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ABSTRACT

Two-dimensional hydrodynamical disks are nonlinearly unstable to the formation of vortices. Once formed, these
vortices essentially survive forever. What happens in three dimensions? We show with incompressible shearing
box simulations that in three dimensions, a vortex in a short box forms and survives just as in two dimensions. But
a vortex in a tall box is unstable and is destroyed. In our simulation, the unstable vortex decays into a transient
turbulent-like state that transports angular momentum outward at a nearly constant rate for hundreds of orbital
times. The three-dimensional instability that destroys vortices is a generalization of the two-dimensional instability
that forms them. We derive the conditions for these nonlinear instabilities to act by calculating the coupling between
linear modes, and thereby derive the criterion for a vortex to survive in three dimensions as it does in two dimensions:
the azimuthal extent of the vortex must be larger than the scale height of the accretion disk. When this criterion
is violated, the vortex is unstable and decays. Because vortices are longer in azimuthal than in radial extent by
a factor that is inversely proportional to their excess vorticity, a vortex with given radial extent will only survive
in a three-dimensional disk if it is sufficiently weak. This counterintuitive result explains why previous three-
dimensional simulations always yielded decaying vortices: their vortices were too strong. Weak vortices behave
two-dimensionally even if their width is much less than their height because they are stabilized by rotation, and
behave as Taylor—Proudman columns. We conclude that in protoplanetary disks, weak vortices can trap dust and
serve as the nurseries of planet formation. Decaying strong vortices might be responsible for the outward transport
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of angular momentum that is required to make accretion disks accrete.
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1. INTRODUCTION

Matter accretes onto a wide variety of objects, such as young
stars, black holes, and white dwarfs, through accretion disks.
In highly ionized disks, magnetic fields are important, and they
trigger turbulence via the magnetorotational instability (Balbus
& Hawley 1998). However, many disks, such as those around
young stars or dwarf novae, are nearly neutral (e.g., Sano et al.
2000; Gammie & Menou 1998). In these disks, the fluid motions
are well described by hydrodynamics.

Numerical simulations of hydrodynamical disks in two
dimensions—in the plane of the disk—often produce long-
lived vortices (Godon & Livio 1999; Umurhan & Regev 2004;
Johnson & Gammie 2005). If vortices really exist in accretion
disks, they can have important consequences. First and fore-
most, they might generate turbulence. Since turbulence natu-
rally transports angular momentum outward,’ as is required for
mass to fall inward, it might be vortices that cause accretion
disks to accrete. Second, in disks around young stars, long-lived
vortices can trap solid particles and initiate the formation of
planets (Barge & Sommeria 1995).

Why do vortices naturally form in two-dimensional simula-
tions? Hydrodynamical disks are stable to linear perturbations.
However, they are nonlinearly unstable, despite some claims
to the contrary in the astrophysical literature. In two dimen-
sions, the incompressible hydrodynamical equations of a disk
are equivalent to those of a nonrotating linear shear flow (e.g.,
Lithwick 2007, hereafter LO7). And it has long been known

' Energy conservation implies that turbulence transports angular momentum

outward; see Section 3. Nonetheless, if an external energy source (e.g., the
radiative energy from the central star) drives the turbulence, then angular
momentum could, in principle, be transported inward.
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that such flows are nonlinearly unstable (Gill 1965; Lerner &
Knobloch 1988; LO7). This nonlinear instability is just a spe-
cial case of the Kelvin—Helmbholtz instability. Consider a linear
shear flow extending throughout the x—y plane with a velocity
profile v = —gxy, where ¢ > 0 is the constant shear rate, so
that —gq is the flow’s vorticity. (In the equivalent accretion disk,
the local angular speed is Q = 2¢/3.) This shear flow is linearly
stable to infinitesimal perturbations. But if the shear profile is
altered by a small amount, the alteration can itself be unstable
to infinitesimal perturbations. To be specific, let the alteration
be confined within a band of width Ax, and let it have vorticity
w = ow(x) (with |w| < ¢), so that it induces a velocity field
in excess of the linear shear with components u, ~ wAx and
u, = 0. Then this band is unstable to infinitesimal nonaxisym-
metric (i.e., nonstream-aligned) perturbations provided roughly
that

|w

1
|k | < —— = two-dimensional instability,
TN g Ax

)]

where k, is the wavenumber of the nonaxisymmetric perturba-
tion.> For any value of |w| and Ax, the band is always unsta-
ble to perturbations with a long enough wavelength. Remark-
ably, instability even occurs when |w| is infinitesimal. Hence,

2 More precisely, the necessary and sufficient condition for instability in the
limit |o] < g is that k| < 5 [, d;"_/;’o* dx, where xq is any value of x at
which dw/dx = 0 (Gill 1965; Lerner & Knobloch 1988; L07). For arbitrarily
large w, Rayleigh’s inflection point theorem and Fjgrtoft’s theorem give
necessary (though insufficient) criteria for instability (Drazin & Reid 2004).
The former states that for instability, it is required that dw/dx = 0 somewhere
in the flow, that is, the velocity field must have an inflection point. Lovelace

et al. (1999) generalized Rayleigh’s inflection point theorem to compressible
and nonhomentropic disks.
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we may regard this as a true nonlinear instability. Balbus &
Hawley (2006) asserted that detailed numerical simulations have
not shown evidence of nonlinear instability. The reason many
simulations fail to see it is that their boxes are not long enough
in the y-direction to encompass a small enough nonzero |k, |.

In two dimensions, the outcome of this instability is a long-
lived vortex (e.g., L0O7). A vortex that has been studied in detail
is the Moore—Saffman vortex, which is a localized patch of
spatially constant vorticity superimposed on a linear shear flow
(Saffman 1995). When |w| < ¢, where w here refers to the
spatially constant excess vorticity within the patch, and when
the vorticity within the patch (@ — g) is stronger than that of the
background shear, then the patch forms a stable vortex that is
elongated in y relative to x by the factor

Ay 4

=~ L @

Ax ol
This relation applies not only to Moore—Saffman vortices, but
also to vortices whose w is not spatially constant. It may
be understood as follows. A patch with characteristic excess
vorticity ~ w and with Ay > Ax induces a velocity field
in the x-direction with amplitude u, ~ |w|Ax, independent
of the value of Ay (e.g., Section 6 in L07). As long as |w| < ¢,
the y-velocity within the vortex is predominantly due to the
background shear, and is ~ gAx. Therefore, the time to cross
the width of the vortex is #, ~ Ax/u, ~ 1/|w| and the time
to cross its length is ¢, ~ Ay/(gAx). Since these times must
be comparable in a vortex, Equation (2) follows. Equation (2)
is very similar to Equation (1). The two-dimensional instability
naturally forms into a two-dimensional vortex. Furthermore,
the exponential growth rate of the instability is ~ |w|, which
is comparable to the rate at which fluid circulates around the
vortex.

