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ABSTRACT

Turbulent motions induce Doppler shifts of observable emission and absorption lines motivating studies of
turbulence using precision spectroscopy. We provide numerical testing of the two most promising techniques,
velocity channel analysis and velocity coordinate spectrum (VCS). We obtain an expression for the shot noise
that the discretization of the numerical data entails and successfully test it. We show that the numerical resolution
required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity
fluctuations, which makes low-resolution testing misleading. We demonstrate numerically that, when dealing with
absorption lines, sampling of turbulence along just a dozen directions provides a high quality spectrum with the
VCS technique.
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1. INTRODUCTION

As a rule, astrophysical fluids are turbulent and the turbulence
is magnetized. This ubiquitous turbulence determines the trans-
port properties of the interstellar medium (ISM; see Elmegreen
& Falgarone 1996; Stutzki 2001; Balesteros-Peredes et al. 2006)
and the intracluster medium (see Sunyaev et al. 2003; Ensslin
& Vogt 2006; Lazarian 2006), many properties of solar and
stellar winds (see Hartman & McGregor 1980), and so on. To
understand heat conduction and the propagation of cosmic rays
and electromagnetic radiation in different astrophysical environ-
ments it is absolutely essential to understand the properties of the
underlying magnetized turbulence. The fascinating processes of
star formation (see McKee & Tan 2002; Elmegreen 2002; Mac
Low & Klessen 2004) and interstellar chemistry (see Falgarone
et al. (2006) and references therein) are also intimately related to
properties of magnetized compressible turbulence (see reviews
by Elmegreen & Scalo 2004).

We should stress that while density fluctuations are an indirect
way of testing turbulence, the most valuable information is
given by the velocity field statistics encoded in spectrometric
observations. The problem with those, that has been realized
from the very start of the research in the field, is that the most1

that one can get from such observations is the position–position–
velocity (PPV) data cubes, where at every point the image of the
emitting turbulent volume the Doppler-broaderned spectrum is
measured. To recover the statistics of turbulent velocity from
the PPV, one has to account for the mapping of the turbulent
velocity field from the real space to PPV data cubes.

At the moment, there are several options for turbulence stud-
ies. For instance, using velocity centroids allows the recovery
of velocity spectrum (Esquivel & Lazarian 2005; Esquivel et al.
2007). As shown there, this technique fails to recover the un-
derlying velocity spectra for supersonic turbulence. For such
turbulence one can use the velocity channel analysis (VCA)

1 In some situations the data are more sparse than that. For instance,
absorption lines usually do not provide good spatial sampling of the turbulent
volume. Moreover, interferometric measurements of the emitting volumes may
not have the entire u–v coverage to restore the spatial distribution of PPV
emissivity either.

(see Lazarian & Pogosyan 2000), which deals with channel
maps or two-dimensional slices of PPV, and velocity coordinate
spectrum (VCS; see Lazarian & Pogosyan 2000, 2006, 2008,
henceforth, LP00, LP04, LP06, LP08, respectively; Chepurnov
& Lazarian 2008, henceforth CL08) which studies the fluctu-
ations of PPV intensities along the v-coordinate (see Lazarian
2009 for a review).

VCA has been already used with both atomic hydrogen and
molecular line data to recover the underlying turbulence spectra
(see review by Lazarian 2007). The technique has been tested
numerically for the optically thin case in Lazarian et al. (2001) &
Esquivel et al. (2003) and also with absorption effects in Padoan
et al. (2006). However, rather strong shot noise was observed in
the synthetic channel maps. For instance, numerical simulations
for VCA in Esquivel et al. (2003) show that discretization over
line of sight may substantially distort the spectrum at high
wavenumbers. It was also shown for the thin-slice (velocity-
dominated) case that the impact of shot noise can be minimized
by using thickest possible velocity slice. The shot noise was
also observed to decrease with the increase of the cube size
used for analysis. Although the effect was associated with the
discretization of the numerical data, a quantitative description
of the noise was missing. Moreover, we feel that this effect
confused some researchers who started to wonder about the
practical utility of the technique (Miville-Deschnes et al. 2003).

While VCA is an established tool with numerous examples
of practical applications, VCS is a more recent development.
Although it was formulated in the same paper as VCA, i.e.,
LP00, the actual application of VCS is just beginning (A.
Chepurnov et al. 2008, in preparation).

In this paper we provide the numerical testing of both the
VCA and the VCS techniques. In particular, we subject the
origin of shot noise to scrutiny.

In Section 2, we describe general considerations about studied
turbulent fields. In Section 3, we provide some facts about
the VCA and VCS. In Section 4, we analyze shot noise. In
Section 5, we describe the results of numerical testing. The case
of observations in absorption lines is discussed in Section 6. We
provide a discussion in Section 7.
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2. UNDERLYING FLUCTUATIONS OF VELOCITY AND
DENSITY

Our assumptions about underlying turbulence coincide with
those in LP00. In particular, in what follows we assume that
turbulent velocity and density are homogeneous2 and isotropic
and admit a statistical description in terms of correlation (or
structure) functions and the corresponding power spectra.3

The assumption of velocity isotropy and its relevance to the
actual magnetized astrophysical fluids was discussed at length
in LP00, Lazarian & Pogosyan (2004), and LP06. There it
was argued that the degree of anisotropy that is induced by
the interstellar magnetic field does not compromise the power
spectrum recovered from observations. This argument was
supported by the analysis of synthetic maps obtained using
three-dimensional MHD simulations of turbulence (Esquivel
et al. 2003).

