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ABSTRACT

We utilize the local velocity dispersion function (VDF) of spheroids, together with their inferred age distributions,
to predict the VDF at higher redshifts (0 < z � 6), under the assumption that (1) most of the stars in each nearby
spheroid formed in a single episode and, (2) the velocity dispersion σ remained nearly constant afterward. We
assume further that a supermassive BH forms concurrently with the stars, and within ±1 Gyr of the formation of
the potential well of the spheroid, and that the relation between the mass of the BH and host velocity dispersion
maintains the form MBH ∝ σβ with β ≈ 4, but with the normalization allowed to evolve with redshift as ∝ (1 + z)α .
We compute the BH mass function associated with the VDF at each redshift, and compare the accumulated total
BH mass density with that inferred from the integrated quasar luminosity function (LF; the so-called Sołtan
argument). This comparison is insensitive to the assumed duty cycle or Eddington ratio of quasar activity, and we
find that the match between the two BH mass densities favors a relatively mild redshift evolution, with α ∼ 0.33,
with a positive evolution as strong as α � 1.3 excluded at more than 99% confidence level. A direct match
between the characteristic BH mass in the VDF-based and quasar LF-based BH mass functions also yields a
mean Eddington ratio of λ ∼ 0.5–1 that is roughly constant within 0 � z � 3. A strong positive evolution in
the MBH–σ relation is still allowed by the data if galaxies increase, on average, their velocity dispersions since
the moment of formation due to dissipative processes. If we assume that the mean velocity dispersion of the host
galaxies evolves as σ (z) = σ (0) × (1 + z)−γ , we find a lower limit of γ � 0.23 for α � 1.5. The latter estimate
represents an interesting constraint for galaxy evolution models and can be tested through hydro simulations. This
dissipative model, however, also implies a decreasing λ at higher z, at variance with several independent studies.
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1. INTRODUCTION

It has now been assessed that most, if not all, local galaxies
have a supermassive black hole (BH) at their center, the mass
of which is tightly correlated with the velocity dispersion σ
and other bulk properties of the host galaxy (e.g., Ferrarese &
Merritt 2000; Gebhardt et al. 2000). However, the sample of
local galaxies for which the BH sphere of influence has been
resolved amounts to only ∼30. It is not clear how representative
this small sample is of the whole BH population, and whether
the correlations seen in the sample already held in the past.

Peng et al. (2006) have collected a sample of 31 lensed and 18
nonlensed active galactic nuclei (AGNs) at redshifts z > 1.7.
They measured rest-frame R-band luminosities from H-band
fluxes and BH masses by applying virial relations based on
emission line widths. They found that the BH-to-host galaxy
luminosity at z ∼ 2 is about the same as that at z ∼ 0. Therefore,
once the observed rest-frame luminosity is dimmed through
passive evolution to z ∼ 0, at fixed BH mass the ratio BH-to-host
luminosity grows significantly, and the resulting BH-luminosity
normalization is several times higher than the local one. Similar
results were derived by McLure et al. (2006), who measured the
BH-to-host galaxy mass ratio in a sample of radio-loud AGNs
in the redshift range 0 < z < 2 finding MBH/MSTAR∝ (1 + z)2.
Shields et al. (2006) found that the CO emission lines in a
sample of z > 3 quasars are very narrow, suggesting bulge
mass about an order of magnitude lower than measured in the
local universe, at fixed BH mass (see also Coppin et al. 2008).
Treu et al. (2007) found that the BH masses in a sample of
20 Seyferts galaxies at z = 0.36 are offset by an amount of

Δ log MBH ∼ 0.5 at fixed velocity dispersion, which implies an
evolution of MBH/MSTAR∝ (1 + z)1.5±1.0, consistent with that
derived by the previous works.

On the other hand, Lauer et al. (2007) have discussed several
possible biases which may seriously affect these findings. At
high redshifts a sample will be biased toward the most luminous
AGNs and more massive BHs. Given the observed scatter in the
local relations, especially significant in the MBH–host luminosity
relation, these massive BHs will be preferentially associated
with the less massive, but more numerous galaxies, yielding
a false sign of evolution. When the cumulative mass density
of AGNs is taken into account, several authors (e.g., Haiman
et al. 2004; Marconi et al. 2004; Silverman et al. 2008; Shankar
et al. 2009, hereafter SWM) have shown that once rescaled by
a simple constant, it provides a good match to the cosmological
star formation rate density. De Zotti et al. (2006) and SWM
have shown that the galaxy stellar mass function at z ∼ 2,
mostly composed of massive early-type galaxies (e.g., Drory
et al. 2005), converted into a BH mass density assuming an
MBH/MSTAR ratio three to five times higher than in the local
universe, would imply a BH mass density already close, if not
higher, than that inferred in the local universe, leaving no room
for further accretion at z � 2, where, in fact, a significant
fraction of the total AGN energy output is produced. Recently,
Ho et al. (2007) compiled a sample of 154 nearby (z < 0.1)
active galaxies showing substantial ongoing BH growth in the
most actively accreting AGNs, where BH growth appears to be
delayed with respect to the assembly of the host galaxy.

In this paper, we propose a simple, yet robust, way to constrain
the degree of redshift evolution in the MBH–σ relation, that
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Figure 1. VDF at different redshifts, as labeled, obtained by combining the local VDF with the age distribution of local galaxies (Equation (1)). Left panel: VDF
obtained using the ages computed from Lick indexes; right panel: VDF obtained using the ages computed from the MOPED algorithm (see the text for details).

is relatively insensitive to assumptions that relate the SMBH
population to quasars. We combine the measured VDF of local
spheroids with a postulated power-law redshift dependence of
the MBH–σ relation. By comparing the resulting total BH mass
density at each redshift with the same quantity inferred from
integration of the AGN LF (see Sołtan 1982), we find the degree
of evolution required in the MBH–σ relation to match these two
independent estimates. This approach yields results based on
the “bulk” of the active BHs at all redshifts, and is therefore
relatively insensitive to possible biases which may affect studies
performed on small samples of high-redshift luminous quasars
(e.g., Lauer et al. 2007). After describing the sample used in our
computations in Section 2, we proceed to derive our main results
in Section 3. These results are discussed further in Section 5,
where we also offer our conclusions. Throughout this paper we
use the cosmological parameters Ωm = 0.30, ΩΛ = 0.70, and
h ≡ H0/100 km s−1 Mpc−1 = 0.7, consistent with the three-
(Spergel et al. 2007) and five-year (Dunkley et al. 2009) data
from the Wilkinson Microwave Anisotropy Probe (WMAP).