More generally, an arbitrary axisymmetric profile of w(x)
tends to evolve into a distinctive banded structure. Roughly
speaking, bands where w < 0 contain vortices, and these are
interspersed with bands where w > 0, which contain no vortices.
(Recall that we take the background vorticity to be negative;
otherwise, the converse would hold.) The reason for this is that
only regions that have w < 0 can be unstable, as may be inferred
either from the integral criterion for instability given in footnote
2 or from Fjgrtoft’s theorem. For more detail on vortex dynamics
in shear flows, see the review by Marcus (1993).

What happens in three dimensions? To date, numerical
simulations of vortices in three-dimensional disks have been
reported in two papers. Barranco & Marcus (2005) initialized
their simulation with a Moore—Saffman vortex and solved the
anelastic equations in a stratified disk. They found that this
vortex decayed. As it decayed, new vortices were formed in
the disk’s atmosphere, two scale heights above the midplane.
The new vortices survived for the duration of the simulation.
Shen et al. (2006) performed both two-dimensional and three-
dimensional simulations of the compressible hydrodynamical
equations in an unstratified disk, initialized with large random
fluctuations. They found that whereas the two-dimensional
simulations produced long-lived vortices, in three dimensions
vortices rapidly decayed.

Intuitively, it seems clear that a vortex in a very thin disk
will behave as it does in two dimensions. And from the three-
dimensional simulations described above, it may be inferred
that placing this vortex in a very thick disk will induce its decay.
Our main goal in this paper is to understand these two behaviors
and the transition between them. A crude explanation of our
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final result is that vortices decay when the two-dimensional
vortex motion resonantly couples to three-dimensional modes,
that is, to modes that have a vertical wavenumber k, # 0.
As described above, a vortex with excess vorticity |w| has
circulation frequency ~ |w|, and ky/k, ~ |w|/q, where k.
and k, are its “typical” wavenumbers. Furthermore, it is well
known that the frequency of axisymmetric (k, = 0) inertial
waves is Qk./,/k2 + k? (see Equation (41)). Equating the two
frequencies, and taking the k, of the three-dimensional mode
to be comparable with the k, of the vortex, as well as setting
q = 3Q/2 for a Keplerian disk, we find

kz ~ ky 3

as the condition for resonance. Therefore, a vortex with length
Ay will survive in a box with height Az < Ay, because
in such a box, all three-dimensional modes have too high a
frequency to couple with the vortex, that is, all nonzero k.
exceed the characteristic k, ~ 1/Ay. But when Az 2 Ay, there
exist k, in the box that satisfy the resonance condition (3),
leading to the vortex’s destruction. This conclusion suggests
that vortices live indefinitely in disks with scale height less
than their length (& < Ay) because in such disks, all three-
dimensional modes have too high a frequency for resonant
coupling. This conclusion is also consistent with the simulations
of Barranco & Marcus (2005) and Shen et al. (2006). Both
of these works initialized their simulations with strong excess
vorticity |w| ~ ¢, corresponding to nearly circular vortices.
Both had vertical domains that were comparable with the
vortices’ width. Therefore, both saw that their vortices decayed.
Had they initialized their simulations with smaller |w|, and
increased the box length L, to encompass the resulting elongated
vortices, both would have found long-lived three-dimensional
vortices. Barranco & Marcus’s discovery of long-lived vortices
in the disk’s atmosphere is simple to understand because the
local scale height is reduced in inverse proportion to the height
above the midplane. Therefore, higher up in the atmosphere, the
dynamics becomes more two dimensional, and a given vortex is
better able to survive the higher it is.’

1.1. Organization of the Paper

In Section 2, we introduce the equations of motion, and in
Section 3, we present two pseudospectral simulations. One il-
lustrates the formation and survival of a vortex in a short box and
the other illustrates the destruction of a vortex in a tall box. In
Sections 4 and 5, we develop a theory explaining this behavior.
The reader who is satisfied by the qualitative description lead-
ing to Equation (3) may skip those two sections. The theory that
we develop is indirectly related to the transient amplification
scenario for the generation of turbulence. Even though hydro-
dynamical disks are linearly stable, linear perturbations can be
transiently amplified before they decay, often by a large factor. It
has been proposed that sufficiently amplified modes might cou-
ple nonlinearly, leading to turbulence (e.g., Chagelishvili et al.
2003; Yecko 2004; Afshordi et al. 2005). However, to make this
proposal more concrete, one must work out how modes couple
nonlinearly. In LO7, we did that in two dimensions. We showed
that the two-dimensional nonlinear instability of Equation (1) is
a consequence of the coupling of an axisymmetric mode with

3 However, Barranco & Marcus (2005) also included buoyancy forces in their
simulations, which we ignore here. How buoyancy affects the stability of
vortices is a topic for future work. But see Section 6 for some speculations.
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a transiently amplified mode, which may be called a “swinging
mode” because its phasefronts are swung around by the back-
ground shear. In Section 5, we show that the three-dimensional
instability responsible for the destruction of vortices is a gen-
eralization of this two-dimensional instability. It may be under-
stood by examining the coupling of a three-dimensional swing-
ing mode with an axisymmetric one. Three-dimensional modes
become increasingly unstable as |k,| decreases, and in the limit
that k;, — 0, the three-dimensional instability smoothly matches
onto the two-dimensional one. Thicker disks are more prone to
three-dimensional instability because they encompass smaller
k..

2. EQUATIONS OF MOTION

We solve the “shearing box” equations, which approximate
the dynamics in an accretion disk on lengthscales much smaller
than the distance to the disk’s center. We assume incompress-
ibility, which is a good approximation when relative motions
are subsonic. We also neglect vertical gravity, and hence strati-
fication and buoyancy, which is an oversimplification. To fully
understand vortices in astrophysical disks, one must consider
the effects of vertical gravity in addition to shear and rotation.
In this paper, we consider only two pieces of this puzzle—shear
and rotation. Adding the third piece—vertical gravity—is a topic
that we leave for future investigations. See also Section 6 for
some speculations.

An unperturbed Keplerian disk has an angular velocity
profile Q(r) o r~3/2. In a reference frame rotating at constant
angular speed Q) = Q(rg), where ry is a fiducial radius, the
incompressible shearing box equations of motion read as

gv+v-Vv= —2Q0Z X v +2gQoxx — VP/p, (4)
V-v=0, 5)

adopting Cartesian coordinates x, y, z, which are related to the
disk’s cylindrical r, 6 via x = r — rg and y = ro(0 — Qqt); X
and Z are unit vectors, and

dQ 3

—_ — 20, 6
T="0mrl, 270 ©

We retain g and Q) as independent parameters because they
parameterize different effects: shear and rotation, respectively.
The first term on the right-hand side of Equation (4) is the
Coriolis force and the second is what remains after adding
centrifugal and gravitational forces. Decomposing the velocity
into

v=—gxy+u, @)

where the first term is the shear flow of the unperturbed disk,
yields

(0 —gxd)) u+u-Vu=qu,y—292xu—VP/p (8)
V.-u=0, ©)

dropping the subscript from €, as we shall do in the remainder
of this paper. An unperturbed disk has u = 0.