For a vector field like velocity, the correlation function and
the correspondent power spectrum take the form of a tensor.
In addition, the power spectrum is different for solenoidal and
potential field components. For each case the tensor properties
can be represented by a factor that depends only on angles. The
additional scalar factor is responsible for energy distribution in
wavenumber space.

Because of the self-similarity of turbulence, we expect a
power-law scaling for the power spectrum in the inertial range.
This power law can be either “long wave dominated” (or
“steep”), if the respective spectral index αε is greater than 3, or
“short wave dominated” (or “shallow”) otherwise (see LP00).
To keep the total energy limited, both types of spectrum must
have a cutoff: at low wavenumbers for the steep one, and at
high wavenumbers for the shallow one. The cutoff is a physical
requirement that is satisfied in all astrophysical systems.

In this paper we assume the velocity spectrum to be steep, as a
shallow velocity spectrum is not physically motivated (see Cho
& Lazarian 2005). For the density spectrum we consider both
steep and shallow spectra. The shallow spectrum for density
emerges for high Mach numbers (see Padoan et al. 2004,
Beresnyak et al. 2005; Kim & Ryu 2005; Kowal et al. 2007).

The quantities we deal with in spectral line observations are
the velocity and the gas emissivity. The latter can be proportional
to the density of gas ρ (e.g., emission lines of H i) or ρ2

(e.g., recombination lines in plasma). The latter regime modifies
the analysis. Namely, for steep density spectrum (e.g., when
αρ > 3), the asymptotic slope of the emissivity spectrum is
the same, and different, αε = 2αρ − 3, for the shallow density
spectrum.

We are interested in velocity statistics, and the gas emissivity
is considered only because its fluctuations also affect the
observable PPV fluctuations. The influence of the fluctuations
of gas emissivity is mitigated when they have a steep spectrum.
In this situation, in fact, they could be ignored within the
VCS technique. However, when fluctuations of gas emissivity
follow shallow spectrum these fluctuations should be properly
accounted for.

2 Random fields are homogeneous in the statistical sense when their
statistical properties do not depend on the position. This allows us to keep only
the dependences of our correlation functions on the distance between the
points. Homogeneity is also a requirement for providing the volume averaging
that observers would rely on to apply our results.
3 The latter pair of functions is related to each other through Fourier
transform (see Monin & Yaglom 1975).

Figure 1. Illustration of the mapping from the real space to the PPV space. In
the real space the three eddies above have the same spatial size, but different
velocities. They are mapped to the PPV space and there they have the same
PP dimensions, but a different V-size. The larger is the velocity of eddies, the
larger the V-extend of the eddies, the less density of atoms over the image of the
eddy. For eddy 3 the slice is “thin,” i.e. the statistics is defined by the velocity
spectrum. The images of eddies corresponding to velocities less than the channel
thickness are different. The velocity slice is “thick” for eddy 1, i.e. the statistics
is defined by the emissivity spectrum, and eddy 2 is in an intermediate regime.

(A color version of this figure is available in the online journal.)

Figure 2. VCS technique: effects of resolution. The fluctuations along the
velocity coordinate are analyzed. Eddies within the telescope size beam, e.g.,
eddy 1, are in a low-resolution mode. Eddies with the size exceeding that of the
beam, e.g., eddy 2, are in the high-resolution mode.

(A color version of this figure is available in the online journal.)

3. BASICS OF VCA & VCS

Figure 1 illustrates the essence of the VCA technique.
The data in the PPV data cube are analyzed using slices of
ΔV thickness. This corresponds to the analysis of intensity
fluctuations in channel maps (see Green 1993), which predates
the technique. The gist of the technique is a relation between
the variations of the spectral index of channel map fluctuations
and the thickness of the channel maps. The differences in the
statistics of the fluctuations stem from the fact that the images
of the eddies can have an extent both larger and smaller than
PPV slice thickness ΔV . The former case is termed by LP00
“thin slice,” and the latter is termed “thick slice.”

In Figure 2 we illustrate the essence of the VCS technique.
Depending on the resolution of the telescope one may or may
not resolve the spatial extent of the eddies under study. This
also results in two distinct regimes of turbulence studies. The
ability to study turbulence in the turbulent volumes that are not
spatially resolved is a unique ability of VCS.
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Below we briefly overview the main analytical results, ob-
tained in LP00, LP04, LP06, and CL08, which are relevant for
this paper. We, however, do not deal with the case of VCA/VCS
studies of turbulent volumes where self-absorption is important4

(LP04) or the case of saturated absorption lines (LP08). In terms
of the presentation of our results, below, we use the approach
and notations from CL08.

