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ABSTRACT

We numerically evolve turbulence driven by the magnetorotational instability (MRI) in a three-dimensional,
unstratified shearing box and study its structure using two-point correlation functions. We confirm Fromang
and Papaloizou’s result that shearing box models with zero net magnetic flux are not converged; the dimensionless
shear stress α is proportional to the grid scale. We find that the two-point correlation of B shows that it is
composed of narrow filaments that are swept back by differential rotation into a trailing spiral. The correlation
lengths along each of the correlation function principal axes decrease monotonically with the grid scale. For
mean azimuthal field models, which we argue are more relevant to astrophysical disks than the zero net field
models, we find that: α increases weakly with increasing resolution at fixed box size; α increases slightly as
the box size is increased; α increases linearly with net field strength, confirming earlier results; the two-point
correlation function of the magnetic field is resolved and converged, and is composed of narrow filaments swept
back by the shear; the major axis of the two-point increases slightly as the box size is increased; these results are
code independent, based on a comparison of ATHENA and ZEUS runs. The velocity, density, and magnetic fields
decorrelate over scales larger than ∼ H , as do the dynamical terms in the magnetic energy evolution equations.
We conclude that MHD turbulence in disks is localized, subject to the limitations imposed by the absence of
vertical stratification, the use of an isothermal equation of state, finite box size, finite run time, and finite resolution.
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1. INTRODUCTION

Astrophysical disks appear to redistribute angular momen-
tum rapidly, much more rapidly than one would expect based
on estimates of the molecular viscosity. Classical thin accretion
disk theories (Shakura & Sunyaev 1973; Lynden-Bell & Pringle
1974) solved this problem by appealing to turbulence, and mod-
eled the effects of this turbulence as an “anomalous viscosity.”
The idea that turbulence plays a key role was placed on firmer
foundations with the (re)discovery of the magnetorotational in-
stability (MRI; Balbus & Hawley 1991) and subsequent numer-
ical investigations (see Balbus & Hawley 1998 for a review).
Winds or gravitational instability may drive disk evolution in
certain cases, but MRI-initiated MHD turbulence appears capa-
ble of driving disk evolution in a wide variety of astrophysical
disks.

We still do not know, however, whether the effects of MHD
turbulence on disks are localized. It is possible that structures
develop that are large compared to a scale height H ≡ cs/Ω,
and that these structures are associated with nonlocal energy
and angular momentum transport. If so, disk evolution would
not be well described by a theory, such as the α model, in which
the shear stress depends only on the local surface density and
temperature.

A related possibility, which we will not examine here, is
that the time-averaged turbulent stresses Wrφ might satisfy
∂Wrφ/∂Σ < 0 (Σ ≡ surface density; see Piran 1978 for a
discussion). That is, the disk might be “viscously” unstable.
This could cause the disk to break up into rings or even—to use
a term of art—“blobs.” Such an outcome would be awkward
for the classic phenomenological steady disk and disk evolution
models, which have had some success in modeling cataclysmic

variable disks and black hole X-ray binary disks in a high, soft
state (e.g., Belloni et al. 1997; Lasota 2001).

How can one probe the locality of MHD turbulence in disks?
We will use the two-point correlation function of the magnetic
field, velocity field, and density as determined by numerical
experiments. Nonlocal transport would likely be associated
with features in the two-point correlation function, as would
viscous instabilities. For example, turbulence might excite
waves (wakes) that carry energy and angular momentum over
many H in radius before damping. These wakes would appear
as extended features in the two-point correlation function.

The two-point correlation function and the power spectrum
contain the same information since they are related by a Fourier
transform. But they do not convey the same impression and they
have different noise properties. For a one-dimensional function
sampled at N points over an interval L half the sample points in
the power spectrum lie between the Nyquist frequency (πN/L)
and half the Nyquist frequency, while for the correlation function
half the sample points lie between a separation L/4 and L/2.
The two-point correlation function will therefore convey a more
accurate impression of large-scale features than power spectra.

In this paper, we study models with both zero net field and net
azimuthal field. We ignore mean vertical field models because
we remain persuaded by the phenomenological argument of
van Ballegooijen (1989) that vertical field diffuses easily out of
the disk when the turbulent magnetic Prandtl number is O(1)
(although there are ways of evading this argument; Spruit &
Uzdensky 2005). Net azimuthal field models are, we think,
most relevant to astrophysical disks. In disk galaxies—the
only differentially rotating disks where we can resolve field
structure—the azimuthal field dominates when averaged over
areas more than a few H2 in extent (e.g., Beck 2007). Azimuthal
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field also dominates in global disk simulations (e.g., Hirose
et al. 2004; McKinney & Narayan 2007; Beckwith et al. 2008),
and in local disk simulations. In local simulations in which the
mean field is allowed to evolve (e.g., Brandenburg et al. 1995;
Miller & Stone 2000) an azimuthal mean field develops. Taken
together these simulations and observations strongly suggest
that the azimuthal field averaged over regions ∼ H 2 in area will
never be exactly zero.

