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ABSTRACT

The number density of galaxy clusters provides tight statistical constraints on the matter fluctuation power
spectrum normalization, traditionally phrased in terms of σ 8, the root-mean-square mass fluctuation in spheres
with radius 8 h−1 Mpc. We present constraints on σ 8 and the total matter density Ωm0 from local cluster
counts as a function of X-ray temperature, taking care to incorporate and minimize systematic errors that
plagued previous work with this method. In particular, we present new determinations of the cluster luminosity–
temperature and mass–temperature relations, including their intrinsic scatter, and a determination of the Jenkins
mass function parameters for the same mass definition as the mass–temperature calibration. Marginalizing
over the 12 uninteresting parameters associated with this method, we find that the local cluster temperature
function implies σ 8(Ωm0/0.32)α = 0.86 ± 0.04 with α = 0.30 and 0.41 for Ωm0 � 0.32 and Ωm0 �
0.32, respectively (68% confidence for two parameters). This result agrees with a wide range of recent
independent determinations, and we find no evidence of any additional sources of systematic error for the
X-ray cluster temperature function determination of the matter power spectrum normalization. The joint
WMAP5 + cluster constraints are Ωm0 = 0.30+0.03

−0.02 and σ8 = 0.85+0.04
−0.02 (68% confidence for two parameters).

Key words: cosmological parameters – cosmology: observations – galaxies: clusters: general – large-scale
structure of universe – X-rays: galaxies

1. INTRODUCTION

Present data concerning the structure in and evolution of the
universe are well described by a theory using just six principal
parameters (Tegmark et al. 2006; Komatsu et al. 2008, among
many others). These parameters are Ωm0 and Ωb0, the present
total matter and baryon densities with respect to critical density,
respectively; h the present value of the Hubble parameter in
units of 100 km s−1 Mpc−1; σ 8 the present root mean square
(rms) total matter fluctuations in spheres of 8 h−1 Mpc radius;
ns the primordial power spectrum spectral index; and τ the
optical depth to the last scattering. This minimal model, which
we assume in this paper, sets several other parameters to
specific values, most notably the spatial curvature = 0 (flat)
and the equation of state parameter of the dark energy = −1
(cosmological constant).

The normalization of the matter fluctuation power spectrum
P(k) comes from σ 8 via

σ8 =
[∫ ∞

0
dk

k2

2π2
P (k)

[
3j1(8k)

8k

]2
]1/2

(1)

or σ 8 ≈ [P(0.172 h Mpc−1)/3879 h−3 Mpc3]1/2 (Peacock
1999, Equations (16.13) and (16.132)) where j1 is the spherical
Bessel function of the first kind, order one, and k is the spatial
wavenumber. The shape of P(k) is determined by Ωm0, Ωb0, h,
and ns (Eisenstein & Hu 1998).

The number density of clusters of galaxies at a given epoch
is sensitive to some of these cosmological parameters while
the evolution of the number density is sensitive to others. The
sensitivity to h, Ωb0, ns, and τ is weak or nonexistent, is mod-
erate to Ωm0, and is strong to σ 8. There has thus been much
effort expended trying to exploit this sensitivity to measure
σ 8. Generally, the values from the cluster method have been
lower than those coming from other techniques. For example,

Hetterscheidt et al. (2007) compile cluster and weak lens cosmic
shear determinations since 2001 and find that the 2002–2006 av-
erages of σ 8 assuming Ωm0 = 0.3 are 0.728 ± 0.035 and 0.847 ±
0.029, respectively. Spergel et al. (2003) find 0.92 ± 0.10 from
the WMAP first year data. This discrepancy, along with the per-
ceived complicated cluster X-ray gas physics, has led to a slow
acceptance of the cluster-based values. This situation was sum-
marized in the 2006 Final Report of the Dark Energy Task Force
as: “. . . the prediction of [cluster] counts is subject to substan-
tial uncertainties in the baryonic physics . . . This method is the
one for which our forecasts are least reliable, due to this large
astrophysical systematic effect.” (Albrecht et al. 2006, p. 46)

It has not always been emphasized that the strong dependence
of cluster number density on σ 8 comes with an equally strong
dependence on systematic effects. Perhaps the largest systematic
uncertainty is the relation between the cluster mass and a more
easily observable proxy, called the mass–observable relation.
Henry (2004, H04 hereafter, Figure 9 and Table 4, which gives
earlier cluster determinations of σ 8) shows that much of the
scatter among reported cluster σ 8 measurements is simply due
to the assumed mass–temperature relation normalization.

Two recent developments motivated this paper. First, the
three- and five-year WMAP results for σ 8 are 0.76 ± 0.05
(Spergel et al. 2007) and 0.796 ± 0.036 (Dunkley et al. 2008).
Although the changes with respect to WMAP1 are of marginal
statistical significance, the new values of σ 8 do agree with the
historical average from X-ray clusters quoted above. As sum-
marized in Tegmark et al. (2006), Section 4.2.1, this reduction
comes from a reduction of the best-fit values of τ , Ωm0h2, and
ns, resulting from improved modeling of noise and foregrounds,
better statistics, and an improved analysis procedure. Second,
as we explain in Section 3, the three a priori best methods of
calibrating the cluster mass–temperature relation, masses from
weak gravitational lensing, masses from the equation of hy-
drostatic equilibrium corrected for nonthermal pressure support
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applied to the X-ray gas of likely virialized objects, and numer-
ical hydrodynamic simulations are for the most part consistent.
The agreement indicates that the calibration of this crucial rela-
tion is on a firmer basis than what was previously possible.

We here present an updated measurement of σ 8 derived from
a local sample of cluster temperatures chosen to minimize
systematic errors but including their effects in the analysis.
This update uses a new mass–temperature (M–T) calibration
with temperatures from the same source as the sample (or put
on that scale) and a new determination of the mass function
with the same definition of cluster mass as the M–T calibration.
We measure ourselves or use the WMAP5 measurements of
all twelve uninteresting parameters needed for the analysis,
including their estimated errors. We marginalize over all these
uninteresting parameters when reporting our constraints in the
σ 8–Ωm0 plane. Readers not interested in these technical details
may skip to Section 5, where we give the resulting cosmological
constraints, and Section 6 for a comparison of them with those
provided by other methods.

2. CLUSTER SAMPLE

Present cluster determinations of σ 8 are already systematics
limited. So there is no need to decrease the statistical errors
on σ 8 by increasing the sample size or redshift range beyond
that of previous samples if the goal is to measure it. Larger
samples of calibrators external to the statistical sample used to
do cosmology can be useful when measuring various relations
needed to derive the cosmological constraints. Larger statistical
samples may be useful when trying to identify its residual
systematic error by breaking it into subsamples with various
properties. Our goal here is to minimize systematic errors
on the determination of σ 8. To that end we use a local
sample that minimizes evolutionary effects. We also want only
massive objects since groups may not be scaled-down versions
of clusters. For example Sanderson et al. (2003) find that
the luminosity–temperature relation steepens considerably for
objects with temperatures less than 2 keV. Sun et al. (2008)
suggest that the difference between groups and hotter clusters is
mainly due to differences between their cores. The sample we
chose is HIFLUGCS (Reiprich & Böhringer 2002). This sample
is X-ray selected and X-ray flux limited from the ROSAT All-
Sky Survey, but with fluxes redetermined from ROSAT-PSPC
pointed observations for 75% of the sample. It covers 8.14
steradians with fluxes in the 0.1–2.4 keV band f200(0.1, 2.4) >
2.0 × 10−11 erg cm−2 s−1 (f200 is defined below). We made two
additional cuts: redshift � 0.2 for a local sample and temperature
� 3 keV for massive objects.

There are 48 objects meeting all these criteria. Their average z
is 0.0551. Forty-five clusters have single-temperature MEKAL
model fits of ASCA data to the entire cluster (i.e., without exclud-
ing any cool cores) from Horner (2001). The temperatures of
the remaining three objects (A1656, ZwCl1215, and A1644) are
derived from Ikebe et al. (2002) after regressing Horner’s tem-
peratures against theirs for the 45 objects. This procedure yields
temperatures 3% lower than the original Ikebe et al. values. The
average fractional statistical 68% confidence temperature error
of all 48 objects is 2.2%.

