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ABSTRACT

We derive expectations for signatures in the measured travel times of waves that interact with thermal anomalies
and jets. A series of numerical experiments that involve the dynamic linear evolution of an acoustic wave field
in a solarlike stratified spherical shell in the presence of fully three-dimensional time-stationary perturbations
are performed. The imprints of these interactions are observed as shifts in wave travel times, which are
extracted from these data through methods of time–distance helioseismology (Duvall et al.). In situations where
at least one of the spatial dimensions of the scatterer was smaller than a wavelength, oscillatory time shift
signals were recovered from the analyses, pointing directly to a means of resolving subwavelength features.
As evidence for this claim, we present analyses of simulations with spatially localized jets and sound-speed
perturbations. We analyze one year’s worth solar observations to estimate the noise level associated with the
time differences. Based on theoretical estimates, Fresnel zone time shifts associated with the (possible) sharp
rotation gradient at the base of the convection zone are on the order of 0.01–0.1 s, well below the noise
level that could be reached with the currently available amount of data (∼ 0.15 − 0.2 s with 10 yr of data).

Key words: Sun: helioseismology – Sun: interior – Sun: oscillations – waves – hydrodynamics

1. INTRODUCTION

The deep interior of the Sun holds many a secret in its opaque
clutch. Our current understanding of the properties of these
regions comes predominantly from the application of methods of
global helioseismology to observations of solar oscillations (for
reviews, see, e.g., Christensen-Dalsgaard 2002; Christensen-
Dalsgaard et al. 2003). However, many aspects of the internal
structure and dynamics of the Sun are nonglobal in nature
and may therefore benefit from investigations via techniques of
local helioseismology (see the review by Gizon & Birch 2005).
Small persistent jets and thermal anomalies in the convection
zone, radial variations in the rotation rate at the bottom of
the convection zone, convective flows in the interior, etc are
examples of such spatially localized phenomena.

A stumbling block associated with seismic studies of the deep
interior is the substantial wavelength that propagating p modes
attain in this region. At the bottom of the convection zone,
the acoustic wavelength is approximately 30 times larger than
at the photosphere; a 4 mHz wave with wavelength 2 Mm at
the photosphere attains a size of 58 Mm, ∼ 8% of the solar
radius by the time it reaches said bottom. The classical imaging
resolution limit of waves with wavelength λ is λ/2, and in
practice, more like λ. This places severe restrictions on our
ability to infer properties of the deep interior of the Sun. In
the field of optical and acoustic tomography, this resolution
limit has been overcome by recognizing that present in the
near field of a scatterer is a collection of evanescent waves
that contain information about its subwavelength structure (e.g.,
Maynard et al. 1985; Bozhevolnyi & Vohnsen 1996). That this
principle has an analog in the solar case has been theoretically
discussed (Bogdan & Cally 1995; Hanasoge et al. 2008) but
conclusive observations of this envelope of evanescent modes
are still lacking. And since we are unable to directly observe the
bottom of the convection zone, there seems little hope in being
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able to utilize the near-field signal. Moreover, it is not clear how
significant a role these evanescent waves play.

The interactions of p modes with localized spatial anoma-
lies in the backdrop of a solarlike stratified medium and
the resultant changes in wave travel times are well under-
stood in a range of situations (e.g., Birch & Kosovichev
2000; Gizon & Birch 2002). Theory and observation have
shown that subwavelength sized scatterers can cause signifi-
cant and observable oscillations in the time shifts (Duvall et al.
2006) and global mode frequencies (e.g., Christensen-Dalsgaard
et al. 1995). Moreover, from the work of Birch & Kosovichev
(2000), it is clear that the stratification is one of the causes
of complex interference patterns that contributes to the oscilla-
tions (Fresnel zones) in the travel times. Another participating
factor is the limited chromatic extent (25–40% of a decade)
of the solar wave spectrum; highly bandlimited wave packets
are known to produce striking interference patterns because
of the emergence of a unique interference length scale (the
wavelength).

Wave interactions in local helioseismology are primarily
characterized using approximations in the ray, Rytov, or Born
limits. One situation wherein the ray approximation is accurate
is when the wavelength is much smaller than the characteristic
spatial size of the perturbation. This requirement invalidates
the ray approximation for a large fraction of deep interior
studies. As for the Born approximation, Gizon et al. (2006) have
theoretically shown in the context of thin flux tubes that it may
break down in the limit of vanishing flux tube radius to imaging
wavelength ratio. Thus, extremely small scatterers (at least in
the case of magnetic fields and possibly other perturbations)
are not well described by the Born limit. Therefore, imaging
subwavelength aspects of the deep interior using interpretations
derived from the Born approximation may also not be very
accurate.

