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ABSTRACT

Our heuristic understanding of the abundance of dark matter halos centers around the concept of a density threshold,
or “barrier,” for gravitational collapse. If one adopts the ansatz that regions of the linearly evolved density field
smoothed on mass scale M with an overdensity that exceeds the barrier will undergo gravitational collapse into
halos of mass M, the corresponding abundance of such halos can be estimated simply as a fraction of the mass
density satisfying the collapse criterion divided by the mass M. The key ingredient of this ansatz is therefore the
functional form of the collapse barrier as a function of mass M or, equivalently, of the variance σ 2(M). Several
such barriers based on the spherical, Zel’dovich, and ellipsoidal collapse models have been extensively discussed.
Using large-scale cosmological simulations, we show that the relation between the linear overdensity and the
mass variance for regions that collapse to form halos by the present epoch resembles expectations from dynamical
models of ellipsoidal collapse. However, we also show that using such a collapse barrier with the excursion set
ansatz predicts a halo mass function inconsistent with that measured directly in cosmological simulations. This
inconsistency demonstrates a failure of the excursion set ansatz as a physical model for halo collapse. We discuss
implications of our results for understanding the collapse epoch for halos as a function of mass, and avenues for
improving consistency between analytical models for the collapse epoch and the results of cosmological simulations.
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1. INTRODUCTION

A central concept in the modern theory of galaxy formation is
the connection between characteristics of the linear density field
and the abundance and properties of virialized dark matter halos
in the contemporary universe. The power spectrum of density
perturbations seeded by inflation (e.g., Guth & Pi 1982; Bardeen
et al. 1983; Starobinsky 1983) and the cosmological transfer
function (e.g., Peebles 1982; Bardeen et al. 1986; Eisenstein &
Hu 1998) determine the character of the subsequent nonlinear
growth of structure through gravitational clustering (White &
Rees 1978). Growing perturbations in the initial density field
serve as the sites of galaxy formation (e.g., Peebles 1965;
Sachs & Wolfe 1967; White & Rees 1978). In the context of
a cold dark matter cosmology, these processes give rise to the
characteristic mass scale of observed galaxies (Rees & Ostriker
1977; Blumenthal et al. 1984). Cosmological observations have
both motivated and verified this picture, most recently with
measurements of galaxy clustering (e.g., Percival et al. 2007),
the linear power spectrum of cosmological structures (e.g,
McDonald et al. 2006), and high-precision measurements of the
cosmological microwave background radiation (e.g., Dunkley
et al. 2008).

Methods for calculating the abundances of nonlinear, col-
lapsed structures have been developed to link the growth
of density perturbations with the observed number densities
of galaxy- and cluster-scale objects. Dynamical models for
the collapse of individual dense patches into virialized struc-
tures, such as the spherical collapse (Gunn & Gott 1972; see
Appendix A) and ellipsoidal collapse (Eisenstein & Loeb 1995;
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Bond & Myers 1996; see Appendix B) models, provide phys-
ically motivated methods for estimating the necessary, linearly
extrapolated overdensity (the “collapse barrier”) for a region to
break from the cosmic expansion, condense, and form a high-
density, virialized structure (i.e., a dark matter halo). When com-
bined with the statistics of the initial density field, the collapse
barrier can thereby be utilized to estimate the abundance of dark
matter halos as a function of mass and redshift. The purpose of
this paper is to re-examine the connection between the collapse
barrier and halo abundance, and test the common assumptions
and methodologies used to calculate the mass function of dark
matter halos from a dynamical model for their collapse (e.g.,
the “excursion set” formalism, Bond et al. 1991).

Press & Schechter (1974) first used the spherical collapse
model to calculate the abundance of galaxies. They assumed
the probability distribution function dP (δR)/dδR (PDF) of the
smoothed overdensity field δR = (ρm−ρ̄m)/ρ̄m, where the mean
matter density is ρ̄m and the density is averaged over a region
of typical size R containing mass M ∝ ρ̄mR3, was a Gaus-
sian with a scale-dependent variance σ 2(M). They integrated
this Gaussian PDF above the typical collapse overdensity δc

(i.e., P (δM > δc) ∝ erfc[−δc/
√

2σ (M)]) and differentiated
with respect to mass M (i.e., dP/dM ∝ exp[−δ2

c /2σ 2(M)]
× dσ−1/dM) to arrive at the fraction of all mass contained in
objects of mass M. The Press & Schechter (1974) calculation
accounts for only half of the total universal mass density in
bound objects because it does not address underdense regions
contained within still larger regions for which the threshold
δM > δc is satisfied. To remedy this shortcoming, Press &
Schechter (1974) multiplied their final answer by a factor of 2
to account for all mass with little justification.

Bond et al. (1991) studied the properties of sets of regions
above the threshold, the “excursion sets” of the density field.
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Using the excursion set formalism, Bond et al. (1991) demon-
strated that by filtering the initial overdensity field on a variety
of mass scales, the results of Press & Schechter (1974) could
be derived in a manner that accounts for patches of low density
embedded in large, high-density regions collapsing on larger
scales (the “cloud-in-cloud” problem). Moreover, Bond et al.
(1991) and Lacey & Cole (1993) showed that the excursion
set formalism provided a means to compute other halo proper-
ties such as their mass acquisition histories. The excursion set
theory of halo abundance was later extended by Mo & White
(1996) to describe their spatial clustering through the bias pa-
rameter b2 ≡ ξhh/ξm relating the halo (ξhh) and mass (ξm)
correlation functions (a computation that recovers the “peak-
background split” result developed in Kaiser 1984; Efstathiou
et al. 1988; Cole & Kaiser 1989). The details of the excur-
sion set theory are collected in the recent review by Zentner
(2007).

Numerical simulations of cosmological structure formation,
which were developed concurrently with the analytical collapse
calculations, demonstrated that nonlinear gravitational collapse
produces halo mass functions that are inconsistent with the
predictions of Press & Schechter (1974). Evidence for this
disagreement, as well as corresponding discord in the spatial
clustering of halos, developed over twenty years (e.g., Efstathiou
et al. 1988; White et al. 1993; Lacey & Cole 1994; Eke et al.
1996; Gross et al. 1998; Tormen 1998; Jing 1998, 1999; Lee &
Shandarin 1999; Porciani et al. 1999; Governato et al. 1999). The
inability of the simple, spherical collapse model set within the
excursion set formalism to describe the results of cosmological
simulations and the need for robust predictions of the abundance
of halos for comparisons with observations led to accurate
formulae for mass functions determined by numerical fits to
the results of N-body simulations (e.g., Sheth & Tormen 1999;
Jenkins et al. 2001; Warren et al. 2006, for more recent results see
Tinker et al. 2008). These fitting formulae were not the results
of specific dynamical models for the collapse of dark matter
halos. Rather, they were developed through a practical approach
of trying to reproduce accurately the results of cosmological
simulations.

Additional dynamical models for the growth of structure
were developed in an attempt to better reproduce simulated
mass functions while retaining a comparably simple, physically
motivated framework. Lee & Shandarin (1998) presented results
for the halo mass function motivated by the Zel’dovich (1970)
pancake collapse model, which they extended to account for
the collapse of halos along each of their principal axes. Sheth
et al. (2001, SMT01) argued that the functional form of the
Sheth & Tormen (1999, ST99) mass function can be motivated
by the ellipsoidal collapse model of Bond & Myers (1996). For
a given ellipticity e and prolaticity p of the shear field about
an overdensity δ, the Bond & Myers (1996) model provides a
method for estimating the linearly extrapolated overdensity at
collapse (the “ellipsoidal collapse barrier”). SMT01 built on a
calculation by Doroshkevich (1970) to determine a probability
distribution of shear ellipticities and prolaticities, which was
then used to find the most-probable values for e and p as a
function of σ (M). Combining these results, SMT01 found an
effective ellipsoidal collapse barrier as a function of the “peak
height,” νc = δc/σ (M), alone. With this new, mass-dependent
collapse barrier SMT01 computed a halo mass function using
the excursion set prescription of Bond et al. (1991) and showed
that the predicted functional form was close to that measured
in cosmological simulations by ST99. The ST99 mass function

has therefore become associated with the ellipsoidal collapse
model.

Note, however, that the ellipsoidal collapse model predicts
that the collapse barrier converges to the spherical collapse bar-
rier δc = 1.69 (for Ωm = 1), in the high-mass limit, because the
rarest peaks have a preferentially spherical shape. SMT01, on
the other hand, found that the collapse barrier had to be lowered
in the high-mass limit to

√
aSTδc ∼ 0.84δc, in order to repro-

duce the mass function measured in cosmological simulations
(see also Sheth & Tormen 2002). Although they argued that
the lower value can be motivated by the mass definition of the
friends-of-friends (FOF) algorithm which they used to identify
halos in simulations, this rescaling is not well justified. Indeed,
it disagrees with the fact that the collapse of the highest mass
halos should be described well by the spherical collapse model.
We argue below the lowering of the collapse barrier is instead re-
quired by the internal inconsistencies of the excursion set ansatz
and explicitly demonstrate that such inconsistencies persist for
a wide variety of halo mass definitions, including the FOF and
spherical overdensity criteria (see Appendix D for a detailed
discussion).

In the context of the excursion set formalism, the adoption of a
shape for the collapse barrier (along with choice of prescription
with which to smooth the density field) effectively determines
the mass function. In this paper we test the excursion set
ansatz by measuring the effective collapse barrier for halos
formed in cosmological simulations and comparing excursion
set predictions for the halo abundance given such a barrier to
the halo mass functions measured in the simulations.