In addition to the above “velocity—pressure” formulation, an
alternative ‘“velocity—vorticity” formulation will prove conve-
nient. It is given by the curl of Equation (8):

(0 —gx0y)w = —q yow, +(2Q — q)o,u+V X (u X w), (10)

where
w=V Xu (11
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is the vorticity of u. Equation (10), together with the inverse of
Equation (11)
u=-V_7>V X o, (12)

forms a complete set.
Equation (10) implies that the total vorticity field is frozen
into the fluid, because it is equivalent to

0@y = V X (V X @), (13)

where
wo=Q2Q—-g)z+w (14)

is the total vorticity; note that —gZz is the vorticity of the
unperturbed shear flow in the rotating frame and hence (2Q —
q)Z is the unperturbed vorticity in the nonrotating frame. The
vorticity—velocity picture is similar to magnetohydrodynamics
(MHD), where it is the magnetic field that is frozen-in because
it satisfies Equation (13) in place of . However, in MHD
the velocity field has its own dynamical equation, whereas in
incompressible hydrodynamics it is directly determined from
the vorticity field via Equation (12).

3. TWO PSEUDOSPECTRAL SIMULATIONS

The pseudospectral code is described in detail in the appendix
of LO7. It solves the velocity—pressure equations of motion with
an explicit viscous term

vViu 15)

added to Equation (8). (In LO7, we did not include this term be-
cause we only considered inviscid flows.) The equations are
solved in Fourier space by decomposing fields into spatial
Fourier modes whose wavevectors are advected by the back-
ground flow —gxy. As a result, the boundary conditions are
periodic in the y and z dimensions and “shearing periodic” in x.
Most of our techniques are standard (e.g., Maron & Goldreich
2001; Rogallo 1981; Barranco & Marcus 2006). One exception
is our method for remapping highly trailing wavevectors into
highly leading ones, which is both simpler and more accurate
than the usual method. In addition, our remapping does not in-
troduce power into leading modes, because a mode’s amplitude
has always been set to zero before the remap. The code was
extensively tested on two-dimensional flows in LO7. A number
of rather stringent three-dimensional tests are performed in this
paper. We shall show that the code correctly reproduces the lin-
ear evolution of three-dimensional modes (Section 4), as well as
the nonlinear coupling between them (Section 5). We also show
in the present section that it tracks the various contributions to
the energy budget, and that the sum of the contributions vanishes
to high accuracy.

Figures 1-4 show results from two pseudospectral simula-
tions. One simulation illustrates the formation and survival of
a vortex, and the other illustrates vortex destruction. In the
first (the “short box”), the number of Fourier modes used is
ny X ny, X n; = 64 x 64 x 32, and the simulation box has di-

mensions L, = 1—15, Ly=1,and L, = % In the second (the “tall
box”), the setup is identical, except that it has L, = 2 instead of

1/2. Both simulations are initialized by setting

2
W, = —0.1cos <L—nx> . (16)

=0 ‘
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Figure 1. Vortex formation and survival in a short box. Color depicts w.. The initial state is unstable to vertically symmetric (k; = 0) perturbations, and forms into
a vortex. But it is stable to three-dimensional (k; # 0) perturbations, and the evolution remains two dimensional. The bottom panels show horizontal slices through
the boxes in the upper panels, midway through the boxes. At time = 150, the vortex has already formed. Only fluid with @, < —0.08 is shown in the middle panels
to highlight the vortex, and to illustrate that surfaces of constant w, remain purely vertical. At time = 500, the vortex still survives. Its amplitude slowly decays by
viscosity, which acts on timescale = 1130. We set Q = 1 and ¢ = 3/2. The number of modes in the simulation is ny x ny x n, = 64 x 64 x 32, and the size of the

simulation box is (L, Ly, L;) = (%, 1, %). In this figure, L, is to scale relative to Ly, but L, has been expanded by a factor of 5 for clarity.

(A color version of this figure is available in the online journal.)
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Figure 2. Vortex destruction in a tall box. The setup is identical to the short-box simulation of Figure 1, except that the height L, has been increased by a factor
of 4, so that it now exceeds Ly. The resulting evolution is dramatically different. The initial state is now unstable not only to two-dimensional perturbations, but to
three-dimensional ones as well. In the middle panels, surfaces of constant w, are warped, and the evolution is no longer vertically symmetric. In the right panels, the

flow looks turbulent.
(A color version of this figure is available in the online journal.)

In addition, small perturbations are added to long-wavelength
modes. Specifically, labeling the wavevectors as

Jx 0y
(kX7k 7k):27T (_’_7_>7 (17)
T L, Ly, L,

with integers (jy, jy, j.), we select all modes that satisfy
ljxl < 3, 1jyl < 3, and |j;|] < 3, and set the Fourier
amplitude of their w. to 107%¢/®, where ¢ is a random

phase. But we exclude the (jx, jy, j.) = (0,0,0) mode,
as well as (jy, jy,j;) = (£1,0,0), which is given by
Equation (16). Finally, we set Q = 1, ¢ = 3/2, v = 1077,
and integration time step dt = 1/30.

With our chosen initial conditions, the mode given by
Equation (16) is nonlinearly unstable to vertically symmet-
ric (k, = 0) perturbations, and hence it tends to wrap up
into a vortex. From the approximate criterion for instability
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Figure 3. Energy in the short box. The three contributions to the energy budget, E,2, AEpear, and AEyis, are defined in Equations (20)—(22). E > initially decays,
and then rises to a peak near ¢t ~ 200 as nonaxisymmetric perturbations turn the axisymmetric mode into a vortex. Subsequently, the vortex decays due to viscosity.
The spikiness of the evolution is due to the boundary conditions, as explained in the text. Also shown in the bottom panel is the error due to numerical effects,
AFEcror (Equation (24)). It is unlabeled because it is mostly obscured by AEgeqr. But it is nearly equal to zero everywhere, showing that the code accurately tracks the

components of the energy budget.
(A color version of this figure is available in the online journal.)

(Equation (1)), we see that to illustrate the wrapping up into a
vortex of a mode with a small amplitude, one must make the
simulation box elongated in the y-direction relative to the x-scale
of the mode in equation (16).

In the short box (Figure 1), the evolution proceeds just as
it would in two dimensions. The initial mode indeed wraps up
into a vortex, and the evolution remains vertically symmetric
throughout. Once formed, the vortex can live for ever in the
absence of viscosity. But in our simulation, there is a slow
viscous decay. The timescale for viscous decay across the width
of the vortex is ~ 1/vk? = 1130, taking k, = 27 /L,.

In the tall box (Figure 2), the evolution is dramatically
different. In this case, the initial state is unstable not only to two-
dimensional perturbations, but to three-dimensional (k; # 0)
ones as well. In the middle panel of that figure, we see that
instead of forming a vertically symmetric vortex as in the short
box, surfaces of constant w, are warped. By the third panel, the
flow looks turbulent.