The HIFLUGCS catalog presents, among other things, the
PSPC count rate in channels 52–201 (approximately 0.5–
2.0 keV) within a specified outer radius that is different for
each object, z, hydrogen column density toward the source, and
the beta index and core radius of a beta model spatial profile. We
used all of these parameters plus the temperature to derive the

absorption-free flux within r200, where r200 is the radius within
which the average density of the cluster is 200 times the critical
density at the redshift of the cluster. Using the definitions of
M200, r200, and M500, r500, and the relation between M500 and kT
determined below, r200 as a function of temperature is [(15/8π )
(M200/M500) (AMT (kT)αMT )/(500ρc(z))]1/3. Using the Navarro
et al. (1995) mass profile with c = 5 to find M200/M500 = 1.479
and specifying αMT = 3/2 with the corresponding AMT yields

r200 = 2.77 ± 0.02h−1
70 Mpc[kT /10 keV]1/2/E(z), (2)

with h70 the present value of the Hubble parameter in units of
70 km s−1 Mpc−1, Ωm0 = 0.3, and E(z) = [Ωm0 (1 + z)3 + 1 −
Ωm0]1/2. We interpolate or extrapolate the beta model from the
specified outer radius to r200. On average for the HIFLUGCS
objects in our sample the outer radius extends to 0.887 of r200.
The flux within r200, f200, is on average 4.5% higher than the
HIFLUGCS flux and this factor varies from 5.1% to 4.4% as
Ωm0 varies from 0.05 to 0.5. That is, this correction is small,
independent of h, and very nearly independent of Ωm0. The
average fractional statistical 68% confidence flux error of all 48
objects is 2.0%.

The virial theorem implies that temperature is a useful mass
proxy. In massive simulated halos, the dark matter velocity
dispersion scales with mass in a manner that is independent
of cosmology and is well approximated as a power-law relation
with fixed log-normal scatter (Evrard et al. 2008). This general
form is also seen in the matter temperature of simulations
that include gas, irrespective of the detailed baryonic physics
treatment employed (Borgani et al. 2004; Balogh et al. 2006;
Kravtsov et al. 2006). This behavior suggests that the gas physics
that determines the temperature may be simple and that the
parameterization of the M–T relation may not be sensitive to
small changes in cosmology.

Balanced against these desirable properties is the added
uncertainty of the selection function. As outlined above, the
HIFLUGCS clusters are flux-selected, not temperature-selected.
Equations (4) and (5) of H04 show how to determine the
temperature selection function from the flux selection function.
The procedure is as follows.

The luminosity and redshift may be converted to flux in the
usual way, yielding the solid angle surveyed in which a cluster
with these properties could have been detected:

Ω(f200(E1, E2)) = Ω(L200(bol), z)

= Ω
(

L200(bol) BF(E1, E2, kT (L))

4πD2
L(Ωm0, z) k(E1, E2, z, kT (L))

)
.

(3)

Here L200(bol) is the bolometric luminosity within r200, BF
is the band fraction that gives the fraction of the bolometric
luminosity that is in the energy band E1 to E2, DL is the lumi-
nosity distance with h = 0.7 and Ωm0 = 0.3 for specificity, the
same as we used for r200, and k is the k-correction. All quantities
on the right-hand side of Equation (3) are known, once a clus-
ter luminosity–temperature relation is specified, which we do
below. While the flux selection function is cosmology indepen-
dent, the selection function of luminosity and redshift is not.

In order to obtain the temperature selection function, we must
convert the luminosity to a temperature. Key to this conversion
is of course the luminosity–temperature relation, which we de-
termine from our sample. We derive the bolometric luminosi-
ties from the fluxes as described above. Dimensional analysis
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Table 1
Parameters and Error Propagation

Symbol Type Value Range (ΔLike = 1) ΔΩm0 Δσ 8 ΔSa

Cosmology
H Prior 0.719 0.692–0.745 0.00–0.00 0.00–0.00 0.64–1.20
ns

b Prior 0.963 0.948–0.977 0.00–0.00 0.00–0.00 1.00–1.00
Ωb0h2 b Prior 0.02273 0.02211–0.02335 0.00–0.00 0.00–0.00 1.00–1.00
Ωm0 Fit . . . 0.10 (0.02) 0.90 . . . . . . . . .

σ 8 Fit . . . 0.55 (0.01) 1.00 . . . . . . . . .

Mass function
AMF Prior 0.148 0.119–0.178 0.04 to −0.03 −0.01–0.01 0.95–0.98
Bc Prior 0.829 0.827–0.830 −0.01–0.00 0.01–0.00 0.98–1.02
εc Prior 3.96 3.98–3.94 −0.01–0.00 0.01–0.00 0.98–1.02

Cluster physics
log(AMT )d Prior −1.4582 −1.4939 to −1.4225 0.00–0.09 0.00 to −0.08 0.00–0.91
αMT

d Prior 1.5376 1.6029–1.4723 0.00–0.09 0.00 to −0.08 0.00–0.91
σMT/M Prior 0.13 0.04–0.22 −0.13–0.00 0.07–0.00 3.32–0.00
Log(ALT )e Prior −1.4411 −1.6096 to −1.2726 0.02–0.05 −0.02–0.04 1.06–3.49
αLT

e Prior 3.0870 3.3240–2.8500 0.02–0.05 −0.02–0.04 1.06–3.49
σ log(L)T Prior 0.252 0.220–0.284 −0.01 to −0.03 0.01–0.02 0.73–9.63

Sample variance . . . . . . . . . −0.04 to −0.04 −0.03–0.03 . . .

Notes. Prior: priors on the Ωm0 and σ 8 fits, they are also the uninteresting parameters.
a Including ΔS(uninteresting), which is +1 here.
b Correlated.
c Correlated ρ = −1.0000.
d Correlated ρ = −0.9116.
e Correlated ρ = −0.9769.

suggests power-law behaviors for the mean luminosity and tem-
perature as a function of mass and redshift, and hence a power-
law luminosity–temperature relation (Nord et al. 2008; Kaiser
1986). Power-law behavior seems justified empirically. If the
relation is in fact not a power law, then the intrinsic scatter
we derive would be overestimated, producing a more ramp-
like jump in the temperature selection function coming from
oversmoothing the step-function flux selection function. There
is no effect outside the jump region, thus a small effect over-
all. So, we fit a power law of the form L44(bol) = ALT (kT)αLT

where the bolometric luminosity is in units of 1044 erg s−1 and
the temperature is in units of keV. We use the bivariate cor-
related errors and intrinsic scatter (BCES) bisector for the fit,
which incorporates errors in both variables plus intrinsic scatter
(Akritas & Bershady 1996; see Appendix A for more details).
Readers who prefer a different temperature pivot (i.e., the tem-
perature divided by a number other than unity; 5 is sometimes
quoted in the literature) should consult Appendix B for a sim-
ple procedure to transform our results to their preferred pivot.
Table 1 provides the best-fit values and information on their co-
variance matrix. Figure 1 shows the error ellipse for the two fit-
ting parameters. Figure 2 compares the best fit with the data.

This sample exhibits the usual good L–T relation but with
a large intrinsic scatter. The intrinsic scatter is log normal
(e.g., Novicki et al. 2002), so we report in Table 1 the scatter
of log(L) at constant kT, σ log(L)T . If there were no scatter,
then we could simply replace L200(bol) in Equation (3) with
a unique temperature, thereby obtaining a selection function
of temperature and redshift. Because the band fraction and k
correction are weak functions of temperature for the small range
of temperatures considered here, the scatter in the L–T relation
produces almost no scatter for them. Thus to obtain Ω(kT, z)
we must average over the possible Ω(L200(bol), z)s at each
temperature, weighted by the probability of obtaining them:

Ω(kT , z) =
∫

d(log L)Ω(L, z)
{
exp
{−[ log

(
ALT (kT )αLT

-1.8 -1.6 -1.4 -1.2
log(ALT)

2.8

3.0

3.2

3.4

α
L

T

Figure 1. Error ellipse for the luminosity–temperature relation parameters
corresponding to 68% confidence for one and two parameters. A Hubble
parameter of h = 0.7 was assumed to derive ALT .

×D2
L(h, Ωm0, z)

/
D2

L(0.7, 0.3, z)
)− log L

)]2/
2σ 2

log(L)T

}}/
{√

2πσ 2
log(L)T

}
, (4)

where we have generalized the L–T relation to L44(bol) =
ALT (kT)αLT [DL(h, Ωm0, z)/DL(0.7, 0.3, z)]2. The luminosity
distance dependence converts from the h = 0.7, Ωm0 = 0.3
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Figure 2. Bolometric luminosity plotted as a function of Horner temperature.
The best-fitting luminosity–temperature relation is overlaid. The hottest cluster
is A2163, which at z = 0.201 is just outside the z cut for the sample of 48 used
for cosmology.

cosmology in which the ALT and αLT are determined to any
other cosmology.