2. DATA

We have used the sample of early-type galaxies obtained
by Bernardi et al. (2006). The sample, extracted from the
Sloan Digital Sky Survey (York et al. 2000), contains over
40,000 early-type galaxies, selected for having an apparent
magnitude 14.5 � Mr � 17.75, extending over a redshift range
0.013 < z < 0.25, which corresponds to a maximum look-
back time of 3 Gyr. The ages of galaxies are computed in two
different ways, discussed in detail by Jimenez et al. (2007),
from (1) single stellar population spectral fitting, using the
MOPED algorithm (Heavens et al. 2000) to determine the full
star-formation history of the galaxies and (2) using the published
ages by Bernardi et al. (2006) which were obtained by fitting
the Thomas et al. (2005) α-enhanced models to the Lick index
absorption features measured from stacked spectra of galaxies
with similar properties. The age distributions at fixed velocity
dispersion σ are generally broad, but tend to be narrower and
centered on older ages for higher values of σ . Such effects are
more marked for the age distributions inferred from MOPED
(see Figure 1 in Haiman et al. 2007). We will compare results
obtained by adopting either the MOPED or the Lick-index age
distribution in Section 3.

The analysis presented in Bernardi et al. (2006); Haiman
et al. (2007) probe velocity dispersions within 2.05 �
log(σ/km s−1) � 2.45. Here we extend such analysis includ-

ing the age distributions of galaxies with velocity dispersion
2.45 � log(σ/km s−1) � 2.55. We find that galaxies within this
last bin are even older than the oldest galaxies probed by Haiman
et al. (2007), confirming and extending the general trend of in-
creasing age for larger σ . Instead of considering one single bin
with mean velocity dispersion log(σ/km s−1) = 2.5, we have
treated the bin as two distinct bins with log(σ/km s−1) = 2.45
and 2.55 which we have assumed share the same age distribu-
tions as the total bin. We have also included an additional bin
with log(σ/km s−1) = 2.60, which we have again assumed to
have an age distribution equal4 to that with log(σkm s−1) = 2.45
and 2.55 (a direct estimate of the ages for these galaxies with
the techniques discussed above is highly limited by the low
signal-to-noise of the spectra). As will be shown in Section 3
(Figure 1), this binning in log σ enables us to better probe the
statistical evolution of the VDF even at large velocity disper-
sions, and it has a negligible effect in the resulting cumulative
BH mass density and on our general results.

3. RESULTS

We first estimate the VDF as a function of redshift z. At any
z, the VDF in a given bin of velocity dispersion σi is given
by all the galaxies which have formed prior to z. Therefore, to
compute Φ(σj , z) we subtract from the local census of galaxies
with velocity dispersion σi those galaxies that have an age τ
lower then the look-back time τj (z):

Φ(σi, z) =
⎡
⎣1 −

∑
τ<τj

p(τj (z)|σi)

⎤
⎦ × Φ(σi) . (1)

Note that p(τj (z)|σi) refers to the fraction of galaxies with
velocity dispersion σi which have an age of τj (z) ± 1 Gyr.
Therefore, Φ(σi, z) includes in the σi bin all galaxies whose
ages are within ±1 Gyr of τj (z). The VDF at z = 0 is taken
from Sheth et al. (2003) and includes the contribution of bulges
of spirals. We therefore assume that bulges of spirals and local
spheroids within the same bin of velocity dispersion share
similar age distributions. However, as discussed in Section 5, our
results would still hold even if the contribution from spirals were
neglected. The statistical uncertainties associated with Φ(σ, z)

4 A more appropriate choice would be to assign older ages to the galaxies
with extreme velocity dispersions, given the general trend of older ages for
higher σ , however, this would pose even stronger evidence for the downsizing
discussed below further strengthening our general conclusions.
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Figure 2. Comparison between the accreted mass density at each redshift obtained from Φ(σ, z), convolved with the local MBH–σ relation (solid curve and solid
squares) and the mass density inferred from integration of the Shankar et al. (2009) AGN LF (long-dashed curve) and a radiative efficiency of ε = 0.077; the gray
area represents the uncertainty at each time t associated with the mass accreted within t ± 1 Gyr; the dot-dashed line is the predicted accreted mass using the Hopkins
et al. (2007) AGN LF and a radiative efficiency of ε = 0.114. The left panel shows ρVDF(z) predicted from the VDF assuming that the MBH–σ relation is independent
of redshift, while the right panel shows the predictions for the best-fit ρVDF(z) when the normalization of the MBH–σ relation evolves as ∝ (1 + z)0.33.

are computed from Equation (1) through error propagation
including random uncertainties in p(τj (z)|σ ), given by Haiman
et al. (2007; see their Figure 1) and Φ(σ ), given by Sheth et al.
(2003).

Figure 1 shows the VDF obtained from Equation (1). The dif-
ferent curves in both panels show Φ(σ, z) at different redshifts,
as labeled. At fixed redshift, the symbols indicate the position
of the mean in the bin of log σ considered, for which the reli-
able age distributions p(τj (z)|σi) have been computed. In the
left panel of Figure 1, the pji distributions have been derived
from the Lick-indices method, while the right panel shows the
results with the MOPED-based pji distributions. In our analysis
below, we will adopt the Φ(σ, z) implied by the pji derived from
Lick indices. However, we will discuss the consequences of the
alternate choice on our results in Section 4. In both cases, we
reproduce the conclusion of previous work (e.g., Trager et al.
2000; Thomas et al. 2005; Bernardi et al. 2006; Jimenez et al.
2007; Haiman et al. 2007)—that is, we find strong evidence for
downsizing: on average, galaxies with larger velocity dispersion
are formed earlier. This behavior is expected from basic galaxy
formation theory: high-redshift galaxies form in a denser uni-
verse and therefore preferentially form out of baryonic clumps
collapsed in denser, gas-rich environments which in turn, induce
more dissipation, more compact remnants, and higher velocity
dispersions. At fixed velocity dispersion, the MOPED ages are
higher than inferred from Lick indices, producing a less pro-
nounced evolution in the VDF at 0 � z � 3. Theoretical models
in which the galaxy velocity dispersion is linked with the virial
velocity of the host halo (e.g., Ferrarese 2002) predict similar
trends for the VDF as a function of time (Cirasuolo et al. 2005;
see also Loeb & Peebles 2003).

The BH mass function implied by the VDF at any time is
given by converting Φ(σ, z) to a BH mass function through
the MBH–σ relation and a convolution with a Gaussian with
intrinsic scatter of 0.22 dex. We assume here that log MBH at
fixed logσ is given by a Gaussian distribution, with a mean of

log

(
MBH

M�

)
= 8.21 + 3.83 log

( σ

200 km s−1

)
+ α log (1 + z) ,

(2)
and a standard deviation of η = 0.22. This latter value
represents the intrinsic scatter as given by Tundo et al. (2007)

and as recently confirmed by Shankar & Ferrarese (2009). By
integrating the resulting BH mass function at all times, we derive
the total BH mass density ρVDF(z), corresponding to BHs in the
range of σ and BH mass probed by our sample at each redshift.