This paper is organized as follows. In Section 2, we give
a simple description of the local model and summarize our
numerical algorithm with orbital advection. We then study zero
net flux models (as in Fromang & Papaloizou 2007; hereafter
FP07); this serves as a code test and introduces the correlation
function analysis. In Section 3, we explore the properties of
turbulence in models with a mean azimuthal field. We report on
the saturation level and correlation lengths and we discuss their
dependence on the model parameters, such as resolution, box
size, and initial field strength. Section 4 contains a summary and
guide to our results.

2. MODEL, METHODS, AND TESTS

Our starting point is the local model for disks. It is obtained
by expanding the equations of motion around a circular-orbiting
coordinate origin at cylindrical coordinates (r, φ, z) = (ro, Ωot+
φo, 0), assuming that the peculiar velocities are comparable to
the sound speed and that the sound speed is small compared to
the orbital speed. The local Cartesian coordinates are obtained
from cylindrical coordinates via (x, y, z) = (r − ro, ro[φ −
Ωot −φo], z). We assume throughout that the disk is isothermal
(p = c2

s ρ, where cs is constant), and that the disk orbits in a
Keplerian (1/r) potential.

In the local model, the momentum equation of ideal MHD
becomes

∂v

∂t
+v ·∇v+c2

s

∇ρ

ρ
+

∇B2

8πρ
− (B · ∇)B

4πρ
+2Ω×v−3Ω2x x̂ = 0.

(1)
The final two terms in Equation (1) represent the Coriolis and
tidal forces in the local frame. Note that our model is unstratified,
which means that the vertical gravitational acceleration −Ω2z
usually present in Keplerian disks is ignored.

Our model contains no explicit dissipation coefficients. Re-
cent models with explicit scalar dissipation (FP07; Lesur &
Longaretti 2007) have shown that the outcome (saturated field
strength) depends on the viscosity ν and the resistivity η, and
that ZEUS has an effective magnetic Prandtl number PrM ≡
ν/η ∼ 4.

The orbital velocity in the local model is

vorb = −3

2
Ωx ŷ. (2)

This velocity, along with a constant density and zero magnetic
field, is a steady-state solution to Equation (1). If the computa-
tional domain extends to |x| > (2/3)H = (2/3)cs/Ω, then the
orbital speed is supersonic with respect to the grid.

The local model is studied numerically using the “shearing
box” boundary conditions (e.g., Hawley et al. 1995). These
boundary conditions isolate a rectangular region in the disk.
The azimuthal (y) boundary conditions are periodic; the radial
(x) boundary conditions are “nearly periodic,” i.e., they connect
the radial boundaries in a time-dependent way that enforces the
mean shear flow. We use periodic boundary conditions in the
vertical direction; this is the simplest possible version of the
shearing box model.

2.1. Numerical Methods

Most of our models are evolved using ZEUS (Stone & Norman
1992). ZEUS is an operator-split, finite difference scheme on a
staggered mesh. It uses artificial viscosity (not an anomalous
viscosity!) to capture shocks. For the magnetic field evolution
ZEUS uses the Method of Characteristics-Constrained Transport
(MOC-CT) scheme, which is designed to accurately evolve
Alfvén waves (MOC) and also to preserve the ∇ · B = 0
constraint to machine precision (CT).

We have modified ZEUS to include “orbital advection”
(Masset 2000; Gammie 2001; Johnson & Gammie 2005) with
a magnetic field (Johnson et al. 2008). Advection by the orbital
component of the velocity vorb (which may be supersonic with
respect to the grid) is done using interpolation. With this modifi-
cation the time step condition Δt < CΔx/(|δv|+cmax) (cmax ≡
maximum wave speed and C ≡ Courant number) depends only
on the perturbed velocity δv = v − vorb rather than v. So when
|vorb| � cmax (for shearing box models with v2

A/c2
s � 1, when

L � H ) the time step can be larger with orbital advection, and
computational efficiency is improved.

Orbital advection also improves accuracy. ZEUS, like most
Eulerian schemes, has a truncation error that increases as the
speed of the fluid increases in the grid frame. In the shearing
box without orbital advection the truncation error would then
increase monotonically with |x|. Orbital advection reduces the
amplitude of the truncation error and also makes it more nearly
uniform in |x| (Johnson et al. 2008).

