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ABSTRACT

We present numerical simulations of the spectral evolution and emission of radio components in relativistic jets.
We compute jet models by means of a relativistic hydrodynamics code. We have developed an algorithm (SPEV)
for the transport of a population of nonthermal electrons including radiative losses. For large values of the ratio
of gas pressure to magnetic field energy density, αB ∼ 6 × 104, quiescent jet models show substantial spectral
evolution, with observational consequences only above radio frequencies. Larger values of the magnetic field
(αB ∼ 6 × 102), such that synchrotron losses are moderately important at radio frequencies, present a larger ratio
of shocked-to-unshocked regions brightness than the models without radiative losses, despite the fact that they
correspond to the same underlying hydrodynamic structure. We also show that jets with a positive photon spectral
index result if the lower limit γmin of the nonthermal particle energy distribution is large enough. A temporary
increase of the Lorentz factor at the jet inlet produces a traveling perturbation that appears in the synthetic maps as a
superluminal component. We show that trailing components can be originated not only in pressure matched jets, but
also in overpressured ones, where the existence of recollimation shocks does not allow for a direct identification of
such features as Kelvin–Helmholtz modes, and its observational imprint depends on the observing frequency. If the
magnetic field is large (αB ∼ 6×102), the spectral index in the rarefaction trailing the traveling perturbation does not
change much with respect to the same model without any hydrodynamic perturbation. If the synchrotron losses are
considered the spectral index displays a smaller value than in the corresponding region of the quiescent jet model.
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1. INTRODUCTION

Relativistic jets are routinely observed emerging from active
galactic nuclei (AGNs) and microquasars, and presumably they
are behind the phenomenology detected in gamma-ray bursts.
It is a broadly recognized fact that the observed VLBI radio
maps of parsec-scale jets are not a direct map of the physical
state (density, pressure, velocity, magnetic field) of the emitting
plasma. The emission structure is greatly modified by the fact
that a distant (Earth) observer detects the radiation emitted from
a jet which moves at relativistic speed and forms a certain angle
with respect to the line of sight. Time delays between different
emitting regions, Doppler boosting, and light aberration shape
decisively the observed aspect of every time-dependent process
in the jet. The observed patterns are also influenced by the travel
path of the emitted radiation toward the observer since Faraday
rotation and, most importantly, opacity modulate total intensity
and polarization radio maps. Finally, there are other effects that
can be very important for shaping VLBI observations which do
not unambiguously depend on the hydrodynamic jet structure,
namely, radiative losses, particle acceleration at shocks, pair
formation, etc. In this work, we try to account for some of these
elements by means of numerical simulations.

The basis for currently accepted interpretation of the phe-
nomenology of relativistic jets was set by Blandford & Königl
(1979) and Königl (1981). A number of analytic works have
settled the basic understanding that accounts for the nonther-
mal synchrotron and inverse Compton emission of extragalactic
jets (e.g., Marscher 1980), as well as the spectral evolution of
superluminal components in parsec-scale jets (e.g., Blandford
& McKee 1976; Hughes et al. 1985; Marscher et al. 1992;
Marscher & Gear 1985). Assuming kinematic jet models, the
numerical implementation of these analytic results enables one

to extensively test the most critical theoretical assumptions by
comparison with the observed phenomenology both for steady
(e.g., Daly & Marscher 1988; Hughes et al. 1989a, 1991; Gómez
et al. 1993, 1994a, 1994b) and unsteady jets (e.g., Jones 1988).
Basically, the aforementioned numerical implementation con-
sists of integrating the synchrotron transfer equations assuming
that radiation originated from an idealized jet model and ac-
counting for all the effects mentioned in the previous paragraph.

The advent of multidimensional relativistic (magneto)
hydrodynamic numerical codes has allowed us to replace the
previously used kinematic, steady jet models by multidimen-
sional, time-dependent hydrodynamic models of thermal plas-
mas (for a review, see, e.g., Gómez 2002). The works of Gómez
et al. (1995, 1997, hereafter G95 and G97, respectively), Duncan
et al. (1996), or Komissarov & Falle (1996) compute the syn-
chrotron emission of relativistic hydrodynamic jet models with
suitable algorithms that account for a number of relativistic ef-
fects (e.g., Doppler boosting, light aberration, time delays, etc.).
Their models assume that there exists a proportionality between
the number and the energy density of the hydrodynamic (ther-
mal) plasma and the corresponding number and energy density
of the emitting population of nonthermal or suprathermal parti-
cles. These authors assumed that the magnetic field was dynam-
ically negligible, that the emitted radiation had no back-reaction
on the dynamics, and that that synchrotron losses were negli-
gible. All these assumptions are very reasonable for VLBI jets
at radio observing frequencies if the jet magnetic field is suf-
ficiently weak. Consistent with their assumptions, the former
papers included neither a consistent spectral evolution of the
nonthermal particle (NTP) population nor the proper particle
and energy transport along the jet.

The spectral evolution of NTPs and its transport in classi-
cal jets and radiogalaxies have been carried out by Jones et al.
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(1999), Micono et al. (1999), and Tregillis et al. (2001). In these
works a coupled evolution of a nonrelativistic plasma along with
a population of NTPs has been used to asses either the signa-
tures of diffusive shock acceleration in radio galaxies (Jones
et al. 1999; Tregillis et al. 2001) or the observational imprint
of the nonlinear saturation of Kelvin–Helmholtz (KH) modes
developed by a perturbed beam (Micono et al. 1999). Casse
& Marcowith (2003) have also developed a scheme to per-
form multidimensional Newtonian magnetohydrodynamic sim-
ulations coupled with stochastic differential equations adapted
to test particle acceleration and transport in kiloparsec scale
jets. Dealing with the spectral evolution of NTPs is relevant in
view of the multiband observations of extragalactic jets where,
a significant aging of the emitting particles seems to be present
at optical to X-ray frequencies (M87, Heinz & Begelman 1997;
Marshall et al. 2002; Cen A, Kraft et al. 2001).

This paper builds upon the lines opened by G95 and G97. G95
concentrated on the emission properties from steady relativistic
jets, focusing on the role played by the external medium in de-
termining the jet opening angle and presence of standing shocks.
G97 used a similar numerical procedure to study the ejection,
structure, and evolution of superluminal components through
variations in the ejection velocity at the jet inlet. Agudo et al.
(2001) discussed in detail how a single hydrodynamic perturba-
tion triggers pinch body modes in a relativistic, axisymmetric
beam which result in observable superluminal features trailing
the main superluminal component. Finally, Aloy et al. (2003)
extended the work of Agudo et al. (2001) to three-dimensional,
helically perturbed beams. Here, we combine multidimensional
relativistic models of compact jets with a new algorithm to com-
pute the spectral evolution of suprathermal particles evolving in
its bosom, i.e., including their radiative losses, and their rel-
evance for the emission and the spectral study of relativistic
jets.

This work is composed of two parts. In the first part, we
present a new numerical scheme to evolve populations of rel-
ativistic electrons in relativistic hydrodynamic flows including
radiative losses (Section 3). For the purpose of calibration of the
new method, our work is based upon the same axisymmetric,
relativistic, hydrodynamic jet models as employed in G97. Us-
ing the same jet parameters allows us to quantify the relevance
of including radiative losses and, along the way, to compare the
emission properties of parsec-scale jets computed according to
two different methods: (1) the new method presented in this pa-
per, and (2) the method presented in G95 and G97, to which we
will refer, for simplicity, as adiabatic method (AM). In the sec-
ond part of the paper, we apply the new method to quantify the
relevance of radiative losses in the evolution of both quiescent
and dynamical jet models. We will show (Section 5) the regimes
in which both approaches yield similar synthetic total intensity
radio maps and when synchrotron losses modify substantially
the results. We also show which are the key parameters to trigger
a substantial NTP aging and, therefore, to significantly change
the appearance of the radio maps corresponding to the same
underlying, quiescent jet models. The spectral evolution of a
hydrodynamic perturbation travelling downstream the jet will
be discussed in Section 7. Finally, we discuss our main results
and conclusions in Section 8.

2. HYDRODYNAMIC MODELS

Two quiescent, relativistic, axisymmetric jet models consti-
tute our basic hydrodynamic set up (see Table 1). They corre-
spond to the same pressure-matched (PM), and overpressured

Table 1
Set of Models Used in This Work

Model Pb/Pa bb [G] αB

PM-S 1.0 0.002 6 × 106

PM-L 1.0 0.02 6 × 104

PM-H 1.0 0.20 6 × 102

OP-L 1.5 0.03 6 × 104

OP-H 1.5 0.30 6 × 102

Note. Values in the table refer to the jet nozzle. The first column lists the
model names. The second and third columns give the jet-to-external-medium
pressure ratio, and the comoving magnetic field at the jet nozzle, respectively.
The last column lists the values of the ratio of gas pressure to magnetic pressure.
Additional models not including radiative losses, but computed with the SPEV
method, will be denoted with a suffix “-NL.” Likewise, models with the same
parameters as those listed here, but computed with the AM method, will be
denoted with a suffix “-AM.”

(OP) models of G97. The models were computed in cylindrical
symmetry with the code RGENESIS (Mimica et al. 2004). The
computational domain spans (10Rb×200Rb) in the (r×z)-plane
(Rb is the beam cross-sectional radius at the injection position).
A uniform resolution of 8 numerical cells/Rb is used. The code
module that integrates the relativistic hydrodynamics equations
is a conservative, Eulerian implementation of a Godunov-type
scheme with high-order spatial and temporal accuracy (based
on the GENESIS code; Aloy et al. 1999a, 1999b). We follow
the same nomenclature as G97 where quantities affected by
subscripts a, b and p refer to variables of the atmosphere, of
the beam at the injection nozzle and of the perturbation (Sec-
tion 2.1), respectively. The jet material is represented by a dif-
fuse (ρb/ρa = 10−3; ρ being the rest-mass density), relativistic
(Lorentz factor Γb = 4) ideal gas of adiabatic exponent 4/3, with
a Mach number Mb = 1.69. At the injection position, model
PM has a pressure Pb = Pa , while model OP has Pb = 1.5Pa .
Pressure in the atmosphere decays with distance z according to
P (z) = Pa/[1 + (z/zc)1.5]1.53, where zc = 60Rb. With such an
atmospheric profile both jet models display a paraboloid shape,
which introduces a small, distance-dependent, jet opening angle
which is compatible with observations of parsec-scale jets. At
a distance of 200Rb, the opening angles for the models PM and
OP are 0.◦29 and 0.◦43, respectively.

Pressure equilibrium in the atmosphere is ensured by includ-
ing adequate counter-balancing, numerical source terms. How-
ever, despite the fact that the initial model is very close to equi-
librium, small numerical imbalance of forces triggers a transient
evolution that decays into a final quasi-steady state after roughly
2–5 longitudinal grid light-crossing times. We treat these quies-
cent states as initial models. Model PM yields an adiabatically
expanding, smooth beam. Model OP develops a collection of
cross shocks in the beam, whose spacing increases with the
distance from the jet basis.

2.1. Injection and Evolution of Hydrodynamic Perturbations

Variations in the injection velocity (Lorentz factor) have been
suggested as a way to generate internal shocks in relativistic
jets (Rees 1978). We set up a traveling perturbation in the jet as
a sudden increase of the Lorentz factor at the jet nozzle (from
Γb = 4 to Γp = 10) for a short period of time (0.75Rb/c; c being
the light speed). Since the injected perturbation is the same as
in G97, its evolution is identical to that these authors showed
and, thus, we provide a brief overview here. The perturbation
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develops two Riemann fans emerging from its leading and
rear edges (see, e.g., Mimica et al. 2005, 2007). In front of
the perturbation a shock–contact discontinuity–shock structure
(SCS) forms, while the rear edge is trailed by a rarefaction–
contact discontinuity–rarefaction (RCR) fan. In the leading
shocked region the beam expands radially owed to the pressure
increase with respect to the atmosphere. In the trailing rarefied
volume the beam shrinks radially on account of the smaller
pressure in the beam than in the external medium. This excites
the generation of pinch body modes in the beam that seem
to trail the main hydrodynamic perturbation as pointed out by
Agudo et al. (2001). Also the component itself splits in, at least,
two parts when the forward moving rarefaction leaving the rear
edge of the component merges with the reverse shock traveling
backward (in the component rest frame) that leaves from the
forward edge of the hydrodynamic perturbation (as in Aloy
et al. 2003).

3. SPEV: A NEW ALGORITHM TO FOLLOW
NONTHERMAL PARTICLE EVOLUTION

The spectral evolution (SPEV) routines are a set of methods
developed to follow the evolution of NTPs in the phase space.
Here we assume that the radiative losses at radio frequencies
are negligible with respect to the total thermal energy of the
jet at every point in the jet. Thus, radiation back reaction onto
the hydrodynamic evolution is neglected. Certainly, such an
ansatz is invalid at shorter wavelengths (optical, X-rays), where
radiative losses shape the observed spectra (see, e.g., Mimica
et al. 2005 for X-ray-synchrotron blazar models that include the
radiation back-reaction onto the component dynamics).