Stanek et al. (2006) and Nord et al. (2008) point out that
both the shape and scatter of the observed L–T relation from a
flux-limited sample may be different from that of a mass-limited
sample. The degree and direction of the difference depends on
the covariance of the L and T variations at fixed mass. A nonzero
covariance can enhance or suppress the probability that an object
of a given mass survives the flux cut. Although we derive our L–T
relation from a flux-limited sample, we expect these effects to
be small for it. First, clusters in the simulations summarized
in Stanek et al. (2006) exhibit weak covariance, only 2%.
Second, the flux cut that defines our HIFLUGCS sample (2 ×
10−11 erg cm−2 s−1) is a factor of ∼7 higher than the flux limit of
the underlying ROSAT All-Sky Survey from which it was drawn
(3 × 10−12 erg cm−2 s−1) so the log of their ratio is 3.3 σ log(L)T .
The last two terms of Equation (A.11) from Vikhlinin et al.
(2008) show that this effect is then 0.1% of the purely statistical
likelihood given by the first term of Equation (A.11), which is
what we used to determine our L–T relation. Thus, this effect is
completely negligible for our application.

3. MASS–TEMPERATURE RELATION

We need an L–T relation because clusters are selected by flux,
not temperature. Analogously, we need an M–T relation because
the theory is expressed in terms of mass, not temperature. To
calibrate this relation we need a sample of clusters with known
masses and temperatures. The classic technique to estimate
cluster masses is from observations of the radial velocities of its
member galaxies. The mass may be estimated in several ways
but there are the often-discussed inherent unknowns associated
with each. Girardi et al. (1998) and Rines & Diaferio (2006)
give short summaries of these techniques. The Jeans method
requires the unknown galaxy orbital distribution (since the
velocity dispersion across the line of sight is not known) or

the unknown mass distribution, often assumed to be the same
as the galaxies (mass follows light). The virial theorem method
integrates the Jeans equation but again requires the unknown
form of the mass distribution. Both of the preceding methods
require that the cluster is in dynamic equilibrium. Finally, the
caustic method (Diaferio 1999), which is related to and not
independent of the Jeans method, does not require dynamic
equilibrium but still needs the galaxy orbital and total mass
distributions. Information on the galaxy orbital distribution can
come from measuring the galaxy velocity kurtosis, but the mass
estimate still requires an assumption on the mass distribution
(see Łokas et al. 2007). We attempted to calibrate the M–T
relation from the 13 M500 caustic masses of Rines & Diaferio
(2006) with Horner (2001) temperatures using the procedure
described below. The measured dispersion is 0.80 ± 0.22, a
factor of 6 larger than what we find below. We attribute this large
dispersion to the ambiguities inherent with galaxy velocities
used to measure masses and do not pursue this method further.

There are three other ways to obtain cluster masses: (1) weak
lensing observations, (2) X-ray observations of relaxed clusters
assuming virial equilibrium with corrections for nonthermal
pressure support, and (3) numerical simulations that calculate
both the mass and temperature. Although historically the three
methods have not always agreed, we show here consistency
among them, suggesting convergence to the true solution. This
result ameliorates the largest systematic uncertainty in using
cluster number density measurements to constrain cosmological
parameters. We fit a power law to characterize the M–T relation:
E(z)hM500,15 = AMT (kT)αMT , where M500,15 is the mass inside a
spherical overdensity of 500 with respect to the critical density
at the redshift of the cluster in units of 1015 M� and kT is in
keV. Here we use Ωm0 = 0.3 to be specific. In Appendix A, we
describe how we performed the fits.

3.1. X-ray Temperatures, Weak Lensing Masses

In principle this method should be the most reliable as
the masses and temperatures are completely independently
determined. We used the masses of the 17 clusters in Table 3
of Hoekstra (2007), as revised by Mahdavi et al. (2008), that
have X-ray temperatures from Horner (2001). This is the same
temperature source as was used for the L–T relation. Three
Hoekstra clusters are not included (MS 1231+15, A209, and
A383) because they have no Horner temperatures. This sample
has an average redshift of 0.289. Figure 3 shows the error ellipse
for the two fitting parameters.

3.2. X-ray Temperatures, X-ray Masses

Care must be exercised with this method because in order
to use it the objects must be in hydrostatic equilibrium and
both the temperature and surface brightness must be spatially
resolved. One or more of these requirements were not met in
many previous analyses. An additional complication for our
particular application is that the mass interior to a radius is
proportional to the temperature at that radius, which in turn
is nearly a constant fraction of the average temperature when
that radius encloses a density that is a constant fraction of the
critical density (e.g., Pratt et al. 2007). Thus, correlating mass
measured this way against average temperature is correlating
something strongly dependent on average temperature against
average temperature and this dependence may modify the M–T
relation that is finally derived.
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Figure 3. Error ellipses for mass–temperature relation fits corresponding to
68% confidence for two parameters. The solid line is from the weak lensing
masses and X-ray temperatures, the dashed line is from the X-ray hydrostatic
equilibrium masses and X-ray temperatures, and the dotted line is from the
simulated masses and temperatures.

Table 4 of Vikhlinin et al. (2006) contains 13 clusters, all
with X-ray temperatures and 10 with measured M500 masses.
These objects have a very regular X-ray morphology, indicating
that they are likely in virial equilibrium. The sample of 10
has an average redshift of 0.109. The temperatures reported by
Vikhlinin et al. (2006) were measured with Chandra data and
excluded the inner 70 h−1

72 kpc. Only seven of the 10 clusters
with mass measurements have Horner (2001) temperatures. We
calculated a weighted average ratio of the Vikhlinin et al. (2006)
Tspec to the Horner T for the eight of the 13 clusters that have
Horner temperatures, finding 1.083 ± 0.008 (68% confidence).
This slight positive bias is expected, since Horner includes any
cool core gas in his measurement while Vikhlinin et al. (2006)
do not. We divided the Vikhlinin et al. (2006) temperatures of
the sample of 10 by this factor to place them on the Horner
scale.

Two further corrections are needed, both derived from the
simulations described in Section 3.3. The first arises be-
cause relaxed clusters likely have different masses than the
same temperature cluster that has experienced a recent merger.
The statistical correction factor for including merging clusters
in the sample can be derived by comparing the masses of merg-
ing clusters to the same temperature relaxed clusters. We find
this a factor of 1.122 ± 0.055 (68% confidence) by comparing
AMTs for All z, all clusters with All z, relaxed clusters in Table 2
of Kravtsov et al. (2006). The second correction is for the ef-
fects of nonthermal pressure support even in relaxed looking
clusters. From Table 2 of Nagai et al. (2007b), for Mtot(<rest),
z = 0, r500c, relaxed clusters, this correction is a factor of 1.242 ±
0.042 (68% confidence error on the mean for a sample of
21 objects). That is, relaxed looking clusters are 24% more
massive than deduced from assuming hydrostatic equilib-
rium. There is observational support for the latter correction.
Mahdavi et al. (2008) find it to be 1.28 ± 0.15 comparing weak

lensing masses with X-ray hydrostatic masses. The product of
these two corrections is 1.394 ± 0.083. Note that Table 2 of
Nagai et al. (2007b) gives this total correction for all clusters
as 1.339 ± 0.075, which agrees with what we calculated from
the more circuitous route that begins with relaxed looking clus-
ters because the data start there. This agreement may reflect the
results from simulations that most massive halos are close to
hydrostatic equilibrium, at least within r500, whether they look
relaxed or not (Evrard et al. 1996; Rasia et al. 2006). Figure 3
shows the error ellipse for the two fitting parameters after mak-
ing the corrections described in the previous two paragraphs.

3.3. Numerical Simulations of Temperatures and Masses

The physics of most of the cluster, that outside the inner
∼100 kpc, may be very simple. Collisionless dark matter domi-
nates the total mass, the hot gas is nearly completely ionized by
collisions, and the radiation comes from optically thin thermal
bremsstrahlung. Consequently, there has long been the hope that
numerical hydrodynamic simulations could accurately calculate
observational properties of clusters. Kravtsov et al. (2006) report
one of the most recent such calculations. It includes dissipation-
less dark matter dynamics, gas dynamics, star formation, metal
enrichment due to Type Ia and II supernovae, self-consistent ad-
vection of metals, metallicity-dependent radiative cooling, ther-
mal feedback from supernovae, stellar winds and stellar mass
loss, and UV heating due to the ionizing background. It does
not include active galactic nucleus (AGN) feedback, cosmic
rays, or magnetic fields. Further, the reported temperatures of
the simulated clusters are what an actual instrument (the ACIS
on Chandra) would have observed, not the emission measure
weighted temperature often employed previously.