We then compare ρVDF(z) with the BH mass density obtained
by direct integration of the AGN LF Φ(L, z) from z = 6 up to
redshift z. The latter quantity is given by

ρ•(> log Lmin, z) = 1 − ε

εc2

∫ 6

z

dz′
∫ ∞

log Lmin

Φ(L, z′)L
dt

dz′ d log L .

(3)
Here ε represents the radiative efficiency, and for our numer-
ical calculation, we adopt the bolometric AGN LF Φ(L, z)
from SWM (using the LF from Hopkins et al. 2007 gives
similar results as discussed below). At each redshift, we in-
tegrate Equation (3) above the minimum observed luminosity
of log Lmin = 41 erg s−1, although, as discussed in Section 5,
the exact choice for Lmin does not alter our conclusions.

The growth rate of an active BH of mass MBH is then
ṀBH =MBH/tef , where the e-folding time is (Salpeter 1964)

tef = 4 × 107

[
ε(1 − ε)−1

0.1

]
λ−1 yr, (4)

where λ is the ratio of the luminosity εṀBHc2 to the Eddington
(1922) luminosity. Figure 2 compares the two independent
estimates of BH mass densities. The accreted mass density at
each redshift obtained from Φ(σ, z) and the MBH–σ relation is
shown with a solid curve. The solid squares show the redshifts
where the mass density was computed. The long-dashed curve
represents the mass density inferred from integration of the
SWM AGN bolometric LF. Given that the ages of galaxies in
the sample have a median associated uncertainty of ± 1 Gyr, at
any time t(z) the BH mass density from AGNs to be compared
to ρVDF(z) is systematically uncertain by the mass accreted
within t ±1 Gyr, which we show as the gray area.5 We choose a
constant mean radiative efficiency of ε = 0.085, which provides

5 Note that the t ± 1 Gyr uncertainty is for ρVDF(z). However, in our
calculations, assigning the uncertainty to ρ•(z) or ρVDF(z) makes no
difference. If the time of formation of the galaxies is uncertain by ±1 Gyr, then
statistically the ρVDF(z) at the time t can be compared with the cumulative
mass accreted at any time t ± 1 Gyr.
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Figure 3. Confidence levels of 90% and 99% computed assuming χ2 = χ2
min + 2.30 and χ2 = χ2

min + 9.21, respectively, for two parameters in the model, the radiative
efficiency ε and the exponent α, where the normalization of the MBH–σ relation evolves as ∝ (1 + z)α . Left panel: χ2 computed by assuming that no correlation exists
between BH mass densities computed at different redshifts. The cross marks the best-fit value of ε = 0.077 and α = 0.33 corresponding to the minimum χ2

min ∼ 3
(for eight degrees of freedom). Right panel: confidence levels computed inserting all the significant sources of correlations among different redshift bins. It is evident
that either way a strong redshift evolution in the MBH–σ relation is ruled out at a high confidence level, if the radiative efficiency is constant in time.

a good match to the BH mass density at z = 0 (e.g., Haiman
et al. 2004; SWM). It can immediately be inferred from the
left panel, which assumes an unevolving MBH–σ relation, that
ρVDF(z) and ρ•(z) are consistent with each other within errors,
and therefore a strong evolution with redshift in the MBH–σ
relation is not required. Very similar results are found if we
adopt the bolometric LF from Hopkins et al. (2007), shown as
the dot-dashed curve in the same figure. In this case, we use a
slightly higher radiative efficiency of ε ∼ 0.11 to renormalize
the total z = 0 accreted mass density to the local value, due
to the fact that the bolometric corrections used by Hopkins
et al. (2007) are about 30% higher then those adopted by SWM.
Nevertheless, even in this case we find that ρ•(z) well matches
ρVDF(z) at all times.

Joint confidence levels on the two parameters ε and α, inferred
from a χ2 analysis are shown in Figure 3. The cross marks the
best-fit model with ε = 0.077 and α = 0.33 (corresponding to
the minimum χ2

min ∼ 3 for eight degrees of freedom), which is
shown in the right panel of Figure 2. Once a constant radiative
efficiency is fixed to match the z = 0 local and accreted mass
densities, it is evident that the available data favor a relatively
mild redshift evolution of the MBH–σ relation with α � 0.3,
while a strong evolution with α � 1.3 is ruled out at more
than 99% confidence level. Likewise, negative evolution with
α � −1 is ruled out for any choice of ε. We also note that
values of α � 1 yield the unphysical result that the absolute
total BH mass density increases from z = 0 to z � 0.7, as
shown in Figure 4. The confidence levels in Figure 3 have
been computed by assuming that the BH mass densities ρVDF(z)
computed at different redshifts to be independent of one another.
This may be an oversimplification given that the VDF computed
at any given redshift depends directly on the VDF at z = 0.
We therefore repeat the full χ2 analysis by computing the full
covariance matrix COV[ΔρVDF(zi), ΔρVDF(zj )]. The details of
how we compute the variances and covariances are given in the
Appendix. Here we point out that the χ2 computed by switching
to the full covariance matrix yields very similar, if not stronger,
results. We still find, in fact, a best-fit value of α ∼ 0.33, with a
χ2 per degree of freedom of 0.77, with high values of α � 1.0
excluded at more than 99% confidence level, and a value of
α ∼ 0 only marginally acceptable.

It is clear from Equation (3) that the accreted BH mass density
does not depend on the assumed duty cycle or Eddington-
ratio distribution λ(MBH,z), apart from a weak dependence

Figure 4. Same format as Figure 2, with parameters α = 1 and ε ∼ 0.08, 0.10
for the SWM and Hopkins et al. (2007) LFs, respectively.

on the latter through the lower limit of the integration. The
strongest dependences are on the radiative efficiency and on
the bolometric corrections (see also Figure 9 in SWM). On the
other hand, the Eddington-ratio distribution and its evolution
with redshift can be constrained by comparing the AGN-
based and VDF(z)-based differential BH mass functions (rather
than comparing only the integrated quantities). The Φ(σ, z)
convolved with the MBH–σ relation (Equation (2)), in fact,
predicts the shape of the BH mass function for MBH � MBH,min.
On the other hand, as extensively discussed in the literature
(see SWM, and related work by, e.g., Cavaliere et al. 1982;
Small & Blandford 1992; Salucci et al. 1999; Yu & Tremaine
2002; Marconi et al. 2004; Shankar et al. 2004), if a mean
Eddington ratio λ = L/LEdd is assumed for the active BHs, then
through a continuity equation and an assumed initial condition,
the AGN LF can be directly mapped into a BH mass function
at all times. The “break” in the predicted BH mass function
will then approximately reflect the break L∗(z) in the observed
AGN LF, i.e., MBH