Numerical simulations of the solar wave field in full three-
dimensional spherical geometry (Hanasoge et al. 2006) provide
a means of addressing the wide variety of interaction phenom-
ena described above in a consistent manner. The methods of
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realization noise subtraction (Hanasoge et al. 2007) and deep-
focusing time–distance helioseismology (Duvall 2003) are ap-
plied in the analysis of the simulation data. In Section 2, we
present the numerical methodology and the sound-speed per-
turbations studied here. We discuss the deep-focusing geome-
try and time–distance methods and present results from these
calculations. The appearance of Fresnel zones in analyses of
simulations containing jets at the base of the convection zone is
discussed in Section 3. From time–distance analyses of observa-
tions, we attempt in Section 4 to search for oscillatory time shifts
arising as a consequence of the possibly sharp rotation gradient
at the base of the convection zone. Finally, we summarize and
conclude in Section 5.

2. SIMULATIONS AND TEST CASES

The numerical code developed in Hanasoge et al. (2006) and
Hanasoge (2007) is the starting point for the results presented
herein. The linearized Euler equations in spherical geometry are
spatiotemporally evolved in a spherical shell extending from
r = 0.24 R� to 1.002 R�, where R� is the radius of the
Sun. Spatial derivatives are calculated using spherical harmonic
representations in the horizontal directions while sixth-order ac-
curate compact finite differences (Lele 1992) are implemented
in the radial direction. Temporal evolution is achieved through
the repeated application of an optimized second-order accu-
rate time-stepping scheme (Hu et al. 1996). The boundaries
are rendered absorbent through the application of conditions
prescribed by Thompson (1990) in conjunction with damping
sponges placed adjacent to the lower and upper radial bound-
aries. Waves are excited by a phenomenological forcing term
in the radial momentum equation (dipolar sources). The source
function is computed in spectral space (l, m, ω) as a set of
Gaussian-distributed random numbers for each Fourier com-
ponent, multiplied by a frequency envelope so as to mimic
the solarlike wave power distribution in frequency. Note that
(l, m) are the spherical harmonic indices while ω is the angu-
lar frequency. The radial component of the oscillation veloc-
ity is extracted at a height of 200 km above the photosphere
at each minute. Since the near-surface layers of the Sun are
highly convectively unstable, we use the artificially stabilized
version described in Hanasoge (2007) (and hence different from
standard models of the Sun, e.g., Christensen-Dalsgaard et al.
1996).

An example power spectrum from a simulation is displayed
in Figure 1. Because we do not incorporate realistic damp-
ing, the power distribution as a function of frequency peaks
at approximately 4 mHz, higher than the solar power peak,
which occurs at 3.5 mHz. A consequence of this is that the
wave packets which contribute to the analyses have system-
atically shorter wavelengths in comparison to the Sun. The
simulations may therefore show a greater degree of sensitiv-
ity to perturbations in the deep interior. Finally, to complete
the description of the recipe, we apply the method of real-
ization noise subtraction (Hanasoge et al. 2007) in order to
afford the ability to accurately study the effects of perturba-
tions on the wave travel times using short temporal simulation
windows. Essentially, using identical realizations of the source
function, we perform two simulations: a “quiet” one with no
perturbations and another with the anomaly of choice. Because
the calculation is linear and we use a linear method to extract
the travel times (Gizon & Birch 2002), the signal-to-noise ra-
tio (SNR) of the measurement can be dramatically improved
by subtracting the travel times of the quiet data from the per-

Figure 1. Modal power distribution as a function of frequency (ν) and spherical
harmonic degree (l) from a 24 hr long simulation with lmax = 95. Standard
line-of-sight Doppler signals are substituted by the radial component of the
oscillation velocities, which are extracted at an altitude of 200 km above the
photosphere at a cadence of once per minute. The l � 20 modes which propagate
in the proximity of the lower boundary, are damped out by the damping sponge
described in Section 2, hence not shown here.