The seven-dimensional space formed by the particle mo-
menta, particle positions, and time is split into two parts. For the
spatial part of the phase space, we assume that NTPs do not dif-
fuse in the hydrodynamic (thermal) plasma. Thereby, the spatial
evolution of the NTPs is governed by the velocity field of the
underlying fluid, and it implies that the NTP comoving frame
is the same as the thermal fluid comoving frame. Assuming a
negligible diffusion of NTPs is a sound approximation in most
parts of our hydrodynamic models since the electron diffusion
lengths are much smaller than the dynamical lengths in smooth
flows (see, e.g., Tregillis et al. 2001; Miniati 2001). Obviously,
the assumption is not fulfilled wherever diffusive acceleration
of NTPs takes place (e.g., at shocks or at the jet lateral bound-
aries). Nevertheless, there exists a strong mismatch between the
scales relevant to dynamical and diffusive transport processes
for NTPs of relevance to synchrotron radio-to-X-ray emissions
within relativistic jets. The mismatch ensures that even in macro-
scopic, nonsmooth regions such as the cross shocks in the
beam of model OP, the assumption we have made suffices to
provide a good qualitative description of the NTP population
dynamics.

Consistent with the hydrodynamic discretization, we assume
that the velocity field is uniform inside each numerical cell
(equal to the average of the velocity inside such cell). In practice,
a number of Lagrangian particles are introduced through the
jet nozzle, each evolving the same NTP distribution but being
spatially transported according to the local fluid conditions. We
emphasize that these Lagrangian particles are used here for the
solely purpose of representing the spatial evolution (i.e., the
trajectories) of ensembles of NTPs. We integrate the trajectories
of such particles using a conventional time-explicit, adaptive-
step-size, fourth order Runge–Kutta (RK) integrator.

3.1. Particle Evolution in the Momentum Space

In order to derive the equations governing the time evolution
of charged NTPs in the momentum space we follow closely
the approach of Miralles et al. (1993; see also Webb 1985 or
Kirk 1994). We start by considering the Boltzmann equation
that obeys the ensemble averaged distribution function f of the
NTPs, each with a rest-mass m0,

pβ

(
∂f

∂xβ
− Γα

βγ pγ ∂f

∂pα

)
=

(
df

dτ

)
coll

, (1)

where f is a function of the coordinates xα and the components
of the particle 4-momentum pα with respect to the coordinate
basis e(α). The Γα

βγ are the usual Christoffel symbols and the
right-hand side represents the collision term, with τ being the
particle proper time.

Equation (1) can be written in terms of the particle 4-
momentum components with respect to the comoving or matter
frame instead of the components with respect to the coordinate
basis. The comoving tetrad e(a) (a = 0, 1, 2, 3), is formed by
four vectors, one of which (e(0)) is the four velocity of the matter
and the following orthonormality relation is fulfilled

e(a) · e(b) = ηab,

where ηab is the Minkowski metric (η00 = −1). We explicitly
point out that the components of tensor quantities with respect
to the coordinate and tetrad basis are annotated with Greek
and Latin indices, respectively. The transformation between the
basis e(α) and e(a) is given by the matrix eα

a and its inverse matrix
e′a
α ,

e(a) = eα
a e(α), e(α) = e′a

α e(a). (2)

In terms of the comoving basis, the Boltzmann equation is

pb

(
e
β

b

∂f

∂xβ
− Γa

bcp
c ∂f

∂pa

)
=

(
δf

δτ

)
coll

. (3)

The connection coefficients in the tetrad frame Γa
bc obey the

following relations,

Γa
bc = e

β

b e′a
α eα

c;β = e
β

b e′a
α

(
eα
c,β + Γα

βγ eγ
c

)
, (4)

where the comma and the semicolon stand for partial and
covariant derivatives, respectively.

We introduce the two first moments of the distribution
function by the equations

na =
∫

dΩ
p2

p0
paf, (5)

tab =
∫

dΩ
p2

p0
papbf, (6)

where p2 = (p0)2 − m2
0c

2 is the square of the NTP three-
momentum measured by the comoving observer. The solid-
angle (Ω) integrations are performed over all particle momentum
directions. The number of NTPs per unit volume with modulus
of their three-momentum between p and p+dp for an observer
comoving with the matter is n0(p)dp. Further integration of
the above moments na and tab over p,

∫ ∞
0 dp, gives the

hydrodynamic moments.
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In order to obtain the continuity equation for NTPs, we
multiply the Boltzmann Equation (3) by (p2/p0), and integrate
over Ω to yield (for details, see Appendix A of Webb 1985),

eα
a

∂na

∂xα
+eα

a;αna− ∂

∂p

(
p0

p
Γ0

abt
ab

)
=

∫
dΩ

p2

p0

(
δf

δτ

)
coll

. (7)

The next step is to formulate the continuity equation in
the diffusion approximation. Such approximation implies that
the scattering of NTPs by hydromagnetic turbulence results
in a quasi isotropic distribution function in the scattering
(comoving) frame. Thus, it is assumed that the distribution
function of the NTPs can be expressed as the sum of two terms,
f = f (0) + f (1)Ω, where f (0) � f (1) and Ω is the unit vector
in the direction of the momentum of the particle. With such an
assumption, we obtain that

n0 � 4πp2f (0) � ni, t ij � p2

p0

δij

3
n0, i, j = 1, 2, 3,

(8)
which also leads to

t00 � p0n0 � t0i = t i0. (9)

Plugging the approximations (8) and (9) into Equation (7)
and neglecting the terms coming from the anisotropy of the
distribution function, i.e., the terms arising from f (1), we obtain

eα
0
∂n0

∂xα
+ eα

0;αn0 − ∂

∂p

(
3∑

i=1

Γi
0ip

n0

3

)
=

∫
dΩ

p2

p0

(
δf

δτ

)
coll

.

(10)
Equation (10) is valid for any general metric gμν . However, in

the present work we are only interested in obtaining the transport
equation for NTPs in the special relativistic regime. To restrict
Equation (10) to such a regime we take a flat metric, gμν = ημν .
Thereby, the tetrad and the coordinate frame basis are related
by a simple Lorentz transformation, i.e.,

e0
0 = Γ,

e0
i = ei

0 = Γvi,

ei
j = δij + (Γ − 1)

vivj

v2
(i, j = 1, 2, 3),

where vi (i = 1,2,3) are the spatial components of the velocity
of matter, which is equal to the hydrodynamic velocity of the
NTPs, since we make the assumption that NTPs do not diffuse
in the hydrodynamic plasma. The hydrodynamic Lorentz factor
of the plasma is denoted by Γ = 1/

√
(1 − vivi). With this

transformation we obtain

eα
0;α = eα

0,α = ∂Γ
∂t

+
∂Γvi

∂xi
= Θ (11)

3∑
i=1

Γi
0i = ∂Γ

∂t
+

∂Γvi

∂xi
= Θ, (12)

with Θ being the expansion of the underlying thermal fluid,
which is related to ρ by

Θ = −D ln ρ

Dτ
. (13)

Plugging Equations (11)–(13) into Equation (10) and using
the definition of the Lagrangian derivative with respect to the
proper time of the comoving observer

D

Dτ
= Γ

(
∂

∂t
+ vi ∂

∂xi

)

yields

Dn0

Dτ
+ Θn0 − ∂

∂p

(
n0

3
pΘ

)
=

∫
dΩ

p2

p0

(
δf

δτ

)
coll

, (14)

which can be cast in the form

D ln n0

Dτ
− p

3
Θ

∂ ln n0

∂p
+

2

3
Θ = 1

n0

∫
dΩ

p2

p0

(
δf

δτ

)
coll

. (15)

The collision term contains the interaction between NTPs and
matter, radiative losses due to synchrotron processes, etc. Let
us consider first the interaction with matter. In this case, the
collisions can be assumed to be isotropic in the comoving frame
and elastic. In such a case, and consistently to the previous
approximation, the collision term in Equation (15) vanishes and
we can find a solution for the homogeneous differential equation
by considering

D ln n0

Dτ
− p

3
Θ

∂ ln n0

∂p
,

as the derivative of ln n0 along the following curve in the plane
(τ ,p), parametrized by σ

dτ

dσ
= 1

dp

dσ
= − p

3
Θ,

i.e., we may write Equation (15) as

d ln n0

dσ
= − 2

3
Θ. (16)

The solution of Equation (16) is

n0(τ (σ ), p(σ )) = n0(τ (σ0), p(σ0))

(
ρ(τ (σ ))

ρ(τ (σ0))

) 2
3

, (17)

where σ0 corresponds to some initial value of the parameter σ .
Equation (17) expresses the fact that the variation of the number
of NTPs per unit of volume along a certain curve (parametrized
by σ ) is directly related with the variation of the rest-mass
density of the thermal plasma between the initial and final points
of such a curve.

We now turn back to Equation (15) and derive the form of the
collisions term in the case that the only relevant radiative losses
are due to synchrotron processes. In such a case we have (e.g.,
Rybicki & Lightman 1979)(

dp

dτ

)
syn

= −4σTp2UB

3m2
ec

2
:= B(p, τ ), (18)

where σT is the Thompson cross section, me is the electron rest-
mass, UB = b2/8π is the magnetic energy density, and we have
assumed that the electrons are ultrarelativistic, p ≈ γme, γ
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being the electron Lorentz factor (not to be confused with the
plasma Lorentz factor). If Θ = 0, Equation (15) reads in the
comoving frame(

D ln n0

Dτ

)
syn

= 1

n0

∫
dΩ

p2

p0

(
δf

δτ

)
coll

(19)

and, on the other hand, the particle number conservation yields(
Dn0

Dτ

)
syn

= − ∂

∂p

(
n0B

)
,

or, equivalently,(
D ln n0

Dτ

)
syn

= −∂B
∂p

− B
∂ ln n0

∂p
. (20)

Taking into account Equation (19), we may plug Equation
(20) into Equation (15) to account for the combined effects of
synchrotron losses and adiabatic expansion/compression of the
fluid

D ln n0

Dτ
+

(
−p

3
Θ + B

) ∂ ln n0

∂p
= −2

3
Θ − ∂B

∂p
. (21)

The formal solution of Equation (21), can be found following the
same procedure we used above for the homogeneous continuity
equation. In this case, we interpret

D ln n0

Dτ
+

(
−p

3
Θ + B

) ∂ ln n0

∂p

as the derivative of ln n0 along the curve

dτ

dσ
= 1

dp

dσ
= − p

3
Θ + B, (22)

which yields, on the one hand,

dp

dτ
= − p

3
Θ + B(p, τ ), (23)

and, on the other hand,

n0(τ (σ ), p(σ )) = n0(τ (σ0), p(σ0))

(
ρ(τ (σ ))

ρ(τ (σ0))

) 2
3

× exp

(
−

∫ σ

σ0

dσ ′ ∂B(p, τ )

∂p
(σ ′)

)
. (24)

Equation (23) shows the evolution of the particle momentum
in time, while Equation (24) is only a formal solution since the
exact dependence of p(σ ), necessary to perform the integration,
is only known through the differential Equation (22). The first
term on the right-hand side of Equation (23) accounts for
the change of momentum due to the adiabatic expansion or
compression of the fluid in which NTPs are embedded. The time
dependence of B is fixed by the hydrodynamic properties of the
thermal fluid and by the comoving magnetic field b, assumed
to be provided by hydrodynamic simulations and models of the
b-field (which is not directly simulated), respectively.

In order to speed up the numerical evaluation of Equations
(23) and (24), we assume that both, the fluid expansion and the
synchrotron losses (or, equivalently, UB), are constant within an
small interval of proper time around τ (σ0). Thus, we can write
Equation (22) as

dp

dσ
= kap − ksp

2, (25)

with ka and ks being both constants, such that the following
relations hold:

ρ(τ (σ ))

ρ(τ (σ0))
= e3kaΔσ (26)

B(p(σ ), τ (σ )) = − ksp
2, (27)

with Δσ = σ − σ0. Equation (25) has the following analytic
solution:

p(σ ) = p0
kaekaΔσ

ka + p0ks
(
ekaΔσ − 1

) , (28)

where p0 := p(σ0). Upon substitution of the relations (27) and
(28) in Equation (24) we obtain

n0(τ (σ ), p(σ )) = n0(τ (σ0), p(σ0)) ×[
ekaΔσ

(
1 + p0

ks

ka

(
ekaΔσ − 1

))]2

. (29)

This equation is approximately valid in the neighborhood of
τ (σ0) or if the fluid expansion and magnetic field energy are both
constant in a certain interval Δσ . Indeed, such an assumption
is adequate for our purposes, since the hydrodynamic evolution
is performed numerically as a succession of finite, but small,
time steps. Within each hydrodynamic time step the physical
variables inside of each numerical cell do not change much
and, thus, the magnetic field energy and the fluid expansion
are roughly constant. Alternatively, one might not assume
anything about Θ or UB and solve the system of integro-
differential Equations (22) and (24). However, such a procedure
is much more computationally demanding than obtaining the
evolution of p and n0 from, respectively, Equations (28) and
(29). Furthermore, since the magnetic field is assumed in this
work, i.e., not consistently computed, a numerical solution of
the aforementioned equations does not yield a true improvement
of the accuracy.