∗(z) ∝ L∗/λ̄, where λ̄ is the mean Eddington
ratio. Following Sołtan (1982) and Salucci et al. (1999), SWM
(see also, e.g., Yu & Tremaine 2002) showed that constraints
on the mean radiative efficiency and Eddington ratio of BHs
can be gained by comparing the directly measured and the
accreted BH mass functions. However, the BH mass function
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Figure 5. Comparison between the mass functions predicted from Φ(σ, z) convolved with the MBH–σ relation whose normalization evolves as ∝ (1 + z)0.33 (thick
curves, with the uncertainty shown shaded in gray), and the mass function predicted from the AGN LFs of Shankar et al. (2009; left panel) and Hopkins et al. (2007;
right panel). A constant Eddington ratio of λ = 0.6, 1.0 has been assumed for computing the accreted mass functions in the left and right panels, respectively. It can
be seen that the choice of a single constant Eddington ratio provides a good match to the velocity dispersion-based BH mass functions, at least around the peak of the
distributions. A good match is also found extending the comparison up to z � 3; however, the large uncertainties at these redshifts prevent any firm conclusion.

has directly been measured only locally, so this comparison
can be performed only at z = 0, and cannot be used to glean
information on the evolution of these two parameters.

The left panel of Figure 5 compares the BH mass function
predicted from the combination of Φ(σ, z) and the mildly
evolving best-fit MBH–σ relation with a normalization ∝ (1 +
z)0.33 (shown as thick curves, with their uncertainty shown in
gray), and the mass function predicted from the AGN LF of
SWM assuming a mean λ̄ = 0.6 (shown as thin curves).6

Figure 5 shows that up to z � 3, a constant (nonevolving)
mean Eddington ratio of λ̄ = 0.6 provides a good match
between the shapes of the accreted BH mass function and that
computed from the VDF. At the low-mass end, the VDF-based
BH mass function starts being incomplete, while at the high-
mass end, a higher intrinsic scatter in the MBH–σ relation and/or
a more complicated Eddington-ratio distribution may improve
the match. Fully matching the two BH mass functions is beyond
the scope of this paper (see SWM for further analysis). Our
aim here is merely to demonstrate that our simple approach
also provides hints on the mean Eddington ratio and its redshift
evolution. Similar results are found switching to the Hopkins
et al. (2007) LF. The right panel of Figure 5 shows that a
good match between the BH mass functions is recovered on
adopting a constant λ = 1.0. Although systematic uncertainties
in the bolometric AGN LF preclude tighter constraints on the
mean Eddington ratio (see SWM for further discussions on these
issues), it is remarkable that simple models with 0.5 � λ � 1.0
constant with redshift can provide a reasonable match with
the VDF-based BH mass functions. An independent way to
constrain the Eddington-ratio distribution and its evolution with
redshift can be derived by matching the halo clustering implied
by the redshift dependent model BH mass function and the
observed AGN clustering (Shankar et al. 2008; F. Shankar et al.
2009, in preparation). We have also checked that the same values
of λ provide a good match even at z � 3; however, the large
uncertainties associated with the VDF at these high redshifts
prevent any firm conclusion.

A somewhat different version of the above exercise was
performed by Haiman et al. (2007). Under the assumption
that the duty cycle of quasar activity is short, Haiman et al.

6 Note that we assumed an initial duty cycle of 0.5 at z = 6; however, the BH
mass function at z � 3.5 becomes independent of this assumption. See SWM
for further details.

(2007) matched the instantaneous quasar LF at each redshift
to the LF predicted from ρVDF(z), plus an assumed constant
(nonevolving) duty-cycle and Eddington-ratio distribution. This
approach neglects the BH mass accreted during the luminous
quasar phases (or at least any corresponding variation of the
“quasar light-curve” caused by the growth in BH mass), and
places a constraint directly on the relation between quasar
luminosity L and host velocity dispersion σ . While the L–
σ relation is essentially a convolution of the Eddington-ratio
distribution with the MBH–σ relation, this approach cannot
be used to study these two relations separately. Nevertheless,
Haiman et al. (2007) found no evidence for any evolution in
the L–σ relation with redshift; their fits to the quasar LF are
consistent with a constant 0.3 � λ̄ � 0.5 combined with
a nonevolving MBH–σ relation. Since the MBH–σ relation is
indeed found here, independently, to be nonevolving, this breaks
the degeneracy in the result of Haiman et al. (2007) and also
requires that the evolution in the Eddington-ratio distribution be
modest.

4. DISCUSSIONS

4.1. Varying the Model Assumptions

We have studied more complicated scenarios where we also
allow for the scatter and/or the slope of the MBH–σ relation
to increase with redshift. For example, steadily increasing the
slope from 3.83 to, say, 5.5, at a fixed scatter of 0.22 dex, still
implies α ∼ 0.35. The left panel of Figure 6 shows instead the
comparison between the ρ•(z) and the ρVDF(z), assuming that
the scatter increases with redshift from η = 0.22 at z = 0 to
η = 0.40 at z = 5.7, the highest redshifts probed by our sample.
It can be seen that the best-fit model requires α = 0.15, even
lower than what reported in Figure 2. This is expected as these
models tend to increase the BH mass density associated with
the VDF at a given redshift, implying an even milder degree
of evolution in the MBH–σ normalization. The right panel of
Figure 6 compares the implied mass functions predicted by the
same η(z)-model and by the AGN LF. Similarly to the best-fit
model discussed in Section 3, a good match can be recovered
assuming a constant λ = 0.6. Moreover, steadily increasing
the intrinsic scatter from 0.22 to 0.4 dex significantly improves
the match between the VDF- and AGN-based BH mass func-
tions at both the high- and low-mass ends. Increasing the in-
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Figure 6. Left panel: comparison between the ρ•(z) and the ρVDF(z) computed for a model in which the Φ(σ, z) is convolved with a MBH–σ relation the scatter of
which increases with redshift from η = 0.22 to 0.40. Right panel: comparison between the mass functions predicted from the same model and from the AGN LFs with
λ = 0.6.

Figure 7. In each panel the solid histograms show the mean of a set of Monte Carlo simulations which compute from our models the expected distribution of BH
masses at fixed velocity dispersion, as labeled (see the text for details). The long-dashed lines refer to the Gaussian distribution with η = 0.22 measured by Tundo
et al. (2007). Both our models with constant (upper panels) or evolving (lower panels) scatter still produce at z = 0 BH mass distributions at fixed velocity dispersion
comparable to what is observed. Models characterized by stronger redshift evolution will then evidently predict a scatter in the local MBH–σ relation much larger than
what is observed.

trinsic scatter in the distribution may be analog to allowing
the MBH–σ relation to steadily increase with increasing red-
shift only in the most massive BHs in the distribution (those
with MBH � 109 M�) at each redshift. However, the MBH–
σ related to the bulk of the BH population should not evolve
much.