Our calculations are based on the following expression for
a spectral line signal, measured at velocity v0 and given beam
position ê (see Appendix A for the details):

S(ê, v0) =
∫

w(ê, r) dr ε(r)f (vr (r) + vreg
r (r) − v0), (1)

where ε is normalized emissivity, v
reg
r is a line-of-sight com-

ponent of the regular velocity (e.g., the velocity arising from
the galactic velocity shift), vr is the line-of-sight component
of the random turbulent velocity, f denotes the convolution be-
tween channel sensitivity function5 and Maxwellian distribution
of velocities of gas particles, defined by the temperature of the
emitting medium, and w is a window function defined as fol-
lows:

w(ê, r) ≡ 1

r2
wb(ê, r̂)wε(r), (2)

where wb is an instrument beam, which depends on angular
coordinates φ and θ , while wε is a window function defining
the extent of the observed object. For instance, for a turbulent
volume confined by two planes perpendicular to the line of sight,
the window function is as follows:

wε(z) =
{

1, z ∈ [z0, z1]
0, z /∈ [z0, z1]. (3)

In what follows, we consider the Fourier transform of a
spectral line:6

S̃(ê, kv) ≡ 1

2π

∫ ∞

−∞
S(v0)e−ikvv0 dv0

= f̃ (kv)
∫

w(ê, r) drε(r) exp
(−ikv

(
vr (r) + vreg

r (r)
))

.

(4)

This function can be easily determined from observational data.
If we correlate S̃ taken in two directions 1 and 2, we get the

following measure, which can be used as a starting point for
the mathematical formulation of both the VCA and the VCS
techniques (see CL08 for details):

K(ê1, ê2, kv) ≡ 〈S̃(ê1, kv)S̃∗(ê2, kv)〉
= f̃ 2(kv)

∫
w(ê1, r) dr

∫
w(ê2, r′) dr′ ·

× 〈ε(r)ε(r′)〉〈exp(−ikv(vr (r) − vr ′(r′)))〉
× exp

(−ikv

(
vreg

r (r) − v
reg
r ′ (r′)

))
. (5)

4 In this case analysis is more simple if we use Fourier space. Absorption
effects can be described only in real space, which implies the use of structure
functions instead (see LP04, LP06). It is shown in LP04 that for VCA
absorption can be neglected as soon as the scale of turbulence under study is
less than the physical length corresponding to the optical depth of unity. A
similar criterion is applicable to VCS (LP06).
5 This mean the amplitude–frequency response of the channel normalized to
the integral value with frequency in velocity units.
6 Here variable kv plays the role of kz in LP00, being, however, different in
dimension (kz = bkv , see Equation (7). We use it here to avoid complications
when b = 0.

The first averaging gives us an emissivity correlation function
Cε(r − r′). Averaging of the exponent can be performed with
the assumption that the velocity statistics is Gaussian:7

〈exp(−ikv(vr (r) − vr ′(r′)))〉 = exp

(
−k2

v

2
〈(vr (r) − vr ′(r′))2〉

)
.

(6)
To proceed, we assume that the beam separation and the beam
width are both small enough that we can neglect the difference
between vr and vz (we consider z-axis to be a bisector of the
angle between beams). We also assume that v

reg
z (r) depends

only on z and admits a linear approximation:

vreg
z (z) = b(z − z0) + v

reg
z,0, (7)

where b characterizes regular velocity shear.
This leads us to

K(ê1, ê2, kv) = f̃ 2(kv)
∫

w(ê1, r) dr

∫
w(ê2, r′) dr′ Cε(r − r′)

× exp

(
−k2

v

2
Dvz(r − r′) − ikvb(z − z′)

)
. (8)

Having substituted r − r′, we can write the following expres-
sion for K:

K(ê1, ê2, kv) = f̃ 2(kv)
∫

g(ê1, ê2, r) dr′

× Cε(r) exp

(
−k2

v

2
Dvz(r) − ikvbz

)
, (9)

where

g(ê1, ê2, r) ≡
∫

w(ê1, r′)w(ê2, r′ + r) dr′, (10)

f̃ is a Fourier transform of an effective channel sensitivity
function f, Cε is an emissivity correlation function, and Dvz
is a velocity structure tensor projection:

Dvz(r − r′) ≡ 〈(vz(r) − vz(r
′))2〉. (11)

If we set g = wb,a(R − R12)wε,a(z), where R12 is a beam
separation in the pictorial plane,8 wb,a and wε,a are auto-
convolutions of wb and wε, which corresponds to the case of
remote emitting object, we have for K:

K(R12, kv) = f̃ 2(kv)
∫

wb,a(R − R12)wε,a(z) dr

× Cε(r) exp

(
−k2

v

2
Dvz(r) − ikvbz

)

= f̃ 2(kv)
∫

w̃2
b(K) dK

∫
wε,a(z) dre−iK(R−R12)

× Cε(r) exp

(
−k2

v

2
Dvz(r) − ikvbz

)
. (12)