Do our results depend on the algorithm used to integrate the
MHD equations? To find out, we have also evolved a subset
of models using ATHENA, a second-order accurate Godunov
scheme that solves the equations of ideal MHD in conservative
form. The algorithm couples the dimensionally unsplit corner
transport upwind (CTU) method of Colella (1990) with the third-
order in space piecewise parabolic method (PPM) of Colella &
Woodward (1984), and a constrained transport (CT) algorithm
for preserving the ∇ · B = 0 constraint. Details of the algorithm
and test problems are described in Stone et al. (2008). The
specific application of ATHENA to the shearing box (as used in
this work) is described in Simon et al. (2009).5

2.2. Models with Zero Net Flux

We now consider a set of zero net field shearing box models
to introduce our correlation function analysis. We use the same
model parameters as FP07 so that these models also serve, by
comparison with FP07, as a nonlinear code test.

The models in this section have size (Lx,Ly, Lz) =
(1, π, 1)H . The initial magnetic field is Bz = Bz0×sin(2πx/H ),
where Bz0 satisfies β ≡ 8πP0/B

2
z0 = 400. Noise is introduced

in the initial velocity field to stimulate the growth of the unstable
modes. The models are evolved to tf = 600 Ω−1.

We consider four resolutions: (Nx,Ny,Nz) = N (32, 50, 32),
where N = 1, 2, 4, 8. The last three models correspond to runs
std32, std64, and std128 in FP07, respectively. The evolution of
〈EB〉 ≡ 〈B2/(8πρoc

2
s )〉 is shown in Figure 1 (〈〉 ≡ volume

average). The saturation 〈EB〉 decreases as the resolution
increases.

The dimensionless shear stress

α ≡
〈
ρvxδvy − BxBy

4π

〉
〈ρ〉c2

s

. (3)

5 Simon et al. (2009) use P = (γ − 1) u in contrast to our P = c2
s ρ.
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Table 1
Shearing Box Runs with a Zero Net Vertical Field

Model Resolution α λB,min λB,maj λB,z θB,tilt λv,min λv,maj λv,z θv,tilt λρ,min λρ,maj λρ,z θρ,tilt

z32 32 × 50 × 32 3.8 × 10−3 0.090 0.62 0.080 11 0.078 0.57 0.13 5.5 0.076 0.82 0.39 8.6
z64 64 × 100 × 64 4.2 × 10−3 0.059 0.38 0.050 13 0.074 0.45 0.18 7.1 0.056 0.60 0.33 6.6
z128 128 × 200 × 128 2.1 × 10−3 0.037 0.22 0.032 14 0.053 0.32 0.11 6.7 0.043 0.62 0.33 6.4
z256 256 × 400 × 256 1.1 × 10−3 0.024 0.17 0.024 14 0.035 0.24 0.10 5.9 0.019 0.34 0.18 5.8

Figure 1. Evolution of magnetic energy in zero net field runs. From top to
bottom radial resolution increases from 32/H , 64/H , 128/H to 256/H . The
saturation level decreases in proportion to the grid scale.

We measured the time average of α, denoted as α, (from
tΩ = 250 to tΩ = 600) for each run, and recorded the results in
Table 1.6 These averages are nearly identical to those obtained
by FP07. This consistency enhances confidence in both sets of
results.

For Nx � 64

α � 0.0021

(
Nx

128

)−1

(4)

is a good fit to the numerical results. The magnetic field energy
density, α, and the kinetic energy density are almost inversely
proportional to Nx, and so, like FP07, we conclude that the zero
net field models do not converge.

All shearing box models considered in this paper have
α � 〈EB〉/2 = 1/(2β). This implies a characteristic ori-
entation of the field, since (neglecting the Reynolds stress
ρvxvy ∼ 0.25 × [−BxBy]/[4π ]) α ≈ −〈BxBy〉/(4π〈ρ〉c2

s ) ≡
〈B2 cos θB sin θB〉/(4π〈ρ〉c2

s ), where θB is the angle between the
field and the y-axis. Then α = 〈EB〉2 cos θB sin θB = 〈EB〉/2.
So θB = π/12 (15◦) is the characteristic angle between the
magnetic field and the y-axis.

6 The combination of finite run time and fluctuations in α(t) introduces noise
into α. To estimate the noise amplitude we divided the averaging interval into
two and compared the two averages. In all the runs with Nx � 64 case they
differed from the mean by �10%.