The organization of this paper is as follows. In Section 2,
we review the theoretical background of the excursion set for-
malism, common dynamical models, and collapse barriers from
the literature. In Section 3, we measure the linear overdensity
of collapsed regions in cosmological simulations to study the
consistency between the simulated collapse of halos and the
predictions of dynamical models. We then compare the abun-
dance of dark matter halos predicted from the excursion set
formalism and dynamical models with the simulated halo mass
function in Section 4. We discuss our results in Section 5 and
summarize our results and conclusions in Section 6. The pa-
per contains four appendices: a review of the spherical collapse
model (Appendix A), a review of the Bond & Myers (1996) el-
lipsoidal collapse model (Appendix B), a summary of the Zhang
& Hui (2006) analytical method for calculating the excursion
set mass function (Appendix C), and a study of the connection
between the excursion set ansatz and the halo mass definition
(Appendix D). Unless noted otherwise, throughout the paper we
assume a flat Λ-Cold Dark Matter (ΛCDM) cosmology. Cosmo-
logical parameters in our calculations and simulations are close
to the values suggested by observations: Ωm ≈ 0.3, ΩΛ ≈ 0.7,
and H0 ≈ 70 km s−1Mpc−1.

2. THEORETICAL BACKGROUND

Consider a Gaussian random density field ρ(x) as a function
of spatial location x with mean matter density ρ̄m. At every
location x we can define the overdensity δ(x) ≡ [ρ(x)− ρ̄m]/ρ̄m

of the field and the overdensity smoothed on a comoving length
scale RW as

δRW (x) =
∫

d3x ′δ(x′)W (|x − x′|, RW) (1)

where W (x, RW) is a spherically symmetric smoothing window
with a characteristic radius RW centered about location x. Here,



638 ROBERTSON ET AL. Vol. 696

we follow the notation in the recent review by Zentner (2007) but
use the symbol δRW to represent the overdensity field smoothed
on a scale RW and reserve δ to represent the unsmoothed
overdensity field. The smoothed overdensity field δRW (x) is also
a Gaussian random field with a variance given by

S(M) ≡ σ 2(M) ≡ 〈
δ2
RW

(x)
〉 =

∫
Δ2(k)|Ŵ (k, RW)|2d ln k,

(2)
where Δ2(k) = k3P (k)/2π2 is the dimensionless power spec-
trum of density fluctuations with a wavenumber k and Ŵ (k, RW)
is the Fourier transform of the real-space smoothing window
W (x, RW). The details of both the averaging procedure and the
mass-radius relation are fixed by the choice of filtering function
used to smooth the density field. In CDM models the variance
monotonically decreases with increasing length or mass scale.
Consequently, once the filter function is specified this variance
can also be used to label the size of the smoothing region, and
we can write δRW as δM or δS where M is the mass contained
within the window of length scale RW and S is the variance
σ 2(M). In what follows, we adopt the common practice of la-
beling the size of the smoothing region by either the length scale
RW, the corresponding mass scale M, or the variance S, and use
the labels interchangeably.

If we consider a fixed location x and monitor the behavior
of the smoothed overdensity δS(x) as we decrease the mass
smoothing scale M from some very large value (and hence
increase the variance S from some value 	 δ2

c ), δS(x) will
execute a (not necessarily Markovian) random walk where the
smoothed overdensity δS(x) will satisfy the Langevin equation
(e.g., Bond et al. 1991, see also Chandrasekhar 1943)

∂δS(x)

∂ ln k
= Q(ln k)Ŵ (k, RW), (3)

where Q(ln k) is a Gaussian random variable with zero mean
and variance

〈
Q2(ln k)

〉 = dS

d ln k
= Δ2(k). (4)

The variation represents an ensemble of local realizations of
the density field.

For a sharp k-space top-hat filter of the form

Ŵk(k, RW) = Θ(1 − kRW), (5)

Θ(x) ≡
⎧⎨
⎩

0 : x < 0
1
2 : x = 0
1 : x > 0

, (6)

the “trajectory” of overdensity as a function of variance δS(x)
recovered by integrating Equation (3) will be a Markovian
random walk because each Fourier coefficient of the Fourier-
transformed density field is an independent random variable
(e.g., Lacey & Cole 1993). More generally, the trajectory may
vary more smoothly as the variance is increased if the Fourier
transform of the real-space window function has broad side
lobes in k-space (e.g., Zentner 2007). For instance, the real-
space top-hat filter, given by

Wr(R,RW) =
(

4π

3
R3

)−1

Θ(1 − R/RW), (7)

with Fourier transform

Ŵr(k, RW) = 3 (sin kRW − kRW cos kRW)

(kRW)3 , (8)

has extended side lobes in k-space that correlate the smoothed
overdensities over a considerable range of smoothing scales.
Hence, the integral of Equation (3) will vary more smoothly
with the variance S if a real-space top hat is used rather than a
k-space top hat.

2.1. Collapse Barriers and Halo Formation

The excursion set theory of halo abundance, clustering, and
formation is based on an ansatz that the locations and sizes
of virialized dark matter halos can be related to the properties
of peaks in the initial density field at some very high initial
redshift zinit 
 1, when the density field is in the linear
regime (δM 	 1). Almost universally, the specific form of
this ansatz is that a region will collapse and form a dark
matter halo if its smoothed overdensity, evolved forward in
time from zinit according to linear perturbation theory, exceeds
some threshold value. Consider an object that collapses at some
redshift zc < zinit. The linearly extrapolated overdensity is

δRW (x, zc) = δRW (x, zinit)D(zc)/D(zinit), (9)

where D(z) is the linear growth function, given by

D(z) = D0H (z)
∫ ∞

z

(
1 + z′) dz′

H 3(z′)
. (10)

The Hubble parameter

H (z) = H0
[
Ωm(1 + z)3 + (1 − Ωm − ΩΛ)(1 + z)2 + ΩΛ

]1/2

(11)
describes the rate of change of the universal scale factor as
H ≡ ȧ/a. The collapse condition is then simply

δRW (x, zinit)D(zc)/D(zinit) � B, (12)

where B is referred to as the “collapse barrier.” The excursion
set ansatz is specifically that the largest smoothing scale RW ∝
(M/ρ̄m)1/3 at any point x for which Equation (12) is satisfied
will collapse and form a halo of mass M at redshift zc.

The value of the collapse barrier B is usually determined
by a dynamical model for the collapse of overdense patches
in a background cosmological environment. In general, the
collapse barrier need not be a single number and B can be a
complicated function of the properties of the local linear density
field (including its spatial derivatives), the smoothing window,
and the smoothing scale. In the following sections, we study the
spherical collapse and ellipsoidal collapse models for B.

Having specified the collapse condition and the form of the
collapse barrier, the number of collapsed objects at a given mass
M or variance S will be determined by the probability distribu-
tion f (S)dS of variances where random realizations of trajec-
tories δS(x), computed according to Equation (3), first cross
the barrier B. This first-crossing distribution can be determined
using a Monte Carlo procedure. By integrating Equation (3)
for many locations in the density field (corresponding to many
realizations of Q(ln k)), the first-crossing distribution may be
approximated by a histogram of the barrier crossings as a func-
tion of S for the ensemble of trajectories. The first-crossing
distribution is often written as a function of the peak height

νc = δc/σ (M), (13)
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where δc = 1.686 is the linear overdensity for spherical collapse
in an Ωm = 1 cosmology (see Appendix A below for details).
We will frequently change variables from S to νc so that we can
discuss and plot the first-crossing distribution in terms of f (νc).

The comoving abundance of halos (dn/dM) × ΔM in the
mass range ΔM about mass M (the “mass function”) is related
to the first-crossing distribution f (νc) by

dn

dM
ΔM = ρ̄m

M
f (νc)

∣∣∣∣ dνc

dM

∣∣∣∣ ΔM. (14)

This correspondence between the mass function and first-
crossing distribution can be understood as a variable change
from a distribution in peak height νc to a distribution in mass
M, with a normalization that accounts for the partitioning of
mass elements into halos of mass M (i.e., ρ̄m/M). The shape of
the first-crossing distribution f (νc) is expected to be relatively
independent of the cosmological model at low redshift because
it depends primarily on the primordial power spectrum, the
collapse barrier B, and the smoothing window (e.g., ST99).
The halo abundance dn/dM additionally depends on how the
relation between the trajectory mass smoothing scale M and the
actual halo mass is defined and the shape of the power spectrum
P (k) (through dσ 2/dM). When necessary, we will associate
halos with roughly virialized regions of size R200 with a mean
physical overdensity Δ = 200 (to ease comparison with the
mass definition used by Tinker et al. 2008, which is defined
relative to the background density, and not the critical density)
and virial mass M200 = 4πΔρ̄mR3

200/3. However, we explore
variations on this definition for completeness (see Appendix D).

2.2. Spherical Collapse Barrier

Gunn & Gott (1972) modeled the dynamical evolution of an
overdense spherical region in a background cosmology (their
calculation is detailed in Appendix A). The collapse barrier
is computed by evolving the density in the spherical region
according to the linear theory until the time of collapse. The
final step in calculating the excursion set halo abundance from
the collapse model is to assume that this equivalent linear
overdensity can be used to identify collapsed regions in the
initial density field without needing to consider the field’s
nonlinear evolution. The model predicts that a region with initial
physical overdensity δS(zinit) will collapse when the linearly
extrapolated overdensity exceeds

δS(z) = δS(zinit)D(z)/D(zinit) > Bsc ≡ δc ≈ 1.686. (15)

We refer to the barrier δc as the “spherical collapse barrier.” Eke
et al. (1996) provide analytical solutions for the value of δc in
cosmologies with Ωm + ΩΛ = 1. The spherical collapse barrier
is independent of mass scale and initial overdensity.

Bond et al. (1991) used the excursion set formalism to
calculate the first-crossing distribution associated with a barrier
that is constant as a function of mass scale, such as the spherical
collapse barrier. For a sharp-k window function (Equation (5)),
the spherical collapse barrier first-crossing distribution is

νcfsc(νc) = 2

(
ν2

c

2π

)1/2

exp

(
−ν2

c

2

)
. (16)

The function fsc is normalized such that
∫

fsc(νc)dνc = 1,
implying that all mass in the universe is incorporated into
collapsed objects. In this context, the normalization arises

because the variance S = σ 2(M) increases monotonically
toward infinity as M tends toward zero, while the barrier height
δc, remains fixed. As a result, any random walk will cross the
barrier δc at some scale.