Figure 2. Mollweide projection of the radial oscillation velocities derived from
a simulation with a sound-speed perturbation—displayed are raw oscillation
data (upper panel) and noise-subtracted velocities (lower panel). The scattering,
invisible in the upper panel, becomes far more evident when the realization
noise subtraction is performed, i.e. when the velocities of the quiet data are
subtracted. This principle also applies to the travel times. Note that the method
of noise subtraction is entirely theoretical; no analog exists when dealing with
real observations.

turbed. See Figure 2 for a demonstration of this procedure. As
yet, this method is only possible in theory; there is no way
of performing this sort of subtraction when dealing with real
data.
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Figure 3. Spatial structure of the sound-speed perturbation. A horizontal and a radial cut are displayed. Three cases with the perturbation placed at different radial
locations, r = 0.55, 0.7, 1.0 R�, are studied. In all cases, the perturbation is placed at the equator.
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Figure 4. Radial (left panel) and horizontal (right panel) slices of a sound-speed kernel, reproduced from Birch & Kosovichev (2000). A sensitivity kernel is defined
as the response as seen in the travel times of a delta-function sized perturbation. In this case, the kernel was computed for the monochromatic frequency of 5 mHz.
Complex interference patterns are seen in both slices; provided perturbations are sufficiently small, the alternating signs of the lobes engender oscillating time shifts.

2.1. Thermal Anomalies

The existence of a form of thermal asphericity in the
tachocline has been suspected for a while now (e.g., Christensen-
Dalsgaard et al. 1996). We study here the possibilities relating
to the inference of the nature of these deep-interior anomalies.
Changes in the thermal structure and hence the sound speed
are effected by altering Γ1, the first adiabatic index, as opposed
to perturbations in the pressure or density of the background
model which result in hydrostatic inconsistencies and conse-
quently, strong numerical instabilities. Spatially, the perturba-
tions resemble pancakes, thin in the radial direction and broad in
the horizontal (θ, φ) directions, where (θ, φ) denote latitude and
longitude, respectively. In Figure 3, we show the sound-speed
perturbations.

2.2. Time–Distance Analysis

We use the common midpoint method of analysis (Duvall
2003) to average the data and extract p-mode travel times.
Note that we do not perform any form of phase-speed filtering.
The analysis proceeds as follows: for a given point (θ0, φ0)
and a travel distance at the surface Δ, we search for all
points that lie on a circle of diameter Δ with center (θ0, φ0).
Subsequently, we cross-correlate signals at points that are
located diametrically opposite each other and average these

pairwise cross-correlations over the circular region. We then
fit the averaged cross-correlation using the method of Gizon
& Birch (2002) to obtain the travel time at the point τ (θ0, φ0).
Since there is no directional bias in the averaging procedure, the
quantity τ is classified as the “mean travel time” and is sensitive
primarily to sound-speed anomalies along the ray path.

In Figure 6, we show the time shifts associated with the
interactions of the waves with the sound-speed perturbations.
It is our understanding that the oscillations seen in the maps
are a consequence of the highly subwavelength nature of these
interactions. The fact that time shifts of both signs are seen,
in spite of a solely positive change in the sound speed, is
indicative of subtler interference phenomena that are at play.
The sensitivity kernels of Birch & Kosovichev (2000) show
the appearance of these “Fresnel zone”-like structures (see
Figure 4), due in part to the complex interference patterns
of waves at constant frequency. Duvall et al. (2006) have
experimentally recovered the oscillatory travel-time features of
these sensitivity kernels that occur when subwavelength-sized
perturbations are encountered.

In Figure 6, the solid lines in the two panels indicate the
ray theoretic travel distance for waves whose inner turning
point coincides with the radial position of the perturbation.
It is seen that waves whose turning points lie well above
(shorter travel distance waves) the perturbation seem equally,
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Figure 5. Travel-time averaging geometry. The outer circle represents the
observational boundaries of the sphere, while the inner indicates points that
are at distance R from the location of the surface projection of the perturbation,
(0, 0). Each point on the travel-time map is associated with a travel time that is
computed by (a) cross-correlating signals at points at a distance Δ with it and
(b) fitting the averaged cross-correlation by a Gabor wavelet. Within the noise
level, we expect identical time shifts at all points along the inner circle due to the
(horizontal) directionally unbiased nature of wave scattering by the symmetric
thermal anomalies of Figure 3. Thus we may average the time shifts on this
annulus to improve the signal-to-noise properties of the analysis; we are then
left with two coordinates, the travel distance Δ and distance from the scatterer
R, as described in Figure 6.

if not more, sensitive (due to the proximity of the propagation
regions of these waves to the surface) to the perturbation.
Evidently, the theoretical picture of waves being sensitive only
to perturbations located above their inner turning points is too

simplistic to explain this phenomenon. Wave scattering in the
Sun is a predominantly linear phenomenon, especially in the
deep interior, where the waves and convection are presumably
decoupled. Thus the scattering redistributes modal energies
across a range of wave numbers, at a fixed frequency. Because
we do not phase speed filter these data, the cross-correlation for
a specific travel distance retains a sensitivity to contributions
from scattered waves at different wave numbers (and therefore
different travel distances).

