This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:

Articles

A CCD PHOTOMETRIC STUDY OF THE CONTACT BINARY STAR GSC 03526-01995

, , and

Published 2012 November 9 © 2012. The American Astronomical Society. All rights reserved.
, , Citation W.-P. Liao et al 2012 AJ 144 178 DOI 10.1088/0004-6256/144/6/178

1538-3881/144/6/178

ABSTRACT

We present the first two sets of complete light curves in the R and I bands observed in 2011 and 2012 photometrically for the contact binary GSC 03526-01995. The asymmetric light curves are analyzed with spot models using the Wilson–Devinney code. It is discovered that GSC 03526-01995 is a spotted marginal W-type W UMa contact binary system with a mass ratio of q = 2.845(± 0.006) and a degree of contact factor f = 18.2%(± 1.5%). Combining new determined times of light minimum together with the others published in the literature, the period change of the system is investigated. A cyclic variation, with a period of 7.39 yr and a semiamplitude of 0.00896 days, is discovered. It is plausibly caused by the light-time effect via a third body. The photometric analysis indicates that the suspected third companion might itself be a binary consisting of two stars of 0.285 solar masses, suggesting that GSC 03526-01995 is a quadruple system containing four late-type stars.

Export citation and abstract BibTeX RIS

1. INTRODUCTION

GSC 03526-01995(= ROTSE1 J182427.29+453902.0, V = 14.3 mag (VizieR database5) is a variable discovered by Akerlof et al. (2000) as a byproduct of the ROTSE1 CCD survey. Its orbital ephemeris and the first unfiltered light curve were derived by Blättler & Diethelm (2004). GSC 03526-01995 is a short-period close binary with a period of 0.292258 days (Blättler & Diethelm 2004). Several papers have given some times of light minimum, but so far no detailed photometric investigations of GSC 03526-01995 have been published. Therefore, GSC 03526-01995 has become one of the monitoring targets in our contact binary observation program.

In the present paper, the R-band and I-band light curves obtained by us were analyzed with the Wilson–Devinney (W-D) code. The first photometric solutions of the system were derived. Moreover, the variations in the orbital period of GSC 03526-01995 were analyzed based on all available photoelectric and CCD times of light minimum, and the photometric properties of the suspect third companion have been discussed.

2. PHOTOMETRIC OBSERVATIONS

R- and I-band observations of the GSC 03526-01995 were carried out on 2011 April 7 and 8 with the DW436 2048 × 2048 CCD photometric system attached to the 60 cm Cassegrain reflecting telescope at the Yunnan Observatory. The R and I filters, close to the standard Johnson UBVRI system, were used. The integration times of each image for R and I filters are 60 s and 40 s, respectively. The coordinates of the comparison star (GSC 03526-02086) used are 18h24m07fs105, +45°40'32farcs34. The PHOT (measure magnitudes for a list of stars) of the aperture photometry package of IRAF was used to reduce the observed images. From the observation we obtained RI light curves. Afterward, considering a slightly large scatter of these two light curves, we tried to re-observe the star on 2012 May 24 and 26 with the PI 512 × 512 TE CCD photometric system attached to the 85 cm telescope at the Xinglong Station of National Astronomical Observatories of China. The effective field of view was 14farcm5 × 14farcm5. The filter system is a standard Johnson-Cousins-Bessel multicolor CCD photometric system built on the primary focus (Zhou et al. 2009). The bands, exposure times, and the comparison star are the same as those used in 2011. The original data are listed in Tables 14 with the Heliocentric Julian Date and the magnitude difference between GSC 03526-01995 and the comparison star.

Table 1. CCD Photometric Data of GSC 03526-01995 in the R Band Observed on 2011 April 7 and 8

JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m)
2455600+   2455600+   2455600+   2455600+   2455600+   2455600+   2455600+  
59.25696 3.114 59.30759 3.157 59.36112 2.745 59.41047 3.068 60.31085 3.501 60.36149 2.898 60.41211 2.885
59.25841 3.087 59.30903 3.182 59.36256 2.768 59.41145 3.058 60.31230 3.453 60.36294 2.882 60.41356 2.935
59.25986 3.035 59.31048 3.145 59.36401 2.764 59.41244 3.130 60.31375 3.408 60.36438 2.901 60.41501 2.884
59.26130 3.060 59.31193 3.113 59.36546 2.723 59.41342 3.032 60.31519 3.499 60.36582 2.858 60.41645 2.940
59.26275 3.142 59.31338 3.070 59.36691 2.784 59.41441 3.165 60.31664 3.407 60.36726 2.876 60.41790 2.891
59.26420 3.190 59.31482 3.011 59.36835 2.741 59.41539 3.143 60.31809 3.519 60.36871 2.825 60.41935 2.926
59.26564 3.094 59.31627 3.098 59.36980 2.773 59.41637 3.122 60.31953 3.467 60.37016 2.824 60.42080 2.960
59.26709 3.256 59.31772 3.018 59.37125 2.800 59.41736 3.163 60.32098 3.455 60.37161 2.855 60.42224 2.912
59.26854 3.218 59.31916 3.033 59.37269 2.827 59.41834 3.335 60.32243 3.372 60.37305 2.808 60.42369 2.963
59.26998 3.222 59.32061 2.951 59.37414 2.779 59.41932 3.275 60.32387 3.348 60.37450 2.825 60.42514 3.044
59.27143 3.291 59.32206 2.985 59.37559 2.846 59.42031 3.266 60.32532 3.303 60.37595 2.802 60.42658 2.950
59.27288 3.360 59.32350 2.949 59.37703 2.805 59.42129 3.348 60.32677 3.306 60.37739 2.808 60.42803 3.002
59.27432 3.355 59.32495 2.961 59.37848 2.758 59.42228 3.378 60.32821 3.309 60.37884 2.831 60.42948 3.079
59.27577 3.349 59.32640 3.000 59.37993 2.835 59.42326 3.386 60.32966 3.266 60.38029 2.785    
59.27722 3.331 59.32784 2.928 59.38137 2.732 59.42424 3.450 60.33111 3.201 60.38173 2.779    
59.27866 3.385 59.32929 2.946 59.38282 2.824 59.42523 3.424 60.33255 3.200 60.38318 2.811    
59.28010 3.382 59.33074 2.913 59.38427 2.825 59.42621 3.168 60.33400 3.138 60.38463 2.810    
59.28155 3.508 59.33218 2.890 59.38571 2.874 59.42719 3.602 60.33545 3.138 60.38607 2.817    
59.28299 3.349 59.33363 2.889 59.38716 2.808 59.42818 3.301 60.33689 3.106 60.38752 2.833    
59.28444 3.539 59.33508 2.950 59.38861 2.886 59.42916 3.419 60.33834 3.082 60.38897 2.809    
59.28589 3.522 59.33652 2.914 59.39005 2.835 59.43015 3.295 60.33979 3.003 60.39041 2.803    
59.28733 3.494 59.33797 2.827 59.39150 2.842 60.29060 3.263 60.34123 3.040 60.39186 2.772    
59.28878 3.439 59.33942 2.883 59.39295 2.912 60.29205 3.240 60.34268 3.034 60.39331 2.780    
59.29023 3.410 59.34086 2.951 59.39439 2.870 60.29349 3.350 60.34413 2.952 60.39475 2.840    
59.29167 3.414 59.34231 2.885 59.39584 2.841 60.29494 3.341 60.34558 3.008 60.39620 2.837    
59.29312 3.411 59.34520 2.761 59.39729 2.863 60.29639 3.336 60.34702 2.953 60.39765 2.827    
59.29457 3.326 59.34665 2.797 59.39872 2.918 60.29783 3.433 60.34847 2.977 60.39909 2.805    
59.29601 3.343 59.34810 2.811 59.40017 2.946 60.29928 3.480 60.34992 3.008 60.40054 2.819    
59.29746 3.435 59.34954 2.754 59.40162 2.942 60.30073 3.387 60.35136 2.934 60.40199 2.836    
59.29891 3.302 59.35244 2.779 59.40306 2.968 60.30217 3.414 60.35281 2.957 60.40343 2.846    
59.30035 3.230 59.35388 2.761 59.40451 3.018 60.30362 3.513 60.35426 2.969 60.40488 2.873    
59.30180 3.251 59.35533 2.753 59.40655 2.912 60.30507 3.485 60.35570 2.917 60.40633 2.883    
59.30325 3.111 59.35678 2.792 59.40752 2.942 60.30651 3.438 60.35715 2.902 60.40777 2.848    
59.30469 3.183 59.35822 2.769 59.40850 3.011 60.30796 3.455 60.35860 2.883 60.40922 2.937    
59.30614 3.186 59.35967 2.728 59.40949 2.983 60.30941 3.464 60.36004 2.887 60.41067 2.896    

Download table as:  ASCIITypeset image

Table 2. CCD Photometric Data of GSC 03526-01995 in the I Band Observed on 2011 April 7 and 8

JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m)
2455600+   2455600+   2455600+   2455600+   2455600+   2455600+   2455600+  
59.25767 3.090 59.30831 3.128 59.36038 2.798 59.40997 3.094 60.31011 3.491 60.36075 2.915 60.41137 2.912
59.25912 3.149 59.30975 3.191 59.36182 2.810 59.41096 3.070 60.31156 3.499 60.36220 2.899 60.41282 2.925
59.26056 3.175 59.31120 3.191 59.36327 2.831 59.41194 3.169 60.31301 3.502 60.36364 2.961 60.41427 2.947
59.26201 3.101 59.31263 3.161 59.36472 2.810 59.41292 3.213 60.31445 3.510 60.36509 2.927 60.41571 2.985
59.26346 3.195 59.31408 3.098 59.36616 2.803 59.41391 3.125 60.31590 3.468 60.36654 2.909 60.41716 2.945
59.26490 3.170 59.31553 3.048 59.36761 2.843 59.41489 3.205 60.31735 3.466 60.36798 2.933 60.41861 2.940
59.26635 3.270 59.31697 3.074 59.36906 2.849 59.41588 3.150 60.31879 3.488 60.36943 2.888 60.42005 2.974
59.26780 3.303 59.31842 3.045 59.37050 2.829 59.41685 3.313 60.32024 3.470 60.37088 2.913 60.42150 2.983
59.26924 3.295 59.31987 2.994 59.37195 2.800 59.41784 3.327 60.32169 3.459 60.37232 2.870 60.42295 2.965
59.27069 3.313 59.32131 3.021 59.37340 2.836 59.41883 3.321 60.32313 3.397 60.37377 2.868 60.42439 3.042
59.27214 3.271 59.32276 2.990 59.37485 2.838 59.41981 3.297 60.32458 3.335 60.37522 2.852 60.42584 2.982
59.27358 3.470 59.32421 3.003 59.37629 2.835 59.42079 3.292 60.32603 3.304 60.37666 2.869 60.42729 3.100
59.27503 3.382 59.32566 3.011 59.37774 2.817 59.42178 3.511 60.32747 3.339 60.37811 2.888 60.42873 3.046
59.27648 3.383 59.32710 2.973 59.37919 2.823 59.42276 3.437 60.32892 3.295 60.37956 2.848 60.43018 3.075
59.27792 3.397 59.32855 2.963 59.38063 2.865 59.42375 3.376 60.33037 3.269 60.38100 2.855    
59.27937 3.411 59.33000 2.974 59.38208 2.854 59.42472 3.323 60.33181 3.214 60.38245 2.881    
59.28082 3.456 59.33144 2.955 59.38353 2.842 59.42570 3.364 60.33326 3.177 60.38390 2.821    
59.28226 3.429 59.33289 2.958 59.38497 2.873 59.42669 3.364 60.33471 3.163 60.38534 2.878    
59.28371 3.503 59.33434 2.928 59.38642 2.865 59.42768 3.599 60.33615 3.102 60.38679 2.873    
59.28516 3.396 59.33578 2.905 59.38787 2.888 59.42865 3.376 60.33760 3.098 60.38824 2.870    
59.28660 3.508 59.33723 2.927 59.38931 2.845 59.42964 3.524 60.33905 3.086 60.38968 2.858    
59.28805 3.531 59.33868 2.253 59.39076 2.857 59.43062 3.842 60.34049 3.110 60.39113 2.868    
59.28950 3.520 59.34012 2.892 59.39221 2.863 60.29130 3.319 60.34194 3.105 60.39258 2.867    
59.29094 3.386 59.34157 2.894 59.39365 2.917 60.29275 3.320 60.34339 3.061 60.39402 2.857    
59.29239 3.419 59.34446 3.002 59.39510 2.898 60.29420 3.349 60.34483 3.031 60.39547 2.872    
59.29384 3.334 59.34591 2.926 59.39655 2.917 60.29564 3.385 60.34628 3.020 60.39691 2.879    
59.29528 3.395 59.34736 2.916 59.39799 2.933 60.29709 3.430 60.34773 2.995 60.39835 2.866    
59.29673 3.443 59.34880 2.905 59.39944 2.971 60.29854 3.495 60.34917 3.014 60.39980 2.854    
59.29818 3.379 59.35025 2.885 59.40089 2.968 60.29998 3.511 60.35062 2.990 60.40125 2.875    
59.29963 3.372 59.35170 2.876 59.40233 2.967 60.30143 3.476 60.35207 2.968 60.40269 2.897    
59.30107 3.406 59.35314 2.832 59.40378 2.987 60.30288 3.499 60.35351 2.979 60.40414 2.876    
59.30252 3.274 59.35459 2.859 59.40523 3.043 60.30433 3.429 60.35496 2.954 60.40559 2.919    
59.30397 3.258 59.35604 2.900 59.40702 3.030 60.30577 3.479 60.35641 2.966 60.40703 2.920    
59.30541 3.233 59.35748 2.844 59.40800 3.046 60.30722 3.504 60.35786 2.938 60.40848 2.915    
59.30686 3.169 59.35893 2.853 59.40899 3.037 60.30867 3.478 60.35930 2.928 60.40993 2.948    