Figures 3 and 4 show the evolution of the energy in these
simulations. Projecting u onto the Navier—Stokes equation
(Equation (8) with viscosity included), and spatially averaging,
we arrive at the energy equation

2
%? = qlucuy) +v{u-Viu), (18)
after applying the shearing-box boundary conditions, where
angled brackets denote a spatial average. The time integral of
this equation is

Ep,—Epg |t:0 = AEshear + AEViSC’ (19)

where
(u?)
Ep,=— 20
2 > (20
t
AE ghear = q/ (uyuy)dt’ 21
0
t
AEyie = v / (w-VZu)dt'. (22)
0

The pseudospectral code records each of these terms, and
Figure 3 shows the result in the short box simulation. At very
early times, E,2 decays from its initial value due to viscosity. At
the same time, the small vertically symmetric perturbations grow
exponentially, and they start to give order-unity perturbations by
t ~ 150, by which time a vortex has been formed (Figure 1).
As time evolves, E,» gradually decays due to viscosity on the
viscous timescale = 1130. The evolution is very spiky. We defer
a discussion of this spikiness to the end of this section.

Figure 4 shows the result in the tall box. The early evolution
of E 2 is similar to that seen in the short box. Both start with the
same E,2, and an initial period of viscous decay is interrupted
by exponentially growing perturbations. But in the tall box, not
only are vertically symmetric modes growing, but modes with
k, # 0 are growing as well. By ¢t ~ 150, there is a distorted
vortex that subsequently decays into a turbulent-like state. The
energy E,. rises to a value significantly larger than its initial
one, and it continues to rise until # ~ 600, when it starts to
decay. Throughout the time interval 300 < ¢ < 600, AEear
rises nearly linearly in time, showing that (u,u,) is positive and
nearly constant.
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Figure 4. Energy in the tall box. The initial evolution is almost the same as that
seen in the short box (Figure 3). But three-dimensional perturbations are unstable
and force the destruction of the vortex. In the time interval 300 < ¢t < 600,
while the initial axisymmetric disturbance decays in a turbulent-like state, the
value of E > is significantly larger than its initial value, and A Eheqr tises nearly
linearly in time, corresponding to nearly constant outward transport of angular
momentum in a disk. The contribution of numerical errors to the time-integrated
energy budget, AE.or (Equation (24)), remains small throughout.

It is intriguing that (u,u,) is positive for hundreds of or-
bits, because it suggests that decaying vortices might transport
angular momentum outward in disks and, hence, drive accre-
tion. Understanding the level of the turbulence, its lifetime,
and its nature are topics for future work. Here, we merely ad-
dress the sign of (u.uy). The quantity (u,u,) is the flux of
y-momentum in the +x-direction (per unit mass and spatially
averaged). It corresponds to the flux of angular momentum
in a disk. A positive (u,u,) implies an outward flux of an-
gular momentum, as is required to drive matter inward in an
accretion disk. (Even though the shearing box cannot distin-
guish inward from outward, the sign of the angular momentum
within a box depends on which side of the shearing box one
calls inward. Therefore, outward transport of (positive) angular
momentum is well defined in a shearing box.) In the shearing
box, any force that tends to diminish the background shear flow
—qxy necessarily transports y-momentum in the +x-direction.
Hence, the fact that (u,u,) > 0 in Figure 4 shows that the tur-
bulence exerts forces that resist the background shear, as one
might expect on physical grounds. One can also understand
why (u.u,) > 0 from energy considerations. Since AEj;. < 0,
as may be seen explicitly by an integration by parts, that is,
(u-Vu) = — Zi’j<(8jui)2>, Equation (19) may be rearranged
to read as

AEgear = |AEyisc| + Ep — E2|i=o. (23)
If the turbulence reaches a steady state—as it approximately
does in Figure 4 during the time interval 300 < ¢ < 600—
then the last two terms in the above equation are nearly
constant, whereas |AEy;s| increases linearly with time. Hence,
AE e, must also increase. It is a general property of accretion
disks that energy dissipation implies outward transport of
angular momentum (e.g., Lynden-Bell & Pringle 1974). Since
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turbulence always dissipates energy, it must also transport
angular momentum outward. However, this argument can be
violated if an external energy source drives the turbulence, in
which case one would have to add this energy to the left-hand
side of Equation (23). For example, the simulations of Stone
& Balbus (1996) showed that convective disks can transport
angular momentum inward when an externally imposed heat
source drives the convection.

Also shown in the bottom panels of Figures 3 and 4 is the
integrated energy error

AEcqor = AEghear + AEyise + E2li—0 — E,2 (24)

due to numerical effects, which is seen to be small. (In
Figure 3, AE o is not labeled because the curve is mostly
obscured by AEge; it can be seen near t ~ 200, and is
everywhere very nearly equal to zero.) The fact that AEqq
nearly vanishes throughout the simulations is not guaranteed
by the pseudospectral algorithm. Rather, we have chosen v
to be large enough that the algorithm introduces negligible
error into the energy budget. To be more precise, at each time
step in the pseudospectral code, modes that have |j,| > n,/3
or |j,| > n,/3 or |j.| > n;/3, where j, , . are defined via
Equation (17), have their amplitudes set to zero (“dealiased”).
This introduces an error that is analogous to grid error in grid-
based codes. By choosing v to be sufficiently large, it is the
explicit viscosity that forces modes with large k to have small
amplitudes, in which case the dealiasing procedure has little
effect on the dynamics. Increasing the resolution n, x n, x n;
would allow a smaller v to be chosen—implying a larger
effective Reynolds number—while keeping the energy error
small.

The curves of E,» show sharp narrow spikes every time
interval At = 10, with width ~ 1. Similar spikes have been seen
in other simulations (Umurhan & Regev 2004; Shen et al. 2000),
but they are stronger and narrower in our simulations because
our simulation box is elongated. These spikes are due to the
shearing-periodic boundary conditions. It is perhaps simplest to
understand them by following the evolution in k-space, as we
shall do in Section 5 (see also LO7). But for now, we explain their
origin in real space. By the nature of shearing-periodic boundary
conditions, associated with the simulation box centered at x = 0
are “imaginary boxes” centered at x = jL, with integer
Jj = =*£1,+£2,.... These imaginary boxes completely tile the x—y
plane, and each contains a virtual copy of the conditions inside
the simulation box. The boxes move relative to the simulation
box in the y-direction, with the speed of the mean shear at
the center of each box, —¢gjL,. Therefore, in the time interval
At = L, /(qL,) = 10, all the boxes line up. When this happens,
the velocity field u that is induced by the vorticity within all the
boxes (via Equation (12)) becomes large, because all the boxes
reinforce each other, and therefore E,. exhibits a spike. Even
though the shearing-periodic boundary conditions that we use
are somewhat artificial, we are confident that using more realistic
open boundary conditions would not affect the main results of
this paper—and particularly not the stability of axisymmetric
modes to three-dimensional perturbations. In LO7, where we
considered two-dimensional dynamics, we investigated both
open and shearing-periodic boundary conditions, and showed
explicitly that both give similar results. We also feel that the
boundary conditions likely do not affect the level and persistence
of the “turbulence” seen in Figure 4. However, this is less certain.
Future investigations should more carefully address the role of
boundary conditions.