For completeness, as in the diffusion approximation n0 =
4πp2f (0), we can specify the evolution equation for the isotropic
part of the distribution function of the NTPs

f (0)(τ (σ ), p(σ )) = f
(0)
0

(
1 + p0

ks

ka

(
ekaΔσ − 1

))4

, (30)

where f
(0)
0 = f (0)(τ (σ0), p(σ0)).

Finally, we define the number density of NTPs within a certain
momentum interval [pa(τ (σ )), pb(τ (σ ))]

N (τ (σ ); pa, pb) :=
∫ pb(τ (σ ))

pa (τ (σ ))
dp n0(τ (σ0), p(σ0)), (31)

whose evolution equation can be easily obtained from Equations
(28) and (29) and reads

N (τ (σ ); pa, pb) = e3kaΔσN (τ (σ0); pa, pb). (32)
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Equation (32) shows that the time evolution of the number
density of NTPs in a time-evolving momentum interval, depends
only on the adiabatic changes of the NTPs in such momentum
interval, but not on the synchrotron losses (Equation (32) is
independent of ks).

3.2. Discretization in Momentum Space

In the following we normalize p to mec, which allows us
to express our results in terms of the particle Lorentz factor γ
instead of p. In order to make Equations (28) and (29) amenable
to numerical treatment, we discretize the momentum space in
Nb bins, each momentum bin i having a lower bound γi . In the
present applications we use Nb = 32 (see Appendix A.4.2). As
in, e.g., Jones et al. (1999), Miniati (2001), or Jones & Kang
(2005), we initially distribute γi logarithmically, i.e.,

γi(τ0) = γmin

(
γmax

γmin

)(i−1)/(Nb−1)

,

γmin and γmax being the minimum and maximum Lorentz factors
of the considered distribution, respectively.

On the other hand, the time dimension is also discretized in
time steps. We call τn the interval of proper time elapsed since
the beginning of our simulation, and denote Δτ = τn+1 − τn.

Our numerical method follows the time evolution of NTPs
in the momentum space employing a Lagrangian approach. We
track both the evolution of the Nb interface values n0

i (from
Equation (29), where we take τ = σ and σ0 = τ (σ0) := τn),

n0
i (τn+1) := n0(τn+1, γi(τ

n+1)) = n0(τn, γi(τ
n)) ×[

ekaΔτ

(
1 + γi(τ

n)
ks

ka

(
ekaΔτ − 1

))]2

, (33)

as well as the Nb bin integrated values

Ni(τ ) :=
∫ γi+1(τ )

γi (τ )
dγ n0(τ, γ ). (34)

The time evolution of the Nb + 1 interface values γi(τ ) is
governed by Equation (28).

For the purpose of efficiently computing the synchrotron
emissivity (see Section 4), inside of each Lorentz factor bin i, we
assume that, at any time, the number of NTPs per unit of energy
and unit of volume n0

i (τ, γ ) (γi(τ ) � γ < γi+1(τ )) follows a
power law and, therefore, the whole momentum distribution of
NTPs consists of a piecewise power law and,

n0(τ, γ ) = n0
i (τ )

(
γ

γi

)−qi (τ )

, i = 1, . . . , Nb, (35)

where n0
i (τ ) is the number of particles with γ = γi at the proper

time τ , and qi(τ ) is the power-law index of the distribution at
the i-Lorentz factor interval. The values of qi(τ ) are computed
numerically in every time step plugging Equation (35) into
Equation (34) and solving iteratively the corresponding equation
(which also involves knowing the interface values -Equation
(33) and justifies why we need to follow the evolution of two
sets of variables per bin).

The approach defined up to here has the advantage that, at
every time level τn, the momentum-space evolution and the
physical space trajectory of the NTPs are decoupled during the
corresponding time step Δτ . The hydrodynamic evolution of the

thermal plasma provides the values of ka and ks at the beginning
of the time step (τ = τn), and once these values are known, it is
possible to compute the momentum distribution of NTPs at time
τn+1. Thereby, it is possible to perform separately the trajectory
integration of the NTPs once, and to evolve NTPs in the phase
space afterward, as many times and with as many initial particle
distributions as desired (viz., during a post-processing phase).

3.3. Normalization and Initialization of the NTP Distribution

Our models are set up such that we initially inject through the
jet nozzle NTPs with a momentum distribution function which
follows a single power law, i.e., qi = q1,∀i. Therefore, the initial
number and energy density in the interval γmin � γ � γmax read

N = n0
1

q1 − 1
γmin

[
1 −

(
γmax

γmin

)1−q1
]

, (36)

U = n0
1

q1 − 2
γ 2

minmec
2

[
1 −

(
γmax

γmin

)2−q1
]

. (37)

Consistent with our assumptions about the relation between
the thermal and nonthermal populations we assume that N =
cN ρ/me and U = cU P , where cN and cU are constants, while
P and ρ stand for the pressure and rest-mass density of the
background fluid, respectively. Such proportionalities along
with Equations (36) and (37) yield (G95)

γmin = cU

cN

q1 − 2

q1 − 1

P

ρc2

1 − (γmax/γmin)1−q1

1 − (γmax/γmin)2−q1
, (38)

and we can use either Equation (36) or Equation (37) to compute
n0

1 if the ratio Cγ := γmax/γmin is fixed. Thus, the initial
distribution of particles can be determined from pressure and
rest-mass density at the jet nozzle, simply by specifying cN and
cU .

A key difference between SPEV and AM methods is that
in SPEV the dimensionless proportionality parameters cN and
cU are only specified at the jet injection nozzle. In the SPEV
method, the subsequent time evolution of the NTP momentum
distribution, namely, the spectral shape (piecewise power law)
and the limits of the distribution γmin and γmax as it evolves in
the physical space is computed according to Equation (28). AM
ignores synchrotron loses, which yields a fixed power-law index
for the whole distribution of Lorentz factors of the NTPs. The
remaining two parameters needed to specify the distribution
function, γmin and γmax are computed from the local values
of the hydrodynamic variables. On the one hand, γmin follows
from Equation (38) and γmax is obtained from the fact that, Cγ

is strictly constant in time if the evolution is adiabatic. Also,
in contrast to SPEV, it is necessary to assume a value of Cγ

everywhere in the simulated region and not only at the injection
region.

4. SYNCHROTRON RADIATION AND SYNTHETIC
RADIO MAPS

The synchrotron emissivity, at a time τ , of an ensemble of
NTPs advected by a thermal plasma element, can be cast in
the following general form (valid both for ordered and random
magnetic fields; see Mimica 2004):

j (τ, ν) =
√

3e3b⊥
4πmec2

Nb∑
i=1

∫ γi+1(τ )

γi (τ )
dγ n0(τ, γ )g

(
ν

ν⊥γ 2

)
, (39)
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where (g(x), b⊥, ν⊥) = (R(x), |b|, ν0) if b is randomly oriented,
or (g(x), b⊥, ν⊥) = (F (x), |b| sin α, ν0 sin α) in case b is
ordered. α is the angle the comoving magnetic field forms
with the line of sight, and ν0 = 3e|b|/4πmec. In the previous
expressions, F is the first synchrotron function

F (x) = x

∫ ∞

x

dξK5/3(ξ ), (40)

with K5/3 being the modified Bessel function of index 5/3, and
R is defined as

R(x) := 1

2

∫ π

0
dα sin2 α F

( x

sin α

)
. (41)

The synchrotron self-absorption process is also included
in our algorithm. Thus, we need to compute the synchrotron
absorption coefficient, at a time τ , of an ensemble of NTPs
advected by a thermal plasma element, which can be cast in the
following general form:

κ(τ, ν) =
√

3e3b⊥
8πm2

ec
2ν2

× (42)

Nb∑
i=1

∫ γi+1(τ )

γi (τ )
dγ

[
−γ 2 d

dγ

(
n0(τ, γ )

γ 2

)]
g

(
ν

ν⊥γ 2

)
.

In order to perform the integrals of Equation (39) and (42),
it is necessary to make some assumption about the internal
distribution of NTPs within each Lorentz factor bin i. As
explained in Section 3.2, we choose to assume that NTPs
distribute as power law (Equation (35)) inside of each bin.
This choice agrees with the common assumptions made in the
literature and is also supported by theoretical arguments and
observations of discrete radio sources (e.g., Pacholczyk 1970,
chapter 6; Königl 1981), and by numerical simulations (e.g.,
Achterberg et al. 2001). Furthermore, it allows us to build a very
efficient and robust method for computing the local synchrotron
emissivity and the local absorption coefficient. It consist of
tabulating the functions F (x) and R(x), and then tabulating
integrals over power-law distributions of particles. Proceeding
in this way is ∼ 100 times faster than computing Equations
(39)–(41) by direct numerical integration.

The synchrotron coefficients (Equations (39) and (42)) of
steady jet models result from the time evolution of the La-
grangian particles injected at the jet nozzle and spatially trans-
ported along the whole jet (the larger the number of Lagrangian
particles, the better coverage of the whole jet). In our simulations
around Nsteady = 32 of such Lagrangian particles (i.e., about 4
particles per numerical cell at the injection nozzle) are sufficient
to properly cover a quiescent jet. If the jet is not steady, e.g.,
because a hydrodynamic perturbation is injected, we need to
follow many more Lagrangian particles. It becomes necessary
to have particles everywhere the quiescent jet is perturbed. For
the models in this paper, this means to inject new Lagrangian
particles through the jet nozzle at all time steps after a hydro-
dynamic perturbation is set in. The distribution function of the
NTPs injected with the perturbation is the same as that of the
particles injected in the quiescent jet. This is justified since the
perturbation only changes the bulk Lorentz factor, but not the
pressure, or the density of the fluid. In the simulations where we
have injected a hydrodynamic perturbation this implies that we

must follow the evolution of more than Nsteady ×Ntimesteps � 105

Lagrangian particles. This makes our SPEV simulations effec-
tively four-dimensional (two spatial, one momentum and a huge
number of Lagrangian particles dimension). Therefore, the spa-
tial resolution that we may afford results severely limited.

The synchrotron coefficients depend on the magnetic field
strength and orientation as well as on the spectral energy
distribution n0(τ, γ ). In our models the magnetic field is
dynamically negligible, thus we set it up ad hoc. We choose
that UB remains a fixed fraction of the particle energy density
and that the field is randomly oriented.

Synthetic radio maps are build by integrating the transfer
equations for synchrotron radiation along rays parallel to the
line, accounting for the appropriate relativistic effects (time
dilation, Doppler boosting, etc.). The technical details relevant
for this procedure can be found in Appendix A.

5. RADIO EMISSION

The goals of this section are twofold. First, we validate the
new algorithm comparing the synthetic radio maps obtained
with SPEV without accounting for synchrotron losses with the
ones obtained using AM. For this purpose, we will employ the
SPEV method to evolve NTPs but taking ks = 0 in Equation
(25). We will refer to this method of evaluating the evolution
of NTPs as SPEV-NL. Second, we will show the differences
induced by accounting for synchrotron losses in the evolution
of NTPs.

5.1. Calibration of the Method

In order to properly compare SPEV-NL and AM results we
set up the same spectral parameters at the jet nozzle for both:
q1 = 2.2, γmin = 330, Cγ = 103, and ρa = 2 × 10−21 g cm−3.
We produce all our images for a canonical viewing angle of 10◦
and assuming that Rb = 0.1 pc. The comoving magnetic field
strength is bb :=

√
b2 = 0.02 G (model PM-L-NL) and 0.03 G

(model OP-L-NL).4

For the set of reference parameters we have considered, the
synthetic radio maps of the quiescent jets produced with SPEV-
NL yield very small differences with respect those computed
with AM (Figure 1). Indeed, the overall agreement between both
methods in the predicted quiescent radio maps is remarkably
good, particularly, if we consider the fact that SPEV is a
Lagrangian method while AM is Eulerian.

Looking at the synthetic radio maps of model OP-L-NL (Fig-
ure 1), we observe, as in G97, a regular pattern of knots of
high emission, associated with the increased specific internal
energy and rest-mass density of internal oblique shocks pro-
duced by the initial overpressure in this model. The intensity of
the knots decreases along the jet due to the expansion resulting
from the gradient in external pressure. Some authors (e.g., Daly
& Marscher 1988; G95; G97; Marscher et al. 2008) propose that
the VLBI cores may actually correspond to the first of such rec-
ollimation shocks. Since, for the parameters we use, the source
absorption for frequencies above 1 GHz is negligible, the jet
core reflects the ad hoc jet inlet in the PM-L-NL model, while
we shall associate it with the first recollimation shock for model
OP-L-NL. The rest of the knots are standing features in the radio
maps for which, there exists robust observational confirmation
(Gómez 2002, 2005).