2.3. Ellipsoidal Collapse Barrier

The spherical collapse model is likely too simplistic because
peaks in the linear density field are, in general, locally triaxial
(see, e.g., Doroshkevich 1970; Bardeen et al. 1986). A number
of dynamical collapse models designed to account for deviations
from spherical symmetry have been explored (e.g., Zel’dovich
1970; Nariai & Fujimoto 1972; Hoffman 1986; Bertschinger
& Jain 1994; Eisenstein & Loeb 1995; Bond & Myers 1996;
Audit et al. 1997; Del Popolo et al. 2001; Shen et al. 2006).
Bond & Myers (1996) studied an ellipsoidal collapse model that
approximates peaks in the linear density field as ellipsoids and
accounts for the effects of tides on the evolution of overdense
patches (see Appendix B for a more detailed review of the
model). Compared with the spherical case, the key feature of
the ellipsoidal collapse models is that for a fixed overdensity the
collapse epoch will depend on the local ellipticity and prolaticity
of the shear (or possibly density) field. The net effect is that less
spherical peaks have to overcome additional tidal stretching and
require a higher overdensity to collapse.

SMT01 used the Bond & Myers (1996) ellipsoidal collapse
model to derive the dependence of collapse overdensity on the
ellipticity and prolaticity of the shear field. They found that
the barrier shape could be approximated by the solution of the
implicit equation

δec

δc

= 1 + β

[
5(e2 ± p2)

(
δ2

ec

δ2
c

)]γ

, (17)

where β and γ are numerical parameters that must be fit to the
results of the dynamical model and the squares of the ellipticity,
e, and prolaticity, p, are summed (differenced) if p < 0 (p > 0).

Determining the shape of the ellipsoidal collapse barrier
requires a further model for how the typical ellipticity or
prolaticity scales with galaxy mass because the barrier shape
depends explicitly on both e and p. SMT01 used the results
of Doroshkevich (1970) to arrive at a PDF for e and p, from
which they find the most probable prolaticity and ellipticity are
pmp = 0 and emp = σ/δ

√
5, respectively. They then set δ = δec

and substituted emp and pmp into Equation (17) to find

Bec ≡ δec = δc

[
1 + β

(
σ 2(M)

δ2
c

)γ ]
. (18)

SMT01 found the parameter values β ≈ 0.47 and γ ≈ 0.615
(more recently, values of β ≈ 0.412 and γ ≈ 0.618 were found
by Desjacques 2008). We refer to the threshold in Equation (18)
as the “ellipsoidal collapse barrier.” For reference, Figure 1
compares the ellipsoidal collapse barrier with the constant
spherical collapse barrier.

SMT01 also suggested an analytical form to approximate the
first-crossing distribution resulting from the barrier δec, which
they calculated numerically using Monte Carlo realizations
of the Langevin equation (Equation (3)). They prescribed the
formula

νcfec(νc) = 2A
(
1 + ν−2q

c

) (
ν2

c

2π

)1/2

exp

(
−ν2

c

2

)
, (19)

where q = 0.3, and the constant A = 0.3222 is determined by
requiring

∫
fec(νc)dνc = 1.
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Figure 1. Some common collapse barriers discussed in the text: the spherical
collapse barrier (Gunn & Gott 1972, δc ≈ 1.686 for Ωm = 1, solid gray line),
the ellipsoidal collapse barrier (Sheth et al. 2001, dashed red line), an alternative
fit to the ellipsoidal collapse barrier (Desjacques 2008, solid purple line), and
the modified ellipsoidal collapse barrier associated with the Sheth & Tormen
(1999) mass function (Sheth et al. 2001, dotted green line). Note that while
the ellipsoidal collapse barriers, as formulated, converge to spherical collapse
barrier at large masses (small σ (M)), the modified barrier of Sheth et al. (2001)
converges to a lower value of

√
aSTδc ≈ 0.84δc .

(A color version of this figure is available in the online journal.)

2.4. The Sheth et al. Barrier and Mass Function

To improve the agreement between the excursion set mass
function determined by using Equation (18) and the abundance
of halos in the GIF simulations (Kauffmann et al. 1999)
measured by ST99, SMT01 introduced another parameter,
aSMT ≈ 0.707, to modify the ellipsoidal collapse barrier as

BSMT ≡ δSMT = √
aSMTδc

[
1 + β

(
σ 2(M)

aSMTδ2
c

)γ ]
, (20)

and changed the values of the other parameters to β = 0.5 and
γ = 0.6. We refer to Equation (20) as the “Sheth et al. barrier,”
to contrast it with the ellipsoidal collapse barrier because the
changes are not based on the dynamical collapse model.

The modified barrier is lower than the Bec, with the differ-
ence increasing with increasing mass. In particular, instead of
converging to the spherical collapse barrier of δec → δc at
the largest masses, as expected from the trend toward spheric-
ity for the rarest peaks, the modified barrier converges to
δSMT ≈ √

aSMTδc ≈ 0.84δc. The value aSMT = 0.707 was
justified by SMT01 as accounting for the particular choice of
the halo mass definition in the GIF simulations (identified by the
FOF algorithm with a linking length b = 0.2; see the discussion
in Section 4.1 of SMT01 and Appendix D). For reference, the
Sheth et al. barrier is plotted in Figure 1 alongside the spherical
collapse and ellipsoidal collapse barriers.

SMT01 utilized Equation (20) as the collapse barrier to
calculate an excursion set mass function using Monte Carlo
methods (see also Sheth & Tormen 2002), and found the
resulting first-crossing distribution to be well approximated by

the analytical formula

νcfSMT(νc) = 2A
[
1 +

(√
aSMTνc

)−2q
](

aSMTν2
c

2π

)1/2

× exp

(
−aSMTν2

c

2

)
, (21)

with aSMT = 0.707, q = 0.3, A = 0.3222. This formula was
introduced by ST99 as a fit to the GIF simulations, and the cor-
responding halo mass function (calculated from Equation (14))
is often referred to as the “Sheth–Tormen” mass function. The
normalization of the first-crossing distribution for the Sheth–
Tormen mass function is the same as the spherical and ellipsoidal
collapse first-crossing distributions, with

∫
fSMT(νc)dνc = 1.

3. TESTING THE COLLAPSE BARRIER WITH
COSMOLOGICAL SIMULATIONS

As we have noted above, the two main ingredients of
the excursion set formalism are the collapse barrier used to
decide which mass elements form halos and the sampling
of the possible collapse histories via the random walks of
the smoothed overdensity field. Each of the elements of the
excursion set approach can be tested against cosmological
numerical simulations of structure formation. In particular, the
correct collapse barrier, if indeed one can be defined, may be
verified or falsified using numerical simulations that include all
of the complications that the excursion set approach aims to
circumvent. In the previous section, we described the collapse
barriers motivated by the spherical and ellipsoidal collapse
models, as well as the modified barrier of SMT01. In this section
we compare these collapse barriers with the linear overdensities
of regions that actually collapse to form halos in numerical
simulations.

To calculate the linear overdensity of regions that later
collapse to form dark matter halos, we utilize cosmological
simulations performed with the Adaptive Refinement Tree code
(ART; Kravtsov et al. 1997). One 5123 particle simulation
models the formation of structure in the Wilkinson Microwave
Anisotropy Probe (WMAP) first-year cosmology (Spergel et al.
2003, Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04, n = 1, σ8 = 0.9, h =
0.7) in a cubic volume L = 250h−1Mpc on a side (hereafter, the
L250 box). This simulation has a gravitational force resolution
at the highest level of refinement of εL250 = 7.6h−1kpc, and a
particle mass of mp,L250 = 9.69 × 109h−1M. An additional
10243 particle simulation of the WMAP third-year cosmology
(Spergel et al. 2007, Ωm = 0.27, ΩΛ = 0.73, Ωb = 0.047,
n = 0.95, σ8 = 0.79, h = 0.7) with a larger volume
(L = 1000h−1Mpc; L1000W) is used to probe rare objects. This
larger-volume simulation has a comparably coarser resolution
(ε1000W = 30h−1kpc, mp,L1000W = 6.98×1010h−1M) than the
smaller simulation.

The simulations analyzed in this work were recently used by
Tinker et al. (2008) as part of their study of the universality of
the halo mass function, and we use their halo catalogs when
calculating the properties of the dark matter halo population.
Tinker et al. (2008) identified dark matter halos using a modified
spherical overdensity algorithm (e.g., Lacey & Cole 1994), as
detailed in their Section 2.2. Halo membership at a given redshift
was determined by identifying peaks in the density field and
assigning dark matter particles to peaks until the maximum
radius RΔ of each halo contains a mean physical density of
Δ = M/(4πρ̄m(z)R3

Δ/3), where M is the sum of the particle
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Figure 2. Linear overdensity field as a function of smoothing scale for the L250 simulation at a = 0.01. The upper left panel shows the linear overdensity field
interpolated onto a 5123 grid using the cloud-in-cell method (i.e., at full resolution of the simulation); the effective smoothing of this grid corresponds to σ (M) ∼ 4. The
other three panels show the field δ(x, RW) smoothed on larger scales RW using a real-space top-hat window: RW = 1.4h−1Mpc [σ (M) = 2.38,M = 1.0 × 1012h−1],
RW = 2.9h−1Mpc [σ (M) = 1.69,M = 8.2 × 1012h−1 ≈ M�], and RW = 6.7h−1Mpc [σ (M) = 1.02,M = 1.0 × 1014h−1].

(A color version of this figure is available in the online journal.)

masses. Results for other halo mass definitions are examined in
Appendix D.

Regions in the linear density field that collapse to form halos
are selected by identifying particles from the z = 0 halo catalog
in the simulation volume at early times. For each simulation
volume, we use the Zel’dovich (1970) approximation to rescale
the density field at the initial epoch of the simulation (z > 50)
to a sufficiently early epoch at which the density field can
be safely considered to be linear. We choose to rescale all
simulations to the scale factor a = 0.01. The density field for
each simulation is calculated by a cloud-in-cell interpolation
of the particle distribution onto a 5123 grid. This interpolated
density field has a mass resolution equal to the particle mass for
the L250 box, and eight times coarser mass resolution than the
L1000W box. Hence, the field is effectively smoothed on a scale
of σmax(M) ≈ 4.2 for L250 and σmax(M) ≈ 2.1 for L1000W.
We will use each box only on scales σ (M) < σmax(M). Note
that since we are interested in the regions that form collapsed
halos in the Tinker et al. (2008) catalog, the largest σ (M) of
interest corresponds to the smallest halo for each simulation
and all such regions are σ (M) < σmax(M).