We used the 16 clusters with simulated masses and temper-
atures from Table 1 of Kravtsov et al. (2006). The sample was
constructed to have a redshift of 0.0. Kravtsov et al. measure
their temperatures excluding a central region that is a fixed frac-
tion of r500 (0.15), rather than a fixed metric radius

(
70 h−1

72 kpc
)

as do Vikhlinin et al. (2006). Kravtsov et al. determine that their
temperatures are 0.97 of the latter’s or 1.051 ± 0.008 (68%
confidence) times Horner’s (Horner 2001). No corrections are
needed to the simulation masses since they are known from
summing all simulation particles within the appropriate radius,
which is applicable to all clusters relaxed or unrelaxed. Figure 3
shows the error ellipse for the two fitting parameters.

3.4. Joint Fit

The individual fits agree within their 68% confidence limits,
as shown in Figure 3. The AMTs agree with each other to
±3%; the αMTs agree with each other and with the self-similar
slope also to ±3%. The three fits are not quite independent.
The weak lensing and X-ray mass samples have one object in
common, A2390. The X-ray masses are increased by two factors
coming from the simulations. Nevertheless, the samples are
nearly independent, so we performed a joint fit. Table 1 provides
the best-fit values and information on their covariance matrix.
Figure 4 show the error ellipse. We compare this best fit with
the data in Figure 5. Readers who prefer a different temperature
pivot should consult Appendix B for a simple procedure to
transform our results to their preferred pivot.

We used a different M–T relation in our previous work
(H04, and references therein), one relating the virial mass and
temperature via hMv,15 ∼ (βTMkT)3/2. For comparison, the
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Figure 4. Error ellipse for the mass–temperature relation parameters corre-
sponding to 68% confidence for one and two parameters.

relation between the two definitions is

βT M = 8.0

[
AMT

Mv

MΔ

]2/3 [ Δvc

18π2

]1/3

(5)

where Mv is the virial mass, Δ = 500, Δvc = ΩmΔv is the
overdensity within the virial radius with respect to the critical
density, and Δv is with respect to the background density (see
Henry 2000 for the latter). For Ωm0 = 0.3 and z = 0.0551, Δvc =
104.81. A Navarro et al. (1995, NFW) mass profile with c = 5
and the same cosmology and redshift yields Mv/M500 = 1.832.
So the ATM we find here implies βTM = 1.07 ± 0.04.

Again we will vary both h and Ωm0 when deriving our
cosmology constraints, so need to generalize the M–T relation
from the cosmology used to obtain it to an arbitrary cosmology:

E(z)hM500,15 = AMT (kT )αMT DL(1, Ωm0, z)

DL(1, 0.3, z)
. (6)

The dependence on the luminosity distance is exact for the
X-ray masses, but is actually DlDs/Dls for weak lensing, where
the Ds are angular diameter distances to the lens (the cluster),
source, and from lens to source, respectively. We can use
luminosity distances here since the distances in Equation (6)
enter only as ratios, and the angular diameter and luminosity
distances differ only by (1 + z)2. Ds/Dls only varies by ±5%
for the average source and lens redshifts of the calibrators
as Ωm0 varies from 0.05 to 0.5, which we ignore, so the
cosmology dependence is again only DL. Completely ignoring
the generalization introduces an error of less than 2% for the
low average redshift of our statistical sample, but we include it
for completeness.

3.5. Scatter

Although the intrinsic scatter in mass at constant temperature
about the M–T relation is expected to be low, it is not expected
to be zero. But because the scatter is low, of all the parameters
we discuss here its measurement is the most problematic.

Figure 5. Cluster mass plotted as a function of Horner (2001) temperature. The
best joint fit mass–temperature relation is overlaid. The open circles are weak
lensing masses, closed circles are X-ray hydrostatic equilibrium masses with the
corrections described in the text, and the open triangles are simulated masses
and temperatures.

Fortunately, the effect of uncertainties in the scatter is to slide
the cosmology constraints along their error ellipse. Thus while
an incorrect measurement of the scatter propagates to an error
on σ 8, the error ellipse changes less. In addition, the effect is
not large: Rasia et al. (2005) find that σ 8 decreases by about 5%
when the assumed scatter doubles from 16% to 30%.

There are several reasons why this parameter is uncertain.
First, we find σ MT/M = 0.128 ± 0.087 (68% confidence on
one parameter) from the combined fit, which is only 1.5σ
significant. Second, both empirical methods (Sections 3.1 and
3.2) only provide upper limits. Hence, the measurement is most
influenced by the simulations. Third, the scatter from the weak
lensing mass method may be artificially increased due to the
contribution of projected mass from large-scale structures, and
the X-ray mass method may have artificially low scatter because
such masses are proportional to the temperature at r500. While
these two effects tend to compensate each other, it would be
unwise to assume they do so with any precision.

Stanek et al. (2006) point out that the scatter in the L–T re-
lation contains information on the scatter in mass at constant
temperature and at constant luminosity if the covariance be-
tween the two scatters is known. Unfortunately, the scatter in
mass at constant L or T and their covariance must be known to
derive the scatter in mass at constant T or L, so this method is not
a viable option at present. Stanek et al. (2006) do find σ MT/M =
0.19 from an ensemble of 68 cluster simulations, which agrees
with that from the simulations of Kravtsov et al. (2006, 0.20 ±
0.05) and our adopted value (0.13 ± 0.09).

3.6. Status of the Mass–Temperature Calibration

The agreement among the three methods described in
Sections 3.1, 3.2, and 3.3 is a significant advance and is probably
no accident. The simulations are more realistic, include objects
with the same masses as the data sample, and they have been
observed and analyzed in the same way that actual data are. The
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biggest advance toward agreement between observations and
simulations is not using an emission-weighted temperature, but
rather folding the simulated spectra through the response of an
actual detector (Mazzotta et al. 2004). The main deficiency of
the simulations we used is the high fraction of baryons in stars
(∼40% at z = 0; see Nagai et al. 2007a) compared with observa-
tions. This cold gas may generate more nonthermal pressure sup-
port in the simulations than in actual clusters because as it moves
through the cluster it can drive bulk motions into the hot gas.

The observations are also more carefully made and analyzed.
All temperatures for the sample and M–T and L–T calibrations
are from the same source or put onto that scale. The cluster
masses are not extrapolated beyond the range of the observa-
tions for either the weak lensing or X-ray masses. X-ray masses
are only for relaxed clusters using actual temperature and sur-
face brightness profiles (i.e., all clusters are not assumed to be
isothermal beta models in hydrostatic equilibrium), which are
then scaled to apply to all clusters. The weak lensing observa-
tions use multicolor, wide-field data to derive aperture masses at
large radii. This approach minimizes the mass sheet degeneracy,
contamination by cluster galaxies, cluster centroiding errors,
and the effects of substructure.

Despite these advances some issues remain. Our temperature
limit and M–T calibration imply a mass limit of h M500,15 >
0.2 or h M200,15 > 0.3 for an NFW mass profile with c = 5.
Nord et al. (2008) show that calibrating the M–L relation
above this mass requires using a flux-limited sample with limit
∼10−13 erg cm−2 s−1 in order to avoid biasing (bright-
ening) the derived M–L relation. At a redshift of 0.1 (all
but two of our 48 clusters are within that redshift) this
flux corresponds to a bolometric luminosity of ∼3.1 × 1042

or a temperature of ∼0.9 keV. There are no cluster sur-
veys with flux or temperature limits of 10−13 erg cm−2 s−1

or 0.9 keV. Does this mean our M–T relation is heated relative
to the mass-limited relation? It is difficult to apply this calcula-
tion to our case because the two empirical calibrations are not
based on flux- or temperature-limited samples. However, since
the biasing is ∼σ MT/M, it will be about five times smaller than
the corresponding bias for the M–L relation, or ∼10%. Such a
bias, if it exists, is comparable to the statistical error on AMT ,
which we marginalize over in any case.

We have attempted to assess how robust the adopted M–T
calibration is by comparing it with that obtained with other
samples. The closest weak lensing work to ours is Bardeau
et al. (2007). It is indeed very close as all but one of the 11
objects in their sample (A1835) is in Hoekstra (2007) and the
observations are the same, coming from the Canada–France–
Hawaii Telescope (CFHT) archive. Since the temperatures
always come from Horner (2001), a comparison will only
compare the cluster masses derived from the different methods.
Bardeau et al. only report M200. The error-weighted mean ratio
of Hoekstra (2007; with the Mahdavi et al. 2008 revisions) to the
Bardeau et al. M200s is 0.93 ± 0.12, clearly a good agreement.