No. 1, 2009

FORMATION, SURVIVAL, AND DESTRUCTION OF VORTICES IN ACCRETION DISKS 91

Figure 5. Evolution of wavevectors. Modes have constant k, and k;, and k, = qtky+const. The three spheres depict modes that play important roles in nonlinear
instability. The mode at (1, 0, 0) does not move in k-space. The other two modes are swinging modes that are depicted in the leading phase of their swing. They will
become trailing after crossing through the radially symmetric plane. The mode crossing through (1, —1, 0) is responsible for the two-dimensional instability that forms
vortices. The one crossing through (1, —1, 1) is responsible for the three-dimensional instability that destroys vortices.

(A color version of this figure is available in the online journal.)

4. LINEAR EVOLUTION

In the remainder of this paper, we develop a theory explaining
the stability of vortices seen in the above numerical simulations.
We first consider the linear evolution of individual modes, and
then proceed to show how nonlinear coupling between linear
modes can explain vortex stability.

The linear evolution has been considered previously
(Afshordi et al. 2005; Johnson & Gammie 2005; Balbus &
Hawley 2006). Only two aspects of our treatment are new. First,
we give the solution in terms of variables that allow the sim-
ple reconstruction of the full vectors @ and u. And second, we
give the analytic expression for matching a leading mode onto
a trailing mode that is valid for all k, and k_,

The linearized equation of motion is, from Equation (10),

(0 — gx0y)@ = —q yo, +(2Q — q)d;u. (25)
A single mode may be written as
@(x, 1) = ko, e, (26)

where ky is a constant vector that denotes the wavevector at time
t = 0, and the wavevector k = k(ky, ) has components

ky = koy = const (27)
k, = ko, = const (28)
ky = kox + qtk, # const, (29)

so that upon insertion into Equation (25), the time derivative
of the exponential cancels the term —gxd,®. The velocity field
induced by such a mode is (Equation (12))

u(x, 1) = ko, t)ekonlx, (30)

where
kx®
i2

Figure 5 sketches the evolution of wavevectors. Axisymmet-
ric modes (k, = 0) do not move in k-space, as depicted by the
sphere at (1, 0, 0) in Figure 5. “Swinging modes” have k, # 0,
and their k, is time dependent. Their fronts of constant phase
are advected by the background shear. Swinging modes with
ky/k, < 0, as depicted by the two spheres near (1, —1, 0) and
(1, —1, 1) in Figure 5, have phasefronts tilted into the back-
ground shear, that is, they are leading modes. As time evolves,
the shear first swings their k, through k, = 0, at which point
their phasefronts are radially symmetric. Subsequently, they be-
come trailing modes (k. /k, > 0) and approach alignment with
the azimuthal direction (k,/k, — 00).

We now turn to the evolution of the Fourier amplitudes. In
the remainder of this paper, we drop the hats

u=i

€29

®— o, IU—u. (32)

To distinguish real-space fields, we shall explicitly write their
spatial dependence, for example, @(x).

Because w(x) is divergenceless, @ only has 2 degrees of
freedom, which we select to be w, and

kX)) |f-w, if
ky, | wg, if

ky =0,

k=0 (33)

Wy, =

where

ke = JK2+ 2. (34)

Our variable w,, is proportional to the variable U of Balbus &
Hawley (2006). Adopting w, as the second degree of freedom
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enables the full vectors to be reconstructed as

kx(k x x k x X
© = —a, X . %) — w2t (35)
kyz kyZ
kx(k X X kXX
U= i, XEXD) |, KX R (36)
kzk_VZ k%z

The linearized Equation (25) is expressed in terms of these
degrees of freedom as

12 1
kﬂi(‘”x>=ﬂ9 (0 —mlnz) (“’) (37)
qky dt \@yz K \2 0 Wy,

after introducing the epicyclic frequency,

K = /29020 — ), (38)

ky
T=— 39)
ky;
Kk,
= ——. (40)
q ky

As long as k, # 0, T varies in time through its dependence on
ky = kox +qtky.
For axisymmetric modes (k, = 0), T is constant and

& , K
Wa)yz + K m&)yz =0, 41
the solution of which is sinusoidal with frequency « k. //k2 + k2.
Axisymmetric modes with phasefronts aligned with the plane
of the disk (k, = k, = 0) have in-plane fluid velocities, and
they oscillate at the epicyclic frequency of a free test particle,
k. But axisymmetric modes with tilted phasefronts have slower
frequencies, because fluid pressure causes deviations from free
epicycles. In the limit of vertical axisymmetric phasefronts
(k; = k, = 0), the effects of rotation disappear entirely, and
this zero-frequency mode merely alters the mean shear flow’s
velocity profile.

For swinging modes (k, # 0), it is convenient to employ 7 as
the time variable. Since

ky. d _d @2
gk, dt — dt’
we have
@ F =0 43
A Ty T (“43)

(Balbus & Hawley 2006). Figure 6 plots numerical solutions
of this equation, and shows that it matches the output from the
pseudospectral code, as well as the analytic theory described
below. Given w,, it is trivial to construct @ and u from

Kk dwy;

=250 dr e

and Equations (35) and (36).
For highly leading or trailing modes (|| > 1), Equation (43)
has simple power-law solutions,

[t] > 1 45)

1= 138
wy; = waAlT| 7 +wplT|?,
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Figure 6. Linear evolution of mode amplitudes for three values of 8. Time runs
from right to left. Solid curves show the exact, numerically integrated solution of
Equation (43). The initial value of dwy /dt was chosen so that wp = 0 initially
(Equation (45)). Dashed lines show the analytic solution (Equation (45)) with
constantw4 and wp = Ofort > 0, while for < 0, the normal mode amplitudes
are set to different constants that are given by Equation (47). We exclude the
domain |[7] < 1 from the dashed curve, because the analytic approximation does
not apply there. Circles show output from the pseudospectral code, integrated
with a time step df = 1/15 and with the viscosity set to zero.

(A color version of this figure is available in the online journal.)

(Balbus & Hawley 2006), where w4 and wp are constants that
we shall call the “normal-mode” amplitudes, and

§=1—4p2, (46)

which is imaginary for || > 1/2. As a mode’s wavevector
evolves along a line in k-space, its amplitude is oscillatory if
this line is much closer to the k;-axis than to the k,-one, and
nonoscillatory if the converse is true. The transition occurs at
|B] = 1/2. This behavior may be understood as a competition
between shear and epicyclic oscillations. The timescale for
ky to change by an order-unity factor due to the shear is
Ishear ~ lky/ki| = |kc/qky|, and the timescale for epicyclic
oscillations of axisymmetric modes is fep; ~ k Yk, /k,| for
|kx| > |k;|. Therefore, |B| ~ tsear/fepi> and when |B] > 1, the
epicyclic time is shorter and so the mode’s amplitude oscillates
as its wavevector is slowly advected by the shear. But when
Bl < 1, the shear changes the wavevector faster than the
amplitude can oscillate.