The time shifts are measured according to the common mid-
point procedure (described above) at a large number of points.
The perturbation lies at horizontal coordinates (0, 0) and as is
evident from Figure 3, rotationally symmetric about the center
point. Thus, azimuthally averaging the time shifts about (0, 0),
we are left with two variables (see Figure 5), namely the distance
of the point of measurement from the center of the perturbation
(x-axis) and the travel distance (y-axis). Having, therefore,
defined the geometry involved in the construction of Figure 6,
we are ready to address questions relating to the fringes. Because
the radial extent of the perturbation is significantly smaller
the wavelength of the acoustic waves at either depth, we must
prepare ourselves for the emergence of strong subwavelength
effects as a function of the travel distance. Indeed, numerous
fringes appear in both cases as harbingers of the presence of this
subwavelength feature. The kernel in Figure 4, which albeit is
for a monochromatic wave, contains these oscillating positive
and negative signed lobes that hint at the possibility of such
effects.

Meanwhile, in the horizontal direction, we see some sign
switching for the r = 0.55 R� case while not so much for the
other. This is because the horizontal size of the perturbation
(∼ 50 Mm, see Figure 3) is comparable to the wavelength of

Figure 6. Time shifts caused by localized sound-speed perturbations (see Figure 3) centered at r = 0.55, 0.7 R�. These shifts are recorded at a series of wave travel
distances and at numerous horizontal locations on the surface. Because the perturbation exhibits a horizontal rotational symmetry (see Figure 3) about its center point,
we azimuthally average the time shifts around this point. The vertical axis is the travel distance, also the distance between correlation points. The horizontal axis is
the angular distance of the measurement point from the horizontal center of the perturbation (0, 0). Wavelengths of 4 mHz waves at these depths are approximately
70 and 58 Mm, respectively. The radial size of the perturbation is significantly smaller than the wavelength in either case, a manifestion of which are the variations
of the time shifts with travel distance. The two horizontal lines show the ray theoretic travel distance for waves whose inner turning point coincides with the radial
position of the perturbation. Because the horizontal size of the perturbation is comparable to the wavelength in the r = 0.7 R� case, we do not see a flip in the sign of
the time shift as we move horizontally away from the perturbation. It is, however, visible in the r = 0.55 R� case, where the sound-speed perturbation is decidedly
subwavelength in size.
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Figure 7. Form of jets used in simulations. The jet structure is highly anisotropic, with large horizontal dimensions but an extremely thin radial extent. The maximum
jet velocity is set to 5% of local sound speed, amounting to 11.25 km s−1 and 8.5 km s−1 at r = 0.71, 0.81 R�, respectively. Although the model jet velocities may
be unrealistically large, the time shifts may be linearly scaled with the flow velocity, thus allowing us to estimate the expected time shifts for much weaker jets.

Figure 8. Quadrant time–distance averaging geometry used for the study of
flows. Points on each quadrant are cross-correlated with those diametrically
opposite. The east–west quadrants are separated from the north–south so as to
study flows in these directions in isolation. For example, the difference time shift
τe−w − τw−e is an indicator of flow magnitude in the east–west direction, where
τe−w is the travel time from a point on the east quadrant to its diametrically
opposite counterpart on the west quadrant, and vice versa for τw−e .

58 Mm at r = 0.7 R�, while it is decidedly a subwavelength
feature when compared to the 70 Mm long waves at r =
0.55 R�. As one moves away from the perturbation, these
alternating signed lobes are encountered again (Figure 4).
Depending on the size of the perturbation, these lobes may
end up being averaged, not showing up in the time shifts (size
comparable to or greater than the wavelength) or may result in
oscillations (size smaller than the wavelength).