4 With such values of bb the magnetic field is dynamically negligible.
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OP–L–AM

OP–L– NL

Figure 1. Top panel: synthetic (total intensity) radio map of the quiescent OP-L-NL model computed at an observational frequency of 43 GHz. Bottom panel: same as
top panel but for model OP-L-AM, and plotted using the same intensity scale. To compute the model OP-L-NL, 32 Lagrangian particles evenly distributed across the
jet nozzle have been let to evolve. Since SPEV-NL does not include the effect of synchrotron losses on the NTP evolution, the differences between both radio maps
are small. In both panels a 10◦ jet viewing angle is assumed.
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Figure 2. Left and right panels correspond to quiescent models PM-L and PM-H, respectively. The upper panels display the spectral energy evolution along the jet
axis. Thick black, red, and green lines show the evolution of γmax for initial values of Cγ equal to 10, 102 and 103, respectively. In the upper panels we overplot the
values of the Lorentz factor corresponding to the maximum emission efficiency (solid blue line). The lower and upper γ where the efficiency drops below 10% of
the maximal as a function of distance for an observational frequency of 43 GHz are displayed by dotted blue lines above and below the maximum efficiency line,
respectively. These blue lines have a positive slope since the magnetic field decreases with distance, so that ever larger Lorentz factors are needed to emit efficiently
at a given frequency. The lower panels show the synchrotron emissivity of each model. The inset in the right panel shows the logarithm of γmax as a function of the
logarithm of Z for the three models. It can be seen that for the model PM-H, γmax becomes virtually independent of its initial value at a distance larger than ≈ 1 Rb

from the jet nozzle. Please note the difference in the scales of emissivity for the lower panels.

Since the synchrotron losses affect more the higher energy
part of the distribution of NTPs than the lower one, we have also
validated our code by considering the dependence of the results
with the limit γmax and checked them against the theoretical
expectations (e.g., Pacholczyk 1970). For this we reduce the
value of γmax keeping all other parameters fixed and equal to
those of the PM-L model. Since the value of γmax is set by
the ratio Cγ , in order to study the dependence of the results
with γmax, we have computed a set of models combining three
different values of Cγ = {103, 102, 10} and bb = 0.02 G.
Additionally, to highlight the effect of the radiative losses, we
have performed the same simulations (varying Cγ ) for a larger
value of the beam magnetic field, equal to that of the model
PM-H.

For model PM-L (Figure 2, left panel), radiative losses are
negligible, and the reduction in Cγ (i.e., in γmax), does not change
appreciably the radio maps at radio observing frequencies.

Indeed, except the model with the lowest Cγ (corresponding
to γmax = 2200) beyond 160 Rb, all the models stay above the
100% efficient radiation limit along the whole jet.

The models with larger magnetic field bb = 0.2 G (Figure 2,
right panel), undergo a much faster evolution. The emissivity
along the jet axis drops very quickly and at z = 150Rb, it is five
orders of magnitude smaller than for the PM-L model. After
a very short distance (� 1 Rb), synchrotron losses bring γmax
of all three models to a common value which is independent
of the initial one (note that the variation of γmax with distance
is indistinguishable for the three models except in the zoom
displayed in the inset of the top right panel of Figure 2). The
reason for this degenerate evolution resides in the relatively large
magnetic field strength (see Pacholczyk 1970, Equation (6.20)).
Thus, our method is able to reproduce the common evolution
of models with different values of γmax and a relatively large
magnetic field.
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Figure 3. Black (red) lines correspond to models computed with the SPEV
(SPEV-NL) method. The left and right panels display properties of the PM-L
and OP-L models, respectively. Upper panels: spectral energy evolution along
the jet axis for the stationary jet models. The values shown are computed in the
jet comoving frame but the distance along the axis is measured in the laboratory
frame (attached to the jet nozzle). The parameters of the spectral distribution
of NTPs are the same as those of the reference model (Section 5). In the upper
panel the thick lines track the values of γmin (solid) and γmax (dashed) of SPEV
and SPEV-NL electron distributions as a function of the distance along the jet
axis. Note that the lines corresponding to the values of γmin for SPEV and
SPEV-NL are almost indistinguishable. The curvature in the line corresponding
to γ SPEV

max , specially in the first 30Rb, shows the effects of synchrotron cooling of
the highest-energy SPEV particles. The blue lines have the same meaning as in
Figure 2. Lower panels: synchrotron emissivity (Equation (39)) at the jet axis is
shown as a function of the distance to the jet nozzle. For the parameters chosen,
most of the electrons of both SPEV and SPEV-NL distributions emit synchrotron
radiation efficiently in the whole jet. This makes that both, SPEV-NL and SPEV
methods display a very similar emissivity dependence with distance along the
jet axis (both curves are almost coincident).

5.2. On the Relevance of Synchrotron Losses

Having verified that our method (SPEV-NL) compares ade-
quately to the AM, we now turn to the specific role that syn-
chrotron losses play in the evolution of NTPs. For that, we
compare in Figure 3 the spectral properties of NTPs in qui-
escent jet models using both SPEV-NL and SPEV methods.
It is obvious that the highest energy particles of the distribu-
tion cool down rather quickly (see the fast decay of the dashed
black curves in the upper panels of Figure 3) even for the small
value of bb considered here. Most of the spectral evolution trig-
gered by synchrotron cooling at high values of γ happens in
the first 25Rb − 50Rb. After that location, the ratio Cγ is much
smaller than at the injection nozzle (Cγ � 50), and the evo-
lution of the NTP population is dominated by the adiabatic
cooling/compression downstream the jet. In contrast, the up-
per limit of the SPEV-NL distribution (the dashed red curves
in the upper panels of Figure 3) only changes by a factor of
2 along the whole jet length. Theoretically, it is well under-
stood that it is possible to undergo a substantial spectral evo-
lution (triggered by synchrotron losses) and, simultaneously,
not to have any manifestation of such evolution at radio fre-
quencies (e.g., Pacholczyk 1970). The substantial decrease of
γmax triggered by the radiative losses does not affect much the
value of the integral that has to be performed over γ in or-
der to compute the emissivity in Equation (39), since most of
the emitted power at radio frequencies happens relatively close
to γmin, where synchrotron losses are negligible. Certainly, at
higher observing frequencies this is not the case, and the emis-
sivity substantially drops because of the fact that both, the syn-
chrotron losses (Equation (18)) and the frequency at which the
spectral maximum emission is reached depend on the square

of the nonthermal electron energy (and on the magnetic field
strength).

We define the spectral index between two radio frequencies
as

αij = log (Si/Sj )

log (νi/νj )
, (43)

where Si and Sj are the flux densities at the frequencies
νi and νj , respectively. Since we compute synthetic radio
maps at three different radio frequencies (ν1 = 15 GHz,
ν2 = 22 GHz, and ν3 = 43 GHz), we may define three
different spectral indices. For convenience, in the following,
we consider the spectral index α13 between 15 GHz and 43
GHz. Furthermore, we may compute α13 for both convolved
or unconvolved flux densities. The unconvolved flux density is
directly obtained from the simulations and has an extremely
good spatial resolution, viz. the unconvolved radio images have
a resolution comparable to that of the hydrodynamic data. The
convolved flux densities result from the convolution with a
circular Gaussian beam of the unconvolved data. The FWHM of
the Gaussian beam is proportional to the observing wavelength.
This convolution is necessary to degrade the resolution of
our models down to limits comparable with typical VLBI
observing resolution. We note that in order to compute the
spectral index for convolved flux densities, we have to employ
the same FWHM convolution kernel for the data at the two
frequencies under consideration. Thus, to compute α13 for
convolved data, we employ the same Gaussian beam with an
FWHM 6.45 Rb for both flux densities at 15 GHz and 43
GHz.

Our models are computed for an electron spectral index
q = q1 = 2.2. We verify that, at large distances to the jet
nozzle, unconvolved models (Figure 4, upper panels) tend to
reach the expected value α = (1−q)/2 = −0.6 for an optically
thin source. This asymptotic value is reached smoothly in the
case of the PM-L and PM-H models and it is modulated by the
presence of inhomogeneities (recollimation shocks) in the beam
of models OP-L and OP-H.
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Figure 4. Upper panels: left and right panels display properties (as seen by a
distant observer) of the PM-L and OP-L models, respectively, computed with
the SPEV method. The thin-solid, dashed and thick solid lines correspond to
the specific intensity at frequencies 43 GHz, 22 GHz and 15 GHz respectively.
The intensities are obtained directly from the models without convolving the
data. For clarity, all the specific intensities are normalized to a common value.
The dotted line shows the spectral index α13. Lower panels: same as the upper
panels, but for the models PM-H and OP-H.
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Close to the jet nozzle, our unconvolved models display flat
or even inverted (α13 > 0) spectra (Figure 4), in spite of the fact
that the jets are optically thin throughout their whole volume.
The occurrence of flat or inverted spectrum depends on the
magnetic field strength and differs for OP and PM models.
As shown in Figure 4, the PM-L model shows an inverted
spectrum for z � 2.5Rb, while the OP-L model displays a
pattern of alternated inverted and normal (α13 < 0) spectra for
z � 12.5Rb. The spectral inversion in the OP-L model happens
where standing features (associated to recollimation shocks in
the beam) are seen in the jet.

If synchrotron losses are not included, the spectral behavior
of models PM-L and OP-L remains unchanged, because in such
a case loses are negligible. However, if for the models PM-H
and OP-H the losses are not accounted for (which is, obviously,
a wrong assumption), the jet displays an inverted spectrum up
to distances z ∼ 30Rb.

The behavior of the spectral index exhibited by our models
close to the jet nozzle contrasts with the theoretical expectations
for an inhomogeneous, optically thin jet with a negative electron
spectral index, for which the jet inhomogeneity is predicted to
steepen the spectrum (e.g., Marscher 1980; Königl 1981). To ex-
plain this discrepancy we argue that the analytic predictions are
based on the assumption that the limits of the energy distribution
of the NTPs safely yield that the contribution of the synchrotron
functions (Equations (40) and (41)) to the synchrotron coeffi-
cients (Equations (39) and (42)) is proportional to some power
of the frequency and of the NTP’s Lorentz factor. This situation
does not happen if the lower limit of the distribution n0(γ ), γmin,
is (roughly) larger than the value γM at which the synchrotron
function R(xlow) (Equation (41)) reaches its maximum, where
xlow = νlow/ν0γ

2, and νlow is the smallest observing frequency
in the comoving frame. Since the function R(x) has a max-
imum for x � 0.28, one finds that the condition to have an
inverted spectrum is γmin � γM � 1.9 × (νlow/ν0)1/2D−1/2,
where D := 1/Γ(1 − v cos θ ) is the Doppler factor. Since, in
our case, νlow = 15 GHz, we may also write

γmin � 113
( νlow

15 GHz

)1/2
(

b

1 G

)−1/2

D−1/2. (44)

Figure 5 shows how this boundary effect substantially modi-
fies the emissivity at 15 GHz and 43 GHz for the model PM-L.
At the injection nozzle (Figure 5, upper panel) the lower limit
of the integral in Equation (39) is set by γmin and not by the
lower limit of Rν(x). However, downstream the jet (Figure 5,
lower panel) the situation reverses and the fast decay of Rν(x)
for γ < 300 sets the lower limit of the emissivity integral. Thus,
close to the nozzle, the value of the area below the n0(γ )R43(x)
curve, which is proportional to the emissivity at 43 GHz, is
larger than that below the curve n0(γ )R15(x). Hence, there is an
emissivity excess at 43 GHz compared to that at 15 GHz. As
a result, the α13 becomes positive close to the jet nozzle. Far
away from the nozzle the emissivity at 15 GHz almost doubles
that at 43 GHz, explaining why values of α13 < 0 are reached
asymptotically.

The convolved models display some traces of the behavior
shown for the uncovolved ones. For example, OP models display
a flat or inverted spectrum very close to the jet nozzle (Figure
6, right panels). This is not the case for PM-L model (Figure 6).
Since the resolution of the convolved data is much poorer than
that of the unconvolved one, α13 exhibits a quasi monotonically
decreasing profile from the jet nozzle (where −0.1 � α13 � 0).
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Figure 5. Number of particles per unit of energy and unit of volume n0(γ )
is displayed with a solid black line as a function of γ for the PM-L model.
We omit the temporal dependence of n0(τ, γ ) in Equation (35) because we
are considering quiescent jet models. The solid blue and red lines show
the synchrotron function Rν (x) (Equation (41)) at frequencies 15 GHz and
43 GHz, respectively, while the products n0(γ )R15(x) and n0(γ )R43(x) are
displayed with dashed blue and red lines, respectively. The later products are
precisely the integrand of the synchrotron emissivity (Equation (39)). The lower
panel corresponds to the typical conditions one encounters downstream the jet
(γmin ∼ 135, γmax ∼ 6×103, b ∼ 0.002 G). The upper panel corresponds to the
conditions found close to the injection nozzle (γmin = 330, γmax = 3.3 × 105,
bb ∼ 0.02 G).
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by convolving the data with a circular Gaussian beam whose radius at FWHM
are 2.25Rb , 4.40Rb and 6.45Rb at frequencies 43 GHz, 22 GHz and 15 GHz,
respectively. With this convolution we degrade the resolution of our data to
limits comparable with VLBI observations.