Download table as:  ASCIITypeset image

Table 3. CCD Photometric Data of GSC 03526-01995 in the R Band Observed on 2012 May 24 and 26

JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m)
2456000+   2456000+   2456000+   2456000+   2456000+   2456000+   2456000+  
72.19650 2.861 72.24144 3.377 72.28638 2.954 74.06387 2.861 74.11918 3.129 74.16419 3.268 74.20921 2.839
72.19778 2.868 72.24272 3.382 72.28767 2.946 74.06515 2.848 74.12046 3.137 74.16548 3.234 74.21050 2.828
72.19907 2.875 72.24401 3.393 72.28895 2.940 74.06644 2.851 74.12175 3.157 74.16677 3.206 74.21178 2.832
72.20035 2.869 72.24529 3.389 72.29024 2.933 74.06901 2.850 74.12303 3.188 74.16806 3.192 74.21307 2.824
72.20164 2.880 72.24658 3.400 72.29152 2.919 74.07030 2.842 74.12432 3.201 74.16934 3.164 74.21435 2.823
72.20292 2.888 72.24785 3.401 72.29279 2.910 74.07159 2.839 74.12560 3.225 74.17063 3.129 74.21564 2.821
72.20419 2.894 72.24914 3.401 72.29408 2.908 74.07287 2.847 74.12689 3.260 74.17191 3.121 74.21693 2.819
72.20548 2.911 72.25042 3.406 72.29536 2.905 74.07416 2.839 74.12817 3.297 74.17320 3.090 74.21822 2.826
72.20676 2.904 72.25171 3.398 72.29665 2.892 74.07673 2.862 74.12947 3.319 74.17448 3.070 74.21950 2.816
72.20805 2.915 72.25299 3.390 72.29793 2.899 74.07929 2.865 74.13075 3.361 74.17576 3.052 74.22079 2.815
72.20933 2.925 72.25428 3.389 72.29922 2.884 74.08573 2.872 74.13204 3.389 74.17706 3.033 74.22207 2.813
72.21062 2.943 72.25556 3.378 72.30050 2.880 74.08701 2.888 74.13332 3.435 74.17835 3.024 74.22336 2.815
72.21190 2.939 72.25684 3.342 72.30179 2.882 74.08830 2.882 74.13461 3.448 74.17963 3.006 74.22464 2.821
72.21319 2.942 72.25813 3.321 72.30307 2.876 74.08960 2.892 74.13589 3.451 74.18091 2.998 74.22593 2.818
72.21447 2.959 72.25941 3.307 72.30436 2.867 74.09216 2.892 74.13718 3.479 74.18220 2.972 74.22722 2.815
72.21576 2.964 72.26070 3.279 72.30564 2.869 74.09345 2.908 74.13847 3.481 74.18348 2.963 74.22851 2.831
72.21704 2.998 72.26198 3.245 72.30693 2.863 74.09473 2.904 74.13976 3.469 74.18477 2.961 74.22979 2.818
72.21833 3.023 72.26327 3.225 72.30821 2.865 74.09602 2.915 74.14104 3.477 74.18605 2.944 74.23108 2.823
72.21961 3.024 72.26455 3.194 72.30950 2.851 74.09730 2.908 74.14233 3.478 74.18735 2.934 74.23236 2.825
72.22090 3.047 72.26584 3.185 72.31078 2.854 74.09860 2.920 74.14361 3.474 74.18863 2.924 74.23365 2.830
72.22218 3.066 72.26712 3.154 72.31206 2.860 74.09988 2.934 74.14490 3.463 74.18992 2.918 74.23493 2.836
72.22347 3.095 72.26841 3.131 72.31335 2.850 74.10117 2.935 74.14618 3.475 74.19120 2.916 74.23623 2.843
72.22474 3.111 72.26969 3.109 72.31463 2.855 74.10245 2.945 74.14747 3.479 74.19249 2.917 74.23751 2.840
72.22602 3.139 72.27098 3.093 72.31592 2.848 74.10374 2.954 74.14876 3.478 74.19377 2.901 74.23880 2.838
72.22731 3.155 72.27225 3.076 72.31720 2.852 74.10502 2.952 74.15005 3.475 74.19506 2.886 74.24008 2.842
72.22859 3.173 72.27353 3.074 72.31848 2.849 74.10631 2.971 74.15133 3.473 74.19635 2.898 74.24137 2.847
72.22988 3.199 72.27482 3.055 72.31976 2.849 74.10759 2.971 74.15262 3.462 74.19764 2.888 74.24265 2.855
72.23116 3.231 72.27610 3.028 72.32105 2.843 74.10889 2.983 74.15390 3.474 74.19892 2.879 74.24394 2.866
72.23245 3.254 72.27739 3.031 72.32233 2.839 74.11017 3.009 74.15519 3.476 74.20021 2.858 74.24522 2.872
72.23373 3.294 72.27867 3.007 72.32362 2.853 74.11146 3.015 74.15648 3.442 74.20149 2.863 74.24652 2.873
72.23502 3.315 72.27996 3.006 72.32490 2.849 74.11274 3.028 74.15777 3.420 74.20278 2.866 74.24780 2.877
72.23630 3.337 72.28124 2.991 72.32619 2.862 74.11403 3.037 74.15905 3.389 74.20406 2.856    
72.23759 3.352 72.28253 2.972 72.32747 2.855 74.11531 3.060 74.16034 3.371 74.20535 2.859    
72.23887 3.348 72.28381 2.967 72.32875 2.855 74.11660 3.073 74.16162 3.342 74.20664 2.845    
72.24015 3.360 72.28510 2.961 72.33004 2.867 74.11788 3.099 74.16291 3.311 74.20793 2.841    