Solution (45) breaks down in mid-swing. As a swinging wave
changes from leading to trailing, its “normal-mode amplitudes”
change abruptly on the timescale that T changes from % 1 to

F 1via
o Tan Tap\ [(wa
= , 47
<w3>trail (TBA TBB) ((1)3) lead ( )

where the transition matrix has components
TAA :_TBB = CSC(87T/2) (48)

cot(8m/2)?
Typ

BA
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el 1=8 T +8/2)
=2 §1+8 T(1/2+58/2)2 “49)

and determinant = —1, and hence is its own inverse. The
components are complex when |8] > 1/2. To derive these
components, we took advantage of the fact that Equation (43)
has hypergeometric solutions (Johnson & Gammie 2005; Balbus
& Hawley 2006), and matched these onto the normal-mode
solution given above. We omit the unenlightening details.

5. NONLINEAR EVOLUTION: FORMATION AND
DESTRUCTION OF VORTICES

5.1. Qualitative Description

The instability that destroys vortices is a generalization of the
one that forms them. We review here how vortices form, before
describing the instability that destroys them. In Section 5.2, we
make this description quantitative.

Vortices form out of a nonlinear instability that involves
vertically symmetric (k, = 0) modes. (See LO7 for more
details of the two-dimensional dynamics than are presented
here.) Consider the two vertically symmetric modes shown in
Figure 5: the “mother” mode at (1, 0, 0) and the “father” mode
that is depicted crossing through (1, —1, 0). Triplets of integers
(Jx» Jy, J-) label values of wavevectors (k,, ky, k;) (e.g., via
[17]). The mother is both axisymmetric and vertically symmetric
and the father is a leading swinging mode.

As the father swings through radial symmetry, that is, as it
crosses through the point (0, —1, 0), its velocity field is strongly
amplified by the background shear. This can be seen from
Section 4, which shows that swinging modes with k, = 0
have w,,=const, and hence u, = i(w,./ky.)/(1 + %), which
becomes largest when 7 crosses through 0. When the father is
near the peak of its transient amplification (|z| < 1), it couples
most strongly with the mother, and they produce a “son” near
(1,-1,0) = (1,0,0) + (0, —1,0). The son will then swing
through radial symmetry where it will couple (oedipally) with
the mother to produce a grandson near (1, —1, 0), which can
repeat the cycle. We summarize this two-dimensional instability
feedback loop as

linear amplification: (1, —1,0) — (0, —1,0)
nonlinear coupling: (0, —1,0)+(1,0,0) — (1, —1, 0).

The criterion for instability is simply that the amplitude of the
son’s wy be larger than that of the father. As shown in L07, if
instability is triggered, its nonlinear outcome in two dimensions
is a long-lived vortex.

The three-dimensional instability that is responsible for
destroying vortices is a straightforward generalization. The
mother mode is still at (1, 0, 0), but now the father mode starts
near (1, —1, 1). Symbolically, the feedback loop is

linear amplification: (1, —1,1) - (0, —1, 1)
nonlinear coupling: (0, —1, 1) +(1,0,0) — (1, —1, 1).

The two-dimensional instability described above is just a special
case of this three-dimensional one in the limit that k£, = 0. In
general, the stability of a mother mode at (1, 0, 0) with given
ky = ky and @ = @ depends on k, and k, of the father-mode
perturbations (as well as on the parameters ¢ and €2). Which k,
and k; are accessible in turn depends on the dimensions L, x L,
of the simulation box or, equivalently, on the circumferential
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distance around a disk and the scale height. In Section 5.2, we
quantitatively map out the region in the k,—k; plane that leads to
instability. For now, it suffices to note that the unstable region
has |ky| S lky@|/q and |k;| S |ky|. We conclude that a given
mother mode suffers one of three possible fates, depending on
Lyand L.

1. If Ly is less than a critical value (~ g/ |@k,|), then the
mother mode is stable to all perturbations.

2. If L, is larger than this critical value, then the mother mode
is unstable to vertically symmetric (k, = 0) perturbations;
if in addition L, is sufficiently small that all modes with
k. # 0 are stable, then the mother mode turns into a long-
lived vortex (Figure 1).

3. If both L, and L are sufficiently large, the mother mode
is unstable both to vertically symmetric and to three-
dimensional perturbations. When this happens, the mother
starts to form a vortex, but this vortex is unstable to
three-dimensional perturbations. The result is turbulence
(Figure 2).

There is also a possibility that is intermediate between
numbers 2 and 3: if the conditions described in number 2
hold, the essentially two-dimensional dynamics that results can
nonlinearly produce new mother modes that are unstable to
three-dimensional perturbations. In this paper, we shall not
consider this possibility further, since it did not occur in the
pseudospectral simulations of Section 3. We merely note that in
our simulations of this possibility (not presented in this paper),
we found that when the new mother modes decayed, they also
destroyed the original mother mode.

5.2. The Stability Criterion

To quantify the previous discussion, we choose an initial state
as in Figure 5, with the mother mode at (1, 0, 0) and the father
a leading mode crossing through (1, —1, 1). The son mode,
not depicted in the figure, initially crosses through the point
(2, —1,1). We set its initial vorticity—as well as the initial
vorticity of all modes other than the mother and father—to zero.*
The father’s wavevector and Fourier amplitude are labeled as in
Section 4, and the mother’s and son’s are labeled with bars and
primes:

father: k, @
mother: k =k& & = &2
son: k' =kx+

Note that k=const, and &, = 0 because the vorticity must be
transverse to the wavevector. We also set @, = 0; otherwise
u, # 0, which corresponds to a mean flow out the top of the
box and in through the bottom.

At early times, the father mode swings through the point
(0, —1, 1). Since the only other nonvanishing mode at this time

4 We ignore the complex conjugate modes for simplicity. Since @(x) is real
valued, each mode with wavevector and amplitude (k, ) is accompanied by a
conjugate mode that has (—k, ®*). In our initial state, there are really four
modes with nonzero amplitudes: the mother at (1, 0, 0) and its conjugate at
(—1, 0, 0), and the father and its conjugate. We may ignore the conjugate
modes because they do not affect the instability described here. As shown in
LO07 for the two-dimensional case, their main effect is that when the son
swings through (0, —1, 1), not only does it couple with the mother at (1, 0, 0)
to produce a grandson at (1, —1, 1), but it also couples with the conjugate
mother at (—1, 0, 0) to partially kill its father, which is then at (—1, —1, 1)
(bringing to mind the story of Oedipus). But since the father is a trailing mode
at this time, it no longer participates in the instability. Nonetheless, the
conjugate modes do play a role in the nonlinear outcome of the instability.
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is the mother, there are no mode couplings that can nonlinearly
change the father’s amplitude. Therefore its amplitude is gov-
erned by the linear Equation (37), which we reproduce here as

d w Q 0 _lﬁ 1 w
— )l =B— 2 Q2 1+12 *
g (wyz> p p <2 A I+ ) (wyz> . (50)

During its swing, it couples with the mother to change the
amplitude of the son. The linear part of the son’s evolution
is given by the above equation with primed vorticity and
wavevector in place of unprimed. The nonlinear part is given by

d

—o' =ik’ X (I X 0+ux o) (51

dt nonlin
(Equation (10)), where & = —i(&/k)y and u = ik X @/k>
(Equation (31)). Adding the linear and nonlinear parts, and re-
expressing in terms of our chosen degrees of freedom, we find

’ 1 «? 1 ’
a4 @) = 59 0 3@ ey Wx
dT a)yz K 2 O wyz

T=-—— (53)

yz

depends on both the mother’s and the father’s wavevectors.
It is the father’s T = k,/k,, that is being used as the time
coordinate for evolving the son’s amplitude. The grandson’s
equation is the obvious extension: denoting the grandson’s
amplitudes with double primes, one need to only make the
following replacements in Equation (52): ' — ®”, ® — @',
and T — 1 + 7. Subsequent generations evolve analogously.