Next, we examine the calibration coming from X-ray-
determined masses. Arnaud et al. (2005) observed a sample
of 10 relaxed clusters with XMM-Newton, seven of which have
Horner (2001) temperatures. Two of these seven are also in the
Vikhlinin et al. (2006) sample. Using the same procedure as
in Section 3.2 we derive the M–T parameters from the Arnaud
et al. sample shown in Figure 6. There is good agreement with
the previously described results, although they are not com-
pletely independent. A few days after this paper was submitted,
Vikhlinin et al. (2008) presented masses for a sample of 17

Figure 6. Sixty-eight percent confidence error ellipses for two parameters from
alternative determinations (triple dot dash) of the M–T relation compared to the
determinations described in Sections 3.1, 3.2, and 3.3. The larger alternative
ellipse is derived from the X-ray mass sample of Arnaud et al. (2005) and the
smaller from the Rasia et al. (2005) simulations.

clusters, that is seven new masses added to the sample analyzed
in Section 3.2. Twelve of these 17 clusters have Horner tem-
peratures and the ratio of the Chandra to Horner temperatures
remains 1.081 ± 0.008. However, we deemed this sample large
enough not to require converting the Chandra temperatures to
the Horner scale. The M–T relation from the 12 Horner tempera-
tures and Chandra masses agrees with that found in Section 3.2,
when derived as described therein. Vikhlinin et al. (2008) also
derive an M–T relation, which has the same power-law index
as our joint fit, but our normalization is a factor of 1.35 higher.
This discrepancy comes almost entirely from their not includ-
ing a correction for nonthermal pressure support, preferring to
book-keep this correction as a systematic error.

Finally, Rasia et al. (2005) present simulations of 99 clusters.
These simulations are similar to those of Kravtsov et al. (2006)
but use independent algorithms and codes. A comparison of
the M–T relations from the two may give an indication how
robust the simulation results are. The main differences appear
to be the inclusion of metals by Kravtsov et al. but not by Rasia
et al. (2005) and the amount of heating by feedback. Rasia
et al. (2005) have ∼20% of the baryons in stars versus ∼40% for
Kravtsov et al. Rasia et al. (2005) give cluster spectroscopic-like
temperatures, which Mazzotta et al. (2004) defined to reproduce
the temperature measured by Chandra, XMM-Newton, or ASCA
detectors for clusters hotter than a few keV. We assume that
these spectroscopic-like temperatures are the same as the Horner
(2001) ASCA temperatures, as no central region is excluded.
The M–T relation parameters are shown in Figure 6. There is
mild disagreement (∼1.9σ ) with the fit to the Kravtsov et al.
simulations described in Section 3.3.

Zhang et al. (2008) discuss some of these issues. Their sample
and analysis procedure differs from ours in some important
ways. The sample is at a higher redshift than the X-ray mass
calibrators, but similar to the weak lensing calibrators. In fact,
part of their weak lensing sample is the Bardeau et al. (2007)
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sample, which is virtually identical to ours as described above.
Zhang et al. derive X-ray hydrostatic masses for all objects in
their sample, despite recognizing that about half of them exhibit
signs of an unrelaxed merger. They do derive the masses using
spatially resolved temperatures from XMM observations. The
normalization of the M–T relation of Zhang et al. is identical
with that from Arnaud et al. (2005) and Vikhlinin et al. (2006)
(a factor of 1.01 ± 0.07 difference) when the slopes are fixed to
those found by the latter two works. Zhang et al. find that the
average ratio of weak lensing to X-ray masses for the Bardeau
et al. sample for which they have X-ray data is 1.1 ± 0.2. This
result confirms Mahdavi et al. (2008; 1.28 ± 0.15) for essentially
the same sample but using different X-ray data (XMM versus
Chandra). The best agreement between the average ratio of
lensing to X-ray masses comes when comparing a combined
Bardeau et al. plus Dahle (2006) lensing sample with the
X-ray masses of Zhang et al. when both masses are measured to
the same radius, r500, determined from X-ray observables. The
average ratio is 1.09 ± 0.08. However the Dahle masses must
be extrapolated to r500, something we do not do. It is difficult to
compare our two analyses, given that Zhang et al. do not adhere
to some of our criteria (only use relaxed-looking clusters for
X-ray masses, do not extrapolate any masses). It is probably
safe to say that there are no strong disagreements and Zhang
et al. find at least some evidence for nonhydrostatic support at
the 10%–20% level, although possibly lower than what we use
(39 ± 8%).

A summary statement on the status of the M–T calibration
is the usual one: we are moving in the right direction; more
can and should be done. Larger lensing and X-ray samples
suitable for calibration are possible using extant data. Uniform
analyses of a large fraction of the Chandra (Maughan et al. 2008)
and XMM-Newton (Snowden et al. 2008) cluster databases,
which can replace the Horner (2001) ASCA compilation, have
appeared. Efforts need to be made to try to reduce the M–T
relation intrinsic scatter. The higher spatial resolution Chandra
and XMM-Newton data may help in this area by, for example,
allowing the exclusion of the cluster centers. These data will
permit using observables that may have even smaller scatter
than temperature, for example YX = kT Mgas (Kravtsov et al.
2006). Efforts to make more realistic simulations and analyze
them as observers do will continue. The overall goal will be to
find the systematic floor on the calibration. At present there is no
strong evidence that the floor has been reached since the scatter
in Figure 6 could be just statistical, i.e., not due to systematics.

4. MASS AND TEMPERATURE FUNCTIONS

In this section, we derive the temperature function for com-
parison to our cluster temperature observations. This calculation
begins with the theoretically provided mass function, which is

n(M, z) = ρb0

M

dν

dM
f (ν), (7)

where ρb0 is the present background matter density, ν = 1.686 /
σ (M, z), σ (M, z) = σ (M)D(z)/D(0) is the rms mass fluctuation
of the density field on scale M, D(z) is the growth factor to
redshift z (Equation (A.18) in Henry 2000), and

σ 2(M) = σ 2
8

∫∞
0 dkk2P (k)

[
j1(kR)

kR

]2
∫∞

0 dkk2P (k)
[

j1(k8h−1)
k8h−1

]2 . (8)

Here, R = 9.5 h−1 Mpc (h M15/Ωmo)1/3 where M15 is the mass in
units of 1015 M�, k is the spatial wavenumber, P(k) ∼ knsT 2(k),
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Figure 7. Error ellipse for the Jenkins mass function parameters B and ε

corresponding to 68% confidence for one, two, and three parameters.

and T(k) is the transfer function from Eisenstein & Hu (1998),
which is a function of h, Ωm0, Ωb0 and the present cosmic
microwave background temperature (taken to be 2.728 K). This
notation is standard, but note the subtle difference between the
cluster temperature, kT, and the transfer function, T(k). We take
the values and variances of h, ns, and Ωb0, and the covariance
of the latter two from the five-year WMAP results (Dunkley et
al. 2008).

A number of forms for f(ν) have been proposed (e.g., Press
& Schechter 1974; Sheth & Torman 1999; Warren et al. 2006;
Tinker et al. 2008). We use the Jenkins et al. (2001) form of the
mass function for which

f (ν) = AMF

ν
exp
(
−
∣∣∣ln ( ν

1.686

)
+ B

∣∣∣ε) . (9)

We obtain AMF, B, and ε by fitting this form to the Hubble vol-
ume simulation local mass function for M500 given in Figure 20
of Evrard et al. (2002). We used the ΛCDM model simulation,
which had h = 0.7, Ωmo = 0.3, Ωboh2 = 0.0196, σ 8 = 0.9, and
ns = 1. By design the masses use the same definition as the
M–T calibration presented in Section 3 and the cosmology is
very similar to what we find or marginalize over here. Table 1
gives the best-fit values of AMF, B, and ε and information on
the covariance matrix of the later two. Figure 7 shows the error
ellipse for B and ε, while Figure 8 compares the best fit with the
data. We include a 20% systematic uncertainty on AMF, based
on recent estimates of the effects of baryonic physics that can
change the halo mass by about ±10% (R. Stanek et al. 2008, in
preparation) and by comparison of our mass function with that
of Tinker et al. (2008). Figure 9 shows the comparison for Ωm0 =
0.24 and 0.30 and overdensity with respect to the mean (used
by Tinker et al. instead of with respect to the critical density
that we use) of 500/Ωm0. The Tinker function agrees with the
Jenkins function at all masses for Ωm0 = 0.24, but lies above it
at all masses for Ωm0 = 0.30. A conservative statement is that
both functions may have a normalization error of ±20%.
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Figure 8. Top: critical spherical overdensity of 500 (SO500c) mass function
derived from the z = 0 Hubble volume simulations (solid line) with best-fitting
Jenkins mass function overlaid (dashed line). Bottom: percent deviation in
number density between the simulation data and the fit. Errors assume Poisson
statistics in each mass bin.