We have also explored different models for the redshift
evolution in the MBH–σ relation. For example, a model in
which a quadratic term of the type δ × log(1 + z)2 is added
in Equation (2) (see Wyithe 2004 for a similar test applied to the
local MBH–σ relation), produces a good match between ρVDF(z)
and ρ•(z) if α ∼ δ ∼ 0.1, with χ2 ∼ 4, comparable to our
best-fit model. We therefore conclude that although the choice
for the redshift evolution model in Equation (2) is not unique,
alternative solutions will still provide similar constraints on the
net amount of allowed evolution.

4.2. The Scatter in the MBH–σ Relation

At each redshift, our approach assumes that new BHs are
formed with a mass that is tightly imposed by the velocity
dispersion of the host galaxy. Increasing the normalization and/
or scatter of the MBH–σ relation at high redshift therefore
induces in the local universe a finite spread in BH mass at fixed
velocity dispersion. If the evolution is steep, this can exceed the
observed scatter η � 0.22 dex. Each panel in Figure 7 plots as
solid lines the median BH mass distribution of 100 Monte Carlo
simulations corresponding to a given bin of velocity dispersion,
as labeled. The BH masses are derived from the redshift-
dependent MBH–σ relation where the redshifts are randomly
extracted from the age distribution pij (σ ) competing to each
velocity dispersion. The long-dashed lines refer to the Gaussian
distribution with η = 0.22 measured by Tundo et al. (2007).
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Both our models with constant (upper panels) or evolving (lower
panels) scatter still produce at z = 0 BH mass distributions
at fixed velocity dispersion comparable to what is observed.
The small off-set in the Gaussian distributions predicted by
our simulations with respect to those observed is induced by
the sampling of higher redshift, more massive BHs. Models
characterized by stronger redshift evolution with α � 0.4 will
then evidently predict a scatter in the local MBH–σ relation
much larger than what is actually observed. Mergers are then
required to be a significant component in the evolution of the
BH population in these models, as the Monte Carlo simulations
performed by Peng (2007) show that random BH mergers will
tighten the relations between BH and host galaxy masses at
late times. However, frequent mergers may, on the other hand,
predict too many massive BHs with respect to those seen in the
local universe (see Figure 13 in SWM).

4.3. Systematic Uncertainties in the Method

The main result of this paper is shown in the right panel
of Figure 2, which demonstrates that a good match between
ρVDF(z) and ρ•(z), can be achieved by assuming a mild redshift
evolution in the MBH–σ relation with α � 0.3. These results
are based on the age distributions pji derived from Bernardi
et al. (2006). However, MOPED-based galaxy ages are, on
average, larger at fixed velocity dispersion, predicting a flatter
dependence Φ(σ, z) as a function of redshift z (see Figure 1).
This will correspondingly flatten ρVDF(z) versus redshift, and
decrease the best-fit α, therefore requiring an even milder
redshift evolution in the MBH–σ relation. A null evolution in
the MBH–σ relation is expected in basic AGN feedback models
(e.g., Silk & Rees 1998), in which a tight correlation derives
by imposing equilibrium between the energy released by the
central BH and the gas binding energy, linked to the velocity
dispersion.

Bernardi et al. (2007), Graham (2007), and Shankar &
Ferrarese (2009) have discussed selection biases in the available
sample of BHs that may induce systematic uncertainties in the
determination of the local BH mass function. However, our
conclusions are not affected by these uncertainties, because a
change in the local BH mass density would be absorbed in
the radiative efficiency ε (i.e., ε would be modified, to match
ρVDF(z) and ρ•(z) at z = 0, but α would not change). By the
same token, our results are only weakly dependent on whether or
not the bulges of spirals are included in the estimate of the local
BH mass function (a weak dependence arises only because the
addition of the spiral bulges slightly skews the age distribution of
the total population to younger ages; this becomes increasingly
less important toward higher redshifts, where a progressively
smaller fraction of the total BH mass density is contributed by
the low-σ galaxies).

Likewise, uncertainties in redshift-independent bolometric
corrections do not alter our conclusions. The bolometric correc-
tion adopted in SWM is lower by ∼30% with respect to that used
by Hopkins et al. (2007), but the sole effect of this difference
is to yield a proportionally smaller value of the mean radiative
efficiency to recover the match between ρVDF(z) and ρ•(z) at
z = 0 (see left panel of Figure 2). Moreover, the break luminos-
ity and bright-end slopes of the SWM and Hopkins et al. (2007)
LFs are somewhat different (see Figure 4 in SWM). Neverthe-
less, within uncertainties, the resulting BH accretion histories
obtained from the two LFs have a similar behavior with redshift,
both placing the same constraint α � 0.35 for the evolution in
the normalization of the MBH–σ relation.

On similar grounds, if we assume that the BHs in our sample
radiate at even lower luminosities than the Lmin considered in the
integral of Equation (3), our results do not change. For example,
lowering the minimum luminosity to log Lmin/erg s−1 = 40,
the cumulative emissivity of AGNs increases by about ∼ 20%
at all redshifts yielding a very similar behavior with time. We
have checked that a proportionally higher radiative efficiency
and similar values of α plugged into Equation (3) keeps the
good match with the ρVDF(z).

Our conclusions about the (lack of) evolution in the normal-
ization of the MBH–σ relation, in general, are more dependent
on redshift-dependent effects. For example, if the bolometric
correction increased to high z (or, e.g., if obscuration were more
significant at higher redshift), this would again further decrease
our favored mild positive redshift evolution in the MBH–σ nor-
malization. Likewise, evolution in the mean radiative efficiency
and/or the assumed scatter in the MBH–σ relation would modify
our results, in the sense that our predicted evolution would be
milder if either increased toward high z. In principle, to allow
for a stronger evolution in the MBH–σ relation the radiative effi-
ciency must significantly decrease at z � 3 to boost the accreted
mass density at fixed AGN luminous density. However, we have
checked that ε must then rapidly increase at lower redshifts
in order not to overproduce the local BH mass density. More
quantitatively, if we set ε ∼ 0.05 at z � 3, then it must be that
ε � 0.05× [7/(1+z)]0.5 at lower redshifts. Such an evolution in
ε is not enough to allow for a strong variation in the MBH–σ re-
lation. We found that ρVDF(z) can match the ρ•(z) implied by the
ε(z)-model if α ∼ 0.3, which is close to our best-fit model. On
other grounds, as recently shown by Shankar et al. (2008), a too
low radiative efficiency at high redshifts seems to be disfavored
by BH accretion models which simultaneously reproduce the
strong quasar clustering measured at z = 3–4 in Sloan Digital
Sky Survey (SDSS) by Shen et al. (2007), the mean Eddington
ratio of λ � 0.5, measured by Shen et al. (2008) for the same
quasar sample, and the high redshift quasar LF (e.g., Richards
et al. 2006; Fontanot et al. 2007; Shankar & Mathur 2007).