7 We assume that the velocity field has a Gaussian probability distribution
function (PDF). The latter corresponds well to both experimental (Monin &
Yaglom 1976) and numerical (Biskamp 2003) data.
8 The pictorial plane is the plane perpendicular to the line of sight. It provides
us the coordinates in spatial units for the beam, if we consider beam’s cross
section by a pictorial plane at the distance of a remote object.
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Table 1
VCA Predictions about P2 Spectral Index, Steep Density

Density Two-dimensional One-dimensional
Spectrum Spectrum Spectrum

Steep
9 − αv

2

7 − αv

2

Shallow
2αε − αv + 3

2

2αε − αv + 1

2

Note. Here αv is the velocity spectral index and αε is the density
spectral index. Density spectrum is considered to be “steep” if αε > 3
and “shallow” otherwise.

Taking a Fourier transform over R12, we have the power
spectrum, designated in VCA as Ps:

Ps(K, kv) = f̃ 2(kv)w̃b
2(K)

×
∫

wε,a dre−i(KR+bkvz)Cε(r) exp

(
−k2

v

2
Dvz(r)

)
, (13)

which coincides with the corresponding expression in LP00.
It is convenient to introduce P3 as a three-dimensional power

spectrum of a PPV data cube with assumption of infinite
resolution over v and R:

P3(K, kv) ≡ 〈|S̃(K, kv)|2〉
=

∫
wε,a dr e−i(KR+bkvz)Cε(r) exp

(
−k2

v

2
Dvz(r)

)
.

(14)

In this case it is easy to see that Ps(K, kv) =
f̃ 2(kv)w̃b

2(K)P3(K, kv).
VCA studies the two-dimensional spectrum of fluctuations

within a velocity slice of a PPV cube:

P2(K) ≡
∫ ∞

−∞
Ps(K, kv)

= w̃b
2(K)

∫ ∞

−∞
dkv f̃ 2(kv)P3(K, kv), (15)

which can be easily determined from observations. This tech-
nique provides a way to determine the slopes of velocity and
density power spectra, αv and αε. In fact, for a channel with
small enough effective width9 (see Figure 1), P2 is in the veloc-
ity dominated regime with slope (9 − αv)/2, provided that the
density has a steep spectrum, i.e., αε > 3.

Whether or not the latter is true can be established through
using from column density maps. As we neglect the effects
of self-absorption, the column densities can be obtained via v-
integration of PPV cubes. Naturally, in the column density maps
the spectrum is affected only by density and its slope is αε. The
situation is a bit more complicated when the density is shallow
(i.e., when αε < 3), which is a case of high Mach number
turbulence (see Beresnyak et al. 2005) and the density combines
with velocity to affect the fluctuations in thin channels. For a
more detailed analysis, see LP00. The predictions for different
cases in the velocity-dominated regime are summarized in
Table 1. Note that these results are obtained by assuming that
the turbulent object under study is so distant that the geometry
of parallel lines of sight is applicable.

9 It is approximately equal to
√

(δv2
ch + (2vT)2), where δvch is the channel

width and vT is the thermal velocity of emitting atoms.

Table 2
VCS Predictions about P1 Spectral Index, Parallel Lines of Sight

Density Pencil Flat Low
Spectrum Beam Beam Resolution

Steep
2

αv − 3

4

αv − 3

6

αv − 3

Shallow
2(αε − 2)

αv − 3

2(αε − 1)

αv − 3

2αε

αv − 3

Note. Here αv is the velocity spectral index and αε is the density
spectral index. Density spectrum is considered to be “steep” if αε > 3
and “shallow” otherwise.

The one-dimensional spectrum P1 is the subject of the VCS
studies. It corresponds to the case when the two beams involved
in K coincide, i.e.

P1(kv) ≡ K(R12, kv)|R12=0 = f̃ 2(kv)
∫

g(r) dr

× Cε(r) exp

(
−k2

v

2
Dvz(r) − ikvbz

)
, (16)

which can be written also in terms of P3 as

P1(kv) = f̃ 2(kv)
∫

dK w̃b
2(K)P3(K, kv). (17)

As it was shown in LP06 and LC08, here we also have two
spectral regimes. They depend on beamwidth (see Figure 2 for
illustration). For the high-resolution mode (kv is less than the
velocity variance on the beam scale) the slope of P1 is 2/(αv−3),
otherwise, in the low-resolution mode it is 6/(αv − 3) (a steep
density spectrum is assumed for both cases). A more complete
list of the predictions for P1 is presented in Table 2. The flat
beam there corresponds to the telescope beam for which the
resolution along one of the spatial axes is infinitely better than
the resolution for the perpendicular axis.

If we compare Equations (15) and (17), we see that the VCA
and the VCS provide complimentary approaches and are related
to the same quantity, P3. Their properties must therefore be
closely related.