The differential temperature function comes from the mass
function via the chain rule

n(kT ) = αMT

ρb0

kT

dν

dM
f (ν). (10)

Now

R = 9.5h−1 Mpc

[
AMT

Ωm0
(kT )αMT 1

E(z)

DL(1, Ωm0, z)

DL(1, 0.3, z)

]1/3

.

(11)

It is more convenient to express the derivative as −ν/2
dlnσ 2(M)/dM. Then after some algebra we find

n(kT , z) = 9.25 × 10−5(h−1 Mpc)−3 keV−1Ωm0

× αMT E(z)DL(1, 0.3, z)

AMT DL(1, Ωm0, z)
(kT )−(αMT +1)

×
∫∞

0 dyy(ns+2)T 2(y/R)j1(y)j2(y)/y∫∞
0 dyy(ns+2)T 2(y/R) [j1(y)/y]2 ,

AMF exp

(
−
∣∣∣∣∣ln
(

D(0)

σ8D(z)

{(
R

8h−1

)ns+3

×
∫∞

0 dyy(ns+2)T 2(y/8h−1)[j1(y)/y]2∫∞
0 dyy(ns+2)T 2(y/R)[j1(y)/y]2

}1/2
⎞
⎠ + B

∣∣∣∣∣∣
ε⎞
⎠ ,

(12)

where j2 is the Spherical Bessel function of the first kind, order
two.

5. RESULTS

We perform a maximum likelihood fit of Equation (12) to
48 cluster (kT, z) pairs, marginalizing over 12 uninteresting
parameters, to derive σ 8 and Ωm0. We list these uninteresting
parameters in Table 1. That is, we marginalize over all sys-
tematic uncertainties of which we are aware. The uninteresting
parameters are the three mass function and six cluster physics
(M–T and L–T) parameters and three cosmological parameters
(h, ns, and Ωb0h2). As we will see, the cosmological parameters
have virtually no effect on the best fit or error on σ 8 and Ωm0.
The effective number of marginalized parameters is reduced to
eight from covariances among them. The negative of the natural

(a) (b)

Figure 9. Bottom: comparison of the SO500c z = 0 mass function of Jenkins used here with that of Tinker et al. (2008). The shaded region is the 68% confidence
region for the Jenkins function. Top: percent deviation between Jenkins and Tinker functions. We fit over a temperature range corresponding to hM500 = 0.19–1.16.
(a) Left: Ωmo = 0.24 and (b) Right: Ωm0 = 0.30.
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Figure 10. Sixty-eight and 95% confidence contours for two parameters comparing the cluster temperature function constraints found here (long ellipses) to the
WMAP5 constraints (short ellipses). The different panels show the result of marginalizing over increasingly more parameters. (a) Upper left: statistical errors only.
(b) Upper right: marginalizing over the L–T and M–T relations. (c) Lower left: marginalizing over the L–T, M–T relations and the mass function. (d) Lower right:
marginalizing over the L–T, M–T relations, the mass function, and h, ns and Ωb0h2.

logarithm of the likelihood function is Equation (7) of H04:

S = −2
N∑

i=1

ln

⎡
⎣∫ dkT n(kT , zi)

exp
[−(kTi − kT )2

/
2σ 2

i (kT )
]

√
2πσ 2

i (kT )

× Ω(kT , zi)
d2V

dΩdz

⎤
⎦

+ 2
∫ kT max

kT min
dkT

∫ z max

z min
dz n(kT , z)Ω(kT , z)

d2V

dzdΩ

+ ΔS(uninteresting), (13)

where ΔS(uninteresting) is the increase in likelihood as all the
parameters in Table 1 but Ωm0 and σ 8 deviate from their best-
fit values. This increase in likelihood comes from the fits in
Sections 2, 3, or 4 or from WMAP5. The Gaussian dispersion
includes contributions from the individual cluster temperature

errors and scatter in the M–T relation summed in quadrature:
σ 2

i = σ 2
kTi

+ (kTiσMT /M/αMT )2. The integral of the Gaussian
distribution is absent from the second term of S because it is
possible to perform it analytically. The best estimates of the
model parameters are obtained by minimizing S. Confidence
regions for the best estimates are obtained by noting that S is
distributed as χ2 with the number of degrees of freedom equal
to the number of interesting parameters. The values of zmin, zmax,
kTmin, and kTmax are 0.00, 0.20, 3, and 12 keV respectively.

We present in Figure 10 the 68% and 95% confidence
contours in the σ 8 and Ωm0 plane. Figure 10(a) shows the
statistical uncertainties only, while Figures 10(b)–10(d) show
the effect of marginalizing over increasingly more systematic
uncertainties. Marginalizing over cluster physics (L–T and M–T)
lengthens the error ellipse, marginalizing over the mass function
widens the error ellipse, and marginalizing over cosmology
has almost no effect (to our knowledge first pointed out by
Voevodkin & Vikhlinin 2004). The error ellipse is described
by σ 8 (Ωm0/0.32)α. = 0.86 ± 0.04 (68% confidence for two
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Figure 11. The cluster temperature function derived from our HIFLUGCS
sample compared to the best-fitting function. The data are binned into five equal
logarithmic temperature bins from 3 to 10 keV and are plotted at the average
temperature of the clusters in the bin.

parameters) with α = 0.30 (0.41) for Ωm0 � 0.32 (Ωm0 � 0.32).
Figure 11 compares the best-fit temperature function with the
data from our HIFLUGCS sample. The fit is obviously very
good.

Table 1 gives the error on σ 8 and Ωm0 from propagating
the errors of all 12 uninteresting parameters individually. The
largest contributor comes from the M–T relation. We also give
the increase in likelihood as the 12 uninteresting parameters
assume their 68% confidence values. When this parameter is
near 1, then the sample of 48 does not constrain that particular
excursion.

5.1. Cosmic Variance

Virtually the entire extragalactic sky was surveyed to a
uniform flux level to find the clusters in our sample. Thus,
this sample is about the only one that will be available with
its selection criteria. How representative is it? Or put another
way, what is the sample or cosmic variance on the best-
fitting parameters from not being able to average over more
samples? We answer this question by calculating the Fisher
matrix, including the effects of cosmic variance, for our sample.
The Fisher matrix is the inverse of the covariance matrix
of parameters p = (Ωm0, σ 8). We perform an approximate
calculation for the cosmic variance part of the Fisher matrix,
since, for our survey, it is expected to be small compared to the
Poisson part (Hu & Kravtsov 2003). We begin by dividing the
observation space into 10 redshift and 100 temperature pixels.
The redshift pixels have constant linear width Δz = 0.02 and the
temperature pixels have constant logarithmic width Δlog kT =
log(4)/100 (or ΔkT = kT ln(4)/100). We remove from this
grid the 81 low-temperature, high-redshift pixels that have less
then 10−6 expected clusters in them, leaving 919 pixels. This
removal is to increase the numerical stability of the calculation.
We verified that increasing the number of pixels to 20 in
redshift and 300 in log kT gives the same Fisher matrix for
the pure Poisson case. The formalism comes from Section 6 of

Chapter XIII of the Dark Energy Task Force Final Report
(Albrecht et al. 2006). The Fisher matrix is

Fμν =
∑
ij

∂Ni

∂pμ

(C−1)ij
∂Nj

∂pν

. (14)

Here,

Ni = ΔziΔkTi

d2V

dΩdz

∫
dkT n(kT , zi)

× exp[−(kTi − kT )2/2σ 2]√
2πσ 2

Ω(kT , zi) (15)

is the expected number of clusters in the ith (z, kT) pixel (i = 1,
919) and σ = kTσ MT/M/αMT . We use Equation (2) from Levine
et al. (2002) for the numerical derivative:

∂Ni

∂pμ

= Ni(pμ × Δθ ) − Ni(pμ/Δθ )

2pμ ln(Δθ )
(16)

with Δθ = 1.0001. The matrix Cij = Niδij + Sij, where the first
term is the Poisson variance and the sample variance is

Sij = biNibjNj

∫
d3k

(2π )3
W ∗

i (k)Wj (k)P (k). (17)

Wi(k) is the Fourier transform of the pixel window normalized
such that

∫
d3x Wi(x) = 1 and the average bias of the selected

clusters is

bi = ΔziΔkTi

N̄i

d2V

dΩdz

∫
dkT n(kT , zi) b(kT , zi)

× exp[−(kTi − kT )2/2σ 2]√
2πσ 2

Ω(kT , zi). (18)

The bias is

b(kT , z) = 1 +
aδ2

c

/
σ 2(kT , z) − 1

δc

+
2p

δc

[
1 +
(
aδ2

c

/
σ 2(kT , z)