The coarse resolution of the convolved data also blurs any
signature in the spectral index associated to the existence of cross
shocks in the beam of OP models. Furthermore, the decay with
distance of the spectral index is shallower for the convolved flux
data than for the unconvolved one. Hence, the theoretical value
α13 = −0.6, which is expected for an optically thin synchrotron
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Figure 7. Different lines in the plot show the spectral energy distribution of
selected points along the jet axis of model PM with two different magnetic
fields. All the models have been computed using the SPEV method with the
reference parameters of Section 5. Solid lines correspond to the PM-L model and
dashed lines to the PM-S model. The distance to the nozzle (in Rb) to which each
spectrum corresponds is provided in the legend. Synchrotron self-absorption is
dominant at frequencies below few hundred MHz.

source, is reached nowhere in the jet models PM-L and OP-L
(Figure 6).

As expected, at frequencies below a few hundred MHz, the
jet is strongly self-absorbed everywhere (Figure 7). Close to
the jet nozzle, there is not a clear turnover frequency between
the self-absorbed part of the spectrum and the optically thin
one. Instead, we observe a smooth transition between both
regimes. Far from the nozzle, the self-absorption turnover is
much more peaked. It is known (Tsang & Kirk 2007) that
in contrast with a distribution of NTP that follows a power
law extending to γmin � 1, if the power law is restricted to
a relatively large, but not unrealistic γmin, or if the electron
distribution was monoenergetic, the intensity can be flat over
nearly two decades in frequency (which implies that the energy
flux grows linearly over the same frequency range). Our PM-L
models have γmin = 330 at the injection nozzle and reduce it to
γmin � 200 at z = 200Rb because of the adiabatic expansion
of the jet (Figure 3 upper left). As we have argued in Section
5 close to the jet nozzle, γmin � γM , which means that γmin is
sufficiently large to be in the range where a smooth turnover
transition is expected, in agreement with Tsang & Kirk (2007).
Far away from the nozzle, since γmin decreases, we recover the
more standard situation in which an obvious turnover frequency
can be identified.

Provided that close to the nozzle our PM (also OP) models
are weakly self-absorbed (at 15 GHz, the solid black line in
Figure 7 has not reached the power-law regime yet), one may
question whether the spectral inversion we have found is not
also the result of opacity effects. We have dismissed such a
possibility by running models with the SPEV method including
no absorption.

5.2.1. Dependence with the Magnetic Field Strength

In order to study the effect of intense synchrotron losses
we consider models PM-H and OP-H (Figures 8 and 9). Very
close to the injection nozzle (Z ∼ 50 Rb) the line denoting
the evolution of γ SPEV

max crosses the line corresponding to a 10%
synchrotron efficiency limit (lower blue thick line; Figure 9)

OP–H

OP–H–NL

Figure 8. Same as Figure 1, but in this case for the OP-H model.

and most of the synchrotron emissivity falls outside of the
observational frequency. Because of a stronger magnetic field
than in models PM-L and OP-L, more energy is lost close to
the jet nozzle than far from it and, thus, SPEV radio maps
look much shorter than SPEV-NL radio maps (Figure 8). An
alternative way to see such an effect is through the rapid decay
of γ SPEV

max in the first 10Rb in Figure 9, right panel. Afterward,
the adiabatic changes dominate the NTP evolution. The initial
period of fast evolution is even shorter if a larger magnetic field
were to be considered.

The intensity contrast between shocked and unshocked jet
regions of model OP-H (Figure 9) is larger than that of model
OP-H-NL. Indeed, the OP-H model appears as a discontinuous
jet (Figure 8) because of the slightly larger intensity increase
than in the OP-H-NL model when the NTP distribution passes
through cross-shocks and the much more pronounced intensity
decrease at rarefactions. We note that, although the adiabatic
evolution is followed with the same algorithm in SPEV and
SPEV-NL, the radiative losses change substantially the NTP
distribution that it is injected through the nozzle after very short
distances. The consequence being that the NTP distribution
n0(τ, γ ) that faces shocks and rarefactions downstream the
nozzle is rather different when using SPEV or SPEV-NL method
and, therefore, the relative intensity of shocked and unshocked
regions is also different depending on whether synchrotron
losses are included or not in the calculation.

The outlined differences between models OP-H and OP-H-
NL (with shocks in the beam), have to be interpreted with caution
since none of the methods accounts for the injection of high-
energy particles at shocks. But independent of this, we expect
that if the magnetic field is sufficiently large, the SPEV method
will yield a rather fast evolution of such particles and, thereby,
a faster decay of the intensity downstream the shock.

The most relevant difference between the upper and lower
panels of Figure 8, is the increased brightness of the jet close
to the injection nozzle and the steeper fading of the jet when
energy losses are included. This fact poses the paradox that
the method that accounts for radiative losses (SPEV) yields
brighter standing features close to the injection nozzle (far from
the nozzle the situation reverses and the SPEV-NL model is
brighter than SPEV one). In order to disentangle this apparent
contradiction, we shall consider that the plasma is compressed
at standing shocks, which yields a growth of the magnetic field
energy density (proportional to the pressure in our case), and
triggers a faster cooling of the high-energy particles. Since the
SPEV method conserves the number density of NTPs (Equation
(36)), due to the synchrotron losses, high-energy particles reduce
their energy and accumulate into an interval of Lorentz factor
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Figure 9. Same as Figure 3 but for the PM-H and OP-H models. In this case, the synchrotron losses in SPEV are so important that, γ SPEV
max leaves the efficient

synchrotron radiation regime. The point where this happens depends on the model. The crossing of the γ SPEV
max with the line denoting a 10% synchrotron efficiency

limit occurs when the particles reach z ∼ 50Rb for model PM-H and much earlier z ∼ 24Rb in the case of model OP-H. After this line crossings the whole distribution
radiates very little at the considered observational frequency. This produces a substantial dimming of SPEV models at large z. The difference in the emissivity as a
function of the distance z is larger for the PM-H model than for the OP-H model because of the re-compressions that the SPEV-NTP experiences at shocks.

which is smaller than in the case of SPEV-NL models. As in such
reduced Lorentz factor interval NTPs radiate more efficiently at
the considered radio frequencies, the emissivity of SPEV models
at strong compressions (like, e.g., the considered cross shocks)
becomes larger than that corresponding to models which do
not include synchrotron losses. It is important to note that this
situation happens in our models rather close to the jet nozzle.
The reason being that after the NTPs have suffered a substantial
synchrotron cooling, the evolution of the NTP distribution is
dominated by the adiabatic terms of Equation (25). In such
a regime, reached by our models at a certain distance from
the jet nozzle, the evolution of SPEV-NL and SPEV models
is qualitatively similar. Considering the different qualitative
evolution of the NTP distribution close to the nozzle and far from
it, we refer to such epochs as losses-dominated and adiabatic
regimes, respectively. These terms agree with the commonly
used in the literature to refer to similar phenomenologies (e.g.,
Marscher & Gear 1985).

For PM-H and OP-H models, the spectral behavior is dom-
inated by the change of slope of the NTP Lorentz factor dis-
tribution beyond the synchrotron cooling break at γ = γbr.
Theoretically, an optically thin inhomogeneous jet shall display
a spectral index α = (q + 1)/2, if the radiation in the observa-
tional band is dominated by the electrons with Lorentz factors
γ � γbr, or α � −2.7 if the emission is dominated by electrons
with Lorentz factors close to γmax (Königl 1981).5 Figure 4
(lower panels) shows that asymptotically (viz., at large z) un-
convolved models reach values α13 � −2.5, implying that the
highest energy electrons with γ ∼ γmax are the most efficiently
radiating at the considered observing frequencies. The value
of γmax differs significantly when synchrotron loses are not in-
cluded. This fact explains the inversion of the spectrum along
the whole jet if synchrotron losses were not included (PM-H-
NL and OP-H-NL models). Thereby, synchrotron losses tend to

5 We obtain this value from the expression αs3 = (m + 2 − n)/m of Königl
(1981) with m = 1.15 and n = 0. The values of m and n are computed from
the decay with the distance to the jet nozzle of the magnetic field strength
|b| ∝ z−m and of the number density of NTPs per unit of energy n0 ∝ z−n,
respectively.

produce a “normal” spectrum (αij < 0) if the magnetic field is
large.

Regarding the convolved data, we note that models with a
higher magnetic field display the same qualitative phenomenol-
ogy discussed in Section 5. In this case, the theoretical value
α � −2.7 is not reached neither by the PM-H (αPM−H

13,min = −1.4)
nor by the OP-H (αOP−H

13,min = −1.1) model (Figure 6, lower pan-
els).

6. INFRARED TO X-RAYS EMISSION

We have computed the spectral properties of some of our
quiescent jet models above radio frequencies. We note that
we have not included any particle acceleration process at
shocks in the SPEV method; thus, the spectrum beyond infrared
frequencies has to be taken carefully. If any shock acceleration
mechanism were included, a larger contribution of the shocked
regions will be present. In addition, the inverse Compton process
may shape the emission at such high energies, and such a cooling
process is presently not included in SPEV.

The results for models PM-S and PM-L (Table 1), which
have no or extremely weak shocks are displayed in Figure
7, where we show the spectral energy distribution at selected
distances from the nozzle for points located along the jet axis.
The small magnetic field of model PM-S (Figure 7 dashed lines)
minimizes the energy losses, but also the observed flux in the
optical or X-ray band, rendering observable at such wavelengths
the hydrodynamic jet models considered here (if the jet is
sufficiently close). In the case of model PM-L, right at the nozzle
(z = 0 in Figure 7), the energy flux cut-off is located at � 1018

Hz. This means that, we could observe the jet core in the soft
X-ray band, if the source was sufficiently close. However, the
core size at such frequencies is very small (as it is expected;
see e.g., Marscher & Gear 1985). This is reproduced in our
models since at such a short distance as z = 5Rb, the jet can
barely be observed in the near ultraviolet or, perhaps in the
optical band (Figure 7, red solid line), but there is virtually no
flux in the X-ray band because of the fast NTP cooling for the
considered magnetic field energy density at the jet nozzle. In
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PM–H @ 43GHz OP–H @ 43GHz

Figure 10. Snapshots of the emission at 43 GHz due to component evolution computed with the SPEV method, for the PM-H (left) and OP-H (right) models. From
top to bottom panels show the observed emission 0.02, 0.39, 0.75, 1.12, 1.94, and 4.58 years after the component appears. The same gray scale has been used for all
snapshots. The superimposed contours have been obtained by convolving the image with a circular Gaussian beam whose radius at FWHM is 2.25Rb . The contour
levels are 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, and 0.9 of the maximum of the convolved emission. The horizontal length scale is expressed in units of
Rb = 0.1 pc, while the vertical length scale has been compressed and spans only 10Rb. The main component has moved out of the right boundary in the lower two
panels.

the near infrared range, the jet could perhaps be observable up
to distances of 10Rb–15Rb. A larger magnetic field drives a
faster cooling, rendering undetectable the jet even at infrared
frequencies. This phenomenology has been invoked to explain
the relative paucity of optical jets with respect to radio jets.
However, there are a number of authors who claim that a large
proportion of jets generate significant levels of both optical and,
even, X-ray emission (e.g., Perlman et al. 2006). Our results shall
not be taken in support of any of the two thesis since energy
losses depend also on the magnetic field strength (Equation
(18)), which we fix ad hoc.

7. EVOLUTION OF A SUPERLUMINAL COMPONENT

In this section, we discuss the time-dependent observed
emission once a hydrodynamic perturbation is injected into the
jet (see Section 2.1). Following the convention of G97, we call
components to local increases of the specific intensity in a radio
map, while we use perturbation to denominate the variation of
the hydrodynamic conditions injected through the jet nozzle.
In order to magnify the effect of synchrotron losses in our
models, we discuss models PM-H and OP-H in Section 7.1,
and we also look for the differences between the PM and OP
models.6 While the standing shocks of the beam of model OP-
H are very weak, the shocks developed by the hydrodynamic
perturbation are rather strong. Since we have not included in
our method the acceleration of NTPs at relativistic shocks,
computing the synchrotron emission at frequencies above radio
may yield inconsistent results. Therefore, we only analyze the
spectral properties of the emission in radio bands. Finally, we
show spacetime plots of hydrodynamic and emission properties
along the jet axis in Section 7.2.

6 In the online material we provide a movie (”PMOP-fiduc.mpg”) where the
evolution of the total intensity at 43 GHz is displayed for models PM-L and
OP-L.

7.1. On the Relevance of Synchrotron Losses

The magnetic field energy density is set ad hoc in our models
(Section 4), and we can change it freely if the resulting magnetic
field does not become dynamically relevant. For the sake of a
better illustration of the effect of the synchrotron losses on the
morphologies displayed in the radio maps, we have computed
models PM-H and OP-H (Figure 10), and PM-H-NL and OP-
H-NL (Figure 11). A noticeable general characteristic of SPEV-
NL models is that all the features identifiable in the radio
maps are more elongated (along the jet axial direction) than
in the case where synchrotron losses are included. The reason is
that without synchrotron losses, the beam of the jet is brighter
at longer distances. Thus, in the unconvolved data, the parts
located downstream the jet weight more in the convolution beam
than in the case where synchrotron losses are included, biasing
the isocontours of flux density along the axial, downstream
jet direction. For the same reason, the models which include
synchrotron losses display a more knotty morphology than those
which do not include them, both in the unconvolved and in the
convolved data. This feature is more important in the case of
OP-H and OP-H-NL models (cf., e.g., panels 2, 3, and 6 from top
of Figures 10 and 11) than in the case of PM-H and PM-H-NL
models.