4. SHOT NOISE ARISING FROM NUMERICAL FINITE
RESOLUTION

Earlier attempts to test the accuracy of VCA faced a problem,
namely the distortion of the spectrum of fluctuations within a v-
slice of the PPV data cube (see Lazarian et al. 2001). The effect
from the very beginning was associated with the discretization
of the numerical data, but attempts to remove the noise by
the interpolation of the numerical data were not successful.
In particular, in Esquivel et al. (2003) it was shown that the
quality of the spectrum in the v-slice depends on the number
of points along the line of sight in the numerical cube used to
create the PPV cube. The interference noise was termed shot
noise to reflect its stochastic nature: insufficient statistics for
the signal in spectrometer channels.10 Below we show that the
same type of noise is present in the VCS analysis. In this case,
P1 asymptotically approaches a constant minimum value for

10 If we take Nz too low in our simulations, there can be too few points that
contribute to the signal in a particular channel, which makes such a value
“unreliable.” However, one can face a similar situation in X-ray observations,
where individual photons are counted. In this case the time of observation
plays the role of Nz.
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large kv, which diminishes the spatial extent over which one can
study turbulence (see Figure 5, right).

To have a realistic spectral line we need a velocity field to
be adequately resolved over line of sight (see also Inogamov
& Sunyaev 2003). This means that the typical scale over z for
which velocity stays within a single channel near its extremum,
should have enough discretization points, because such extrema
give the dominant contribution to a spectrometer signal.

Let us discuss the required resolution, related to the size,
Nz, of the data cube along the z-axis. One can consider the
nonlinear space–velocity mapping11 induced by the turbulent
velocity. The relation between the scale of real space l and
the corresponding velocity scale vl is given by vl ∼ l(αv−3)/2,
which for the Kolmogorov turbulence, i.e., α = 11/3, gives the
familiar vl ∼ l1/3 relation. The minimal scale lmin which can be
studied with either VCS or VCA technique corresponds to the
distance between adjacent points in the original data cube. This
minimal distance translates into the smallest velocity over which
the velocity fluctuations can be studied, i.e. vz,min ∼ l

(αv−3)/2
min .

This minimal velocity corresponds to the maximal wavenumber
along the velocity coordinate, which can be recovered from the
simulations kv,max ∼ 1/vz,min. Therefore, kv,max ∼ l

−(α−3)/2
min .

If the data cube has Nz points, lmin ∼ N−1
z . This results in

kv,max ∼ N
(α−3)/2
z . For kv numbers to contain the information

about turbulence kv should be less than kv,max. Consequently
the number of points along the line of sight in the numerical
data cube should scale as k

2/(αv−3)
v,max . This provides the same

dependence as the more detailed Equation (22).
Naturally no VCA studies are meaningful below the channel

thickness of 1/kv,max.
The arguments above also mean that, according to Table 2,

the required number of points for flat beam scales as k
4/(αv−3)
v,max

and for low resolution as k
6/(αv−3)
v,max , which provides even steeper

dependences than the pencil beam. Thus, testing our formulae
with low resolution will be more challenging.

To estimate the exact resolution dependence, we have to
relate the correspondent typical scale over line of sight with
the channel width. The natural choice is to calculate the velocity
dispersion for wavelengths shorter than this scale. As mentioned
above, the contribution of the velocity profile shapes other
than extrema, provided by the remaining lower harmonics,
can be neglected. Therefore, the scale found by reverting this
expression is what we seek.

In other words, we divide the one-dimensional velocity
spectrum domain into the intervals separated by the scale in
question LΔ, and, as spoken, assume that the harmonics in its
low-wavenumber part provide an extremum of velocity. For the
higher harmonics, in order to place the bulk of the signal inside
one channel, we should demand that the correspondent variance
σ (LΔ) is about half a channel width:

σ (LΔ) ≈ σ (∞)

2Nσ

, (18)

where LΔ is a scale at which velocity stays within a single
channel near its extremum, Nσ is the number of channels
per velocity variance, and σ (L) is a velocity variance for
scales smaller than L, expressed through one-dimensional power

11 Such mapping can be illustrated by an example provided in Figure 1.

spectrum12 E(k):

σ 2(L) = 2
∫ ∞

2π
L

E(k) dk. (19)

If a three-dimensional power spectrum has a cutoff at k0 =
2π/L, where L is an injection scale, E(k) has the following form
for the isotropic three-dimensional spectrum of vz:

E(k) ∼ 1

αv − 2

{
k−(αv−2), |k| > k0

k
−(αv−2)
0 , |k| � k0.

(20)

Then, having solved Equation (18) for LΔ we get

LΔ ≈
(

2Nσ√
αv − 2

)− 2
αv−3

L. (21)

If nΔ is a number of points per LΔ, then the total number of
points along z is as follows:

Nz ≈ nΔ
Ls

L

(
2Nσ√
αv − 2

) 2
αv−3

, (22)

where Ls is the size of emitting structure, nΔ is determined from
simulations and is experimentally found to be around 6.