3.1. Smoothing the Linear Overdensity Field

The linear overdensity field smoothed on a scale RW can
be calculated directly from Equation (1) by convolving the
density field with the window function W (x, RW). A much more
computationally efficient approach is to perform the convolution

via multiplication in Fourier space to obtain the transform of the
smoothed overdensity field as

δ̂RW (k) = δ̂(k)Ŵ (k, RW), (22)

and then perform the inverse Fourier transform to arrive at the
smoothed overdensity δRW (x). Here, δ̂ is the Fourier transform
of the unsmoothed density field and Ŵ (k, RW) is the transform
of the window function (for instance, Ŵ (k, RW) = Ŵr for a real-
space top hat, see Equation (8)). For each simulation volume,
we compute this convolution for 150 smoothing scales from
RW ≈ L/10 to RW ≈ L/256. This results in 5123 ≈ 134
million overdensity trajectories with 150 steps in σ (M), as the
change of overdensity with decreasing smoothing scale at the
location of each of the grid cells is equivalent to integrating
Equation (3) with correlated large-scale modes. We have verified
that the root-mean-squared overdensity fluctuations in each box
are 〈δ2

RW
(x)〉 = σ 2(RW) simply by averaging over the gridded

density field, in concordance with Equation (2).
Figure 2 shows the linear overdensity field δ(a = 1) = δ(a =

0.01)D(a = 1)/D(a = 0.01) of a thin slice through the L250
simulation volume. Shown are the unsmoothed field (upper
left panel) and the field smoothed on scales of σ (M) = 2.38
(RW = 1.4h−1Mpc, M ≈ 1012h−1M, approximately the mass
of the Milky Way halo, upper right panel), σ (M) = 1.69
(RW = 2.9h−1Mpc, M = M� = 8.2 × 1012h−1M, the present
collapse mass scale, lower left panel), and σ (M) = 1.02
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(RW = 6.7h−1Mpc, M ≈ 1014h−1M, the mass of a large
group, lower right panel) using a real-space top-hat filter
(Equation (7)). The figure illustrates a variety of properties
of the overdensity distribution and the filter function as the
smoothing scale is varied. The real-space top-hat filter is broad
in Fourier space, so the variations in overdensities across many
intervals in the smoothing scale are correlated. A sharp k-
space filter would tend to decorrelate the overdensities on small
smoothing scales from larger scales as independent frequency
modes are added with increasing σ (M). The largest fluctuations
in the unsmoothed overdensity field are identifiable across
the smoothed fields, reflecting the relation between the initial
density fluctuations and the eventual formation of massive
structures.

3.2. Smoothed Overdensities of Collapsed Regions at z = 0

We can use the smoothed density fields to connect the
final mass of a collapsed region (and its associated fluctuation
scale σ (M)) with its initial smoothed overdensity linearly
extrapolated to the epoch of observation. For each halo identified
in our catalogs at z = 0, we calculate the center-of-mass of the
halo particles from their positions in the linear density field at
a = 0.01 and use the window-smoothed field to compute the
overdensity within the Lagrangian radius6 R = (3M/4πρ̄m)1/3

about this location. This overdensity is then linearly extrapolated
to z = 0 to serve as an estimate of δM (x). We have checked that
all of our conclusions are robust to specific choices regarding the
smoothing procedure, such as the choice of initial positions (the
x) of halos in the initial density field and the range of smoothing
scales.

Figure 3 shows the distribution of such smoothed linear
overdensities extrapolated to z = 0 as a function of σ (M). The
shaded regions represent the probability distribution p(δ, σ )
for regions that collapse to form halos defined relative to
a Δ = 200 spherical overdensity identified in the L1000W
(601,448 halos) and L250 (73,720 halos) boxes. The median
(colored diamonds) and mean (colored circles) of δ(z = 0)
in bins of width Δσ (M) = 0.25 are measured for the halo
population and shown for comparison. The distribution at fixed
σ (M), p(δ|σ ), is approximately log-normal in shape, with a
width that scales as Σ(δ) ≈ 0.3σ 1.0(M) (indicated by the error
bars in Figure 3). The scatter in δ(z = 0) at fixed σ (M) reflects
both the intrinsic scatter in the linear overdensity of collapsed
regions and the limitations of our method to measure δ(z = 0)
reliably for any individual halo. The error on the mean or median
in any σ (M) bin is much smaller than Σ(δ).

At all measured halo masses, the mean and median linear
overdensity of the halo population at δ(z = 0) exceeds the spher-
ical collapse overdensity δc. The dependence of the mean and
median overdensity on σ (M) measured in simulations increases
in a manner that resembles the functional form of the ellipsoidal
collapse barrier δec (Equation (18)) and modified Sheth et al.
barrier δSMT, but with a different normalization. Importantly, at
the lowest values of variance (largest masses) probed by the
simulations (σ (M) ∼ 0.5) the measured overdensities of the
collapsed objects are larger than both the modified Sheth et al.
barrier δSMT and the spherical collapse barrier δc. We note
that while our L = 1h−1GpcΛCDM simulations do not probe

6 Although this is not entirely self-consistent (the smoothing scale is related
to the mass scale by M ∝ (1 + δ)R3), it is clear that the error is small if this
calculation is done at an epoch when δ is very small. We have tested that the
epoch we use a = 0.01 is sufficiently early for this purpose.

Figure 3. Smoothed linear overdensity δ, extrapolated to z = 0, as a function
of smoothing scale σ (M) for regions that collapse to form halos by z = 0.
The circles correspond to the mean overdensities and the diamonds show the
median overdensities, while the errorbars indicate the halo-to-halo scatter. The
error on the mean is significantly smaller than the scatter in all cases. Shown for
comparison are the spherical collapse barrier (δc , blue dashed line), the Sheth
et al. (2001) ellipsoidal collapse barrier (δec, red dashed line), and the collapse
barrier associated with the Sheth & Tormen (1999) mass function (green dashed
line). The upper panel shows the variation in the scatter of barrier heights, where
he have used the Greek letter “Σ” to denote this scatter (not to be confused with
σ (M)).

(A color version of this figure is available in the online journal.)

the highest masses (M � 5 × 1015 M) and the largest scales
(σ (M) � 0.4) imaginable, in Appendix D we show that the con-
clusions developed from these results do not change even if the
characteristic overdensity of regions that collapse to form halos
does not asymptote exactly to δc for σ → 0. In the next section
of the paper, we explore the implication of these results for halo
mass functions calculated using the excursion set formalism.

4. EXCURSION SET FIRST-CROSSING DISTRIBUTIONS
AND MASS FUNCTIONS IN COSMOLOGICAL

SIMULATIONS

The results presented in the previous section indicate that the
linearly extrapolated overdensities of regions that collapse in
cosmological simulations behave in a manner analogous to the
expectations of the ellipsoidal collapse model. In this section,
we test the second ingredient of the excursion set ansatz: the
calculation of the first-crossing distribution and associated halo
mass function with a particular barrier.

Tinker et al. (2008) used a large suite of cosmological
simulations to determine an accurate numerical fit to the
abundance of dark matter halos as a function of their mass.
They found that the first-crossing distribution that corresponds
to the halo mass function measured in simulations can be well
described by the function

νcfT (νc) = AT

[(
eTνc

δc

)dT

+

(
νc

δc

)gT
]

exp

(
−hTν2

c

δ2
c

)
. (23)
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Figure 4. First-crossing distributions for common collapse barriers from the literature. The upper row shows distributions calculated with the sharp k-space top-hat
filter for the spherical collapse barrier (Gunn & Gott 1972, gray line, upper left panel), the ellipsoidal collapse barrier (Sheth et al. 2001, red line, upper middle panel),
and the collapse barrier associated with the Sheth & Tormen (1999) mass function (Sheth et al. 2001, green line, upper right panel). The colored lines indicate the
sharp k-space excursion set first-crossing distributions calculated using the Zhang & Hui (2006) analytical method. The histograms indicate Monte Carlo realizations
of the first-crossing distributions calculated by integrating the Langevin Equation (3). The dashed black lines indicate the analytical form for the Press & Schechter
(1974) mass function (upper left panel), the Sheth et al. (2001) fit to the ellipsoidal collapse first-crossing distribution (upper middle panel), and the Sheth & Tormen
(1999) mass function (upper right panel). Also shown is the Tinker et al. (2008) mass function determined from a large suite of cosmological simulations (blue line,
all panels). In all cases, the Monte Carlo and Zhang & Hui (2006) first-crossing distributions agree well. Since the ellipsoidal collapse barrier lies above the spherical
collapse barrier (see Figure 1), the corresponding first-crossing distribution predicts fewer galaxy mass (νc � 0.5) halos than does the Press & Schechter (1974)
formula. The Sheth & Tormen (1999) mass function produces more high-mass halos by lowering the associated collapse barrier below the spherical collapse barrier
Bsc = δc at small σ (M) (see Figure 1). For comparison, the bottom row shows the first-crossing distributions for the same barriers calculated using a real-space top-hat
filter (histograms, bottom row). In each case, using a real-space top-hat filter produces fewer halos in the excursion set calculation than does the sharp k-space top hat
for most halo masses.

(A color version of this figure is available in the online journal.)

For Δ = 200 spherical overdensity halos, the best-fit mass
function parameters are AT = 0.482, dT = 1.97, eT = 1,
gT = 0.51, and hT = 1.228 (with χ2/ν = 1.14, see table C4 of
Tinker et al. 2008).

Figure 4 compares the first-crossing distribution given by
Equation (23) with first-crossing distributions calculated from
the excursion set formalism with the collapse barriers described
in Section 2. Where possible (i.e., in the case of sharp k-
space top-hat window function) we have checked our Monte
Carlo calculation of the first-crossing distribution against the
direct solution of the Volterra equation using the method of
Zhang & Hui (2006; see Appendix C) and have found excellent
agreement.