)p]
(19)

with a = 0.75, p = 0.3, and δc = 1.686.
The approximation we make is to assume that our sample

comes from the whole sky, not just the 8.14 steradians of the
HIFLUGCS. In this case, the normalized redshift pixel is a shell
at proper distance R ± δR:

W (r) = 3(H (R + δR − r) − H (R − δR − r))

4π ((R + δR)3 − (R − δR)3)
, (20)

with R = DL/(1 + z) and H is the unit step function. The Fourier
transform is

W (k) = 3(R + δR)3

(R + δR)3 − (R − δR)3

j1(k(R + δR))

k(R + δR)

− 3(R − δR)3

(R + δR)3 − (R − δR)3

j1(k(R − δR))

k(R − δR)
. (21)

We show in Figure 12 the calculated Poisson and Poisson +
cosmic variance error ellipses and the actual Poisson error
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Figure 12. Sixty-eight percent confidence error ellipses for two parameters
comparing the actual Poisson statistical errors (dashed line) with the Fisher
matrix Poisson and Poisson plus sample variance errors (solid lines).

ellipse. There are two things to note. The calculated and actual
Poisson ellipses agree very well. This is the first published such
comparison of which we are aware. The cosmic variance is a
small increase over the purely Poisson errors. The calculated
values of the cosmic variance errors are ΔΩm0 = 0.040 and
Δσ 8 = 0.026, and we include these errors in Table 1. We
find Δσ 8/σ 8 = 3.1%, while Evrard et al. (2002) find 3.9%
by analyzing local cluster temperature samples comprised of 30
objects on average (versus 48 for our sample) from the Hubble
volume numerical simulations.

6. COMPARISON WITH OTHER RESULTS

A good way to assess whether there are undetected systematic
effects in a measurement is to compare it to other independent
measurements of the same thing. If all measurements agree
within the errors, then the errors are likely to be correctly
estimated. An often-discussed example is the Hubble parameter,
which has ranged from 465 ± 50 km s−1 Mpc −1 (Hubble 1929)
to 95 ±10 km s−1 Mpc−1 (de Vaucouleurs 1982) to 50.3 ±
4.3 km s−1 Mpc−1 (Sandage & Tammann 1976). At least two
of these results had systematic errors not reflected in the quoted
errors. Thus, in this section we compare our measurements of
Ωm0 and σ 8 with the most recent independent measurements
made with different techniques.

6.1. WMAP5

Figure 10(d) shows that the cluster results agree with those
of the five-year WMAP analysis at the 68% confidence level.
We estimate the joint constraints by fitting a two-dimensional
Gaussian likelihood to the WMAP5 contours, then adding it to
the X-ray cluster likelihood. We show the resulting joint likeli-
hood in Figure 13, which is characterized as Ωm0 = 0.30+0.03

−0.02

and σ8 = 0.85+0.04
−0.02 (68% confidence for two parameters).

Komatsu et al. (2008) combined WMAP5 with baryon acoustic
oscillations + supernovae constraints and derived consistent re-
sults with similar sized errors: Ωm0 = 0.279 ± 0.023 and σ 8 =
0.817 ± 0.041 (68% confidence for two parameters).
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Figure 13. Sixty-eight and 95% confidence contours for two parameters for
the cluster temperature function constraints found here (dotted), the WMAP5
constraints (dotted), and the joint WMAP5 + cluster constraints (solid).

6.2. Other Cluster Results

6.2.1. X-Ray Selection

We compare in Figure 14 the most recent cosmological con-
straints from X-ray-selected clusters using X-ray temperatures
of 48 objects with z � 0.2 (our work here), galaxy velocities
of 72 objects with z � 0.1 (Rines et al. 2007; 2008), X-ray
luminosities of 242 objects with z < 0.7 (Mantz et al. 2008),
and YX of 49 objects with 0.025 � z � 0.22 (Vikhlinin et al.
2008). Rines et al. (2007) have seven uninteresting parameters,
all fixed. Mantz et al. (2008) have 14 uninteresting parameters in
their analysis, of which they fit two, fixed four, and marginalized
eight. Vikhlinin et al. (2008) give the largest systematic effect
for their measurement, which comes from the absolute mass
calibration. We include these systematic effects as estimated
by each work in the errors shown in Figure 14. The agreement
among these four measurements is less than or about equal to
the 1σ estimated systematic errors.

Comparing our results with those of Vikhlinin et al. (2008)
provides a good indication of the systematic errors of each,
since we do an independent analysis of independent data for
nearly the same objects (39 of our 48 objects are in his sample).
Although Vikhlinin et al. (2008) use the Tinker et al. (2008) mass
function compared with our use of the Jenkins et al. (2001) form,
the largest difference between our work is the normalization of
the M–T relation as can be seen from the error propagation in
Table 1. Our two constraints are disjoint with the optimistic 68%
confidence, one parameter purely statistical errors, but overlap
with the same errors if we use Vikhlinin’s M–T relation in our
analysis. However, as shown in Figure 14, our contours nearly
touch each other after including systematic errors, indicating
that the systematics have been included correctly.

X-ray-selected samples now provide consistent constraints in-
dependent of the observable. Evrard et al. (2008) have reached
the same conclusion for temperature and galaxy velocity disper-
sion observables, finding σ 8 = 0.88 for Ωm0 = 0.32 versus our
0.86 ± 0.04.
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Figure 14. Cosmological constraints derived from X-ray-selected samples using
different observables. The contours are at 68% confidence for two parameters
including systematic errors as estimated in the original work. The solid curve is
using temperature (this work), dashed is using X-ray luminosity, dotted is using
galaxy velocities, and the dash-dotted curve is using YX .

6.2.2. Optical Selection

Optical surveys are another way to build cluster catalogs and
there are many reported cosmological constraints using such
samples, see Figure 9 of Rines et al. (2007) for some exam-
ples. We compare our results with two surveys that use richness
as the observable. The survey and analysis closest to ours is
the Red-sequence Cluster Survey (RCS; Gladders et al. 2007)
of 956 richness-selected clusters with 0.3 < z < 0.95 found in
72.1 deg2. There are 10 uninteresting parameters associated with
this analysis, of which Gladders et al. (2007) fit five and fixed
five. We compare their results with ours in Figure 15. The agree-
ment is ∼1.3σ for Ωm0 = 0.25. A somewhat similar analysis of
13,823 maxBCG clusters in 7500 deg2 of the Sloan Digital Sky
Survey with 0.1 < z < 0.3 is presented by Rozo et al. (2007).
The results are not directly comparable with ours because Rozo
et al. impose an effective prior of Ωm0 = 0.24 ± 0.04 from
cosmic microwave background and supernovae results. Never-
theless, their σ 8 = 0.92 ± 0.10 (1σ ) agrees with ours in the
relevant Ωm0 range, as we show in Figure 15.

6.3. Cosmic Shear

Large-scale mass structures between a distant source and an
observer induce a weak gravitational lensing shear in the shape
of the distant source. This signal yields a direct measure of the
projected matter power spectrum, i.e., a measure of σ 8 in a very
complementary way to the X-ray cluster technique. In Figure 16
we compare the constraints from this paper with those from the
100 Square Degree Weak Lensing Survey, which has the largest
solid angle of any such survey so far (Benjamin et al. 2007). The
figure shows that constraints from the two methods agree at the
∼68% confidence level. Other recent shear results are consistent
with the 100 Square Degree Survey (e.g., Jarvis et al. 2006).

We may summarize this section as follows: nearly all of the
most recent results from a variety of independent techniques are
consistent with each other and with this paper.
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Figure 15. Sixty-eight and 95% confidence contours for two parameters
comparing the cluster temperature function constraints found here (long ellipses)
to those from two optically selected samples: the RCS (circle and nearly
vertical ellipse) and the SDSS maxBCG (dashed box, 68% confidence for one
parameter).
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Figure 16. Sixty-eight and 95% confidence contours for two parameters
comparing the cluster temperature function constraints found here (upper
contours) to the 100 Square Degree weak lensing shear constraints (lower
contours).

7. CONCLUSIONS

The most important conclusion of this paper is that we find no
evidence of additional systematic errors beyond what we have
considered for the X-ray cluster temperature function measure-
ment of σ 8. We base these conclusions on agreement with the
most recent WMAP and weak lensing cosmic shear measure-
ments within that error. Also significant is that the most recent
constraints on σ 8 and Ωm0 from X-ray-selected cluster samples
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are independent of observables for X-ray luminosity, tempera-
ture, or galaxy velocities. The cluster temperature results pre-
sented here are succinctly summarized as σ 8(Ωm0/0.32)α =
0.86 ± 0.04 with α = 0.30 (0.41) for Ωm0 � 0.32 (Ωm0 �
0.32). The joint cluster temperature + WMAP5 constraints are
Ωm0 = 0.30+0.03

−0.02 and σ8 = 0.85+0.04
−0.02 (all at 68% confidence for

two parameters).
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APPENDIX A

In this paper, we fit the luminosity–temperature and mass–
temperature relations to power laws as well as the mass function
to a Jenkins form. We give some details of those fits here.