The requirements for Nz are rather demanding. If we take
our typical settings: 128 channels per triple line width and
Ls/L = 2, then for αv = 4, Nz should be at least 1.1 × 104

points, for αv = 11/3 the corresponding number is 4.3 × 105,
while for αv = 3.5 the number is as big as 1.7 × 107. Therefore
it is not surprising that without this knowledge some researchers
could get puzzled by their results (e.g., Miville-Deschnes et al.
2003).

Condition (22) guarantees that the spectrum is clear from shot
noise for all available kv’s, up to 2π/Δv, where Δv is the channel
width. This estimation refers to the case without smoothing
along angular coordinates, i.e. for the high-resolution regime.
The low-resolution VCS spectrum drops faster and therefore the
requirements are even more restrictive.

5. RESULTS OF NUMERICAL TESTING

5.1. Recovering Spectral Indexes

VCS spectra, illustrating the condition given by Equa-
tion (22), are presented in Figure 3. The velocity spectral index
αv decreases from top to bottom (the values are 4, 3.78, and
3.56). According to our estimates above, this requires a drastic
increase of the number of points. Indeed, Nz is, respectively, 214,
217, and 223. In the left column, with shot noise clearly present,
Nz is four times undervalued. Examples of restoration of the ve-
locity spectral indices from simulations are presented in Table 3.
They show good agreement. Values of Nz have been chosen re-
garding Equation (22). Thus, knowing the requirements on Nz,
we can generate the VCS and VCA spectra (see Figure 4, with
αv = 4).

But for shallower velocity spectra, satisfying such conditions
for VCA may be difficult, even if we use two-dimensional data
instead of a three-dimensional data cube. For example, condition
(22) for the VCA simulations at αv = 11/3 implies a square ar-
ray with side 420, 000, which is difficult to implement at present.
If we decrease this size, the VCA spectrum gets distorted as seen
in Figure 5 (left). Therefore instead of prescribing the number
of VCA channels we have to seek alternative approaches.

12 This should not be confused with P1, which refers to PPV space.
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Figure 3. Illustration to the requirement (22) to the number of points over line of sight. The rows correspond to different velocity spectral index αv (4, 3.78, and 3.56
from top to bottom). VCS spectra in the middle column correspond to Nz close to the estimation (214, 217, and 223 respectively), in the left column Nz is 4 times
lower, in the right—two times greater. The cases with low Nz exhibit shot noise, which results in points getting above the solid line, which represents the analytical
expectation.

Table 3
Restoring of Velocity Spectral Index αv From Simulations

Expected αv Restored αv Nz

3.56 3.54 ± 0.01 8388,608
3.67 3.65 ± 0.02 524,288
3.78 3.79 ± 0.02 131,072
3.89 3.89 ± 0.02 32,768
4.00 3.91 ± 0.04 16,384

Note. 16 realizations of spectral line have been used for
each P1.

5.2. Choosing Optimal Thickness of Slices

In Esquivel et al. (2003) it was shown, that if we “optimize”
the thickness of the velocity slice (which is equivalent to
changing the velocity resolution), we get a correct spectrum.
Let us consider why this can happen. Looking at the right panel
of Figure 5, we see that at higher kv the VCS spectrum is affected
by shot noise. As both VCA and VCS spectra are just different
projections of the same three-dimensional power spectrum in the
PPV space (see Equations (15) and (17)), the noisy harmonics
seen in the P1 plot are most likely to affect the P2 spectrum. If we
use only kv, which correspond to the intact part of P1, the picture
improves significantly, as seen in Figure 6 (left). Such truncation
of the kv-domain is equivalent to taking a thicker velocity slice

in Esquivel et al. (2003). Rather thick slices were used in a
numerical study by Padoan et al. (2006), which explains why
they did not face the problems related to shot noise.

It is also important to test the VCS prediction of steepening
of P1 when the beam is made wide enough to emulate the low-
resolution regime. To do so we used steeper velocity spectrum,
with slope 4, which is less demanding in terms of the number
of points along line of sight. If we meet condition (22) we have
a good agreement with the predictions for both the high- and
low-resolution regimes (see Figure 7).

6. STUDIES OF TURBULENCE WITH ABSORPTION
LINES FROM POINT SOURCES

As clear from the earlier work (see LP00), as well as from our
presentation above, the VCA and VCS are related techniques.
We must stress that although fields of applicability of discussed
techniques intersect, they do not coincide. For instance, VCA
requires less resolution over the velocity coordinate, because
the range of scales can be obtained with spatial variations. Thus,
potentially, it can be used for studies of gas with Mach number
lower than what is required for VCS.

On the other hand, even if we have very poor statistics over
angular coordinates and VCA does not work, VCS can still
be used. This opens new possibilities for studies of turbulence
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Figure 4. Simulations with the number of points over line of sight Nz = 32, 768, sufficient to suppress shot noise (Nz = 20, 000 is required). Left: VCA spatial spectrum
(two-dimensional simulation), shallower solid line—expected velocity-dominated spectrum, steeper solid line—density-dominated spectrum. Right: correspondent
VCS spectrum for high-resolution mode (one-dimensional simulation), solid line—expected slope. Velocity spectral index is 4.