4.4. Evolving the Magorrian Relation

Most of the results from other groups discussed in Section 1
focus on the ratio between BH mass and stellar mass. The
latter may settle on longer timescales with respect to the
galaxy velocity dispersion, the amplitude of which is linked
to the central potential well which grows faster than the overall
evolution of the halo (Zhao et al. 2003). In order to get some
hints on the actual evolution of the MBH–MSTAR relation with
redshift, we have converted the galaxy stellar mass function into
a BH mass function assuming the MBH–MSTAR ratio evolving as
(1 + z)ζ . We have used the recent near-infrared stellar mass
function by Pérez-González et al. (2008), well constrained
within 0 � z � 3 and 10 � log M�/M� � 12. We have
then converted the latter into a BH mass function by assuming
that, on average, about 0.7 × 10−3(1 + z)ζ (e.g., Magorrian et al.
1998; Marconi & Hunt 2003) of the total stellar mass is locked
up in spheroids and is associated with the central BH, with a
Gaussian scatter around the mean of 0.3 dex (e.g., Häring & Rix
2004). In this case, we find that ζ � 0.3 is a necessary condition
for the BH mass density to be consistent with the accreted mass
from AGNs, the latter derived assuming a fixed value of the
radiative efficiency. This result is in agreement with the degree
of evolution discussed in Section 3 found by evolving the MBH–
σ relation. Although these results are in reasonable agreement
with other works (Marconi et al. 2004; Merloni et al. 2005; De
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Figure 8. Results for a model in which we allow the mean galaxy velocity dispersion to decrease at higher redshifts to mimic the effects of prolonged wet activity
in the host galaxies since their formation epoch. We assume an evolution of the type σ (z) = σ (0) × (1 + z)−γ with γ = 0.25. The downsizing effect is canceled out
(upper left) and the match with DEEP2 number density evolution is significantly worsen (upper right). At variance with our previous results this model predicts a
mean velocity dispersion about flat out to z ∼ 2 (lower left) and, more important, a good match between ρVDF(z) and ρ•(z) with α = 1.5 (lower right).

Zotti et al. 2006; SWM; Merloni & Heinz 2008), uncertainties
on the lower limit of the stellar mass function and/or on the true
fraction of stellar mass associated with BH growth at any time,
make this method less reliable than the one based on velocity
dispersion, and we therefore do not pursue it further.

4.5. The Impact of Mergers

So far we have neglected mergers in our calculations. Major
mergers between massive galaxies do occur, although recent
work has suggested that the galaxy merger rate may be lower
than previously thought. Drory & Alvarez (2008) compared
the time variation in the stellar mass function with the evolution
implied by the star formation rate alone, concluding that galaxies
with stellar masses above 1011 M� undergo at most one major
merger since z ∼ 1.5, in agreement with the results of Bell
et al. (2007). Lotz et al. (2008) find evidence for an even
lower merger rate since z ∼ 1 from the DEEP2 survey.
Most importantly, however, a significant rate of major mergers
would strengthen our conclusions. In velocity dispersion space,
collisionless major mergers do not significantly affect the final
σ . For example, in a dry merger of comparable-mass galaxies
with mass M1 and M2, and corresponding velocity dispersions
σ1 and σ2, the resulting galaxy will have a velocity dispersion
σ 2 ∼ [

M1σ
2
1 + M2σ

2
2

]
/(M1 + M2) � max

(
σ 2

1 , σ 2
2

)
(e.g., Ciotti

et al. 2007). Therefore, if the masses of the two galaxies are
comparable, the final σ will be close to the velocity dispersion
of the progenitors.

Dry mergers would then double the number of galaxies we
predict at fixed σ . Every dry major merger would in fact “split”

the galaxy into two (going back in time), adding an extra galaxy
with the same σ , compared to our present predictions (which
neglect mergers). In turn, this implies that the merger-free VDF
Φ(σ, z) computed above for z > 0 is a lower limit to the true
abundance of galaxies with velocity dispersion σ at redshift z.
The associated BH mass density ρ•(z) will consequently also be
underestimated at redshift z. The inclusion of any mergers then
predicts a larger BH mass density at fixed σ ; to compensate for
this increase, a lower normalization of the MBH–σ relation at
z = 1 − 2 is then required, which strengthens our conclusions
that large α values are excluded by the match between ρVDF(z)
and ρ•(z) (see the left panel in Figure 2).

However, if dissipation played a nonnegligible role during
the evolution of the galaxy (either as a result of mergers, or in
isolation), then the velocity dispersion may increase with time
from the epoch of first collapse. To mimic such effects, we
allow all velocity dispersions to increase at higher redshifts as
σ (z) = σ (0) × (1 + z)−γ . Most probably this evolution is mass
and/or velocity-dependent, nevertheless this approach will be
able to set interesting constraints on the mean variation of σ .
Also, any estimate for γ should here be considered as a lower
limit to the actual evolution of σ , as we neglect the still poorly
understood increase in galaxy number density due to possible
galaxy mergers. In Figure 8, we show the main results for a
model with γ = 0.25 and α = 1.5. Note that with the adopted
scaling MBH ∝ σβ with β ≈ 4, we expect a degeneracy between
γ and α given approximately by γ ≈ α/β ≈ α/4 (although the
degeneracy is modified slightly by the assumed scatter and age
spread of BHs at a given z and σ ). We find that the downsizing
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evolution in this case is canceled out (upper left panel), as all
galaxies are now pushed to lower and lower σ at higher redshifts.

The evolving number density in this model, shown in the
upper-right panel of Figure 8, seems to be at variance with
the number density evolution of early-type galaxies within
0 � z � 1 inferred from DEEP2 by Faber et al. (2007;
solid points in the same figure). However, lacking a clear
understanding of how Φ(σ, z) should evolve in the presence
of mergers, this model cannot be ruled out, although some
inconsistencies can already be pointed out. From the figure it
can be seen that the number density of the massive red galaxies
in DEEP2 at the intermediated redshifts of 0.5 < z < 1 should
be matched with galaxies characterized by a velocity dispersion
of σ � 100 km s−1. Alternatively, the DEEP2 number densities
could be matched with the number density of galaxies with larger
velocity dispersions if mergers were a significant component in
the evolution of these galaxies, thus significantly increasing
their number density at higher redshifts. However, the latter
hypothesis may contradict independent results (e.g., Lotz et al.
2008). The dissipative model described here also predicts a
mean velocity dispersion about flat out to z ∼ 2 and slightly
decreasing at higher redshifts, as shown in the lower left panel
of Figure 8.