The spherical collapse model (left column), corresponding
to the Press & Schechter (1974) mass function, displays the
well-known deficit of massive halos and overabundance of low-
mass halos compared with simulations (see the discussion in
Section 2.2 and Appendix A). As demonstrated first by Bond

et al. (1991, see their Figure 5), changing the window function
from the sharp k-filter to a real-space top-hat filter acts to reduce
the abundance of galaxy-mass halos rather than improve the
agreement between the spherical collapse and simulation first-
crossing distributions.

Using the ellipsoidal collapse barrier presented by SMT01
(see Equation (18)) with the excursion set calculation results in
a lower first-crossing distribution at galaxy masses (Figure 4,
middle column) compared to the spherical collapse model.
These first-crossing distributions lie slightly below the SMT01
fitting function (Equation (19)), and well below the Tinker
et al. (2008) simulation results for νc > 1. The ellipsoidal
collapse barrier converges to the spherical collapse barrier as
σ (M) → 0, but at the mass scales probed in simulations
[σ (M) � 0.5, M � 1015h−1M] the ellipsoidal collapse barrier
is considerably larger (δec � 1.8). The larger barrier height
tends to suppress the abundance of halos in this mass range
as calculated by the excursion set formalism. Similar results
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have been obtained by other authors (e.g., Sandvik et al. 2007,
their Figure 3), but the convergence to the spherical collapse
model at νc >> 1 is seldom commented upon. For consistency
between the treatments of spherical and ellipsoidal collapse,
the abundance of halos calculated for small ellipticities and
prolaticities (i.e., at large masses) must be the same in both
models. As with the spherical collapse model, the ellipsoidal
collapse excursion set mass function calculated with a real-
space top-hat filter acts to lower the abundance of galaxy-mass
halos (Figure, 4, bottom, middle panel).

The Sheth et al. barrier (Equation (20)), which SMT01
presented as the barrier corresponding to the GIF simulation
(ST99) mass function, produces a first-crossing distribution
that lies below the Tinker et al. (2008) simulation results
(Figure 4, right column). Note also that the predicted distribution
does not agree with the SMT01 first-crossing distribution
(Equation (21), dashed line, Figure 4, upper right panel), which
this barrier is designed to describe. The relative disagreement
between the Tinker et al. (2008) and SMT01 first-crossing
distributions should be noted. This disagreement, although
relatively small on the scale of this figure, is significant in
terms of the halo abundance (see Tinker et al. 2008). For the
first-crossing distribution determined using a real-space top-hat
window function (Figure 4, lower right panel), the Monte Carlo
calculation lies below the sharp k-space window function results
and is discrepant with the simulation result.

Since all simulated mass functions are limited by their
particle resolution one might wonder if the differences with
the simulations owe to the differences in normalization, as all of
the excursion set first-crossing distributions are normalized such
that

∫
f (νc)dνc = 1. The form of the Tinker et al. (2008) first-

crossing distribution (Equation (23)) that is plotted in Figure 4
is constructed to require that

∫
fT (νc)dνc = 1. However, the

free parameters of this function are fitted in a regime that
incorporates only ≈60% of the available mass. To address this
question, Figure 5 shows the ellipsoidal collapse first-crossing
distribution normalized at a fixed mass scale (instead of the
integral constraint) to match the Tinker et al. (2008) first-
crossing distribution at large masses (νc = 3), or constrained
to provide the same integral over the same mass range (at
νc � 3). The functions clearly differ in shape and not simply in
normalization.

Of the three barriers we examined, the excursion set first-
crossing distributions calculated from the Sheth et al. barrier
most closely approximate the Tinker et al. (2008) simulation
results. This result is not surprising, given that the ST99 function
is itself a fit to cosmological simulations. The ellipsoidal
collapse barrier produces a first-crossing distribution that differs
substantially from the ST99 fitting function, even though this
mass function is frequently associated with ellipsoidal collapse
model.

The results presented in this section demonstrate that ex-
cursion set predictions disagree with ΛCDM simulation mass
function results for all of these barriers. Given that the over-
densities of the collapsed regions behave similarly to the barrier
shape expected for the ellipsoidal collapse, our results imply a
manifest failure of the excursion set ansatz as a method of com-
puting the abundance of collapsed objects. In Appendix D, we
show that our results hold for other halo definitions, including
FOF halos and other spherical overdensity definitions.

5. DISCUSSION

In the excursion set theory, the abundance, formation time,
and bias of dark matter halos are assumed to be directly

Figure 5. Renormalized first-crossing distributions for ellipsoidal collapse vs.
the Tinker et al. (2008) simulation results. The form of the Tinker et al. (2008)
mass function is normalized such that

∫
fT (νc)dνc = 1, but the simulation

results only probe masses νc � 0.5 that contain roughly 60% the mass of
the universe. This figure demonstrates that any associated uncertainty with the
normalization of the Tinker et al. (2008) mass function (solid line) cannot
reconcile the difference with the ellipsoidal collapse first-crossing distribution.
If the ellipsoidal collapse barrier (Equation (18)) first-crossing distribution is
renormalized to match the Tinker et al. (2008) mass function at νc = 3 (dashed
line), or renormalized to match the integral of the Tinker et al. (2008) mass
function at νc > 3 (dotted line), the resulting distribution is still discrepant
from the Tinker et al. (2008) results. Hence, the shape and normalization of the
ellipsoidal collapse barrier excursion set mass function differs from the halo
mass function determined by N-body cosmological simulations.

linked to the initial linear overdensity field extrapolated to
a given epoch using linear growth rates. This assumption
significantly simplifies modeling, but clearly needs to be tested
against direct numerical simulations. Our results show that the
linear overdensities around the Lagrangian positions of the
centers of mass of collapsed halos in simulations behave in a
manner analogous to the collapse overdensity barrier predicted
by SMT01 using an ellipsoidal collapse model. The similar
behavior suggests that this model captures the main physics
behind the nonlinear gravitational collapse around peaks in the
initial density field.

At the same time, the failure of the excursion set ansatz to
predict correct abundance of collapsed halos with the ellipsoidal
collapse barrier demonstrates that the ansatz is flawed. Several
aspects of the ansatz may be responsible for its failure to
accurately describe simulation results. For example, assumption
that each mass element can be assigned to a collapsed halo using
only the local overdensity independently of its environment is
definitely problematic. The threshold overdensity for collapse
(the barrier) in either the spherical or ellipsoidal collapse models
is predicted for the volumes centered on a density peak, and not
for a random mass element in the field. While the actual collapse
will occur around the density peaks, additional mass near a peak
may collapse onto it even though the extended region may not
satisfy the local collapse condition. Our study highlights the
failure of the excursion set ansatz on a statistical basis for the
entire halo population, but a physical model for the collapse
and formation of dark matter halos must also succeed object by
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object (see, e.g., Katz et al. 1993). The methods for calculating
the abundance of halos that treat individual peaks in the density
field (Bond & Myers 1996; Monaco et al. 2002; N. Dalal et al.
2009, in preparation) may therefore afford a better way to predict
the formation, masses, and abundances of collapsed objects.

The shape of the effective collapse barrier is determined both
by the distribution of overdensities in a smoothed Gaussian
field (e.g., with ellipticities and prolaticities, or other properties,
sufficient for collapse) and by the dependence of the collapse
condition on the overdensity (and/or other properties). The halo
formation time can be defined relative to the mean assembly
history (e.g., Wechsler et al. 2002), but the specific choice of
definition can influence the relation between formation time
and halo mass (for a recent discussion, see Li et al. 2008).
In terms of the linear overdensity and the effective barrier B,
one definition of halo collapse is simply that of Equation (12).
Of course, determining the effective barrier B or measuring
the collapse epoch zc complicates the matter. The definition of
collapse can be connected to the physical properties of halos
through dynamical models, but identifying evolutionary phases
in such simple models with the actual nonlinear growth of dark
matter halos may be incorrect or inaccurate. For instance, the
ellipsoidal collapse model of Bond & Myers (1996) associates
halo formation with the collapse of the longest ellipsoid axis,
while freezing the collapse of the shorter axis at a particular point
to prevent a density singularity. Halo virialization, however, may
be associated with the collapse of another axis or conditional
properties of shape of the density or shear fields (e.g., Lee &
Shandarin 1998; Monaco et al. 2002). These issues warrant a
more careful examination that we defer for future work now that
we have a statement of the problems at hand.

Dark matter halos reside in special locations of the density
field, and have different clustering properties than bulk matter
(e.g., Kaiser 1984; Efstathiou et al. 1988). Models of halo bias
are tightly connected with the effective collapse barrier. Mo
& White (1996) presented the idea that the biasing of halos
is connected to the rate at which density trajectories cross
two separate barriers, and used this concept to calculate the
Lagrangian bias of halos in the Press–Schechter model. SMT01
adapted these ideas to calculate the halo bias implied by their
modified ellipsoidal collapse model.

In principle, the same collapse barrier should predict consis-
tently both the bias and mass function of halos. However, while
the ST99 mass function models the halo abundance reasonably
well, Seljak & Warren (2004) found that the SMT01 bias model
does not work well at low masses. For massive halos at high
νc, Cohn & White (2008) found that the Mo & White (1996)
bias scaling works better than the SMT01 model (however, see
Hu & Kravtsov 2003). Interestingly, Reed et al. (2009) found
that early-forming halos in their simulations were well modeled
by SMT01 at peak heights as large as νc ∼ 4 (at small νc, the
large-scale bias they measure drops below the SMT01 model,
in a manner similar to that found by Seljak & Warren 2004). We
note that if the effective collapse barrier converges to the spheri-
cal collapse overdensity δc for large mass or highly biased halos,
then one might expect the halo bias to mimic the Mo & White
(1996) scaling at large νc. We speculate that the intriguing devi-
ations between the models for halo bias and abundance of halos
are connected to the current discrepancy between the effective
collapse barrier and the abundance of halos in the excursion set
ansatz that we discuss in this paper.