Although our knowledge of the structure and dynamics of the
tachocline region is limited, it is certainly well within the realm
of possibility that there exist thermal asphericities whose di-
mensions may be smaller than a wavelength. In such a situation,
ray theory is untenable, and a wave mechanical description be-
comes necessary. A prominent source of solar observational data
is the Michelson Doppler Imager (MDI; Scherrer et al. 1995)
instrument, on board the Solar and Heliospheric Observatory
(SOHO). The MDI medium-l program has approximately 10
yr long line-of-sight Doppler velocity observations of the solar
surface. However, these data are somewhat corrupted by sys-
tematics such as strong center-to-limb variations (∼ 6–18 s)
in the zeroth-order wave travel time, aliasing across the spa-
tial Nyquist, foreshortening, line-of-sight projection related ef-
fects etc. The resolution of these effects may be in sight (e.g.,
Zhao et al. 2007; T. L. Duvall et al. 2008, in preparation) but
the issues are outstanding as yet. Studying the interior ther-
mal structure of the Sun requires the measurement of absolute

quantities such as the mean travel time, in contrast to investi-
gations of flows which are described by relative quantities such
as travel-time differences. Absolute quantities are very difficult
to pin down precisely because of this center-to-limb variation,
sprouting questions such as what value of the mean travel time is
“correct” and what part is systematic. For some of these reasons,
we have not pursued observational investigations of the thermal
structure in the deep solar interior. We now turn to studies of
jets.

3. JETS IN THE CONVECTION ZONE

We choose jets with a spatial structure of the form displayed
in Figure 7. We can no longer apply the straightforward
common midpoint analysis of Section 2.2 because of the
inherent directional bias that flows introduce. Waves that move
along with flow are sped up and vice versa. Keeping the same
geometry as above, i.e. choosing a center point and searching
for a set of points at a constant distance away from this point,
we then divide up the circle into four sectors: north, south, east,
and west. Points on each quadrant are cross-correlated with
their diametrically opposite counterparts and the averaging is
restricted to these quadrants, thus allowing us to study north–
south and east–west directed flows in isolation. See Figure 8
for an illustration of this geometry. Time shifts, as before, are
computed for a variety of travel distances and at a large number
of surface points. Because the jet is invariant over longitude,
we average the time shifts over all longitudes, thus leaving
us two independent variables, namely the travel distance and
latitude.

The difference time shifts (so-called because we take the
difference of the travel times) obtained with this averaging
scheme are shown in Figure 9. Because of the large horizontal
size of the jets, fringelike time shift oscillations do not appear
as the latitudinal distance from the jet grows. The radial extent
of jet (∼ 40 Mm) is smaller than the wavelength at r = 0.71 R�
(58 Mm), but becomes comparable in the r = 0.81 R� centered
case (wavelength of 42 Mm). Thus the time shift fringes are
seen in the former, but not in the latter.

In the process of discovering these effects related to the
subwavelength spatial dimensions of scatterers, it was realized
that by studying the amplitude of these oscillatory time shifts
in comparison to the dominant shift, we could place bounds
on the size of the scatterer. In other words, the tachocline
thickness, thought by some to be close to a wavelength (e.g.,
Kosovichev 1996) and others to be much smaller (e.g., Elliott &
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Figure 9. Statistically significant difference time shifts caused by the interaction of waves with jets in the deep interior (see Figure 7). Because the jet is axisymmetric,
we average the difference time shifts over all longitudes. The cross-hairs show the center of the jet, i.e., the latitude about which the jet is centered (horizontal line) and
the travel distance of a ray whose inner turning point is the radial center of the jet (vertical line). The horizontal extent of the jet is larger than a wavelength, resulting
in time shifts of only one sign (as a function of latitude). Radially, it is subwavelength in size for the r = 0.71 R� centered jet (wavelength 74 Mm), but comparable
to the wavelength for the r = 0.81 R� case (55 Mm long waves), thereby creating weak fringelike patterns in the time shifts of the former but not so much the latter.
The simulation was performed with lmax = 95 and hence the shortest travel distance that could be recovered from the data was approximately 15◦.

Figure 10. Simulated difference time shifts averaged over the southern latitudes (dotted) and the northern latitides (solid line). The simulated east–west time shifts
contain a statistically significant Fresnel zone, seen for waves that travel a distance of 25◦ or so (the Fresnel zone disappears when the FWHM becomes comparable
to a wavelength). The noise seen at larger distances is presumably from the poor quality of noise subtraction.