Next, we turn to the structure of the zero net field turbulence.
Consider the two-point correlation function for the density
fluctuations

ξρ ≡ 〈δρ(x)δρ(x + Δx)〉 (5)

(δρ ≡ ρ − 〈ρ〉), for the trace of the velocity fluctuation
correlation tensor

ξv = 〈δvi(x)δvi(x + Δx)〉 (6)

(δvi ≡ vi − vi,orb − 〈vi〉), and there is an implied summation
over i and for the trace of the magnetic field correlation tensor

ξB = 〈δBi(x)δBi(x + Δx)〉 (7)

(δBi ≡ Bi − 〈Bi〉). All correlation functions are calculated for
fluctuating dynamical variables with zero mean. Figure 2 shows
slices of correlation functions through ξ at z = 0 for run z128.
The cores of the correlation functions are ellipsoidal, with three
principal axes, and concentrated at |Δx| < H . The correlations
are localized.

We measure four features of the correlation functions: the
angle θtilt between the correlation function major axis and the
y-axis, and the correlation lengths along the major, minor, and
z-axes (λmaj, λmin, λz), where the correlation length λi is defined7

by

λi ≡ 1

ξ (0)

∫ ∞

0
ξ (x̂i l)dl. (8)

l is the distance from Δx = 0 along the principal axis
defined by the unit vector x̂i , and x̂maj = x̂ sin θtilt − ŷ cos θtilt,
x̂min = x̂ cos θtilt + ŷ sin θtilt, and x̂z = ẑ.8,9 Figure 3 shows ξB

along each of the principal axes in run z128. The dotted lines
show ξ (0) exp(−l/λi). The correlated regions in the magnetic
field are narrow (λmin � λz � λmaj/6) filaments with a trailing
spiral orientation.

What do the correlation functions mean? For the magnetic
field, there is a characteristic orientation of the field θB obtained
through our measurement of the shear stress. The major axis of
the correlation function is very nearly parallel to this, θtilt � θB .
It is reasonable to view the magnetic field correlation function,
then, as tracing out a characteristic, filamentary structure in the
magnetic field.

It is worth recalling briefly what we might expect for
ξv in isotropic, homogeneous turbulence with an outer scale
L0 = 2π/k0 and velocity dispersion σv . In the inertial range

7 Other definitions of λi are possible, e.g., the half-width at half-maximum
(HWHM) of ξ can be used, with an exponential model for ξ , to find λi . For
example, for ξB in run z128, the HWHM definition gives (λmaj, λmin, λz) =
(0.031, 0.15, 0.023)H compared to (0.026, 0.15, 0.022)H from our definition.
The differences are less than 20%.
8 In a periodic domain

∫
d3Δxf ξ = 0 if

∫
d3xf = 0, but this does not imply

that the line integral in Equation (8) vanishes.
9 The integral in Equation (8) is evaluated by linearly interpolating ξ in the
Δx–Δy plane and summing over the interpolated values (trapezoidal rule)
along the principal axis. We evaluate the line integral until ξ (l) = e−3ξ (0). The
result is insensitive to the upper limit on the integral.
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Figure 2. Two-point correlation function for density, velocity field, and magnetic field in Δx–Δy plane in run z128. The contours are set linearly from 0 to 0.009 for
20 levels; the heavy line is the 0 contour.

Figure 3. Magnetic field correlation function along the minor, major, and vertical
principle axes in run z128. Solid lines: cut through the data; dotted lines: a simple
model with exp(−λi ), where λi is the measured correlation length along each
principle axis. The correlation functions along the minor and z-axes are almost
identical.

v2
k ∝ k−11/3, so a reasonable functional form for the power

spectrum is

v2
k = N

(
σ 2

v

k3
0

)
1

(1 + (k/k0)2)11/6
, (9)

where N is a nondimensional normalization constant. The
corresponding autocorrelation function is

ξv = σ 2
v

√
3Γ

(
2
3

)
21/3π

(k0r)1/3K1/3(k0r), (10)

where K is the modified Bessel function and r ≡ |Δx|. For
k0r  1,

ξv ≈ σ 2
v (1 − 0.955 (k0r)2/3 + O(r2)). (11)

This is the usual r2/3 Kolmogorov dependence at small separa-
tion. For k0r � 1,

ξv ≈ σ 2
v 0.743 (k0r)−1/6 e−k0r , (12)

which yields the expected decorrelation for k0r � 1. The
correlation length defined in Equation (8) is 0.838/k0. Note
that the power spectrum does not have zero power as k → 0;
rather it asymptotes to Nσ 2

v k−3
0 .

For MHD turbulence in disks, however, the correlation
function is not isotropic, and its structure is not anticipated
by any predictive theory. In the absence of such a theory it
may be useful to have a convenient analytical representation
of the numerical results. This can be obtained by stretching
Equation (10) along each of the principal axes, that is, by
replacing k0r by u ≡ ((Δx · x̂min/λmin)2 + (Δx · x̂maj/λmaj)2 +
(Δx · x̂z/λz)2)1/2.