The main achievement of this model is the good match
between ρVDF(z) and ρ•(z) even if a strong evolution in the
MBH–σ relation has been assumed (α = 1.5), as shown in the
lower right panel of Figure 8. This model is characterized by
a significant dissipative phase in the evolution of typical early-
type galaxies, which could represent an interesting constraint
for galaxy evolution models, and it can in principle be tested
through hydrodynamical simulations.

On the other hand, a major problem with the dissipative model
is represented by its implied Eddington-ratio distribution. We in
fact find that the strong increase in the MBH–σ normalization at
higher redshifts requires a significant decrease, by up to a factor
of a few, in the mean Eddington ratio λ̄(z) to keep the match
between the BH mass functions at z � 2 shown in Figure 5.
The latter behavior of λ̄(z) is at variance with several works
which actually claim an almost constant or probably increasing
λ̄(z) at higher redshifts (e.g., McLure & Dunlop 2004; Shankar
et al. 2004; Vestergaard 2004; Kollmeier et al. 2006; Netzer
& Trakhtenbrot 2007; SWM; Shen et al. 2008b; Shankar et al.
2009).

4.6. Comparison with Previous Works

The relatively mild MBH–σ redshift evolution inferred from
our approach may seem in apparent disagreement with some
recent independent studies. As briefly mentioned in Section 1,
Treu et al. (2007) and Woo et al. (2008) have randomly compiled
from the SDSS Data Release 4 a sample of about 20 Seyferts
galaxies in the redshift range 0.37 � z � 0.57. Their results,
shown as open circles in Figure 9, are compared with those
of Shen et al. (2008a, shown as filled circles), who estimated
the MBH–σ relation for a larger sample of active galaxies up to
z = 0.452. While the latter claim that no significant evolution
in the MBH–σ relation is detectable from their sample, Woo
et al. (2008) confirm the results by Treu et al. (2007) that a
significant increase of ∼ 0.2 dex in BH mass at fixed velocity
dispersion must occur within z = 0 and z ∼ 0.5. Our best-
fit model, shown at redshifts z = 0 and z = 0.5 with long-
dashed and solid lines respectively, shows no strong evolution
within this redshift range and it is in reasonable agreement
with both samples. A significant discrepancy is noticeable with

Figure 9. Our best-fit model for the MBH–σ relation is plotted at z = 0 and
z = 0.5, as labeled, and compared with recent data from Treu et al. (2007) and
Woo et al. (2008), shown with open symbols, and Shen et al. (2008a), shown
with filled symbols.

respect to the Woo et al. (2008) results for velocity dispersions
log(σ/km s−1) � 2.3. However, systematic uncertainties may
affect these estimates; for example, as also discussed by Woo
et al. (2008), especially in galaxies with lower BH mass, the
host galaxy contribution to the 5100 Å luminosity may lead
to an overestimation of the true BH mass. Overall, given
the systematics and biases which affect these kind of studies
(e.g., Lauer et al. 2007), we do not find strong evidence for
a disagreement between these works and our results. For the
same reasons, we do not attempt comparisons with the results
obtained from higher redshift studies.

Merloni et al. (2004) compared the accreted BH mass
density in AGNs with the cosmological global star formation
rate density (see also Haiman et al. 2004). Although their
conclusions depend on additional assumptions about the fraction
of the star forming galaxies which are linked to BH growth at a
given redshift, irrespective of the adopted value of the radiative
efficiency their best-fit relation yields α ≈ 0.5, somewhat
higher, but still consistent, with the value found here, and they
also rule out α � 1.2 at a high confidence level. Hopkins et al.
(2006) also describe a model-independent integral constraint
that defines an upper limit to the allowed degree of evolution
in the ratio of BH mass to host galaxy luminosity or mass, as
a function of redshift. By comparing the AGN density with
the luminosity and mass functions in different bands from
redshifts z = 0–2, they rule out at � 6σ a BH–host galaxy
mass ratio significantly larger at high redshifts than locally.
Cattaneo & Bernardi (2003) combined a relation between mean
age and velocity dispersion, derived from a sample of SDSS
local early-type galaxies, with the Sheth et al. (2003) local
VDF. By assuming a redshift-independent mean Eddington
ratio, radiative efficiency and obscuration correction, they were
then able to reproduce the AGN optical and X-ray LFs. As
mentioned above, similar calculations have been performed
recently by Haiman et al. (2007), whose results imply, assuming
a nonevolving MBH–σ relation, that in order to reproduce the
bolometric quasar LF, the quasars must shine at a mean sub-
Eddington regime of λ = 0.5 that is approximately constant
with time. This conclusion was confirmed by the independent
estimates of SWM. However, the works by Cattaneo & Bernardi
(2003); Haiman et al. (2007) can only constrain the combination
of the Eddington-ratio distribution and the MBH–σ relation,
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while our approach here can simultaneously constrain the mean
accretion histories of BHs and their host galaxies, and the mean
Eddington ratio of BHs at all times. A further difference is that
the analysis of Haiman et al. (2007) can constrain the quasar
lifetime, while the results here rely on the comparison between
time-integrated quantities, and are strictly independent of the
quasar lifetime.

5. CONCLUSIONS

In this work we combined the local VDF with the stellar age
distributions estimated by Bernardi et al. (2006), to compute the
VDF at higher redshifts, Φ(σ, z). In agreement with previous
work, we find statistical evidence for downsizing, whereby the
stellar populations in galaxies with higher velocity dispersions
formed earlier, irrespective of the specific model we adopt for
computing the galactic ages. We then computed the BH mass
function associated with Φ(σ, z) at each redshift z, through
a BH mass–velocity dispersion relation whose normalization
was allowed to evolve with redshift as ∝ (1 + z)α . Our main
underlying assumptions are that most of the growth of the central
BH occurs simultaneously (within ± 1 Gyr) with the formation
of the host’s potential well, and that the measured stellar ages
represent this formation time to within a similar accuracy. The
BH mass density ρVDF(z) inferred from the VDF can then be
compared with the accumulated BH mass density implied by the
time integral of the AGN LF, ρ•(z) . We find significant evidence
that the match between ρVDF(z) and ρ•(z) implies a relatively
mild redshift evolution, with α � 0.35, and with values of
α � 1.3 excluded at more than 99% confidence, although a
possible stronger evolution for the more massive BHs may still
be allowed. If a positive redshift evolution stronger than α � 1
were to be confirmed independently in the future, then this
would be a robust indication that dissipative processes played a
significant role in galaxy evolution, resulting in an increase in
the velocity dispersion of the spheroid components of individual
galaxies with cosmic time. However, we also find evidence that
a dissipative model predicts a mean Eddington ratio decreasing
with increasing redshift, at variance with several independent
studies.
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Technology. F.S. thanks David H. Weinberg for interesting
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APPENDIX

THE COVARIANCE IN THE REDSHIFT EVOLUTION OF
THE BLACK HOLE MASS DENSITY

Here, we describe in some detail how we built the co-
variance matrix which expresses the relative errors between
any two BH mass density estimates at two different redshifts.
The covariance we describe here originates from the sim-
ple fact that the BH mass density accumulates with time, so
that variations in ρVDF(z) in neighboring redshift bins will
be necessarily correlated. This will affect the χ2 we com-
pute (see Equation (A9)). We ignore all other sources of
covariance.