The main component undergoes losses-dominated (first) and
adiabatic (later) regimes as quiescent jet models do. In the
losses-dominated regime (upper two panels of Figure 10), SPEV
models exhibit a brighter component than SPEV-NL models.
Later, in the adiabatic regime, SPEV models display a dimmer
component than SPEV-NL ones. As we argued in Section 5.2.1,
the conservation of the NTPs number density explains this
phenomenology.

The main component clearly splits into two parts when
synchrotron losses are included in model OP-H (Figure 10
panels 2 and 3 from top; see also the movie “PMOP-highB.mpg”
in the online material). The component splitting is not so
apparent in model OP-H-NL, although it also takes place
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PM–H–NL @ 43GHz OP–H–NL @ 43GHz

Figure 11. Same as Figure 10, but without including synchrotron losses (SPEV-NL method).

PM–H @ 15 GHz PM–H @ 22 GHz

Figure 12. Same as Figure 10, but only showing the PM-H model observed at 15 GHz (left) and 22 GHz (right). The images at each frequency use an intensity gray
scale separately normalized to the maximum at the corresponding frequency. The vertical scale spans 20Rb, i.e., there is a factor of two difference between the vertical
scales shown in Figure 10 and in this figure. Since the FWHM of the convolution beam depends linearly on the wavelength of observation, at 15 GHz and 22 GHz the
FWHM are 6.45Rb and 4.40Rb , respectively.

farther away from the nozzle than in the model including losses
(Figure 11, third panel from top). The splitting of the main
component happens during the losses-dominated regime and
the rear part of the component is brighter than the forward
one if losses are included, otherwise, the forward part of the
component is brighter than the rear one. However, the fact that
the component is seen as a double peaked structure is not the
direct result of the splitting of the hydrodynamic perturbation
in two parts (Section 2.1), because the projected separation of
these two hydrodynamic features is smaller than the convolution
beam, even at 43 GHz. Instead, this results from the interaction
of the hydrodynamic perturbation with the cross shocks in
the beam of model OP. Because of the small viewing angle,
the increased emission triggered in the component when it
crosses over a recollimation shock is seen by the observer

to arrive simultaneously with the radiation emitted when the
hydrodynamic perturbation was crossing over the preceding
(upstream) cross shock.

Figure 12 shows the evolution of the component at 15 GHz
(left panels) and 22 GHz (right panels) for the PM-H model.
The convolution beam depends linearly on the wavelength of
observation; thereby, it is larger at smaller frequencies. Except
for the obvious disparity of resolutions the evolution of the
main component along the pressure matched jet at 15 GHz,
22 GHz and 43 GHz does not display large differences. The
main component appears as a moving bright spot at all three
frequencies (the upper three panels of Figure 10 left and
Figure 12).

We have also checked that the profile outlined above does
not depend on including synchrotron losses either. However,



1156 MIMICA ET AL. Vol. 696

-1

-0.5
0

0.5
1

-1

-0.5
0

0.5
1

0 10 20
zobs [Rb]

-1

-0.5
0

0.5
1

0 10 20
zobs [Rb]

(a)

(b)

(c) (f)

(e)

(d)

Figure 13. In each panel lines correspond to the differences in intensity
or spectral index between model PM-H with and without a hydrodynamic
perturbation. Each panel corresponds to a different observer’s time (the times
are the same as in Figures 10 and 12). The thick-solid, dashed-dotted and dashed
lines represent the normalized difference (Ip(Z)−I (Z))/ max

Z
|Ip(Z)−I (Z)|,

at 15 GHz, 22 GHz and 43 GHz, respectively. I (Z) and Ip(Z) are the intensities
averaged over cross-sections of the jet at each distance Z from the injection
nozzle for the quiescent and perturbed models, respectively. The maximum in
the denominator extends for all Z along the jet axis. The thin solid line shows the
difference in the spectral index between the PM-H model with the hydrodynamic
perturbation and the corresponding quiescent model. Precisely, the line shows
the function 5 × (α13(Z) − α

p

13(Z))/ max
Z

|α13(Z)|, where α
p

13(Z) and α13(Z)
correspond to the cross-sectional average of the spectral index (Equation (43))
of the jet with the injected hydrodynamic perturbation and to the quiescent jet,
respectively.
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Figure 14. Same as Figure 13 but for the model PM-L.

the smaller the magnetic field, the larger the increase in the
spectral index behind the intensity maxima associated to the
main component (i.e., associated with the rarefaction trailing
the main hydrodynamic perturbation). The time evolution of
the prototype spectral profile of a hydrodynamic perturbation
injected at the nozzle is characterized by a substantial steepening
of the spectrum behind the intensity maxima (Figures 13(c) and
14(c), (d)) compared to the quiescent jet model. This behavior
of the spectral index has also been found in previous theoretical
papers, and it is attributed to the fact that the NTP distribution
evolves on timescales smaller than the light crossing time of the
source (e.g., Chiaberge & Ghisellini 1999).
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Figure 15. Same as Figure 13 but for the model OP-L.

Comparing Figures 13(e) and 14(e), it is remarkable that
trailing components pop up precisely to the left (i.e., behind)
of the local relative spectral index minimum (at Z ∼ 18Rb

in Figure 14(e) and Z ∼ 20Rb in Figure 13(e)) that follows
the local relative maximum of the spectral index reached in
the wake of the main perturbation. Furthermore, we notice
that the intensity relative to the background jet of the trailing
components identifiable at 43 GHz, depends on the strength of
the initial magnetic field, in spite of the fact that in our models the
magnetic field is dynamically negligible.7 At higher magnetic
field strength the intensity of the trailing components is lowered
and, some of them are hardly visible (e.g., the leading trailing at
∼ 25Rb is evident in Figure 14(f), while it is difficult to identify
in Figure 13(f)). Thereby, the observational imprint of trailing
components is frequency dependent.

The evolution of the perturbation in model OP-L displays a
slightly different profile at 43 GHz than in model PM-L. The
main component splits into two sub-components at the highest
observing frequency (Figure 15(b)). At 15 GHz and 22 GHz,
the profile of the perturbation is qualitatively the same as for
the PM-L model. The spectral index displays a behavior very
similar to that of the PM-L model. However, the evolution after
the passage of the main component in model OP-L (Figures
15(d)–(f)) is different from that of model PM-L. The number of
bright spots popping up in the wake of the main perturbation is
smaller and they are brighter (in relation to the quiescent jet) in
the OP-L model than in the PM-L one. Identifying these features
as trailing components (Section 7.2), we realize that they do not
only appear at 43 GHz, but also at 22 GHz, and one may guess
them even at 15 GHz.

7.2. Spacetime Analysis

In order to relate the hydrodynamic evolution with the features
observed in the synthetic radio maps, we have built up several
spacetime diagrams of the evolution of the component as seen
by a distant observer. In Figure 16 we plot the difference
in intensity, averaged over the beam cross-section, between
the perturbed and quiescent models. This difference accounts

7 According to Mimica et al. (2007), the boundary separating magnetic fields
dynamically relevant from those in which the magnetic field is dynamically
negligible is around Ub � 0.03P . In our case, even for the model with the
largest comoving magnetic field, we have Ub = 0.01P .
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Figure 16. Spacetime plot of the difference in the intensity at 43 GHz, averaged over the beam cross-section, between the perturbed and quiescent SPEV emission for
PM-L and OP-L (upper left and lower left panels, respectively) and PM-H and OP-H (upper right and lower right panels, respectively) unconvolved models. The slope
of the dashed line corresponds to an apparent velocity equal to the speed of light. The solid black dots correspond to the worldlines of a number of bright features
observed in the convolved 43 GHz-radio images resulting from the difference between the hydrodynamic models with and without an injected perturbation. Among
these features, there are trailing components (particularly in the PM models) and also standing recollimation shocks (characteristic of the OP models). The peaks in
the color plot (yellow-white shades) do not always match the distribution of black dots due to the difference in the resolution of the convolved and unconvolved data.
The color scale is linear and common for each column of panels. It displays the difference of averaged intensities in arbitrary units.

for the net effects that the passage of the hydrodynamic
perturbation triggers on the quiescent jet. The trajectory of the
main component is seen as a bright (yellow) region close to
the top of each plot. Its superluminal motion is apparent when
the slope of the trajectory is compared to that of the dashed
line, which denotes the slope corresponding to the speed of
light. Below the main component, the dark (blue) region is
associated to the reduced intensity that the rarefaction trailing
the hydrodynamic perturbation leaves.

As in G97, while in models PM-L and PM-H the main
component and the reduced intensity region trailing it are
continuous in the spacetime diagrams (Figure 16, upper panels),
in OP-L and OP-H models they flash intermittently as they cross
over standing cross shocks of the beam (larger intensity; Figure
16, lower left panel) and then expand in the rarefactions that
follow such standing shocks (smaller intensity). The interaction
of the perturbation with the standing shocks of the quiescent OP
model results in a displacement of the position of the shocks
also noticed in G97. The temporarily dragging of standing
components, is clearly visible in the lower left panel of Figure
16. The second (from the left) of the well identified bright
spots, oscillates with an amplitude of ∼ 1.4Rb in ∼ 10 months.
The trend being to increase both the oscillation period and the
amplitude with the distance to the jet nozzle.

Besides the main component, we observe several trailing
components (Agudo et al. 2001), identified in Figure 16 by
“threads” with an intensity larger than in the quiescent model,
which emerge from the wake of the main component. In Figure
16 we also overplot (black dots) the worldlines of a number of
bright features observed in the convolved 43 GHz-radio images
resulting from the difference between the hydrodynamic mod-
els with and without an injected perturbation. These worldlines
show only those local intensity maxima which could be unam-
biguously tracked in convolved radio maps. Except for the bright
features closer to the jet nozzle, the worldlines match fairly well
the unconvolved trails of high intensity. The latest three trailing
components of Figure 16 (upper left panel) do actually recede8

in the convolved 43 GHz maps as much as 0.5Rb for 1 to 4

8 Trailing components are pattern motions in the jet beam.

moths, soon after they are identified (i.e., at an apparent speed
∼ 0.5c–0.9c).

As in the case of PM models, in the wake of the main
component of model OP a number of bright spots seem to
emerge with increasingly larger apparent velocities as they
pop up far away from the jet nozzle. However, looking at the
locations from where these components seem to emerge, we
notice that they are in clear association with the locus of the
standing shocks of the OP models. Such an association is even
more evident when we look at the worldlines of the brighter
features trailing the main component as they are localized in the
43 GHz radio maps. The physical origin of these trailing features
differs from that of the trailing components seen in PM models.
There trailing components are local increments of the pressure
and of the rest-mass density of the flow produced by the linear
growth of KH modes in the beam, generated by the passage of
the main hydrodynamic perturbation. In the beam of OP models,
intrinsically nonlinear standing shocks are present. Nonetheless,
the interaction of a nonlinear hydrodynamic perturbation with
nonlinear cross shocks yields an observational trace which
resembles much that of a trailing component. Thereby we keep
calling such features trailing components, following Agudo
et al. (2001).

If the jet is not pressure matched, all the KH modes excited
in the beam are blended with standing knots. Indeed, we realize
that close to the jet nozzle, the locus of the first two bright spots
is almost standing and, at larger distances, the subsequent knots
show a clear increment of its pattern speed. The fist two trailing
components are, actually, the traces of standing shocks which are
dragged along with the main perturbation and oscillate around
their equilibrium positions. The remaining trailing components
move much faster and they can probably be due to the pattern
motion of KH modes in the OP beam.

Comparing the traces left by the passage of the main hydro-
dynamic perturbation in the PM and OP models (Figure 16),
it turns out that the signatures of such perturbation are much
cleaner and numerous in PM than in OP models. The number
of trailing components is smaller in OP than in PM models, and
their worldlines are more oscillatory than in the latter case. For a
lager magnetic field (models PM-H and OP-H; Figure 16, right
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Figure 17. Worldlines of a number o bright features observed in the unconvolved
radio images resulting from the difference between the hydrodynamic models
with and without an injected perturbation (as in Figure 16). Squares, triangles,
and crosses correspond to the radio frequencies 43 GHz, 22 GHz, and 15
GHz, respectively. The size of the symbols is proportional to the wavelength
of the data they display. Shown are PM-L and OP-L (upper left and lower left
panels, respectively) and PM-H and OP-H (upper right and lower right panels,
respectively) models. The slope of the dashed line corresponds to the an apparent
velocity equal to the speed of light.

panels) NTPs cool faster and radiate more energy, and thus, one
can basically see only features happening close to the jet nozzle.