Do the correlation lengths converge? We find that the corre-
lation lengths are resolution dependent, with

(λmin, λmaj, λz) � (0.04, 0.24, 0.03) H

(
Nx

128

)−2/3

; (13)
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Figure 4. Turbulent velocity correlation function and a differential correlation ξv/c
2
s − ξρ/ρ2

0 in the Δy = 0 plane for run z128. In ξv , apart from the compact core at
small separations, there is a weak correlation at large scales that is likely due to the sound waves. The contours run linearly from 0 to 0.005 for 20 levels. The heavy
line is the 0 contour.

λz and λmin are at most six zones. The scaling of λmin with
zone size is clearly not linear, but the 2/3 power-law scaling is
just a fit to the data and should not be taken too seriously. The
nonlinear scaling does hint at the possibility that, as resolution
is increased and λmin and λz are better resolved, there could be
a transition in the outcome.

The major axis for ξB lies ∼ 15◦ from the y-axis. For
the density and peculiar velocity field the tilt angle is ∼ 7◦.
The latter tilt is consistent with the measured Reynolds stress:
〈ρvxvy〉/〈ρv2〉 ∼ 1/8, so the average perturbed velocity is tilted
at ∼ 7◦ to the y-axis.

Finally, note that there are low-amplitude features in ξv and
ξρ at scales of a few correlation lengths (see particularly in
Figure 4(a)). These features may be due to the excitation of
rotationally modified sound waves by MHD turbulence. To
test this hypothesis note that, for tightly wrapped (ky  kx),
linear sound waves δρ2

k /ρ
2
0 � δv2

k/c
2
s . A field composed of

these waves would then have ξρ/ρ
2
0 = ξv/c

2
s . Taking the

differential correlation function ξv/c
2
s − ξρ/ρ

2
0 should therefore

remove those pieces of ξv that are due to sound waves.
Figure 4(b) shows ξv/c

2
s − ξρ/ρ

2
0 at Δy = 0. Evidently much

of the large-scale power is removed. Figure 5 shows another
slice through ξv/c

2
s − ξρ/ρ

2
0 at Δz = 0. Again the large-scale

power is removed. This is consistent with the hypothesis that
the largest scale features in the correlation functions are acoustic
waves.

3. MODELS WITH A NET AZIMUTHAL FIELD

In this section, we study models with 〈By〉 �= 0. These models
correspond more closely to what is observed in shearing box
models with boundary conditions that allow the net field to
evolve, what is seen in global MHD models of disks, and what
is observed in galactic disks than the 〈B〉 = 0 models.

3.1. Convergence

To test convergence we use the same size models as the
zero net field runs, (Lx,Ly, Lz) = (1, π, 1)H . 〈By〉 is set so
that β = 400; in the initial conditions all other magnetic field
components vanish. The models are evolved to t = 250 Ω−1. We
use five different resolutions: (Nx,Ny,Nz) = N (32, 50, 32),
where N = 1, 2, 4, 6, 8. In each run we average over the second
half of the evolution to measure 〈EB〉 and α. We also measure
the correlation lengths from ξρ, ξv , and ξB using an average of
the correlation function calculated from eight data dumps in the
second half of the run. Parameters and results for these runs are
listed in Table 2.

Figure 6 shows 〈EB〉(t) for various resolutions. In our two
highest resolution runs, 〈EB〉 = 3.7 × 10−2ρ0c

2
s for run y192a

and 4.1 × 10−2ρ0c
2
s for run y256a, respectively. A consistent fit

is 〈EB〉 � 0.03(Nx/128)1/3 for 32 < Nx < 256. The saturation
energy increases with resolution. It is unlikely that this trend
continues indefinitely. As we will see below, the magnetic field
correlation lengths are unresolved at Nx = 32 but resolved at
Nx = 256. This suggests that the increase in 〈EB〉 is caused by
resolution of magnetic structures near the correlation length.
If there is little energy in structures much smaller than the
correlation length, then 〈EB〉 should saturate at somewhat higher
resolution.

To check the algorithm dependence of the results we ran an
identical set of models using ATHENA. The results are listed in
Table 2. Both sets of models show a weak upward trend in 〈EB〉
with resolution. If one corrects for the approximately 2 times
higher effective resolution of ATHENA then the ATHENA and ZEUS
results are quantitatively consistent with each other.

