with 95%
confidence.

The results for κ can be converted to a characteristic angular
dispersion σ (in degrees) using σ ≡ κ−1/2, bearing in mind that
the Fisher distribution with concentration parameter κ is the
same as the Rayleigh distribution with width parameter κ−1/2

in the limit of κ → ∞. The resulting distributions pF(σ |data)
and p(σ ) are plotted in Figure 6(b). The width parameter σ is
less than 22◦ with 95% confidence.

We now examine the sensitivity of these results to certain
aspects of the input data. First, we recompute the results without
including the XO-3 data. This is because the finding of a strong
misalignment in that system was considered tentative by the
observers themselves. A standard RM model does not provide a
statistically acceptable fit to the XO-3 data (Hebrard et al. 2008).
It may be relevant that some of the data were contaminated by
bright moonlight, requiring significant corrections to be applied
to the spectra, and some of the data were taken at very high air
masses.

Figure 7 shows the results when XO-3 is ignored and the other
10 systems are included as before. The results are very different:
the distribution is tightly constrained near zero: σ < 7◦
with 95% confidence. That these 10 systems are consistent
with perfect alignment (σ = 0) can be seen by computing
χ2 = ∑

(λ/σλ)2 from Table 1: it is 11.7, with 10 degrees
of freedom. Therefore, apart from XO-3, the nonzero values
of λ are consistent with observational errors alone. The p(σ )
distribution maximum likelihood is at nonzero σ because the
reduced χ2 is greater than 1, but this departure from σ = 0 is
not statistically significant.

Figure 6. Modeling the RM ensemble with a Fisher distribution. (a) The line
with dots shows the probability of the concentration parameter κ , conditioned
on the data. The dots show the specific values of κ for which we computed the
posterior probability. The line with x’s shows the assumed prior distribution of
κ . The x’s show the values of κ for which the Fisher distributions are illustrated
in Figure 5. (b) Correspondence with the more familiar Rayleigh distribution
(Equation (28)), using the equivalence σ ≡ κ−1/2 that is motivated by the
high-κ , low-σ limit. Lines and points have the same meaning as in panel (a). In
neither panel are the prior distributions normalized. The posterior distributions
are normalized by the “evidence” for the Fisher distribution model (see Equation
(31)).

Figure 7. Same as Figure 6(b), but restricting the analysis to 10 systems instead
of 11, by removing either XO-3 or HD 189733. The results are very different
in those cases. Thus, the results depend strongly on the few systems for which
λ is measured with the best precision, and the single system with an apparently
large misalignment. The solar value of ψ is shown for reference.

Second, we investigate how sensitive are the results to the few
most precise RM measurements. The dashed line in Figure 7
shows the results if we ignore HD 189733, the system with
the smallest error bar σλ, and include all 10 of the remaining
systems. In this case, the XO-3 result has enough statistical
weight to pull the peak of the distribution strongly away from
zero. Also plotted for reference is ψ�, the solar spin–orbit angle.
It must be remembered, though, that ψ� is a particular spin–
orbit angle while σ describes the dispersion of ψ . The solar
value of ψ� is typical of the “allowed” spin–orbit angles of hot
Jupiters with their host stars.
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With an eye toward future statistical analyses using the Fisher
distribution, we note that the most computationally challenging
aspect of the analysis was performing the integral (Equation
(23)). A major simplification is available for nearly edge-
on orbits, if the data are already known to favor a highly
concentrated distribution (κ 	 1). In this case, the hypothesized
distribution for ψ is a Rayleigh distribution of parameter σ � 1,
and the distribution of λ is Gaussian with a standard deviation
σ . The problem of constraining the distribution of ψ is reduced
to the problem of determining the true standard deviation of
a distribution from which several noisy data points have been
drawn. The dispersion σ can be estimated by finding the value
of σ that gives χ2 = Ns when it is added in quadrature with
the measurement errors. The 10 systems besides XO-3 are in
this simple regime. The simplified procedure described in this
paragraph gives σ = 1.◦1, in agreement with the maximum
likelihood value given for those 10 systems in Figure 7.

4.2. A Sum of Two Distributions: Isotropic and Perfectly
Aligned

An alternative and equally simple way to describe the data is
to suppose that all systems are drawn either from an isotropic
distribution (with probability f) or from a very well-aligned
distribution (with probability 1 − f ). We further suppose that
the well-aligned distribution is sufficiently concentrated around
ψ = 0 that none of the current measurements would be able to
distinguish it from a delta function. This toy model will be a
useful baseline for limiting the fraction of planets that migrate
by various channels, some of which yield a nearly isotropic
distribution of spin–orbit angles (specific examples are cited in
Section 5).