The unconvolved data for both PM and OP models, and
independently of the magnetic field strength, are compatible
with not having any time lag between the high and low
frequency radiation emitted by the main component, i.e., the
radiation at all three frequencies is cospatial (Figure 17).
However, the convolved data display a number of positive and
negative time lags which result from the difference in the size
of the convolution beam at every frequency. In the case of
the PM models, there is a trend of the 43 GHz maximum
emission to lie behind the corresponding maxima at 22 GHz
and 15 GHz (Figure 18 upper panels). Thereby, the low energy
radiation from the main component is seen first, and later an
observer detects radiation at higher frequencies. Nevertheless,
considering that the resolution of the convolved data is worse
at smaller frequencies, the emission from the component is
consistent with having no time-lags between low and high
frequency emission. This trend is independent of the magnetic
field strength, but it is more obvious for the model PM-H model
(note the large separation between the different symbols beyond
Zobs ∼ 15Rb in the Figure 18, upper right panel). Therefore, any
positive or negative time lag of radiation at different frequencies
measured from convolved data has to be taken with care.

For OP-L models, positive and negative time lags between
the high and low energy radiation are observed along the z-axis
(Figure 18, lower left panel). Such time lags are smaller than
for the PM-H model and, indeed, the data are compatible with
no-time lags at all. For OP-H, in most cases, the high-frequency
emission dots lie in front of the lower frequency ones (Figure
18, lower right panel). But still, considering the difference in
linear resolution for the location of the maxima, the radiation at
different frequencies is almost cospatial.

Trailing components can only be tracked at 43 GHz close
to the jet nozzle. Only after a certain distance, it is possible
to see them at 22 GHz and even at 15 GHz (see the last two
trailing worldlines in each panel of Figure 18). The worldlines
of trailing components at 22 GHz and, particularly, at 15

Figure 18. Same as Figure 17 but using convolved data at every frequency.
The location of local maxima trailing the main perturbation in the beam
of PM models is difficult at 15 GHz and 22 GHz because of the large
convolution beam at these two frequencies. The low observing resolution at
such frequencies drives spurious detections of local maxima in the radio maps
(trailing components), which explain the anomalous data at 15 GHz and 22 GHz
in the range (tobs, zobs) = (2 yr–3.7 yr, 10Rb–20Rb) in the PM model (upper
panels). The OP models do not display such obvious anomalies because the high
intensity threads that trail the main perturbation are associated with preexisting
recollimation shocks in the beam, whose emissivity, relative to the background
jet, is much larger than that corresponding to the trailing components in the PM
models.

GHz, undergo substantial velocity changes. During some time
intervals the convolved data show receding trailing components
at such frequencies. In the OP models, there are no clear
trends, independent of the magnetic field strength, since it
is very difficult to locate any local maxima at 15 GHz, and
the 22 GHz data lie almost on top of the 43 GHz points.
We note that there is a mismatch between the data points
at different frequencies in the OP-H model at the first two
recollimation shocks (vertical threads at zobs ∼ 4Rb and 7Rb). It
is produced because there is a rather small relative difference in
the emissivity of the perturbed and the quiescent jet models at
43 GHz until zobs � 10Rb. In such conditions, the algorithm to
detect local maxima in the spacetime diagrams yields oscillatory
results. A large mismatch between the worldlines of the peak
intensity of trailing components at different frequencies also
happens in other trailing features (e.g., the fourth and fifth
threads in Figure 18, lower right panel). This mismatch does
not exist in the corresponding unconvolved data (Figure 17)
and, hence, we conclude it is an artifact of the finite size of the
convolution beam at the observing frequencies.

8. DISCUSSION AND CONCLUSIONS

We have presented a new method (SPEV) to compute the
evolution of NTPs coupled to relativistic plasmas under the
assumption that these NTPs do not diffuse across the underlying
hydrodynamic fluid. NTPs change their energy because of the
variable hydrodynamic conditions in the flow and because of
their synchrotron losses in an assumed background magnetic
field. The inclusion of synchrotron losses and a transport
algorithm for NTPs are major steps forward with respect to
previous approaches we have followed. The new method has
been validated with another preexisting algorithm suited for
the same purpose, but without including synchrotron losses
and transport of NTPs (AM algorithm). The validation process
shows that the SPEV method reproduces the same qualitative
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phenomenology as outlined in the previous works of our group
(G95, G97). The power of the new method in its whole
blossom shows up when synchrotron cooling dominates the
NTP evolution.

Quiescent jet models. When synchrotron losses are consid-
ered, the resulting phenomenology can be split into two regimes:
losses-dominated and adiabatic regime (following the conven-
tion of Marscher & Gear 1985). In the losses-dominated regime,
the knots displayed in the radio maps, which are close to the
jet nozzle, are brighter than in models which do not include
synchrotron cooling at the considered frequencies. Indeed, qui-
escent jet models including radiative losses are more knotty than
those models which do not include them. These features result
from the conservation of the number density of NTPs. Since the
same number of particles per unit of volume that initially extends
from γmin(t = 0) to a certain upper limit γmax(t = 0) is confined
into a narrower Lorentz factor interval, wherein more NTPs are
efficiently emitting in the considered observational radio bands.
In the adiabatic regime (reached relatively far away from the
jet nozzle), the spectral changes, which the NTP population ex-
periences as it is advected downstream the jet, of models with
and without losses are qualitatively similar, since most of the
high-energy NTPs (which evolve faster) have cooled down to
energies where losses are negligible. The beam of the jet in the
adiabatic regime is dimmer at radio frequencies than in models
where synchrotron losses are not included. Our method lacks a
suitable scheme to account for diffusive shock acceleration of
NTPs. However, all shocks existing in the quiescent jet models
are rather weak and, for practical purposes, they can be consid-
ered as compressions in the flow, where an enhanced emission
is obtained due to the local increase of density and of pressure.

One of the main results of this work is that for the same
background hydrodynamic jet model, dynamically negligible
magnetic fields of different strengths yield substantially dif-
ferent observed morphologies. This introduces a new source
of degeneracy (in addition to relativistic effects, such as, time
delay, aberration, etc.) when inferring physical parameters out
of observations of radio jets. For example, the difference in
the observational properties of models OP-L and OP-H (Sec-
tion 5.2) shows that increasing the magnetic field strength by
a factor of 10 triggers a much faster cooling of the NTPs, re-
sulting in a much shorter losses-dominated regime and shorter
jets, despite magnetic field remaining dynamically unimportant.
Furthermore, jet models with such a large magnetic field display
a larger flux density contrast between shocked and unshocked
jet regions. The reason being that after the losses-dominated
regime, γmax is reduced so much that most of the NTP popula-
tion is inefficiently radiating at the considered radio wavelengths
and, only when the nonthermal electrons are compressed at cross
shocks of the beam, they partly reenter into the efficiently radi-
ating regime at the considered frequencies.

Spectral inversion. In this paper, we suggest that an inverted
spectrum may also result if the lower limit of the NTP distribu-
tion γmin is larger than the value of γM for which the synchrotron
function R(x) reaches its maximum (Equation (44)), in agree-
ment with the theoretical predictions of Tsang & Kirk (2007).
Evidences for flat, optically thin radio spectra in several AGNs
have been shown by, e.g., Hughes et al. (1989b), Melrose (1996),
and Wang et al. (1997). These authors consider different kinds
of Fermi-like acceleration schemes to be responsible for the
hardness of the electron energy spectra. Stawarz & Petrosian
(2008) show that stochastic interactions of radiating ultrarela-
tivistic electrons with turbulence characterized by a power-law

spectrum naturally result in a very hard (actually inverted) elec-
tron energy distribution which yields a synchrotron emissivity
at low frequencies with an spectral index � 1/3. Alternatively,
Birk et al. (2001) argue that optically thin synchrotron emission
due to hard electron spectra produced in magnetic reconnection
regions may explain the origin of flat or even inverted spectrum
radio sources. In contrast to our findings, these authors explain
the spectral inversion in some sources as a result of a flatter elec-
tron energy distribution. Observationally, it could be possible to
discriminate between both possibilities by looking at the high-
energy spectrum of the source. If there are external seed photons
(e.g., from the AGN), which were Compton up-scattered by the
nonthermal electrons of the jet, the spectral index at high ener-
gies could discriminate between the alternative explanations for
the optically thin inverted spectra at radio frequencies.

Since γmin is fixed in our model through Equation (38) and it
is not derived from first principles, one may question whether
the value we obtain for γmin could be too large and, therefore,
the spectral inversion we are explaining on the basis of taking
γmin � γM is unlikely to happen in nature. This would be the
case if the jet was composed of an electron–positron plasma, in
which case γmin � 1 (e.g., Marscher et al. 2007). For plasmas
made out of electrons and protons, Wardle (1977) obtained that
for synchrotron sources with a brightness temperature � 1012

K and q = 2, γmin � 161 in order to account for the low
degree of depolarization in parsec-scale emission regions. More
recently, Blundell et al. (2006) inferred γmin ∼ 104 at the hot-
spots of 6C 0905+3955 (see also Tsang & Kirk 2007, and
references therein). Thus, the exact value of γmin is probably
source dependent, and our minimum Lorentz factor threshold
(γmin � 330) can be well accounted by present-day theory and
observations if the jet is not a pure electron–positron plasma.

Radio components. We have applied the SPEV method to
calculate the spectral evolution of superluminal components in
relativistic, parsec-scale jets. These components are set up as
hydrodynamic perturbations at the jet nozzle. For a small value
of the magnetic field (the same as in G97), synchrotron losses
are negligible and we recover the phenomenology shown by
G97 and Agudo et al. (2001).

The main component is characterized by a hardening of the
spectrum. Pressure matched models yield a generic spectral
profile of the component, which is rather independent of
synchrotron losses. The hydrodynamic perturbation looks in the
radio maps like a burst at every radio frequency and, just behind
it, there is a decrease of the flux density. The shape of the burst
is asymmetric in the axial jet direction, being brighter upstream
than downstream. The shape of the burst is also frequency
dependent because the convolution beam grows linearly with
the observing wavelength (at lower frequencies the component
is more symmetric in the axial jet direction). This triggers a
decrease of the spectral index in the forward region of the main
component until it reaches a minimum (which precedes the
intensity maxima at the highest observing frequency).

When radiative losses are important, a number of differences
can be observed:

1. Main component splitting in OP-H model: the main com-
ponent splits in the radio maps much more clearly than
in OP-L model (Section 7.1), and the splitting takes place
farther away from the nozzle in the latter than in the for-
mer case. The rear part of the component is brighter than
the forward one if losses are included. The spectral index
profile is unaffected by the apparent splitting of the com-
ponent. We conclude that the apparent splitting of the main
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component is an artifact of the sampling of the results in
the observer frame. It is necessary to perform a finer time
sampling of the radio jet than the ∼ 3.5 months we have
considered in the radio maps, in which case the main com-
ponent exhibits an intermittent variation of its flux density
(see on line material). If observations do not have the suf-
ficient time resolution, there is another hint that can help
to disentangle whether the splitting is apparent or real. In
a true splitting of the component, each part may show a
different spectral aging due to their different hydrodynamic
evolutions.

2. Radio features: main and trailing components display a less
elongated aspect in radio maps. The reason is that without
losses the beam itself is brighter at longer distances. Thus,
in the unconvolved data, the parts located downstream
the jet weight more in the convolution beam than in
the case where synchrotron losses are included. For the
same reason, models which include synchrotron losses
display a more knotty morphology. In the losses-dominated
regime, SPEV models exhibit a brighter main superluminal
component than SPEV-NL models. This behavior reverses
in the adiabatic regime. Also, the ratio between the peak
specific intensity of a trailing component to the specific
intensity of the region of the beam immediately behind it
is larger than if losses are not included. The conservation
of the NTPs number density explains this phenomenology
(Section 5.2.1).

3. Spectral properties: behind the main component, the spec-
tral index returns almost monotonically to its unperturbed
value. In contrast, when losses are negligible, there is a
softening of the spectrum, just behind the main component
(where the spectral index reaches a maximum).

Time lags. In this paper, we explicitly show that the convolved
data have to be interpreted carefully. During most of the time
the main component is observable, the radiation emitted by the
component at low energy (15 GHz) arrives to the observer be-
fore that at high energy (43 GHz). Indeed, for models PM-H
and OP-H, a substantial mismatch between the worldlines of
the peak intensity of trailing components at different frequen-
cies is possible. This mismatch is an artifact due to the finite size
of the convolution beam at the observing wavelengths. In con-
trast, the unconvolved data are consistent with a simultaneous
emission of radiation at the three frequencies under considera-
tion. This behavior matches our expectations, since the interval
of observing wavelengths is too narrow to display a substan-
tial frequency-dependent separation of the regions of maximum
emission.