Lastly, the effective collapse barrier may be connected
with the assembly bias phenomenon where dark matter halo

clustering correlates with formation time. Gao et al. (2005)
found that low-mass halos (M < M�) that formed early were
much more strongly clustered than late-forming halos of the
same mass (see also Sheth & Tormen 2004; Harker et al. 2006).
Wechsler et al. (2006) demonstrated that the sense of assembly
bias reverses at high-mass (M > M�) such that late-forming
halos were more strongly clustered than early-forming halos at
fixed mass, and that these correlations are reflected in the rel-
ative bias of halos with different concentrations at fixed mass
(see also Wetzel et al. 2007; Jing et al. 2007).

Zentner (2007) in his review showed that window functions
that are local in real-space rather than Fourier space naturally re-
sult in early-forming halos that reside in underdense regions, as
reported for high-mass halos (M > M�) in the simulations. The
standard implementation of the excursion set formalism assumes
that the process of nonlinear collapse can be encapsulated into
the assignment of the collapse barrier. For high-mass halos, tidal
influences and nonlinear interactions with nearby objects should
be minimal because halos with masses significantly larger than
M� form from nearly spherical peaks and usually dominate
their local environments. As a result, the excursion set assump-
tion should be most valid for high-mass (M 
 M�) halos and
leads to a natural picture where early-forming, high-mass halos
become less strongly clustered than their late-forming counter-
parts.

The reversal of the environment-dependent halo formation
trend at low mass may owe to the truncation of small halo
growth by nearby structure as suggested by Wang et al. (2007).
Dalal et al. (2008) greatly extended this work, validating the
high-mass trend in a set of scale-free numerical simulations and
showing that environmental influences on halo bias, concentra-
tion, and formation time at fixed mass could be accounted for
by considering the “peak curvature,” dδRW/dσ , in addition to
peak height. The peak curvature serves as some proxy for envi-
ronment as peaks with greater curvature lie in relatively under-
dense environments. Dalal et al. (2008) also used a toy model to
demonstrate that at small masses environmental effects, such as
those suggested by Wang et al. (2007), can truncate halo growth
and drive early-forming halos to become less anti-biased as they
are advected by the larger-scale matter field.

Our results relate to these findings by providing a new out-
look on the connection between halo abundance, the effective
collapse barrier, and the excursion set formalism. If the excur-
sion set formalism fails to account properly for the abundance
of halos using an appropriate form for the collapse barrier, then
it may also fail to describe reliably the connection between
formation time, mass, and properties of the density field. The
effective collapse barrier may well be a function of additional
parameters beyond the local density (e.g., Chiueh & Lee 2001;
Sandvik et al. 2007), may incorporate information about the
larger-scale field (e.g., Zentner 2007; Desjacques 2008; Dalal
et al. 2008), and may require additional parameter dependencies
that to account for the nonlinear collapse of overdensities (e.g.,
Wang et al. 2007; Dalal et al. 2008).

At present, the excursion set theory provides the main frame-
work used to develop heuristic understanding of simulation re-
sults and to formulate fits to simulation results for halo abun-
dance, clustering, and other halo properties. The method suc-
ceeds in a gross sense. Excursion set theory identifies the funda-
mental scale in the problem, the mass where σ (M) ∼ δc. Below
this characteristic mass the halo abundance per unit mass has a
simple, power-law form, while above this mass the halo abun-
dance drops rapidly. However, a precise understanding of halo
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abundance and clustering beyond the gross accuracy provided
by the excursion set ansatz is now necessary. Contemporary
and forthcoming efforts to use measurements of the abundance
and clustering of galaxy clusters to constrain cosmological pa-
rameters, as well as comprehensive statistical studies of galaxy
formation and evolution, only highlight the need for a sound un-
derstanding of halo abundance and assembly, both globally and
as a function of environment. We need to explore amendments
and alternatives to the excursion set model to make progress in
our understanding of halo formation.

6. SUMMARY

In this paper we have presented tests of the excursion set
ansatz against cosmological simulations. Using a subset of
cosmological simulations from the Tinker et al. (2008) study
of the halo mass function, we identify the locations in the linear
overdensity field that later collapse to form dark matter halos.
We demonstrate that the dependence of the linear overdensity
of these regions on mass or smoothing scale σ (M) resembles
predictions of the ellipsoidal collapse model. While the effective
collapse barrier of simulated halos behaves analogously to the
simple ellipsoidal collapse barrier, the simulated halo mass
function is inconsistent with what the excursion set ansatz
predicts for such a barrier. This inconsistency implies that the
excursion set ansatz is not valid and cannot be used reliably to
predict halo abundance or bias.

The modified collapse barrier of Sheth et al. (2001) differs
significantly from the physical behavior calculated by the ellip-
soidal collapse model, which for example predicts convergence
to the spherical barrier (δ → δc) for the rarest peaks (σ → 0).
In view of this, the interpretation of the Sheth & Tormen (1999)
mass function as a prediction of the ellipsoidal collapse model
for the abundance of dark matter halos is not correct.

The impressive statistics of ever-larger dark matter simula-
tions will likely continue to uncover increasingly subtle varia-
tions on the classical picture of dark matter halo formation. In
this work, we identify a striking inconsistency between the ef-
fective collapse barrier of simulated halos and excursion set for-
malism predictions for their abundance. Our results also demon-
strate that there is still much to learn and understand about the
conditions for and the process of halo collapse, which warrants
further studies that critically revisit these issues using modern
large cosmological simulations.

We thank Anatoly Klypin for access to his cosmological
simulations and Neal Dalal for useful discussions on the subject
of this study. BER gratefully acknowledges support from a
Spitzer Fellowship through a NASA grant administrated by
the Spitzer Science Center. A.V.K. is supported by the NSF
under grants AST-0239759 and AST-0507666 and by NASA
through grant NAG5-13274. B.E.R. and A.V.K. are also partially
supported by the Kavli Institute for Cosmological Physics at the
University of Chicago. A.R.Z. is supported by the University
of Pittsburgh and by the NSF through grant AST 0806367.
A.R.Z. would like to thank the Michigan Center for Theoretical
Physics at the University of Michigan for support and hospitality
while some of this work was being performed. Some of the
calculations used in this work have been performed on the Joint
Fermilab-KICP Supercomputing Cluster, supported by grants
from Fermilab, the Kavli Institute for Cosmological Physics,
and the University of Chicago. One of the simulations was
performed at the Leibniz Rechenzentrum Munich, partly using
German Grid infrastructure provided by AstroGrid-D.

APPENDIX A

SPHERICAL COLLAPSE

A simple approximation for the dynamical evolution of
an overdense region is the spherical collapse model. The
dynamical equation for the expansion and collapse of a spherical
overdensity Δ of physical size Rphys(z) in a flat universe with a
cosmological constant can be written (e.g., Gunn & Gott 1972)

d2aR

dt2
= 8

3
πGρ̄ΛaR − 4

3
πGρ̄maR[1 + Δ(t)], (A1)

where aR = Rphys/R is the scale factor of the region, ρ̄Λ = ΩΛρc

is the dark energy density, and ΩΛ is the dark energy density
parameter. The corresponding growing linear overdensity δ
obeys the differential equation

d2δ

dt2
+ 2H

dδ

dt
= 4πGρ̄mδ (A2)

(e.g., Lifshitz 1946; Peebles 1965), while the physical overden-
sity evolves as

Δ(t) = a3

a3
R

− 1, (A3)

where a is the universal scale factor. The initial conditions for
evolving Equation (A1) are simply

aR(tinit) = a(tinit)(1 − δ(tinit)/3), (A4)

ȧR(tinit) = H (tinit)aR(tinit) − a(tinit)HD(tinit)δ/3, (A5)

where HD = Ḋ/D describes the rate of change of overdensities.
Initially Δ(t) � δ(t), as can be checked by Taylor-expanding
Equation (A3) and comparing it with Equation (A4), but
eventually the quantities diverge as the overdensity begins to
exceed the applicability of the linear order approximation. As
the spherical region begins to break from the universal expansion
and reaches a maximum radius at the turn-around time t = tta,
the physical overdensity reaches 1 + Δ(t = tta) � 5.55 while the
linear overdensity is δ(t = tta) � 1.06. As the region collapses
to a point of zero size, Δ → ∞ while the linearly extrapolated
overdensity approaches a value of

Bsc ≡ δsc = δ(tinit)D(zc)/D(zinit) = δc (SphericalCollapse),
(A6)

where δc = 1.686 is often called the linear collapse overdensity
for the growth of spherical perturbations (Gunn & Gott 1972;
Peebles 1980) for an Ωm = 1 universe (δc has a weak
dependence on cosmology; see, e.g., Bond & Myers 1996; Eke
et al. 1996). If the spherical collapse of the region to zero size
is associated with the formation of a dark matter halo, then
Equation (A6) can be used as the “spherical collapse barrier” for
purposes of calculating the first-crossing distribution associated
with spherical collapse.