The probability of the data (λk , σλ,k) given such a model is

p(data|f ) =
N∏

k=1

⎡
⎣f

1

2π
+ (1 − f )

2√
2πσ 2

k

exp

(
− λ2

k

2σ 2
λ,k

)⎤⎦ .

(29)
The factor of 2 in the numerator of the Gaussian portion above
arises from the ±λ degeneracy mentioned in Section 2. Both of
the terms in the sum are independent of io. Adopting a uniform
prior for f, and using Bayes’s theorem, we plot the result for
p(f |data) in Figure 8. The data demand that f < 0.36 with
95% confidence. The favored value of f is 0.1, implying that
approximately one system out of 11 is drawn from the isotropic
distribution, clear indication that this result is being driven by
XO-3. If we remove XO-3 from the analysis (to check the
sensitivity of the analysis to this one system), f < 0.25 at
95% confidence, and the maximum likelihood is f = 0 exactly.

4.3. A Sum of Two-Fisher Distributions

Another possible model is a sum of two-Fisher distributions
with different concentration parameters. This could describe, for
instance, two different channels by which giant planets migrate
to close-in orbits, which produce different final distributions of
spin–orbit angles. Brown (2001) has found that a sum of two
Fisher-like distributions is needed to fit the inclination distribu-
tion of Kuiper belt objects, and this multicomponent model has
been a very useful constraint on dynamical theories. In this “two-
Fisher” model, a fraction f of systems are Fisher-distributed with
concentration parameter κ1, and the remaining fraction (1 − f )
of systems are Fisher-distributed with concentration parameter
κ2. Thus, the two-Fisher model has three free parameters. The

Figure 8. Modeling the RM ensemble with the sum of an isotropic distribution
and a perfectly aligned (delta-function) distribution. A fraction f of the systems
are drawn from the isotropic distribution, and the remaining fraction (1−f ) are
drawn from the delta-function distribution. Plotted is the posterior probability
distribution for f, given the data. We find f < 0.36 with 95% confidence.

results of the previous section correspond to the case f ≈ 0.1,
κ1 = 0, κ2 → ∞.

To determine the joint posterior probability distribution for f,
κ1, and κ2, we computed

p2F(f, κ1, κ2|data) = p(f )p(κ1)p(κ2)

× [fpF (data|κ1) + (1 − f )pF (data|κ2)]. (30)

The difficult integrals implied by this equation were already
computed for the single-Fisher model. The results are f =
0.10+0.13

−0.05, κ1 = 0.22+1.04
−0.22, and κ2 = 110+230

−76 . The first Fisher
distribution is consistent with an isotropic distribution. The
second Fisher distribution is approximately equivalent to a
Rayleigh distribution with width parameter σ2 = 5.5+4.3

−2.4 deg.
The probability contours show that the correlations between
the parameters are relatively small, especially within the 1σ
preferred region.

4.4. Choosing Among Different Models

The results of the three-parameter, two-Fisher model are
consistent with the results of the single-parameter, isotropic
+ perfectly aligned model given in the previous section. The
greater complexity of the two-Fisher model makes it less
appealing. This loss of appeal can be quantified within a
Bayesian framework, which has a quantitative expression of
Occam’s razor.6 Each model has an associated “evidence,”

E ≡
∫

p(data|a)p(a)da, (31)

where a is the vector of model parameters. This is the normaliza-
tion factor used in Bayes’s theorem, which turns proportionality
(Equation (26)) into an equation. The presence of the first fac-
tor, p(data|a), is the quantitative expression of the intuition that
the data may be taken as evidence for the model only when the
model predicts the data are probable. The second factor, p(a),
assigns greater evidence to models that concentrate their pre-
dictive power in the region where the data are found. This is
because the integral over the prior distribution p(a) is normal-
ized to unity; if a prior distribution is spread too thinly over the

6 A lucid discussion of Bayesian model choosing is given by MacKay (2003,
chap. 28).
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parameter space of a, then it cannot give much weight to models
that are consistent with the data.

We computed the evidence for the models described in the
three previous sections. The single-Fisher model has E = 14.4,
the isotropic + perfectly aligned model has E = 1927, and the
two-Fisher model has E = 726. The model that mixes the two
extreme distributions does the best. It is favored by a factor of
∼130 over the single-Fisher model.