In discrete form, we can express the BH mass density ρVDF(z̄)
at a given redshift z̄ as

ρVDF(z̄) =
∑

k

δBHMBH,k

×
⎡
⎣
⎛
⎝∑

j

δσW (z̄,MBH,k, σj )φ(σj )
∑
z>z̄

pz(σj )

⎞
⎠
⎤
⎦ ,

(A1)

where δx = d log x, W is the Gaussian weight at redshift
z̄ (which contains the assumed redshift-dependent MBH–σ
relation) used to covert the VDF φ(σ, z̄) into a BH mass function
φ(MBH, z̄) at the same redshift, and where we have expressed
the VDF at redshift z̄ in terms of the local VDF at z = 0 via
Equation (1):

φ(σj , z̄) = φ(σj )

(
1 −

∑
z<z̄

pz(σj )

)
= φ(σj )

∑
z>z̄

pz(σj ) .

(A2)
For clarity purposes, in the following we will omit the δx symbols
although they are meant to be present in each summation.

Using the symbol Δ to indicate the overall uncertainty
associated with a given mass density, the elements Cij in the
covariance matrix can then be written as

Cij = COV(ΔρVDF(zi), ΔρVDF(zj )) , (A3)

which explicitly reads as

Cij =
∑

k

M2
BH,k

⎧⎨
⎩
⎡
⎣∑

j

W (zi,MBH,k, σj )W (zj ,MBH,k, σj )

× COV

(
Δ

(
φ(σj )

∑
z>zi

pz(σj )

)
,

× Δ

⎛
⎝φ(σj )

∑
z>zj

pz(σj )

⎞
⎠
⎞
⎠
⎤
⎦
⎫⎬
⎭ , (A4)

where we made use of the summation and product properties
of covariances (see Gould 2003), and where we considered
negligible in the covariance any correlation between bins of
different BH mass and/or velocity dispersion. Therefore, the
full covariance matrix reduces to a double matrix summation
first over all velocity dispersions then over all BH masses, each
weighted by the appropriate Ws.

Through error propagation the uncertainty in the product of
VDF and age distributions can be expressed as

Δ

(
φ(σj )

∑
z>zi

pz(σj )

)
= Δ(φ(σj ))

∑
z>zi

pz(σj )

+ φ(σj )
∑
z>zi

Δ(pz(σj )) . (A5)

By plugging Equation (A5) into Equation (A4) we can now
write the covariance matrix relative to a single bin σj as
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COV

⎛
⎝Δ

(
φ(σj )

∑
z>zi

pz(σj )

)
, Δ

⎛
⎝φ(σj )

∑
z>zj

pz(σj )

⎞
⎠
⎞
⎠

= Δ2(φ(σj ))
∑
z>zi

pz(σj )
∑
z>zj

pz(σj )

+ φ(σj )2
∑

z>max(zi ,zj )

Δ2(pz(σj )), (A6)

where with Δ2 we indicate the associated variances. We ne-
glected the cross-correlation terms in Equation (A6) as we con-
sider the uncertainties in pz and Φ(σ ) to be independent. We
also assume the uncertainties Δpz(σj ) relative to different bins
of age to be independent. The uncertainties Δpz(σj ) include
Poisson errors, random errors (see Haiman et al. 2007), plus a
systematic Δpz(σj ) = 0.5 × pz(σj ) uncertainty associated with
the method to compute ages which redistributes galaxies in a
given bin (see Figure 1 in Haiman et al. 2007). When computing
the variances associated with the highest redshift bins, we sum
up 50% of the uncertainties of all the lowest redshift bins, i.e.,
0.5 × ∑

z Δpz(σj ), given that the uncertainty in the highest-z
bins depends on the overall uncertainties in the lowest redshift
bins. Finally, we also add in quadrature in the covariance ma-
trix the systematic uncertainties of ±1 Gyr in the ages, which
translate into an uncertainty in the accreted mass at each epoch
(gray area in Figure 2).

The covariance matrix expressed in Equation (A4) can be
greatly simplified by noting that when convolving the VDF with
a Gaussian with dispersion η, the resulting BH mass density is
correlated with the scatter-free BH mass density as (see Marconi
et al. 2004 for details)

ρVDF,η = exp
[
0.5 (η ln 10)2] × ρVDF,0 . (A7)

Note, also, that the scatter-free BH mass function is simply equal
to the VDF times the Jacobian factor J, i.e., φ[MBH,k(σj , zi)] =
φ(σj ) × J , with J = |d log σ/d log MBH| = 3.83 (see
Equation (2)) and MBH,k(σj , zi) given by Equation (2) at zi
and σj . Equation (A3) will then simply read as

Cij = {
exp

[
0.5 (η ln 10)2]}2

COV(ΔρVDF,0(zi), ΔρVDF,0(zj ))

= {
exp

[
0.5 (η ln 10)2]}2 ∑

k

M2
BH,k

×
⎧⎨
⎩
⎡
⎣∑

j

COV

(
Δ

(
φ
[
MBH,k(σj , zi)

]∑
z>zi

pz(σj )

)
,

Δ

⎛
⎝φ

[
MBH,k(σj , zj )

]∑
z>zj

pz(σj )

⎞
⎠
⎞
⎠
⎤
⎦
⎫⎬
⎭ . (A8)

The errors computed on ρ•(z) following the method described
above are only a lower limit to the true uncertainties. The total
error budget, in fact, includes several other uncertainties not
taken explicitly into account in the above formalism, such
as, e.g., systematics in the adopted scaling relations, in the
assumed intrinsic scatter, hidden correlations. We therefore
choose to increase the overall errors Δρ•(z) by a factor of 2, thus
rendering the uncertainties in ρ•(z) of the order of ∼ 20%–30%,
comparable to what estimated in a full Monte Carlo approach
(see Marconi et al. 2004; Shankar & Ferrarese 2009).

In the paper we then adopt Equations (A8) and (A6) for
estimating the covariance matrix associated with a given model

and then compute χ2 as

χ2 =
∑

i

∑
j

[ρ•(zi) − ρVDF(zi)] Cij [ρ•(zj ) − ρVDF(zj )] .

(A9)
When computing the covariance matrix we do not include the
first bin of ρ•(z) at z = 0 because it is equal (i.e., maximal
correlation) to the BH mass density at ρ•(z) at z = 0.2, given
that the fraction of early-type galaxies formed below z = 0.2 is
negligible.
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