Download table as:  ASCIITypeset image

Table 4. CCD Photometric Data of GSC 03526-01995 in the I Band Observed on 2012 May 24 and 26

JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m) JD (Hel.) Δ(m)
2456000+   2456000+   2456000+   2456000+   2456000+   2456000+   2456000+  
72.20099 2.904 72.24722 3.388 72.29216 2.948 74.07351 2.876 74.12238 3.170 74.16869 3.192 74.21113 2.857
72.20227 2.914 72.24850 3.396 72.29344 2.937 74.07737 2.875 74.12368 3.185 74.16998 3.143 74.21243 2.856
72.20356 2.914 72.24978 3.385 72.29473 2.929 74.07866 2.884 74.12497 3.230 74.17127 3.136 74.21372 2.856
72.20484 2.923 72.25107 3.385 72.29601 2.932 74.08509 2.880 74.12625 3.253 74.17256 3.121 74.21500 2.852
72.20613 2.925 72.25235 3.395 72.29730 2.918 74.08638 2.874 74.12754 3.268 74.17384 3.087 74.21629 2.847
72.20741 2.946 72.25364 3.375 72.29858 2.920 74.08766 2.889 74.12882 3.267 74.17513 3.070 74.21757 2.841
72.20870 2.953 72.25492 3.379 72.29987 2.904 74.08895 2.914 74.13010 3.333 74.17641 3.067 74.21885 2.841
72.21127 2.969 72.25621 3.365 72.30115 2.914 74.09023 2.911 74.13139 3.347 74.17770 3.041 74.22014 2.848
72.21511 2.965 72.25748 3.339 72.30244 2.894 74.09152 2.912 74.13267 3.358 74.17898 3.019 74.22144 2.837
72.21639 2.981 72.25877 3.322 72.30372 2.897 74.09280 2.928 74.13526 3.410 74.18027 3.014 74.22272 2.847
72.21768 3.024 72.26005 3.302 72.30499 2.888 74.09410 2.929 74.13654 3.430 74.18156 3.002 74.22401 2.838
72.21896 3.044 72.26134 3.271 72.30628 2.889 74.09538 2.923 74.13782 3.441 74.18285 2.989 74.22529 2.838
72.22025 3.055 72.26262 3.249 72.30756 2.889 74.09667 2.943 74.13911 3.428 74.18413 2.973 74.22657 2.844
72.22153 3.081 72.26390 3.234 72.31013 2.882 74.09667 2.946 74.14039 3.450 74.18542 2.963 74.22786 2.845
72.22282 3.099 72.26519 3.207 72.31142 2.880 74.09795 2.955 74.14298 3.428 74.18670 2.953 74.22914 2.841
72.22410 3.112 72.26647 3.176 72.31270 2.882 74.09924 2.938 74.14426 3.445 74.18799 2.953 74.23043 2.85
72.22539 3.143 72.26776 3.164 72.31399 2.879 74.10052 2.949 74.14554 3.460 74.18927 2.939 74.23173 2.855
72.22667 3.180 72.26904 3.149 72.31527 2.874 74.10181 2.963 74.14683 3.436 74.19056 2.935 74.23301 2.857
72.22796 3.187 72.27033 3.125 72.31656 2.868 74.10309 2.964 74.14811 3.452 74.19185 2.939 74.23429 2.849
72.22924 3.214 72.27161 3.114 72.31784 2.881 74.10439 2.967 74.15068 3.453 74.19314 2.929 74.23558 2.856
72.23053 3.237 72.27290 3.096 72.31912 2.881 74.10567 2.981 74.15198 3.449 74.19442 2.920 74.23686 2.866