APPENDIX B

ELLIPSOIDAL COLLAPSE AND ITS MODIFICATIONS

The gravitational collapse calculation has been generalized
to model nonspherical collapse by a number of authors (e.g.,
Zel’dovich 1970; Nariai & Fujimoto 1972; Hoffman 1986;
Bertschinger & Jain 1994; Eisenstein & Loeb 1995; Bond &
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Myers 1996; Audit et al. 1997; Del Popolo et al. 2001; Shen et al.
2006). Below we focus on an ellipsoidal collapse model by Bond
& Myers (1996, see their Section 2.1.3 and Appendix A), which
treats the gravitational collapse of a homogeneous ellipsoid by
separately following the coupled evolution of each axis ai of
the ellipsoid. Bond & Myers (1996) showed that the dynamical
equation for the expansion and collapse of an ellipsoidal region
with linear overdensity δ(t = tinit) = δ0 at an initial time tinit
can be written

d2ai

dt2
= 8

3
πGρ̄Λai − 4πGρ̄mai

[
1

3
+

Δ(t)

3
+

b′
i(t)

2
Δ(t) + λ′

i(t)

]
(B1)

where the index i = 1, 2, 3 indicates a principal axis. The term

b′
i = −2

3
+ a1a2a3

∫ ∞

0

dτ(
a2

i + τ
)
Π3

m=1

(
a2

m + τ
)1/2 (B2)

describes triaxial contributions to the gravitational acceleration.
A linear order approximation of the effects of external tides
on the evolution of the region are included through the factors
λ′

i(t) = λi − δ/3, which are written in terms of the eigenvalues
of the strain tensor

λ3 = δ

3
(1 + 3e + p), (B3)

λ2 = δ

3
(1 − 2p), (B4)

λ1 = δ

3
(1 − 3e + p). (B5)

Here, e � 0 is the ellipticity, −e � p � e is the
prolaticity, and the eigenvalues are ordered λ3 � λ2 � λ1.
This linear order approximation to the effects of tides grows as
λi(t) ∝ δ(t) ∝ D(t). The physical overdensity in the ellipsoidal
collapse model evolves simply as

Δ(t) = a3

a1a2a3
− 1, (B6)

where a is the universal scale factor. The initial conditions for
evolving Equation (B1) are

ai(tinit) = a(tinit)[1 − λi(tinit)], (B7)

ȧi(tinit) = H (tinit)ai(tinit) − a(tinit)HD(tinit)λi(tinit), (B8)

The evolution of the region is then determined by the
cosmology, the initial overdensity δ0, the ellipticity e, the
prolaticity p, and the initial universal scale factor ā(t = tinit).
For a spherical system (e = 0, p = 0, a1 = a2 = a3), the
dynamical equations reduce to Equation (A1).

Sheth et al. (2001) used the results of Doroshkevich (1970) to
show that, in the context of the Bond & Myers (1996) ellipsoidal
collapse model, the formula

g(e, p|δ) = 1125√
10π

e(e2 − p2)

(
δ

σ

)5

exp

[
−5

2

δ2

σ 2
(3e2 + p2)

]
(B9)

provides the expected distribution of ellipticities and prolatic-
ities for the shear field of Gaussian random overdensities and
corresponds to a distribution of effective collapse barriers for

halos (as a function of e and p) that describes the overdensity
at which the last (longest) principal axis collapses. Sheth et al.
(2001) provided an empirically determined, implicit functional
form to approximate the shape of the ellipsoidal collapse barrier
in terms of e and p,

δec(e, p)

δsc
= 1 + β

[
5(e2 ± p2)

δ2
ec(e, p)

δ2
sc

]γ

, (B10)

which follows the most probable (p = 0) trend of the collapse
barrier distribution well for the parameter values β = 0.47 and
γ = 0.615 (a more recent calculation has found β = 0.412 and
γ = 0.618, Desjacques 2008). For the most probable prolaticity
p = 0, the maximum of the probability distribution g(e, p =
0|δ) follows the ridgeline emp = (σ/δ)

√
5. Substituting p = 0

and e = emp into Equation (B10) yields a characteristic
ellipsoidal collapse barrier in terms of the overdensity variance
as

Bec ≡ δec = δsc

[
1 + β

(
σ 2

δ2
sc

)γ ]
. (B11)

Note that this barrier reduces to the spherical collapse barrier
[B = δc, Equation (15)] for large halo masses (small variances).
For reference, the ellipsoidal collapse barrier is plotted in
Figure 1 with the Sheth et al. (2001) parameters (dashed red
line).

APPENDIX C

AN INTEGRAL METHOD FOR FIRST-CROSSING
DISTRIBUTIONS WITH SHARP K-SPACE FILTERING

Typically, the first-crossing distribution is determined with a
Monte Carlo approach (effectively by integrating Equation (3)).
For the case of sharp k-space filtering, where smoothed over-
density executes a Markovian random walk with the smoothing
scale, and barriers with a suitably weak dependence on the vari-
ance, Zhang & Hui (2006) showed that by properly accounting
for the rate of first barrier crossings in an ensemble of trajecto-
ries, an integral relation for the first-crossing distribution could
be expressed in terms of the functional form of the barrier B
and the probability P (δ, S) that a trajectory δ first crosses the
barrier near S. Specifically, in terms of the barrier B(S), the
first-crossing distribution satisfies

1 =
∫ S

0
f (S ′)dS ′ +

∫ B(S)

−∞
P (δ, S)dδ (sharp−kfiltering).

(C1)
The first term on the right hand side accounts for trajectories

that have crossed at scales larger than S, while the second term

P (δ, S) = P0(δ, S) −
∫ S

0
dS ′f (S ′)P0(δ −B(S ′), S −S ′) (C2)

subtracts the rate of down-crossings from the probability

P0(δ, S) = 1√
2πS

exp

(
− δ2

2S

)
(C3)

that a trajectory given crosses the barrier near S. Equation (C1)
can be differentiated and combined with Equations C2-C3 to
produce a Volterra integral equation of the second kind for the
first-crossing distribution

f (S) = g1(S) +
∫ S

0
f (S)g2(S, S ′)dS ′ (sharp−kfiltering),

(C4)
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with

g1(S) =
[
B(S)

S
− 2

dB

dS

]
P0(B(S), S) (C5)

g2(S, S ′) =
[

2
dB

dS
− B(S) − B(S ′)

S − S ′

]
P0(B(S) − B(S ′), S − S ′)

(C6)
Hence, given a barrier shape B(S), Zhang & Hui (2006)

have provided a helpful method for calculating the first-crossing
distribution for a k-space filter via Equation (C4).

APPENDIX D

THE EXCURSION SET ANSATZ AND HALO MASS
DEFINITIONS

The results of Section 3 demonstrate a disconnect between
the characteristic linear overdensity of regions that collapse
to form dark matter halos and the collapse barrier required
to reproduce the abundance of those same halos using the
excursion set formalism. While the results of Section 3 are
internally consistent, one might wonder if the failure of the
excursion set ansatz was peculiar to the Δ = 200 spherical
overdensity halo definition. In this Appendix, we demonstrate
that the excursion set ansatz also fails for other common halo
definitions (specifically, Δ = 100 spherical overdensity halos,
Δ = 600 spherical overdensity halos, FOF halos, and halos
defined by spherical regions of size R = 2R200). Since these
halo definitions span the most practical definitions found in
the literature, the results of this appendix present an exhaustive
study of how our results depend on the halo and mass definitions.
Further, since the largest simulation we study has a 1 h−3 Gpc3

volume, the linear overdensity of regions with very large mass
(M200 � 5 × 1015h−1M) are not probed by our simulations.
Below, using extrapolations of the δ − σ (M) trend for various
halo mass definitions, we demonstrate that even if δ �→ δc as
σ (M) → 0 the excursion set mass functions do not reproduce
the simulated mass function for any halo mass definition we
consider.

To repeat the calculations in Section 3 for other halo defini-
tions, we must construct additional halo catalogs. For the spher-
ical overdensity halo definition, we follow Tinker et al. (2008)
and define halos with an overdensity Δ relative to the back-
ground density ρ̄m as the particles within a radius RΔ around
density peaks. For the FOF halo definition (e.g., Davis et al.
1985), we adopt the standard linking length of b = 0.2. For
halos defined by spherical regions of size R = 2RΔ, we use the
Δ = 200 catalog to identify halos and redefine the halo masses
by assigning all particles within 2R200 of the center-of-mass
membership in the halo. If the radius R = 2R200 for one halo
includes the center of mass of a smaller halo, the smaller halo
is discarded from the catalog.

For each halo definition, the mass function dn/dM is de-
termined by constructing a histogram for the halos by binning
in mass. The first-crossing distributions f (νc) corresponding to
each mass function are calculated using Equation (14). For each
mass bin we calculate jack-knife errors, as described in detail
by Tinker et al. (2008). For two spherical overdensity defini-
tions, Δ = 200 and Δ = 600, we simply adopt a mass function
of the form of Equation (23) with the best-fit parameters de-
termined in Appendix C of Tinker et al. (2008). For Δ = 200,
AT = 0.482, dT = 1.97, eT = 1, gT = 0.51, and hT = 1.228.
For Δ = 600, AT = 0.494, dT = 2.56, eT = 0.93, gT = 0.45,
and hT = 1.553. These analytical mass function fits make use

of the wide range of simulations studied by Tinker et al. (2008).
For mass functions for the other halo definitions, we rely on
our halo catalogs for the L1000W simulation and represent
the mass function with binned values and uncertainty estimates
constructed from these catalogs. We have checked that the first-
crossing distribution calculated from the binned mass function
for the Δ = 200 and Δ = 600 halos in the L1000W simulation
match the corresponding analytical fits from Tinker et al. (2008)
extremely well, and we therefore expect that the binned mass
functions and first-crossing distributions for the other halo mass
definitions are reliable estimates of the halo abundance over the
mass range probed by the L1000W simulation. The L1000W
simulation is sufficient for our needs, as the primary constraint
comes from the most massive halos in our catalogs.

We construct the distribution of linear overdensity δ as a
function of the smoothing scale σ (M) for the regions that
collapse to form halos in the manner described in Section 3.2,
using the same set of smoothed linear density fields calculated
in Section 3.1. The mean of the δ(σ ) distribution is calculated in
three bins of width Δσ = 0.25. For the Δ = 200 halo definition,
the calculation results in the distribution of δ versus σ (M) shown
in Figure 3 (at σ (M) � 1.2).

To calculate an excursion set mass function from the over-
density distribution for each halo mass definition, the mean
overdensity δ as a function of σ (M) is fit with two analytical
forms to produce two model collapse barriers. We first fit the
function

δfit = δc

[
1 + β(σ 2/δ2

c )γ
]
, (D1)

used by Sheth et al. (2001) to represent ellipsoidal collapse,
allowing β and γ to vary. By construction, this function
converges to δfit → δc as σ → 0. We also fit a linear function,

δlin = Aσ + b, (D2)

allowing A and b to vary. The intercept b in general is smaller
than δc; this functional form thus allows us to test how results
would change if the barrier does not asymptote to δc for low
values of σ . The best-fit parameters for the effective collapse
barrier for each halo mass definition are reported in Table 1.
We then use the best-fit parameters for Equations D1 and D2
to calculate a sharp k-space first-crossing distribution via the
method of Zhang & Hui (2006; i.e., Equation (C4)), and compare
with the simulated first-crossing distribution provided by the
halo catalog.