The difficulty with the single-Fisher model is that it cannot
simultaneously account for the majority of systems that are
well aligned while also including XO-3. A small value of κ
makes XO-3 probable, but the 10 other systems are somewhat
less probable, and the multiplication of these 10 lessened
probabilities according to Equation (25) means there is little
evidence for small κ . A large value of κ makes most of the data
probable, but then the XO-3 result is very improbable, and the
result is poor evidence for large κ . The distribution that mixes
an isotropic distribution and a perfectly aligned distribution
overcomes this difficulty by allowing both the majority of
systems and XO-3 to be reasonably probable. The only free
parameter is f, and the constraints on f are loose. Thus, the data
provide substantial evidence for a large fraction of the parameter
space.

The poor showing of the two-Fisher model relative to the
isotropic + perfectly aligned model indicates that the two-Fisher
model is a needless complication. The extra two parameters open
up two more dimensions in the model’s parameter space. As a
result, much of the prior probability is “wasted” on regions of
parameter space that are ruled out by the data. We hope that some
day there will be enough high-quality RM data to justify a more
complicated model such as the two-Fisher model. In this regard,
we note that 379 Kuiper belt objects were discovered before their
inclination distribution was modeled this way (Brown 2001).

We have already shown that the XO-3 measurement has
an especially strong influence on the results. Unfortunately,
as mentioned earlier, this measurement is considered suspect
because of the possibility of systematic errors. Following the
referee’s suggestion, we may bring this suspicion under the
umbrella of the Bayesian analysis by including a “degree of
belief” parameter pr, which gives the a priori probability that the
XO-3 measurement will prove to be correct. Since the nature of
the systematic errors (if any) is not known, pr is rather subjective
and open to debate. Our goal is not to determine the value of pr,
but rather to ask what is the minimum value of pr that is required
for our conclusion to hold that the isotropic + perfectly aligned
model is preferred.

Each of the three models—single-Fisher, perfectly aligned
plus an isotropic fraction, and two-Fisher—is fitted to the 11-
member ensemble including XO-3, and also fitted to the 10-
member ensemble excluding XO-3. Then the evidence for each
model is computed as a weighted sum, with weight pr applied
to the 11-member set and weight (1 −pr) to the 10-member set.
The evidence values of the models are computed and compared
as a function of pr. The result is that for pr < 0.95, all three
models fit the data equally well; they have evidence values
within a factor of 3 of each other. We conclude that unless one
has >95% confidence that the XO-3 result is robust, then a
single smooth distribution of ψ is a perfectly viable description
of the ensemble.

5. DISCUSSION

The angle between ns and no is a fundamental geometric
property of exoplanetary systems. A good theory of planet for-

mation, migration, and evolution ought to predict the statistical
relationship between ns and no for hot Jupiters. This relationship
is potentially measurable via RM observations. In this paper, we
have overcome an inherent limitation of RM observations—they
are sensitive only to the angle between the sky projections of
the orbital axis and the stellar rotation axis—by showing how
to analyze the whole ensemble in a Bayesian framework.

We modeled the 11 published measurements using a Fisher
distribution, and found that the concentration parameter κ > 7.6
with 95% confidence. In this limit of a rather concentrated
distribution, the Fisher distribution is equivalent to a Rayleigh
distribution with width parameter σ = κ−1/2. Based on the 11
data points, σ < 22◦ with 95% confidence. For comparison, the
solar obliquity is 7◦. If we set aside XO-3 (for instance, if the
“tentative” detection of a strong misalignment is contradicted
by higher-precision data), then the width parameter is < 6.6◦
with 95% confidence. In that case, the hot Jupiters are just as
well aligned as the solar system.

The 11 data points also provide statistical evidence for
two distinct populations within the ensemble, which might be
interpreted as two different migration channels. Specifically, a
model in which the systems are drawn from the sum of isotropic
and perfectly aligned distributions fits the data better than a
model with a single smooth distribution (Section 4.4). This is a
reasonable conclusion, given that XO-3 shows the only evidence
for a strong misalignment. However, due to the projection effect
in converting from ψ to λ, it was not obvious prior to our analysis
that the XO-3 result cannot be accomodated as part of the “tail”
in a smooth distribution of spin–orbit angles. In fact, the data do
not imply that XO-3 is the only system in the ensemble that is
likely to be drawn from an isotropic distribution. We conclude
only that fewer than 36% of the systems are drawn from an
isotropic distribution, with 95% confidence. It is possible that
several members of the ensemble were drawn from an isotropic
distribution.