72.23181 3.261 72.27418 3.085 72.32041 2.874 74.10696 2.993 74.15326 3.454 74.19571 2.911 74.23815 2.880
72.23309 3.282 72.27547 3.062 72.32169 2.864 74.10824 2.999 74.15455 3.438 74.19699 2.914 74.23943 2.869
72.23438 3.297 72.27675 3.046 72.32298 2.870 74.10953 3.001 74.15583 3.431 74.19828 2.904 74.24073 2.885
72.23566 3.325 72.27804 3.043 72.32426 2.874 74.11081 3.026 74.15712 3.418 74.19956 2.894 74.24201 2.883
72.23694 3.328 72.27932 3.024 72.32555 2.865 74.11210 3.027 74.15840 3.396 74.20085 2.883 74.24330 2.885
72.23822 3.366 72.28061 3.017 72.32683 2.889 74.11338 3.042 74.15969 3.360 74.20214 2.888 74.24458 2.904
72.23951 3.332 72.28188 3.010 72.32811 2.895 74.11468 3.067 74.16097 3.341 74.20343 2.885 74.24587 2.885
72.24079 3.377 72.28445 2.993 72.32939 2.885 74.11596 3.076 74.16227 3.325 74.20471 2.876 74.24715 2.916
72.24208 3.379 72.28573 2.982 72.33068 2.883 74.11725 3.081 74.16355 3.280 74.20600 2.873 74.24844 2.929
72.24336 3.400 72.28702 2.973 74.06965 2.861 74.11853 3.129 74.16484 3.251 74.20728 2.863    
72.24465 3.398 72.28830 2.972 74.07094 2.868 74.11982 3.128 74.16612 3.222 74.20857 2.863    
72.24593 3.396 72.28959 2.958 74.07222 2.855 74.12110 3.136 74.16741 3.207 74.20985 2.861    

Download table as:  ASCIITypeset image

The phase of the observations were calculated with the equation 2,455,875.99724 + 0.292258 days ×E, where HJD0 is one of the times of light minimum obtained with the 1 m telescope and a period of 0.292258 days (from Blättler & Diethelm 2004) was assumed. The light curves are displayed in Figure 1 for the R band and in Figure 2 for the I band, and both light variations in 2011 (LCs 1) and 2012 (LCs 2) are of EW type.

Figure 1.

Figure 1. Light curves of GSC 03526-01995 in the R band obtained in two observing seasons. The differential light curves of the comparison star relative to the check star are also plotted in the bottom part.

Standard image High-resolution image
Figure 2.

Figure 2. Same as in Figure 1, but for the I band.

Standard image High-resolution image

Several timings of light minimum were obtained, which are listed in the last part of Table 5. Additionally, two times of light minimum in the R band were obtained on 2011 April 29 and November 10 by using the DW436 2048 × 2048 CCD photometric system attached to the 1 m reflecting telescope at the Yunnan Observatory. In our analysis, the value HJD2453150.462 obtained by Diethelm (2004) was not used because its (OC) value shows large scatter when compared with the general trend formed by the other data points.