The correlation lengths for the zero net field runs do not
converge. What about the net azimuthal field models? The
magnetic field correlation lengths are listed in Table 2 (other
correlation lengths are omitted for brevity, but they behave
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Table 2
Shearing Box Runs with a Net Azimuthal Field

Model Algorithm Resolution α 〈EB 〉/ρ0c
2
s λB,min λB,maj λB,z θB,tilt λB,min/Δx

y32a ZEUS 32 × 50 × 32 0.0094 0.019 0.10 0.40 0.084 12 3.2
y64a ZEUS 64 × 100 × 64 0.014 0.024 0.066 0.36 0.064 15 4.2
y128a ZEUS 128 × 200 × 128 0.015 0.028 0.053 0.28 0.049 15 6.8
y192a ZEUS 192 × 300 × 192 0.020 0.037 0.055 0.30 0.049 15 11
y256a ZEUS 256 × 400 × 256 0.021 0.041 0.049 0.27 0.045 15 13
y32b ATHENA 32 × 50 × 32 0.018 0.032 0.11 0.63 0.09 15 3.3
y64b ATHENA 64 × 100 × 64 0.015 0.027 0.070 0.38 0.060 16 4.5
y128b ATHENA 128 × 200 × 128 0.018 0.035 0.058 0.33 0.051 16 7.4
y192b ATHENA 192 × 300 × 192 0.025 0.050 0.052 0.30 0.047 17 10
y256b ATHENA 256 × 400 × 256 0.027 0.055 0.053 0.32 0.049 16 14

Figure 5. Differential correlation function ξv/c
2
s −ξρ/ρ2

0 in the Δz = 0 plane in
run z128. After removing the contribution due to the sound waves, the correlation
ellipsoid is more compact and almost identical to that of the magnetic field. The
contour levels are set the same as in Figure 2, linearly from 0 to 0.009.

similarly). For N � 4 both ZEUS and ATHENA find

(λmin, λmaj, λz) � (0.05, 0.32, 0.05) H. (14)

For the N � 4 models λmin ∼ λz > 8Δx. In the highest reso-
lution (N = 8) ATHENA model, λmin/Δx � 14. The correlation
lengths are both converged and resolved.

If MHD turbulence in disks has a forward energy cas-
cade, as do three-dimensional hydrodynamic turbulence and

Figure 6. Evolution of the magnetic energy in the net azimuthal field run.
From bottom to top the lines are: heavy dot–long dash: 32/H ; gray short dash:
64/H ; heavy dot–short dash: 128/H ; gray dot: 192/H ; heavy solid: 256/H .
The saturation energy increases with resolution.

the Goldreich–Sridhar model for strong MHD turbulence in a
homogeneous medium, then it is natural to identify the corre-
lation lengths with the outer, or energy injection, scale. Since
λmin � 15 grid zones at our highest resolution there is no re-
solved inertial range. We anticipate that future, higher-resolution
numerical experiments with a mean azimuthal field will show
the development of an inertial range.

3.2. Magnetic Energy Evolution

At what scale is magnetic energy generated in MRI-driven
turbulence? To investigate this, we have studied the correlation
function for each term driving the evolution of the volume-
averaged magnetic energy:

ĖB = −
〈
∇ ·

(
1

2
B2v

)〉
−

〈
1

2
B2∇ · v

〉
+ 〈B · (B · ∇v)〉 − D,

(15)
where D is the volume-averaged numerical dissipation rate. The
terms on the right-hand side can be interpreted as describing
the effects of advection, compression and expansion, field-line
stretching, and numerical dissipation. On average the first term
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Figure 7. Correlation function in the Δz = 0 plane for the “field-line stretching”
term in the magnetic energy equation. The data are from the y128b ATHENA run
and the contour levels run logarithmically from 10−5.1 to 10−3.6. The generation
and dissipation of magnetic energy occurs in a local manner, consistent with the
localization of the dynamical variables.

is small (it should vanish exactly for shearing box boundary
conditions, but roundoff and truncation error make it nonzero),
and the third term dominates the second by a factor of 20 in
run y128b. In a time- and volume-averaged sense the right-hand
side must be zero, so numerical dissipation must approximately
balance energy injection by field-line stretching.

Previous studies (FP07; Simon et al. 2009) analyzed a version
of this equation in the Fourier domain to study turbulent energy
flow as a function of length scale in the shearing box simulations.
Both studies found that the magnetic energy is generated
on all scales by the background shear. Here, we perform a
complementary analysis in the spatial domain.10

We have computed the autocorrelation function for the field-
line stretching term from run y128b (without subtracting the
mean). Figure 7 shows the autocorrelation function at Δz = 0.
From this figure we conclude that: (1) the scale and shape of
the correlation function is similar to that of the fundamental
variables (B, v; recall that in y128b (λB,min, λB,maj, λB,z) =

10 Simon et al. (2009) study the k dependence of analogous terms on the
right-hand side of an equation for ˙|Bk |2 (their Equation (19)), which scale like
B2. We directly autocorrelate the terms on the right-hand side of Equation (15),
and this scales like B4.