Gough 1999), is then a parameter that can be estimated by this
method. Much to our chagrin, however, the lack of a sufficient
signal-to-noise ratio has blocked our efforts in this regard. This
shall be the topic of discussion for the remaining part of this
paper.

4. STUDY OF THE TACHOCLINE

Our initial assessment of the situation was that with a number
of years of MDI medium-l observations, a latitudinal band of
±30◦ around the equator where differential rotation is nearly
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Figure 11. Longitudinally averaged difference time shifts obtained from
analyses of one year of untracked MDI medium-l observations. Subtle effects
such as Fresnel zones are entirely masked by the noise in the travel-time map.
A zeroth-order rotation related time difference has been subtracted for each
distance. This benchmark time was estimated by averaging cross-covariances
over the entire available disk and fitting the resultant. We believe that the features
seen extending over the small distance range are due to systematical issues of
unknown origin.

absent, we might have enough data to conclude one way or the
other about the thickness of the tachocline. Before analyzing
observations, we first theoretically investigated the effects of
an angular velocity gradient at the base of the convection zone
on the travel times. We performed simulations with a velocity
perturbation that took the form of a rigidly rotating radiative
interior (a rotation rate of 9.065 μRads−1) tied to a nonrotating
convection zone. The size of the interface between the rotating
and nonrotating zones was varied in order to sharpen/weaken
the gradient. With sufficient sharpness, a subwavelength-sized
feature could be created and vice versa. In Figure 10, we display
the time shifts recovered from this simulation (the rotation
gradient at the interface was 1.1 × 10−4s−1); a Fresnel zone
is clearly observed.

As a first step, we analyzed and extracted rotation signals
from one year of medium-l observations (see Figure 11). The
Fresnel zone signals are expected to scale linearly with the
rotation gradient at the base of the convection zone. From
the rotation inversions of observed frequency splittings (e.g.,
Schou et al. 1998), we estimate the rotation gradient to be at
least 1.44 × 10−6s−1, two orders of magnitude less than the
simulated values. The Fresnel zone time shift associated with

Figure 12. Difference time shifts of Figure 11 averaged over the entire latitude
range. Fresnel zones, if any, hide well beneath the noise of the travel-time map,
which are indicated by the vertical bars.

the solar rotation gradient is possibly 0.01–0.1 s or less (the
peak modal power occurs at a lower frequency in the Sun than
the simulations) in magnitude. Two stumbling blocks lie on
the path to the detection of solar Fresnel zones: (1) precisely
determining the zeroth-order rotation related time shift curve,
and (2) achieving high signal-to-noise ratios. While the former
presents a somewhat formidable challenge, the latter seems
to lie in the realm of impossibility, at least with the current
quantity of data available. The error bars in Figure 12 for the
one-year period appear to be on the order of 0.5–0.6 s; since the
noise goes down as the square root of observational time, we
expect a

√
10 = 3.16 reduction, setting the error bars at around

0.15–0.2 s. Unfortunately, this may well be much larger than
the estimated observational effect.

5. CONCLUSIONS

We have attempted to explore the prospects for the seismology
of the solar deep interior through the application of techniques
of deep-focusing time–distance helioseismology on numerical
simulations and MDI observations. The solar dynamo is possi-
bly closely tied to the dynamics in the tachocline, a remarkably
important but relatively poorly understood region. In this regard,
any one of the following would be very useful: strong observa-
tional constraints on the thickness of the tachocline, inferences
of rotational deviants such as jets (Christensen-Dalsgaard et al.
2005), the structure of the thermal anomalies, etc. Azimuthally
symmetric features are probably better off being studied using
the methods of global helioseismology; however, spatially lim-
ited perturbations are perhaps more amenable to the techniques
of local helioseismology.

The study of the interactions between waves and sub-
wavelength-sized perturbations bring to the fore a means of us-
ing wave statistical information. We have attempted to exploit
the premise that features with subwavelength spatial dimen-
sions create Fresnel zones in the difference shifts (while the
super-wavelength counterparts do not) in order to place strong
constraints on the angular velocity gradient at the bottom of the
convection zone.
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As for the prospects, Figure 11 presents an unexciting forecast
for local helioseismic investigations of the solar tachocline
and the nearby regions. However, encouraging results are
derived for studies of the moderately deep convection zone and
near-surface regions, which provide reasonable signal-to-noise
ratios.

The computing was performed on the NASA super-
computer Columbia, housed in the Ames research center.
S.M.H. acknowledges funding from NASA grant HMI NAS5-
02139.
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