Table 5. Times of Light Minima of GSC 03526-01995

JD (Hel.) Method Min. Errors E (OC)1 (OC)2 Ref.
2451426.6759 CCD I 0.0008 −8854.0 0.010732 −0.00635 (1)
2452886.3627 CCD II 0.0015 −3859.5 0.014951 0.00778 (1)
2452886.51 CCD I 0.0004 −3859.0 0.016122 0.00895 (1)
2452899.3647 CCD I 0.0023 −3815.0 0.01147 0.00439 (1)
2452899.365 CCD I 0.002 −3815.0 0.01177 0.00469 (2)
2452907.4029 CCD II 0.001 −3787.5 0.012575 0.00555 (2)
2452924.3575 CCD II 0.0022 −3729.5 0.016211 0.0093 (1)
2452924.358 CCD II 0.002 −3729.5 0.016711 0.0098 (2)
2452926.2568 CCD I 0.0021 −3723.0 0.015834 0.00893 (1)
2452926.257 CCD I 0.002 −3723.0 0.016034 0.00913 (2)
2452928.3 CCD I 0.003 −3716.0 0.013228 0.00634 (1)
2452946.2714 CCD II 0.0011 −3654.5 0.010761 0.004 (2)
2452948.3175 CCD II 0.0019 −3647.5 0.011055 0.00431 (2)
2452951.2405 CCD II 0.0007 −3637.5 0.011475 0.00475 (2)
2453150.4161 CCD I 0.0013 −2956.0 0.013248 0.00787 (2)
2453652.3625 pe II 0.0015 −1238.5 0.006533 0.00457 (3)
2454014.3175 pe I 0.0019 0.0 0 0.0005 (4)
2455659.28537 CCD II 0.00053 5628.5 −0.006283 0.00579 60 cm
2455659.28576 CCD II 0.00049 5628.5 −0.005893 0.0054 60 cm
2455660.30956 CCD I 0.00057 5632.0 −0.004996 0.00669 60 cm
2455660.31013 CCD I 0.00055 5632.0 −0.004426 0.00726 60 cm
2455681.20567 CCD II 0.00057 5703.5 −0.005333 0.0065 1 m
2455875.99724 CCD I 0.00025 6370.0 −0.00372 0.00943 1 m
2456072.24716 CCD II 0.00013 7041.5 −0.005047 0.00946 85 cm
2456072.24718 CCD II 0.00015 7041.5 −0.005027 0.00944 85 cm
2456074.14573 CCD I 0.00020 7048.0 −0.006154 0.00835 85 cm
2456074.14565 CCD I 0.00016 7048.0 −0.006234 0.00827 85 cm

Notes. 60 cm and 1 m denote the 60 cm and 1 m R-C reflect telescope in Yunnan Observatory. 85 cm denotes the 85 cm reflect telescope in Xinglong Observation base. References: (1) Blättler & Diethelm 2004; (2) Diethelm 2004; (3) Diethelm 2006; (4) Diethelm 2007.

Download table as:  ASCIITypeset image

3. PHOTOMETRIC SOLUTIONS

As shown in Figures 1 and 2, an obvious O'Connell effect (O'Connell 1951) could not be ignored, we added a spot on star 2, which proved in the following to be the cooler more massive component. We analyzed the light curves with spot models using the W-D program (Wilson & Devinney 1971; Wilson 1990, 1994; Wilson & van Hamme 2003). During the solution process, the effective temperature of star 1 was chosen as T1 = 4830 K according to the JH = 0.47 and HK = 0.093 of GSC 03526-01995 from the VizieR database (Cox 2000). It must be pointed out here we had difficulty in estimating the effective temperature because these color indices often appear to be uncertain. Fortunately, in the W-D code the light curve depends much more strongly on the temperature ratio of T2/T1 than on the individual temperature (Yakut & Eggleton 2005). Thus the mass ratio, the inclination, and the degree of contact are probably not much affected by uncertainties in temperature. Hence, most of the time we need not worry about how large the uncertainty for the effective temperature might be (Liu et al. 2011). In our solution, T1 was therefore fixed at the estimated value, 4830 K. The gravity-darkening coefficient, g1 = g2 = 0.32 (Lucy 1976), and the bolometric albedo, A1 = A2 = 0.5 (Ruciński 1969), were adopted, which correspond to the common convective envelope of both components. Bolometric and bandpass square-root limb-darkening coefficients were taken from Van Hamme (1993) and are listed in Table 6. We adjusted the mass ratio (q), the orbital inclination (i), the mean temperature of star 2 (T2), the monochromatic luminosity of star 1 (L1R, L1I), and the dimensionless potential of star 1 (Ω1 = Ω2, mode 3 for contact configuration). To obtain initial input parameters, a q-search method was used, we assumed a series of trial values of q (0.3, 0.4, 0.5, and so on), as Figure 3 shows. It can be seen that the smallest value of squared residuals is achieved around q = 2.9. The final converged photometric solutions for LCs 1 and LCs 2 are listed in Table 6 and the corresponding theoretical light curves are shown in Figures 4 and 5 with solid lines, respectively. In Table 6, θ is the "latitude" of a star spot center, measured from 0 radians at the "north" (+z) pole to π radians at the "south" pole. ψ is the longitude of a star spot center, measured counter-clockwise (as viewed from above the +z axis) from the line of the star centers from 0° to 360°. Ω is the angular radius of a star spot, in degrees, Ts/T* is the temperature factor of a spot, which specifies the ratio of the local spot temperature to the local temperature that would be obtained without the spot.