Table 3
Shearing Box Runs with a Net Azimuthal Field: Effect of the Box Size

Model Size 〈EB 〉/ρ0c
2
s

λB,maj
H

y64 (1, π, 1)H 0.024 0.36
y64.x2 (2, π, 1)H 0.028 0.49
y64.y2 (1, 2π, 1)H 0.035 0.45
y64.x2y2 (2, 2π, 1)H 0.038 0.49
y64.x4y4 (4, 4π, 1)H 0.038 0.57

(0.058, 0.33, 0.051)H ); (2) energy is injected at scales com-
parable to the correlation length of the fundamental variables;
(3) a superposition of magnetic structures similar to ξB that
are distributed with uniform probability in space would have a
power spectrum that is flat (white noise) at low k. It is plausible
that terms in the Fourier-transformed magnetic energy equation
would also be flat at low k. This would not imply that energy is
injected by dynamically meaningful structures at large scales; it
would simply be the consequence of an uncorrelated superposi-
tion of small, localized features in the turbulence.

3.3. Box Size

Does the saturation energy or correlation length depend on
the size of the computational domain (box size)? To investigate,
we fix the physical resolution at 64 zones/H and vary the
model size: (Lx,Ly, Lz) = (1, π, 1)H , (2, π, 1)H , (1, 2π, 1)H ,
(2, 2π, 1)H , and (4, 4π, 1)H . The model parameters and
outcomes are listed in Table 3.

Evidently, there is a weak dependence of 〈EB〉 on box size;
it increases from 0.024ρ0c

2
s for the smallest run to 0.038ρ0c

2
s

for the largest run. The magnetic field correlation lengths also
increase with box size, with λmaj = 0.36H for the smallest box
(so Ly/(2λmaj) = 4.4) to λmaj = 0.57H for the largest box (so
Ly/(2λmaj) = 11). This upward trend in correlation length is
probably real, but it is sufficiently small that it is difficult to
separate from noise in the correlation length measurements.

The correlation functions ξρ and ξv , unlike ξB , have low
amplitude tails extending out to the box size. This can be seen in
Figure 8, which shows ξρ and ξB for run y64.x4y4. The tails are
likely due to sound waves, and their absence in the differential
correlation function ξv/c

2
s − ξρ/ρ

2
0 , shown in the middle panel

of Figure 8, is consistent with this.

3.4. Field Strength

We now compare two models that differ only in their initial
field strength. Both have a size Lx,Ly, Lz = (1, 2π, 1)H with
resolution Nx,Ny,Nz = 64, 200, 64. One model has the same
initial field strength as our other models, β0 = 400, while the
other one starts with a stronger field, β0 = 100.

We found that the saturated magnetic energy for the β0 = 400
run is 〈EB〉 = 0.035ρ0c

2
s . For the β0 = 100 run 〈EB〉 =

0.079ρ0c
2
s , slightly more than twice the saturation level of

the higher β0 run. Resolution may be playing a role here: the
β0 = 100 run has twice the resolution per most unstable MRI
wavelength, and we know that the saturation level depends on
resolution when the field strength is constant.

Our results are consistent with the linear relation between
〈EB〉 and initial field strength for 〈By〉 �= 0 models reported in
Hawley et al. (1995) (hereafter HGB95; although it may also be
consistent with a wide range of exponents for this relation). Our
results are inconsistent with HGB95’s claim that 〈EB〉 ∝ Ly , at
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Figure 8. Density correlation function, a differential correlation ξv/c
2
s − ξρ/ρ2

0 , and the magnetic correlation function in the Δz = 0 plane for run y64.x4y4. The
contours are set linearly from −0.007 to 0.08 for 20 levels. The heavy line is the 0 contour.

least if the box size is � λmaj (the good agreement found for
HGB95’s predictor may be a coincidence).

At the level we can determine from two data points, our
results are consistent with 〈EB〉 ∝ ρ0csVA,y0, where VA,y0 is
the initial azimuthal Alfvén speed (i.e., here scale height cs/Ω
replaces Ly in HGB95; there are no other length scales in the
problem). This is interesting: it implies that α depends on the
gas pressure, a result first reported by Sano et al. (2004) and
thus compressibility plays a role in the saturation of the MRI!

Our results suggest that 〈EB〉 should scale differently in
compressible and incompressible models. In the incompressible
models the only length scale available is the size of the box, so
in incompressible models we must have 〈EB〉 ∼ ρ0(LΩ)aV b

A,y0,
where L is some combination of Lx,Ly , and Lz, and the
exponents a and b are not determined.