There is plenty of room for improvement in the quantity
and quality of the RM data that are needed for this type of
study. We have found that the present data are sufficient only
to constrain single-parameter models for the ensemble. We also
showed that the current results are highly sensitive to the few
systems with the finest measurement precision. Measurements
of λ with a precision of a few degrees are still in high demand.
The “tentative” result for XO-3 needs to be followed up with
more definitive data, as that single result weighs heavily on the
Bayesian calculation. In addition, a uniform analysis of the data
across many systems would be useful. Among the nonuniform
aspects of the data analyses are whether or not v sin i was
treated as a free parameter or subject to a constraint based on
the observed line broadening; whether or not the uncertainties
in the photometric transit parameters were taken into account;
whether or not correlated noise in the radial-velocity data was
assessed and taken into account if necessary; and whether or
not the effects of spectral deconvolution and cross-correlation
algorithms were calibrated. (These algorithms need calibration
because they are generally intended to measure Doppler shifts,
rather than model the actual RM spectral distortion that only
superficially resembles a Doppler shift.)

There is also a potential bias regarding which systems are
selected for measurement of the RM effect, as pointed out by
Winn et al. (2008). Stars with low v sin i tend to be avoided, as
the radial-velocity anomaly would be small and the achievable
precision in λ is comparatively poor. However, stars with low
v sin is are more likely to be viewed pole-on and therefore have
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a large ψ . In the present work, we have not attempted to correct
for such a selection effect.

Despite the limitations of the current data, the relative success
of the two-component model (isotropic + perfectly aligned)
leads us to speculate on the implications for theories that attempt
to explain the presence of hot Jupiters. The chain of logic
begins with the assumption that the system begins very well
aligned (ψ ≈ 0◦). A natural prediction of in situ formation
theories, or theories involving migration due to torques from
the protoplanetary disk, is that the orbit of the planet remains
very well aligned with equatorial plane of the star. (However,
in the latter case the planet could conceivably misalign with
the protoplanetary disk, and thus the stellar spin, depending on
which resonant and secular torques dominate the planet–disk
interaction; Borderies et al. 1984; Ward & Hahn 1994; Lubow
& Ogilvie 2001.) In contrast, a very broad ψ distribution can be
produced by mechanisms involving Kozai (1962) eccentricity
cycles due to a distant companion star (Fabrycky & Tremaine
2007; Wu et al. 2007). A nearly isotropic ψ distribution can be
produced by dynamical relaxation or planet–planet scattering
(Narita et al. 2008). It is possible that the two components in
our statistical model correspond to two different channels for
migration, one that preserves the initial spin–orbit alignment
and one that randomizes spin–orbit alignment to a significant
degree.

A possible confounding factor is tidal damping. Based on
the currently observed system parameters, it is expected that
tidal coplanarization (also called “inclination damping”) is
not a major influence on ψ (Winn et al. 2005), but this is
not a watertight argument. The timescales of long-term tidal
processes are poorly known. Nevertheless, if tides raised on the
star are large enough for substantial coplanarization, then the
planet is in imminent danger of spiraling in and being engulfed
(Levrard et al. 2009). Moreover, one would think that tidal
damping of ψ by dissipation in the star should be fastest for
systems with the most massive planets (see, e.g., Fabrycky et al.
2007; Jackson et al. 2008). Hence, it is intriguing that XO-3b,
the most massive transiting planet with an RM measurement,
and thus the one for which tidal dissipation should have been
the most important, is the only system showing evidence for
misalignment.7 Therefore, the misalignment of XO-3b suggests
that tidal damping is not responsible for low ψ values, and that
the observed low |λ| values should be interpreted as a relic of
the planet formation and migration processes.

In this paper, we have been concerned with constraining the
parameters of simple and fairly generic mathematical models
for the distribution of spin–orbit angles. A priority for future
work is to use the Bayesian framework developed in this paper
to constrain the parameters of realistic, physically motivated
models, based on the specific predictions of migration theories.
In this vein, we encourage theorists to make quantitative pre-
dictions about the distribution of ψ . After deriving a theoretical
distribution for ψ by whatever means, one may find the corre-
sponding λ distribution for edge-on orbits using Equation (19).
This requires a convolution similar to that of Equation (23). The
theoretical predictions may then be directly compared with the
data. With RM measurements of sufficient quantity and quality
and with theories of sufficient specificity, it may be possible

7 There is also dissipation within the planet, which is less efficient for higher
mass planets. However, this mode of dissipation is less relevant because the
torque on the planetary bulge does not couple strongly to the stellar obliquity
ψ (Fabrycky et al. 2007).

to rule out certain migration theories, or to derive the likely
fraction of systems that migrated through different channels.
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Note added in proof. Winn et al. (2009) have reobserved the
Rossiter–McLaughlin effect in the XO-3 system, have found
it to be indeed misaligned, and have updated the quantitative
statistical inferences of this paper.
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