Figure 5. Simulations with insufficient ‘number of points over the line of sight (Nz = 32, 768 instead of Nz ≈ 420,000). Left: VCA spatial spectrum (two-dimensional
simulation), shallower solid line—expected velocity-dominated spectrum, steeper solid line—expected density-dominated spectrum; the spectrum is distorted (the
velocity-dominated one is expected). Right: correspondent VCS spectrum for high-resolution mode (one-dimensional simulation), solid line–expected slope, shot
noise clearly visible. Velocity spectral index is 11/3, which implies larger minimal Nz, than for the case in Figure 4.

Figure 6. Same as Figure 5, but with noisy kv-harmonics filtered out when calculating the VCA spectrum (left).

with absorption lines. In general, for absorption with extended
sources both techniques can be readily applicable. As the spatial
scale of the source decreases, the utility of the VCA decreases as
well. Indeed, a lot of point-like sources are required to provide
the spatial statistics required for the VCA. In contrast, VCS
utilizes sampling over different directions just to get different
statistical realizations of the turbulent process. Thus, the number

of point-like sources (e.g., stars) may be substantially reduced.
The typical observational situation for probing turbulence with
emission from point sources is illustrated in Figure 8. What is
the minimal number of sources of absorbed emission that are
required for restoring the spectrum of turbulence between the
sources and the observer? Below we answer this question using
numerical simulations.
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Figure 7. Two-dimensional VCS simulations for high-resolution (left) and low-resolution (right) modes. Solid lines show expected slopes. Velocity spectral index is 4.

Figure 8. VCS allows recovery of velocity statistics from absorption lines from
stars. The whole P1 is guaranteed to be in high-resolution mode, which provides
better dynamical range over kv. Numerical simulations show that very few
independent measurements are needed to gain required statistics (see Figure 9).
In the case of absorption against an extended source we have situation like
shown in Figure 2 for an emission line: the eddies can be in low (1), high
(2), or intermediate (3) resolution mode. The effective beam is defined by the
background object shape in this case, if it is not resolved by the telescope. For
absorption lines observed against cosmic microwave background (CMB), we
have the picture identical to shown in Figure 2.

(A color version of this figure is available in the online journal.)

A general case of VCA studies with absorption lines is dis-
cussed in LP08. There the criterion for restoring the turbulence
signal from saturated absorption lines was obtained. For the
sake of simplicity, here we discuss unsaturated absorption lines,
arising from the medium with total optical depth less than unity.
While, in general, a number of spectral lines from a single source
may be used, we limit our study to the situation of a single ab-
sorption line. Our simulations show that only 10 independent
measurements are needed to gain required statistics for Nσ ≈ 20
(see Figure 9). This opens avenues for studies of turbulence
with background stars even when the number of stars behind
the turbulent volume is limited. No other currently known tech-
nique other than VCS can recover the velocity spectrum in this
situation.

We may note that the number of absorption sources may
be even fewer than we mentioned above. This is the case, for
instance, when the turbulent volume sampled along the line of
sight contains subvolumes with different regular velocities. Such
a velocity shift is possible due to galactic rotation, for instance.
In this situation the limiting case for study is studying turbulence
sampled by an absorption line from a point source along a

Figure 9. VCS spectrum for 10 realizations in high-resolution mode. This
illustrates the opportunity to recover velocity spectrum from absorption lines
against a limited number of stars.

single direction. In the presence of regular velocity difference
between different turbulent volumes, the statistics may be rich
enough to enable averaging of adjacent kv-harmonics (see
Figure 10).

Naturally, when one uses point-like sources to test turbulence
with absorption lines, the effective resolution for the VCA is
infinite. In the case of absorption lines arising from sources of
finite angular size, the situation may be different. In particular,
we may also be in the low-resolution regime (see Figure 8).

7. DISCUSSION

Our study in this paper clarifies a number of issues related to
the studies of turbulence with the VCA and VCS techniques. In
particular, our numerical testing proves the analytical expres-
sions which are corner stones of the VCA and VCS techniques.
We also identified the source of shot noise reported in the earlier
numerical testing of the VCA, provided an analytical estimate of
the velocity slice thickness required to eliminate the noise, and
checked successfully that when the requirement of the velocity
thickness is satisfied, the velocity spectrum can be successfully
recovered.

In our treatment we stressed that the VCA and VCS tech-
niques are closely related (see Equations (15) and (17)) and
therefore the presence of shot noise in VCS inevitably affects
the quality of VCA spectrum. We showed that the requirement
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Figure 10. VCS can be applied even to a single spectral line. Configuration can be as shown on this picture. Regular velocity shift from the galactic rotation results in
statistics being sufficient to recover P1.

(A color version of this figure is available in the online journal.)

given by Equation (22) to eliminate the shot noise in synthetic
PPV cubes is rather demanding as the velocity spectrum gets
less steep, which send a warning signal to brute-force attempts
to test the techniques for an arbitrary index of turbulence spec-
trum. We confirm, however, an earlier claim in Esquivel et al.
(2003) that the shot noise interference is, exclusively, a problem
of synthetic observations, rather than the real ones. Shot noise
will appear in real observations too, when the number of re-
ceived photons is low enough. Incidentally, condition (22) gives
in this case the required number of photons and can be used for
the estimation of observational time required.