We use the BCES bisector linear least-squares fit of Akritas
& Bershady (1996) when fitting the L–T and M–T relations.
This method allows for errors on both variables that may be
correlated and different for each data point plus intrinsic scatter
in the data beyond the errors. We fit a power-law relation
between the two variables, y = Axα , and linearize it in the
usual way by taking the logarithm. The publicly available BCES
software computes the variances of the fit parameters. We also
calculate their covariance according to Equation (31) of Akritas
& Bershady (1996). For purposes of visualization, we calculate
the error ellipse from the variances and covariance as follows.
The semimajor and semiminor axes of the ellipse are

√
Δχ2

ν

√√√√σ 2
x + σ 2

y ±
√(

σ 2
x − σ 2

y

)2
+ 4ρσxσy

2
,

where σ 2
x , σ 2

y , ρσ xσ y, and Δχ2
ν are the variance of x, variance of

y, covariance of x and y, and increase in chi squared for a given
confidence level and number of parameters, respectively. The
symmetric covariance matrix is comprised of the first three quan-
tities, thus it may be derived from the information in Table 1.
Note that ρ is just the usual correlation coefficient. The quantity
Δχ2

ν is 1, 2.3, 3.53, and 6.17 for 68% confidence for one, two,
or three parameters and 95% confidence for two parameters,
respectively. The angle of the semimajor axis counterclockwise
with respect to the x-axis is

α = 1

2
tan−1

(
2ρσxσy

σ 2
x − σ 2

y

)
.

This equation has two solutions that correspond to the
semimajor and semiminor axes. Care must be taken to select
the desired one.

We estimate the intrinsic scatter δy in y about the relation
y = ax + b using

δy2 = 1

N − 2

N∑
i=1

[
(yi − axi − b)2 − (σ 2

yi + a2σ 2
xi

)]
,

where N is the number of data pairs.
Errors on the covariance and scatter come from a jackknife

procedure. Let tN be a statistic calculated from a sample of size

N. Form N subsamples of size N − 1 by dropping a data pair in
succession. The jackknife estimate of the variance of tN is

σ 2
tN = N − 1

N

N∑
i=1

(tN−1,i − t̄N−1)2

(Lupton 1993, p. 46), where t̄N−1 is the average of t over the N
subsamples.

The fit procedure for the mass function is standard chi squared
with the following deviation. When fitting a multiplicative
parameter times a function, Af (x), the best-fit value of A may
be determined analytically to be

log(A) =
∑N

i=1 (log(yi/f (xi)) /σ (log yi)2∑N
i=1 1/σ (log yi)2

.

For data with equal errors, this equation simplifies to yield A is
the geometrical mean of yi/f(xi).

APPENDIX B

Sometimes the L–T and M–T relations are parameterized
differently than what we have done. The difference is the
temperatures pivot about (are divide by) a different value than
the 1 keV used by us. A pivot point of 5 keV is sometimes used.
More generally, a pivot point change from 1 to a new pivot a
is a coordinate transformation in the space of fitting parameters
from p = (log A, α) to π = (log A + α log a, α). Under this
transformation the covariance matrix goes from C to JCJT where

Ji,j = ∂πi

∂pj

=
(

1 log a
0 1

)
.

The transformed covariance matrix is diagonal when a =
dex(−ρσ log A/σα). The intrinsic dispersion and its error are
unchanged by this transformation because the values from the
fit are the same, only the functional form changed. From the
covariance matrices derived from the data in Table 1 for a pivot
of 1, we see that the L–T relation is diagonalized for a = 4.95 keV
and the M–T relation for a = 3.15 keV. As a worked example,
we refit the L–T and joint M–T relations for a pivot of 5 keV.
That is we fit L44(bol) = A′

LT (kT/5)αLT and hM500,15 = A′
MT

(kT/5)αMT . We find log(A′
LT ) = 0.7166 ± 0.0360, αLT =

3.0870 ± 0.2370, ρ = 0.0300; log(A′
MT ) = −0.3835 ±

0.0197, αMT = 1.5376 ± 0.0653, and ρ = 0.6660. It is
easy to verify that all quantities transform as expected. The
transformed L–T relation has almost zero covariance between
the parameters while the transformed M–T relation retains
substantial covariance, both as expected.

REFERENCES

Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706
Albrecht, A., et al. 2006, Report of the Dark Energy Task Force, arXiv:

astro-ph/0609591v1
Arnaud, M., Pointecouteau, E., & Pratt, G. W. 2005, A&A, 441, 893
Balogh, M., Babul, A., Voit, G. M., McCarthy, I. G., Jones, L. B., Lewis, G. F.,

& Ebeling, H. 2006, MNRAS, 366, 624
Bardeau, S., Soucail, G., Kneib, J.-P, Czoske, O., Ebeling, H., Hudelot, P.,

Smail, I., & Smith, G. P. 2007, A&A, 470, 449
Benjamin, J., et al. 2007, MNRAS, 381, 702
Borgani, S., et al. 2004, MNRAS, 348, 1078
Dahle, H. 2006, ApJ, 653, 954
de Vaucouleurs, G. 1982, Observatory, 102, 178
Diaferio, A. 1999, MNRAS, 309, 610
Dunkley, J., et al. 2008, arXiv:0803.0586

http://dx.doi.org/10.1086/177901
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...470..706A
http://adsabs.harvard.edu/cgi-bin/bib_query?1996ApJ...470..706A
http://www.arxiv.org/abs/astro-ph/0609591v1
http://dx.doi.org/10.1051/0004-6361:20052856
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...441..893A
http://adsabs.harvard.edu/cgi-bin/bib_query?2005A&A...441..893A
http://dx.doi.org/10.1111/j.1365-2966.2005.09917.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.366..624B
http://adsabs.harvard.edu/cgi-bin/bib_query?2006MNRAS.366..624B
http://dx.doi.org/10.1051/0004-6361:20077443
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...470..449B
http://adsabs.harvard.edu/cgi-bin/bib_query?2007A&A...470..449B
http://dx.doi.org/10.1111/j.1365-2966.2007.12202.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.381..702B
http://adsabs.harvard.edu/cgi-bin/bib_query?2007MNRAS.381..702B
http://dx.doi.org/10.1111/j.1365-2966.2004.07431.x
http://adsabs.harvard.edu/cgi-bin/bib_query?2004MNRAS.348.1078B
http://adsabs.harvard.edu/cgi-bin/bib_query?2004MNRAS.348.1078B
http://dx.doi.org/10.1086/508654
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...653..954D
http://adsabs.harvard.edu/cgi-bin/bib_query?2006ApJ...653..954D
http://adsabs.harvard.edu/cgi-bin/bib_query?1982Obs...102..178D
http://adsabs.harvard.edu/cgi-bin/bib_query?1982Obs...102..178D
http://dx.doi.org/10.1046/j.1365-8711.1999.02864.x
http://adsabs.harvard.edu/cgi-bin/bib_query?1999MNRAS.309..610D
http://adsabs.harvard.edu/cgi-bin/bib_query?1999MNRAS.309..610D
http://www.arxiv.org/abs/0803.0586


No. 2, 2009 THE X-RAY CLUSTER NORMALIZATION OF THE MATTER POWER SPECTRUM 1321

Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605
Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494
Evrard, A., et al. 2002, ApJ, 573, 7
Evrard, A. E., et al. 2008, ApJ, 672, 122
Girardi, M., Giuricin, G., Mardirossian, F., Mezzetti, M., & Boschin, W.

1998, ApJ, 505, 74
Gladders, M. D., Yee, H. K. C., Majumdar, S., Barrientos, L. F., Hoekstra, H.,

Hall, P., & Infante, L. 2007, ApJ, 655, 128
Henry, J. P. 2000, ApJ, 534, 565
Henry, J. P. 2004, ApJ, 609, 603
Hetterscheidt, M., Simon, P., Schirmer, M., Hildebrandt, H., Schrabbach, T.,

Erben, T., & Schneider, P. 2007, A&A, 46, 859
Hoekstra, H. 2007, MNRAS, 379, 317
Horner, D. J. 2001, PhD thesis, Univ. Maryland
Hu, W., & Kravtsov, A. V. 2003, ApJ, 584, 702
Hubble, E. 1929, Proc. NAS, 15, 168
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