The father’s Equation (50) is easily solved, as shown in
Section 4. Inserting this solution into Equation (52) produces
a linear inhomogeneous equation for the son’s amplitude, and
similarly for the grandson’s. Figure 7 plots numerical solutions
of these equations. Also shown as circles are output from a
pseudospectral simulation, showing excellent agreement.

In the appendix, we solve Equation (52) analytically to derive
the amplification factor x, which is the ratio of the son’s
amplitude at any point in its evolution (e.g., when it is radially
symmetric) to the father’s amplitude at the same point in its
evolution. We find

_ @ Sl qQ 0 T +6/2)
X= qtﬁ(ﬁ (1+K2(1 5)>r(1/2+5/2)’ 54

where § = /1 — 4B2. Equation (54) is applicable in the limit
|lw|/q < 1. For two-dimensional modes (8 = 0 = § = 1),
it recovers Equation (42) of LO7 (see also Equation (1) of this
paper):
k
X2D = —TT——. (55)
q ky
Marginally stable modes have | x| = 1. Figure 8 plots curves
of marginal stability. The left panel is for the case @ = 0.005,
as in Figure 7, and the right panel is for @ = 0.05, as in the
pseudospectral simulations presented at the outset of this paper
(Equation (16); Figures 1 and 2). The left panel shows that
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Figure 7. Nonlinear evolution of three-dimensional instability. Time runs from
right to left. In the two left panels, lines show numerical solutions of Equations
(50) and (52), as well as the grandson’s equation. Also shown as circles are
the output from a pseudospectral simulation, showing excellent agreement with
the “exact” solutions. The following parameters have been chosen: Q = 1,
q=3/2,&=0.005ky =2m-15,ky, = —27/30,k, = 0.45|ky| = B = —0.3.
The small disagreement between pseudospectral and exact solutions for &,
at T < —27 is due to the conjugate modes that, for simplicity, we have not
included in equations (50) and (52); see footnote 4. The two right panels show
the mode amplitudes, defined via Equation (A1) for the son, and similarly for
the father and grandson. Although these two right panels contain the same
information as the left ones, they are helpful in constructing the analytic form
of the growth factor x (see the appendix). With the parameters chosen for this
figure, Equation (54) predicts x = —2.2 for the amplification factor between
successive generations, in agreement with that seen in the figure.

Equation (54) gives a fair reproduction of the exact curve. We
do not show Equation (54) in the right panel, because it gives
poorer agreement there (since |w|/q is too large). In the right
panel, we also plot X for the values of the smallest nonvanishing
three-dimensional wavenumbers in the simulations of Figures 1
and 2. In the short-box simulation, all three-dimensional modes
lie in the stable zone. Therefore, the dynamics remains two
dimensional. But in the three-dimensional box, there is a three-
dimensional mode in the unstable zone that destroys the vortex
and gives rise to turbulent-like behavior.

It is interesting to briefly consider how the instability de-
scribed here connects with the Rayleigh-unstable case, which
occurs when k2 < 0. At small |k, |, the marginally stable curves
in Figure 8 are given by |B| = 1/2, where B = (k/q)(k;/k,).
Hence, if one decreases « from its Keplerian value Q, the
marginally stable curve becomes steeper in the k,—k, plane,
and an increasing number of three-dimensional modes become
unstable. As ¥ — 0, if a two-dimensional mode with some k, is
unstable, then so are all three-dimensional modes with the same
ky. Therefore, any two-dimensional-unstable state is also three-
dimensional unstable, and any forming vortex would decay into
turbulence.

6. CONCLUSIONS

Our main result follows from Figure 8, which maps out the
stability of a “mother mode” (i.e., a mode with wavevector
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Figure 8. Curves of marginal stability for a mother mode with & = 0.005 (left panel) and @ = 0.05 (right panel). The left panel corresponds to Figure 7 and the
right panel corresponds to the pseudospectral simulations of Figures 1 and 2. We set Q = 1 and ¢ = 3/2. To make the solid lines in these plots (the “exact
solutions™), we repeated the integrations that produced the lines in Figure 7, but varying k; for each k, until perturbations neither grew nor decayed. The dashed
line in the left panel shows that the analytic approximation of Equation (54) agrees reasonably well with the exact solution. We do not show Equation (54) in the
right panel because the agreement is poorer there. The right panel shows two X’s for the values of the smallest nonzero |ky| and |k;| in the simulations of Figures
1-2, that is, \k_‘,./lzl = L,/Ly, = 0.067 for both simulations and |k, /k| = L/L, = 0.13 for the short box and = 0.033 for the tall box. The tall box contains
a three-dimensional-unstable mode that leads to the destruction of the vortex into a turbulent-like state. The short box contains no such mode, and is stable to

three-dimensional perturbations.

ki and amplitude ®) to nonaxisymmetric three-dimensional
perturbations. A mother mode is unstable provided that k, and k.
of the nonaxisymmetric perturbations satisfy both |k,| < kw/q
and |k;| < |ky|, dropping order-unity constants. Based on
this result, we may understand the formation, survival, and
destruction of vortices. Vortices form out of mother modes that
are unstable to two-dimensional (k, = 0) perturbations. Mother
modes that are unstable to two-dimensional modes but stable to
three-dimensional (k, # 0) ones form into long-lived vortices.
Mother modes that are unstable to both two-dimensional and
three-dimensional modes are destroyed. Therefore, a mother
mode with given k and @ will form into a vortex if the disk has a
sufficiently large circumferential extent and a sufficiently small
scale height, that is, if r > k~!q/@ and h < k~'q/®, where r
is the distance to the center of the disk and £ is the scale height.
Alternatively, the mother mode will be destroyed in a turbulent-
like state if both r and 4 are sufficiently large (r > k~!q /@ and
h >k 'q/®d).