On the nature of trailing components. The journey of the
main component downstream the jet generates a number of
frequency-dependent bright spots which pop up in its wake.
They differentiate themselves from the main component be-
cause (1) they do not emerge from the jet core, (2) they possess
substantially smaller (sometimes subluminal or even, receding)
speeds (Agudo et al. 2001) and, as we demonstrate here, (3)
they do not exhibit an obvious change in the spectral index with
respect to the quiescent jet model, but (4) their observational
imprint is frequency-dependent (they are clearly visible at the
highest radio-observing frequencies, but at 22 GHz and, partic-
ularly, at 15 GHz they are wiped out by the large convolution
beams at this wavelengths). In pressure matched jet models,
trailing components result from the linear growth of KH modes
in the beam, after the passage of the main hydrodynamic per-
turbation (Agudo et al. 2001). Here, we also consider overpres-

sured jet models, where the situation is qualitatively different
from pressure matched ones, since the beam of such models
develops standing shocks (nonlinear structures). Nonetheless,
the interaction of a nonlinear hydrodynamic perturbation with
nonlinear cross shocks yields an observational trace which re-
sembles that of a trailing component. Therefore, sticking to the
definition of Agudo et al. (2001), we also call trailing com-
ponents to the bright spots following the main component in
overpressured models, although the dynamical origin of such
components differs. In this sense, every bright spot that results
from the interaction between a strong hydrodynamic pertur-
bation with a relativistic beam, which moves slower than the
main component and is not ejected from the jet core shall be
considered as a trailing component. We shall add an obvious
cautionary note: striving for the knowledge of the jet param-
eters, on the basis of a fit of the intensity variations behind a
main perturbation to a number or KH modes, requires that the
jet is pressure matched (if the jet is not pressure matched, all the
KH modes excited in the beam are blended with standing knots
and the predicted jet parameters might be inaccurate). Further-
more, it is necessary that the linear resolution of the convolved
(observational) data was rather good. We have tested that the
unconvolved results are roughly recovered if the FWHM of the
beam at 43 GHz is smaller than 0.25Rb. Insufficient linear res-
olution biases the observed features in hardly predictable ways,
rendering inadequate the identification of features in the radio
maps with hydrodynamic structures.

In the future we plan to apply the SPEV method to perform
additional parametric studies of relativistic parsec scale jets.
Among the parameters which can be interesting to look at, we
give preference to the electron spectral index. Also, the SPEV
algorithm can be coupled to relativistic magnetohydrodynamic
codes. This will drop any assumption about the topology and
strength of the magnetic field in the jet, and it will enable us
to perform also parametric studies of polarization of the jet
emission and of superluminal components.
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APPENDIX A

A. IMAGING ALGORITHM

Equations given in Sections 3 and 4 are, in principle, suffi-
cient to compute the synchrotron emissivity at any position in
space and at any instant of time in the observer’s frame, either
using SPEV or AM methods, accounting for the appropriate
transformations from the frame comoving with the fluid (where
the emissivity (Equation (39)), absorption coefficient (Equation
(42)), number density of NTPs (Equation (5)), etc. are com-
puted).The purpose of this appendix is to explain the algorithm
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used to produce synthetic radio maps from discrete spatial and
temporal elements.

A.1. Geometry and Arrival Time

While in our simulations the hydrodynamic state of the fluid is
axisymmetric regardless of the jet viewing angle, the observed
emission is, in general, not axisymmetric. We introduce the
azimuthal angle φ (measured in the xy-plane from the x-
axis) and define the laboratory frame (attached to the center
of the AGN) three-dimensional Cartesian coordinate system
(x, y, z) := (R cos φ,R sin φ,Z), where the z-axis coincides
with the jet axis. We denote the jet viewing angle by θ , and
choose the following observer coordinate system (rotated with
respect to the three-dimensional Cartesian system by an angle
θ around the y-axis)

(xobs, yobs, zobs) := (x cos θ + z sin θ, y,−x sin θ + z cos θ )
(A1)

in which the observer is located along the zobs axis, far from the
jet. For a given elapsed simulation time T in the jet frame the
time of observation tobs is defined as

tobs := T − zobs/c. (A2)

The task of the imaging algorithm is to produce image in the
(xobs, yobs) plane for a fixed arrival time tobs (note that the image
will be symmetric with respect to the xobs-axis if the magnetic
field is completely random). From Equations (A1) and (A2)
it is clear that we need to have information about states of
the jet at multiple instants of laboratory frame time in order to
correctly compute the contribution at a single tobs. In a numerical
hydrodynamic simulation we only have a finite number of
discrete iterations, but each iteration has an associated time step
ΔT . In order to correctly take this into account, in the following
we assume that the time instant tobs has a finite duration ΔT
as well, and all radiation arriving between tobs − ΔT/2 and
tobs + ΔT/2 is arriving precisely at tobs.

A.2. Particle Images

Owing to the axisymmetric nature of the problem, we only
follow the Lagrangian particle motion and evolution in two
dimensions (see Section 3). However, for the purposes of
imaging, a three-dimensional particle distribution needs to be
created. We assume that each particle which is injected at the jet
nozzle has a radius Δr := Rb/(2Np), where Rb is the beam radius
and Np number of particles per beam radius. That means that a
particle in two dimensions correspond to a revolution annulus
in the (x, y, z) coordinate system.9 In principle, by knowing
the particle position (Rp, Zp) in the two-dimensional grid we
could compute from Equations (A1) and (A2) all combinations
of (x, y, z) and, hence, all combinations xobs, yobs and tobs to
which the particle annulus corresponds for a fixed T. In practice,
we approximate every annulus by a series of cubes which
are distributed along a circle with radius Rp, whose center is
in (0, 0, Zp). The number of cubes, evenly distributed in the
azimuthal direction, necessary for an optimal volume coverage
of the annulus depends on the relation between Rp and the
particle radius Δr (see the next subsection). By virtue of the
symmetry of the jet, as seen by the observer, with respect to the

9 Note that also annuli are generated from the rotation of two-dimensional
cylindrical numerical cells around the jet axis and, thereby, we can apply the
same imaging procedure when we use the cell-based algorithm AM.

xobs-axis, we only need to compute the contribution from one
half-annulus, i.e., for those cubes where y = yobs � 0.

We assume that both the emissivity and the absorption
coefficient are homogeneous within each cube. Thus, knowing
the particle velocity and the azimuthal angle of a given cube, we
can transform its emissivity and its absorption into the observer
frame.

A.2.1. Approximation of Annuli by Cubes

Given a particle with radius Δr and cylindrical coordinates
(Rp, Zp), we approximate the corresponding half-revolution
annulus by cubes evenly tessellating a circumference centered
at (0, 0, Zp). The angular separation between the cubes is
defined as Δφ = min (π, 2Δr/Rp). Thus, there are Nφ =
π/Δφ = max (1, Rpπ/(2Δr)) cubes in a half-annulus of volume
Vcubes = Nφ(2Δr)3 = 4πRp(Δr)2 whereas the true volume of
the half-annulus is

VHA =

⎧⎪⎨
⎪⎩

[(Rp + Δr)2 − (Rp − Δr)2]π (2Δr)/2 = 4πRp(Δr)2

if Rp > Δr

(Rp + Δr)2π (2Δr)/2 = (Rp + Δr)2πΔr
if Rp � Δr.

(A3)
In the limit of Rp > Δr , the total volume of the cubes is
approximating that of the half-annulus. For Rp < Δr , Nφ is
reset to 1 and the volume for which y > 0 is always 4(Δr)3,
which is close to the average over all possible values Rp � Δr

of the true volume 7π (Δr)3/6.

A.3. Radiative Transfer

To compute an image we subdivide the (xobs, yobs) plane into
rectangular pixels, and compute the contributions to each pixel
by checking which particle cube10 intersects which pixel at the
right observation time. The ratio of the area of intersection
to the pixel area, gives a “weight” of the contribution of a
particular cube to the intensity of the pixel. For a given T,
the value of zobs for each particle gives the distance from the
observer, so that we create a “line of sight” (LoS) for each pixel
and sort along this line all contributing particles according to
zobs (note that these contributions generally come from different
instants of the laboratory frame time T). Since in every pixel
we sum up the contributions spanning the observer time range
[tobs − ΔT/2, tobs + ΔT/2], the intersections of every LoS with
particle cubes are segments, not points (which would be the
case if in every pixel we would only consider the instantaneous
contributions at tobs). After all the contributions (i.e., intersection
segments) to a pixel have been accounted for, we solve the
standard radiative transfer equation to evaluate the final pixel
intensity. The above procedure can be performed simultaneously
for a number of different values of tobs, so that a “movie” in the
observer frame can be created. In order to transform the intensity
detected in a pixel into a flux we need to multiply by the pixel
area.

A.4. Tests of the Method

In order to validate our imaging algorithm we have developed
two tests which are based upon the idea that, increasing the

10 One might also use spheres instead of cubes, but we use cubes to avoid
dealing with trigonometric functions and square roots when checking for the
intersection between rectangular pixels and particles.
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Figure 19. Left: results of the volume filling convergence test for different numbers of particles per unit of beam radius Np. In the upper panel we show the computed
length of the chord through the jet as a function of the height yobs. We fix the value of the jet radius to be Rb = 0.95625. The thick black line corresponds to the

analytic expectation of the chord length, i.e., 2
√

R2
rmb − y2

obs. In the lower panel the relative error with respect to the analytic expectation is displayed. Right: results

of the flux convergence test. The figure displays the total flux of images at 15 GHz for the quiescent PM (circles) and OP (squares) models as a function of the number
of particles per beam radius Np injected at the jet nozzle. Images have been produced with 4, 8, 16, 20, 24, 32, and 40 particles per beam radius. The luminosity of
both families of models are normalized to the total flux produced by the corresponding (PM or OP) model with Np = 40.

number of Lagrangian particles, both the volume filling factor11

and the total detected flux should converge. We first show the
convergence of the volume filling method. Then we show that
the images and the total flux of the quiescent PM-L and OP-L
models converge with increasing number of particle families.

A.4.1. Volume Filling

We have created a toy model consisting of a cylindrical
jet with uniform velocity parallel to the jet axis, and with a
length equal to the particle size Δr . The half-volume of such
a jet is Vj,1/2 = πR2

bΔr . We inject Np particles in the jet
evenly distributed across the jet radius (i.e., Δr = Rb/(2Np),
or Rb = (2i + 1)Δr , i = 0, . . . , Np − 1). If particles do not
overlap, the volume filling factor is∑Np−1

i=0 Vcubes,i

Vj,1/2
=

∑Np−1
i=0 4π (2i + 1)(Δr)3

πR2
bΔr

= 1 − 1

Np
. (A4)

Since we have a finite number of particles, the jet volume
is only partially patched by the volume occupied by such
Lagrangian particles, i.e., the volume filling factor is smaller
than one. Increasing the number of particles brings it closer to
one. To test the volume filling method, we produce an “image”
of the jet at an observer time tobs = 0 with a 90◦ viewing angle,
accumulating in each pixel the contributions corresponding to a
laboratory frame time interval ΔT = 2Rb/c. However, instead
of summing up the emissivity, we add up the length of the
intersection of each particle’s volume with each pixel in the
(xobs, yobs) plane (as described above). The idea behind the
substitution of the emissivity by the intersection length is that
at 90◦ the intersection length and the intersection volume of
the particles are proportional and, thus, measuring lengths or
volumes is equivalent.

Since we accumulate in every pixel all contributions in the
range [−ΔT/2, ΔT/2], the intersection length with each particle
equals the size of the particle perpendicular to the LoS (2Δr).
Hence, the value accumulated in a pixel P := (xobs, yobs),
namely Lpx, is

Lpx =
∑

i

Ai

Apx
2Δr, (A5)

11 We define the volume filling factor as the fraction of the jet volume
occupied by our finite size Lagrangian particles.

where Ai and Apx are the area of intersection of a particle with
a pixel and the pixel area, respectively. The sum in Equation
(A5) extends over all particles that are intersected by the line
of sight that departs from P . In the limit Δr → 0 (equivalently,
Np → ∞) Ai → 4(Δr)2. On the other hand, the number of
particles intersected by the LoS departing from P and having
a cross sectional area Apx is Npx = Apx/(2Δr)2. Therefore, we
have

lim
Δr→0

Lpx = lim
Δr→0

8(Δr)3 Npx

Apx
= 2

√
(R2

b − y2
obs). (A6)

Equation (A6) simply expresses that, in the limit Np → ∞, the
length measured in the pixel P should tend to the length of the
chord determined by the intersection of the jet body with the
line of sight from P . Figure 19(a) shows that for Np � 16 the
results converge very rapidly to the analytic expectation (thick
black line).

A.4.2. Total Flux

To test the convergence of the imaging algorithm we have
produced images of quiescent PM-L and OP-L models with
varying Np. The total number of particles in the grid grows as N2

p ,
it is thus important to minimize the number of particle families
for numerical purposes. In Figure 19(b) we show the total image
flux at 15 GHz for PM-L and OP-L models as a function of Np.
The values are normalized to the flux of the model with the

N =40p

p

p

p

p

N =8

N =16

N =32

N =4

Figure 20. Images of PM-L models used in the convergence test. From top to
bottom Np = 40, 32, 16, 8, and 4.
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N =40p

p

p

p
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N =8

N =16

N =32

N =4

Figure 21. Same as Figure 20, but for the OP-L model.

largest number of injected particles per beam radius (Np = 40),
which we consider the reference value. This test is important
because the total flux represents a global value of every model,
since it is computed by summing up the individual fluxes
arriving to each pixel in the detector, and multiplying by the
corresponding pixel area. Remarkably, for Np � 16 the flux does
not deviate more than 5% form the reference value. Thus, any
model with Np � 16 has sufficiently converged to an appropriate
total flux. This has motivated our choice to work with Np = 32
in the current paper, since it yields an optimal trade-off between
numerical accuracy and computational cost. Figures 20 and 21
show images corresponding to the convergence tests for models
PM-L and OP-L, respectively.
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