Figure 6 shows the distribution of linear overdensity δ with
smoothing scale σ (M) for the Δ = 200 halo catalog. As in
Figure 3, the mean overdensity of regions that collapse to
form halos in the Δ = 200 catalog lie above the spherical
collapse barrier δc. Analytical fits to the mean of the overdensity
distribution (i.e., the effective collapse barrier for this halo
mass definition) show that a simple linear extrapolation possibly
suggests that δ → 1.5 as σ → 0. The excursion set first-crossing
distributions calculated for models of the mean overdensity in
regions that form Δ = 200 halos show that the differences in
the fits at σ � 0.45 have little influence on the resulting halo
abundance, as the larger δ > δc at scales σ � 0.45 suppresses
the abundance of halos at νc < 4 relative to the spherical collapse
or Tinker et al. (2008) Δ = 200 mass functions (see the right
panel of Figure 6).

Changing the overdensity threshold in the spherical overden-
sity halo definition has an intuitive effect on the linear overden-
sity of regions that collapse to form halos. A higher threshold
overdensity, such as a Δ = 600 halo mass definition (Figure 7),
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Figure 6. Smoothed linear overdensity δ, extrapolated to z = 0, as a function of smoothing scale σ (M) for regions that collapse to form Δ = 200 halos by the present
epoch (left panel). The circles correspond to the mean overdensities, while the error bars indicate the halo-to-halo scatter. The error on the mean is significantly
smaller than the scatter in all cases. Shown for comparison is the spherical collapse barrier (δc , solid gray line). Solid red line shows a fit of the functional form of the
ellipsoidal collapse barrier to the simulation results, while the dashed green line shows a simple linear fit. The right panel shows excursion set mass functions for each
model barrier calculated using the method of Zhang & Hui (2006) with sharp k filter and compared with the spherical collapse (gray line, right panel) and Tinker et al.
(2008) Δ = 200 (blue line, right panel) mass functions.

(A color version of this figure is available in the online journal.)

Figure 7. Same as for Figure 6, but for halos defined with a Δ = 600 spherical overdensity criterion. Increasing the overdensity threshold in the halo mass definition
does not improve the agreement between the excursion set and simulated halo mass function.

(A color version of this figure is available in the online journal.)

Table 1
Best-Fit Barrier Model Parameters

Mass Definition β γ A b

Δ = 100 0.396 1.242 0.442 1.441
Δ = 200 0.411 0.809 0.487 1.506
Δ = 600 0.543 0.496 0.576 1.660
FOF 0.363 0.890 0.458 1.493
Rvir = 2RΔ=200 · · · · · · 0.409 1.348

results in a higher characteristic linear overdensity for regions
that collapse to form halos. Model fits to the mean overdensity
with smoothing scale show that the mean overdensity increases

roughly linearly, and approaches δ → δc as σ → 0. The abun-
dance of halos is correspondingly suppressed, with the model
barrier fits producing very similar excursion set first-crossing
distributions that lie below the spherical collapse mass function.
The simulated Δ = 600 mass function from Tinker et al. (2008)
has a lower abundance than the lower threshold Δ = 200 mass
function, but the excursion set mass functions are significantly
lower than the simulated Δ = 600 mass function (Figure 7,
right panel). In this case, increasing the overdensity threshold
does not improve the performance of the excursion set ansatz.
Similarly, using a lower threshold such as a Δ = 100 halo mass
definition (Figure 8), does not bring the excursion set and sim-
ulated mass functions into agreement. The lower overdensity
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Figure 8. Same as for Figure 6, but for halos defined with a Δ = 100 spherical overdensity criterion. Here, the simulated halo mass function is measured directly from
only the L1000W simulation (points and error bars).

(A color version of this figure is available in the online journal.)

Figure 9. Same as for Figure 8, but for halos defined with a FOF algorithm using a linking length of b = 0.2. The characteristic linear overdensity of regions that
collapse to form FOF halos does not follow the modified ellipsoidal collapse barrier presented by (Sheth et al. 2001, purple dotted line). Changing the halo definition
from spherical overdensity to FOF halos does not improve the agreement between the excursion set and simulated halo mass function. The simulated halo mass
function is measured directly from only the L1000W simulation (points and error bars).

(A color version of this figure is available in the online journal.)

threshold decreases the characteristic linear overdensity of re-
gions that collapse to form halos and increases the abundance of
regions that can collapse. However, the mean overdensity does
not decrease significantly below the spherical collapse overden-
sity and the excursion set mass functions only begin to roughly
match abundance predicted by the spherical collapse mass func-
tion. The simulated Δ = 100 mass function has increased the
abundance of halos relative to the Δ = 200 mass function, so
the disagreement between the excursion set mass function and
the simulated mass function still remains for this lowered over-
density threshold (Figure 8, right panel).

Altering the mass definition from spherical overdensity to
FOF halos does not improve the agreement between the simu-
lated and excursion set mass function. The original motivation

presented by Sheth et al. (2001) for modifying the ellipsoidal
collapse barrier to the lower limiting value of δSMT → √

aSMTδc

as σ → 0 was the use of a FOF definition in identifying halos
in the GIF simulation. Figure 9 demonstrates explicitly that the
characteristic linear overdensity of regions that collapse to form
FOF halos does not follow Equation 20; the mean overdensity is
similar to that found for Δ = 200 halos. Similarly, the excursion
set mass functions calculated from the model fits to the mean
overdensity of regions that collapse to form FOF halos do not
match the simulated FOF halo mass function.

We could also redefine the mass from the Δ = 200 halo
definition to include all particles within a modified “virial”
radius R = 2R200. This halo mass definition is intended as an
analogy to the “static” mass halo definition proposed by Cuesta
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Figure 10. Same as for Figure 8, but for Δ = 200 halos with masses rescaled to include all particles within a radius R = 2R200. In this halo definition, small Δ = 200
halos with centers of mass that reside within a distance R of larger halos are incorporated into the larger system. The mean of the linear overdensity distribution in
this case lies below the spherical collapse barrier at small σ , so only the excursion set mass function for the linear barrier (which allows δ < δc) is compared with the
simulated mass function (right panel). Changing the halo mass definition to increase the region incorporated into halos identified by a Δ = 200 spherical overdensity
criterion does not improve the agreement between the excursion set and simulated halo mass function (points and error bars).

(A color version of this figure is available in the online journal.)

Figure 11. Ratio fsim(νc)/ffi(νc) of the simulated first-crossing distribution fsim
to the excursion set first-crossing distribution ffit calculated from a linear fit to
the overdensity distribution plotted in Figures 6–10 for a variety of halo mass
definitions, plotted as a function of peak height νc = δc/σ (M). For the Δ = 200
(orange line) and Δ = 600 (red line) spherical overdensity halo definitions,
the analytical fits from Tinker et al. (2008) are compared with the calculated
first-crossing distributions. For Δ = 100 spherical overdensity halos (purple
points), FOF halos (blue points), and halos with masses defined by the particle
content within a radius R = 2R200 (green points), the binned first-crossing
distributions from the L1000W simulation halo catalog were compared with
the excursion set results at the appropriate νc for each mass bin. For these halo
mass definitions, the uncertainty estimates in fsim/ffit reflect the same fractional
uncertainty in the simulated first-crossing distributions shown in Figures 8–10.
For every halo mass definition, that fsim/ffit is not constant with νc demonstrates
that the disagreement between the simulated and excursion set first-crossing
distributions differ in shape and not simply in relative normalization.

(A color version of this figure is available in the online journal.)

et al. (2008), who found that halos defined by regions with zero
mean radial velocity (with a size of approximated 2 × Rvir, see
their Figure 14) displayed an abundance similar to the Press–
Schechter spherical collapse mass function at z = 0. This halo
definition results in halo abundance roughly twice that found by
Cuesta et al. (2008) at fixed mass because the effective Rvir/R200
ratio is mass-dependent, but provides a useful example of a
mass definition that incorporates very large regions into single
halos. Figure 10 shows that the linear overdensity of regions that
collapse to form halos defined in this manner is typically low,
since the typical overdensity at 2R200 is quite low, and decreases
below the spherical collapse barrier at small σ . Hence, we only
fit the mean overdensity with a linear barrier model that allows
for δ < δc and do not report the best-fit parameters for the
model defined by Equation (D1). As is clear from the right
panel of Figure 10, the excursion set mass function calculated
for the linear barrier model fit for the R = 2R200 halos does
not recover the simulated halo mass function and, therefore,
this halo mass definition does not improve the success of the
excursion set ansatz.

Lastly, as in the discussion in Section 3, one might wonder
whether the disagreement between the simulation and excursion
set mass functions simply involves a normalization issue. In fact,
the normalization and shape of each of the excursion set mass
functions differ from the mass function constructed from the
simulated halo abundance. Figure 11 shows fsim(νc)/ffit(νc),
the ratio of the first-crossing distribution fsim(νc) determined
from the simulations to ffit(νc), the first-crossing distribution
calculated using the linear barrier model fits to the overdensity
distribution, for each of the halo mass definitions considered
in this paper (Δ = 100, Δ = 200, and Δ = 600 spherical
overdensities, FOF halos, and halos with masses determined by
the particle distribution within a radius R = 2R200 of the halo
center-of-mass). For the Δ = 200 and Δ = 600 halo definitions,
Figure 11 shows the ratio of the best-fit analytical Tinker
et al. (2008) and excursion set first-crossing distributions. For
the other halo definitions, the binned first-crossing distribution
determined by the simulated halo mass function is divided by
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the excursion set first-crossing distribution at the appropriate νc

value. Uncertainty estimates for fsim(νc)/ffit(νc) for these halo
mass definitions (the error bars in Figure 11) have the same
fractional error as for the first-crossing distributions plotted in
Figures 8–10. For each mass definition, fsim/ffit varies with the
peak height νc and demonstrates that the disagreement between
the simulated and excursion set first-crossing distributions does
not owe simply to their relative normalization.
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