Our result has a number of astrophysical consequences. In
protoplanetary disks that do not contain any vortices, solid
particles drift inward. Gas disks orbit at sub-Keplerian speeds,
Vgas ~ Qr(1 — n), where Qr is the Keplerian speed and
n ~ (c/ Qr)2, with ¢, being the sound speed. Since solid
particles would orbit at the Keplerian speed in the absence of gas,
the mismatch of speeds between solids and gas produces a drag
on the solid particles, removing their angular momentum and
causing them to fall into the star. For example, in the minimum
mass solar nebula, meter-sized particles fall in from 1 AU in
around a hundred years. This rapid infall presents a serious
problem for theories of planet formation, since it is difficult to
produce planets out of dust in under a hundred years. Vortices
can solve this problem (Barge & Sommeria 1995). A vortex that
has excess vorticity —® and radial width 1/k can halt the infall
of particles provided that @/k = (€r)n, because the gas speed
induced by such a vortex more than compensates for the sub-
Keplerian speed induced by gas pressure.> Previous simulations

5 We implicitly assume here that the stopping time of the particle due to gas
drag is comparable with the orbital time, which is true for meter-sized particles
at 1 AU in the minimum mass solar nebula. A more careful treatment shows
that a vortex can stop a particle with stopping time #; provided that

o/k Z (Qr)(Qt;)n (Youdin 2008).

implied that three-dimensional vortices rapidly decay, and so
cannot prevent the rapid infall of solid particles (Barranco &
Marcus 2005; Shen et al. 2006). Our result shows that vortices
can survive within disks, and so restores the viability of vortices
as a solution to the infall problem.

A more important—and more speculative—application of our
result is to the transport of angular momentum within neutral
accretion disks. In our simulation of a vortex in a tall box,
we found that as the vortex decayed, it transported angular
momentum outward at a nearly constant rate for hundreds of
orbital times. If decaying vortices transport a significant amount
of angular momentum in disks, they would resolve one of the
most important outstanding questions in astrophysics today:
what causes hydrodynamical accretion disks to accrete? To
make this speculation more concrete, one must understand the
amplitude and duration of the “turbulence” that results from
decaying vortices. This is a topic for future research.

In this paper, we considered only the effects of rotation
and shear on the stability of vortices, while we neglected the
effect of vertical gravity. There has been a lot of research in
the geophysical community on the dynamics of fluids in the
presence of vertical gravity, since stably stratified fluids are
very common on Earth—in the atmosphere, oceans, and lakes.
In numerical and laboratory experiments of strongly stratified
flows, thin horizontal “pancake vortices” often form, and fully
developed turbulence is characterized by thin horizontal layers.
(e.g., Brethouwer et al. 2007). Pancake vortices are stabilized
by vertical gravity, in contrast to the vortices studied in this
paper, which are stabilized by rotation. Gravity inhibits vertical
motions because of buoyancy: it costs gravitational energy for
fluid to move vertically. The resulting quasi-two-dimensional
flow can form into a vortex.® We may speculate that in an

6 Billant & Chomaz (2000) showed that a vertically uniform vortex column
in a stratified (and nonrotating and nonshearing) fluid suffers an instability (the
“zigzag instability”) that is characterized by a typical vertical lengthscale

A; ~ U/N, where U is the horizontal speed induced by the vortex, N is the
Brunt—Viisila frequency, and the horizontal lengthscale of the vortex Ly, is
assumed to be much greater that A, (hence, the pancake structure). We may
understand Billant & Chomaz’s result in a crude fashion with an argument
similar to that employed in the introduction to explain the destruction of
rotation-stabilized vortices: since the frequency of buoyancy waves is Nk, / k
(when |k;| < |k;|), and since the frequency at which fluid circulates around a
vortex is U/Lj, ~ kU, there is a resonance between these two frequencies for
a vertical lengthscale 1/k, ~ U/N.
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astrophysical disk, vertical gravity provides an additional means
to stabilize vortices, in addition to rotation. But to make this
speculation concrete, the theory presented in this paper should
be extended to include vertical gravity.

In this paper, we have not addressed the origin of the axisym-
metric structure (the mother modes) that give rise to surviving or
decaying vortices. One possibility is that decaying vortices can
produce more axisymmetric structure and, therefore, they can
lead to self-sustaining turbulence. This seems to us unlikely.
We have not seen evidence of it in our simulations, but this
could be because of the modest resolution of our simulations.
Other possibilities for the generation of axisymmetric structure
include thermal instabilities, such as the baroclinic instability,
or convection, or stirring by planets. This, too, is a topic for
future research.

APPENDIX
ANALYTIC EXPRESSION FOR GROWTH FACTOR x

In this appendix, we derive Equation (54) by analyti-
cally integrating Equation (52) for the son’s vorticity, given
the father’s vorticity as a function of time (Section 4), and
taking the mother’s vorticity @ to be constant, which is
valid when the father’s amplitude is small relative to the
mother’s. The numerical integral of Equation (52) is shown in
Figure 7. Recall that initially 7 = 7 > 0 and t decreases
in time, and typically 7 > 1. It simplifies the analysis
to work with the son’s “normal-mode” amplitudes «/; and
wl, defined from o, and o/, via (Equations (44) and

(45))

’ kK 1-8_r 12 K148 s /
w T gt (o
< ,x> — [ 28Q 21 2BQ 2t 1 ;4 , (Al)

@y, |‘E/|% |T'| 7 @p

where
T =1+7. (A2)

Substituting this into Equation (52), the time derivative of the
above matrix cancels the homogeneous term in that equation
if we approximate 1 + t2 ~ t’2, which holds until just
before the time that t = —7. The inhomogeneous term
produces

d , ol ,w 1 2B%qQ 1+686 1
—w, = —<|t'|7? | o), 5 >— + —
dt q I+ K 2 1

146 1 28Q 1
____}mx P :>, r2-F (A3
2 Tt K

Since w, and w,, are known (Section 4), a straightfor-
ward integration yields «’, just before © = —7. To per-
form this integral, we resort to some approximations, guided
by the solution shown in Figure 7. For the first term, we
need

= 145 =
- (t+17)2 1 T P, _ 18
f Wy, ————dT ~ / yz(t+r)%dr
T T

1+72 N dt?

-7
+ a)B/ IT] 2 "Xt + 1) 2 dt (Ad)

€T

Vol. 693
1+8 - 1, .
~ wptd T e _waS/ s (1—s)Tds  (AS)
1+6 T°(1/2+6/2
~ wppa Jr it TU/2+8/2) (A6)

1-8 T(1+8/2)

where € is a parameter that satisfies 1 3> € > 1/7. In the first
line, we used Equation (43), and we discarded the w4 mode from
the second integral because the wp mode increases faster with
increasing |7|. From Figure 7, ', nearly vanishes until t 2~ 0.
Therefore, in the second line, we approximated the first integral
as —(f%/ﬂz)da)yz/drl_e. The third line holds in the limit of
small €. The other three terms in Equation (A3) are integrated
similarly, yielding

v 1 T(1/2+68/2
W, = wBQ_faz—a—lﬁ as /2)
) I'(1+6/2)
qQ (1 +68)?
1+ —1-§8)) —— A7
x ( g )) s (A7)
just before the time when T = —7, that is, just before the son

is radially symmetric. At this time, Figure 7 shows that w/
very nearly vanishes. Therefore, just after the son is radially
symmetric, it will have o} = Tpasw) (Equation (47)), with
o', given by Equation (A7). This gives the amplification factor
X = wl/wp that is displayed in Equation (54).
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