The correlation lengths for the magnetic field in the two runs
are (λmin, λmaj, λz) � (0.08, 0.45, 0.08)H for the β0 = 400 run
and (λmin, λmaj, λz) � (0.11, 0.58, 0.10)H for the β0 = 100
run. To sum up, the correlation length increases weakly as
the initial field strength and the box size increases. It is not
consistent with the scaling ∼ By,0/(ρ0Ω) one would expect if
the correlation length scaled with the most unstable wavelength
of the background field, and it is not consistent with the scaling
∼ 〈B2

y 〉1/2/(ρ0Ω) ∼ B
1/2
y,0 one would expect if the correlation

length is related to a characteristic MRI length scale for the
(larger) fluctuating field.

4. SUMMARY

We have investigated the locality of MHD turbulence in an
unstratified, Keplerian shearing box model using the two-point
autocorrelation function.

We first considered models with zero net vertical field and
the same parameters as FP07. Our slightly different orbital
advection algorithm reproduces earlier results on the relation
between the saturation level and resolution: zero net field models
do not converge.

Consistent with this, we also find that as resolution increases
the correlation lengths for the velocity, density, and magnetic
field decrease. A fit to the results yields the following scaling
for the magnetic field correlation lengths,

(λmin, λmaj, λz) � (0.04, 0.24, 0.03)

(
Nx

128

)−2/3

H, (16)

i.e., the correlation length decreases as the resolution increases.
We then studied a set of models with net toroidal field and

initial β = 400. These models are not completely converged in
the sense that they show a trend of increasing α with resolution.
They are converged in that the correlation lengths are well
resolved and constant near the highest resolution:

(λmin, λmaj, λz) � (0.05, 0.32, 0.05)H. (17)

But because λz and λmin are only just resolved (they are each at
most 14 grid cells), we do not see an inertial range. We expect
that future higher-resolution models will show the development
of an inertial range.

We further examined the correlation function for the dominant
(nonnumerical) field-line stretching term in the magnetic energy
evolution equation. The correlation lengths are small compared
to H, consistent with the correlation lengths of the dynamical
variables. Evidently, energy is injected at scales comparable to
or smaller than the correlation length.



1018 GUAN ET AL. Vol. 694

We also explored the influence of the box size on the outcome
in the net toroidal field models. We found a weak dependence
on the box size but only for Lx ∼ H . This suggests that in
shearing box simulations the size of the box should be chosen to
be at least a few scale heights so that the correlation lengths are
not “squeezed” by the boundary conditions. We also varied the
initial field strength, and consistent with earlier reports found
that the saturation level (α or 〈EB〉) scales linearly with the
initial field strength. Correlation lengths also increase as the
field strength increases, but not linearly.

So is disk turbulence really localized? Our answer is mixed.
On the one hand, our net toroidal field models have almost
all the correlation amplitudes contained within a region a few
scale heights on a side and in this sense the turbulence is
indeed local. On the other hand, we do see signs of radiation
of compressive waves by the turbulence in the two-point
correlation function. These signs are most impressively visible
in Figure 4(a), which shows vertically extended tails on the
density autocorrelation function in the Δy = 0 plane, and in
Figure 8, which shows azimuthally extended tails on the density
autocorrelation function in the Δz = 0 plane. These tails are
matched by similar tails on the velocity autocorrelation function,
consistent with our hypothesis that they are due to the excitation
of rotationally modified sound waves.

The influence of compressive waves excited by MHD turbu-
lence on disk evolution cannot, in the end, be assessed with the
experiments and analysis in this paper. The key measurement
needed is the radial damping length of compressive waves due
to absorption and scattering of waves by turbulent eddies. This
would be most easily measured in a separate experiment that
studies the response of MHD turbulence to an imposed sound
wave. Even this measurement would be incomplete because it
neglects additional damping related to stratification (Lin et al.
1990; Lubow & Ogilvie 1998), but it would provide an upper
limit on the damping length.

We are studying the locality of MHD turbulence in a highly
idealized situation in which stratification and other aspects of
the larger disk—such as the process that generates the imposed
azimuthal magnetic field, perhaps a global dynamo—are absent.
Our unstratified model is insensitive to some effects that could
lead to the development of global (λ ∼ R) or mesoscale (R �
λ � H ) structures. Convection and rotation might reasonably
be expected to lead to dynamo activity manifesting itself as
large-scale structures in the magnetic field. Disk atmospheres
might also develop large-scale, coronal structures that delocalize
disk evolution by transmitting angular momentum and energy
(Uzdensky & Goodman 2008).

Finite integration time and limited accuracy is also a concern.
It is possible that large-scale structures emerge only over
hundreds of rotation periods. If the disk is subject to a “viscous

instability” of the sort mentioned in the introduction then the
timescale for the growth of a feature on scale λ would be
(αΩ)−1(λ/H )2; this timescale could be hundreds of rotation
periods for the modest αs seen in our models if the instability
is damped for λ < few ×H . Accurate, long duration, and
expensive integrations will be required in future searches for
viscous instability.
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