The limitation of our present study was that we dealt only with
testing of the asymptotical solutions for the VCA and VCS tech-
niques. Real data with its limited dynamical range of observed
velocity fluctuations may benefit from fitting the observations of
the integral expressions rather than the asymptotical solutions.
Indeed, the actual spectrum in the velocity slice may be thin for
large eddies and thick for small eddies. Therefore asymptotical
solutions may fit only part of the actual spectrum of the slice,
which will deviate from a power law. We shall deal with the
numerical testings of these situations elsewhere.

The authors thank Dmitry Pogosyan for his input. A.C. and
A.L. acknowledge the support from the Center for Magnetic
Self-Organization in Laboratory and Astrophysical Plasmas and
NSF grant AST 0808118. We also thank our referee Anthony
Minter for his valuable input.

APPENDIX A

SPECTRAL LINE

Let us write out the space–velocity distribution of density:

n0(r, v) = n0(r)ϕ(v − vmacro(r)), (A1)

where ϕ(v) is Maxwellian distribution of the emitting atoms
(ions):

ϕ(v) = 1√
2πβ

exp

(
− v2

2β

)
, β = kBT

m
(A2)

kB is Boltzmann’s constant and n0(r) is an integral density.
In these terms emissivity can be written as follows:

ε0(r, v) = ε0(r)ϕ(v − vmacro(r)), (A3)

where
ε0(r) = γ1n0(r) (A4)

for linear emissivity law, or

ε0(r) = γ2n
2
0(r) (A5)

for quadratic emissivity law.
Here γ1, γ2 are the coefficients depending on the correspon-

dent cross sections, and v defines emission frequency shift.
Let us write out the elementary power13, radiated by the

elementary volume dr dv into the solid angle dΩ:

dP = ε0(r, v)
dΩ
4π

dr dv

= 1

4πr2
ε0(r)ϕ(v − vflow) ds dr dv (A6)

where ds is an elementary area at the distance r from the source.
Then we can express the elementary signal at the spectrometer

output as follows:

dS = 1

2kB

AeffdP

ds

c

f0
fs(v − v0)wb,1(θ, φ) dr dv, (A7)

where Aeff is an effective area of the instrument, fs(v) is the
amplitude–frequency response of the spectrometer normalized
to the integral value, f0 and v0 are central frequency and velocity
of the channel and wb,1(θ, φ) is the instrument beam normalized
to the maximal value. S is measured in Kelvins.

Accounting for

Aeff = εa

λ0

Ωa

(A8)

Ωa =
∫

wb,1(θ, φ) dΩ, (A9)

where Ωa is the beam solid angle, λ0 is central wavelength, and
εa is the aperture efficiency and defining

wb ≡ wb,1

Ωa

(A10)

13 We neglect the self-absorption effects.
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Table 4
List of Simulation Programs

Program Dimensions Techniques Architecture

spect1d 1 VCS single processor
spect2d 2 VCS Single processor
spect3d 3 VCS Single processor
p_spect2d 2 VCS MPI
p_spect3d 3 VCS MPI
vca3d 3 VCA Single processor
p_vca2d 2 VCA MPI
p_vca3d 3 VCA MPI

Note. The programs are available at www.astro.wisc.edu/∼lazarian/
simulations.

we obtain

dS = εa

λ3
0

2kB

1

4πr2
ϕ(v − vflow(r))fs(v − v0)wb(ê, r̂) dr dv

(A11)
where ê is the beam direction. Integrating dS we finally have
the emission line profile:

S(ê, v0) = εaλ
3
0

8πkB

∫
dr

wb(ê, r̂)

r2
ε0(r)f (v0 − vflow(r)), (A12)

where effective channel sensitivity function f is defined as
follows:

f (v) ≡
∫ ∞

−∞
ϕ(v′ + v)fs(v

′) dv′. (A13)

Random field ε0(r) is not homogeneous, at least because the
emitting structure is limited in space. To model this we introduce
a homogeneous field ε(r) and a deterministic factor wε(r) setting
up the borders of an observed object. We will also “pack” into
ε(r) all constant factors:

wε(r)ε(r) ≡ λ3

8πkB

ε0(r). (A14)

Introducing a window function w as follows14:

w(ê, r) ≡ 1

r2
wb(ê, r̂)wε(r), (A15)

we finally obtain

S(ê, v0) =
∫

w(ê, r) dr ε(r)f
(
vr (r) + vreg

r (r) − v0
)
. (A16)

14 This composite window function is a product of the three-dimensional
instrument sensitivity function and the window function defining the object
extent.

APPENDIX B

CODE

The simulation programs are written in C++ in single pro-
cessor and MPI variants. The source of simulation programs
is available at www.astro.wisc.edu/∼lazarian/simulations, see
Table 4 for the complete list.
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