Figure 3.

Figure 3. Relation between the mass ratio q and the sum of the squares of the residuals Σ for GSC 03526-01995.

Standard image High-resolution image
Figure 4.

Figure 4. Observed and theoretical light curves of GSC 03526-01995 in 2011 April (LCs 1), observed using the 60 cm telescope.

Standard image High-resolution image
Figure 5.

Figure 5. Observed and theoretical light curves of GSC 03526-01995 in 2012 May (LCs 2), observed using the 85 cm telescope.

Standard image High-resolution image

Table 6. Photometric Solutions for GSC 03526-01995

Parameters 2011 April 2012 May
g1 = g2 0.32 0.32
A1 = A2 0.50 0.50
x1bol, y1bol 0.315, 0.371 0.315, 0.371
x2bol, y2bol 0.315, 0.371 0.315, 0.371
x1R, y1R 0.423, 0.343 0.423, 0.343
x2R, y2R 0.423, 0.343 0.423, 0.343
x1I, y1I 0.258, 0.423 0.258, 0.423
x2I, y2I 0.358, 0.523 0.258, 0.423
T1 4830 K 4830 K
q 2.54028 ± 0.04143 2.84533 ± 0.00609
Ωin 5.99994 6.41065
Ωout 5.38915 5.79420
T2 4688 ± 21 K 4581 ± 5 K 
i(°) 89.125 ± 3.322 88.376 ± 5.488
Ω1 = Ω2 5.81988 ± 0.07287 6.29852 ± 0.00904
L1/(L1 + L2)(R) 0.3354 0.3350
L1/(L1 + L2)(I) 0.3447 0.3248
r1(pole) 0.2955 ± 0.0069 0.2810 ± 0.0008
r1(side) 0.3102 ± 0.0084 0.2939 ± 0.0010
r1(back) 0.3544 ± 0.0157 0.3330 ± 0.0018
r2(pole) 0.4475 ± 0.0057 0.4510 ± 0.0006
r2(side) 0.4812 ± 0.0078 0.4848 ± 0.0009
r2(back) 0.5132 ± 0.0105 0.5136 ± 0.0011
f 29.5% ± 1.5% 18.2% ± 1.5%
θ(°) 62.008 140.257
ψ(°) 89.321 249.545
Ω(°) 18.736 21.996
Ts/T* 0.805 0.740
∑ωi(OC)2i 0.00167 0.00008

Download table as:  ASCIITypeset image

The fit of computed light curves is good and more reliable for LCs 2, but worse for LCs 1 because of a slightly large scatter of LCs 1. Both solutions for LCs 1 and LCs 2 show that GSC 03526-01995 is a W UMa-type contact binary system. In the following estimations of the system parameters and dark spot parameters, only the values of Column 3 from Table 6 are used, due to their greater accuracy. The geometrical structure of GSC 03526-01995 with a dark spot on the more massive component at phase 0.75 in 2012 is plotted in Figure 6. As Maceroni & van't Veer (1993) pointed out that the spot determination by photometry alone is unreliable due to the uniqueness of the spotted solutions, the parameters with a spot shown in Table 6 are tentative.

Figure 6.

Figure 6. Geometrical structure of GSC 03526-01995 with a dark spot on the more massive component at phase 0.75.

Standard image High-resolution image

4. ORBITAL PERIOD VARIATIONS OF GSC 03526-01995

GSC 03526-01995 was neglected for period study. Though the time span of the investigation of this binary is not long (∼12.7 yr), the obtained data have already reflected some rules of its period variations. Having collected all useful times of light minima, the (OC)1 curve with respect to the linear ephemeris given by Diethelm (2007),

Equation (1)

is shown in the upper panel of Figure 7. It is no doubt that the general (OC)1 trend of GSC 03526-01995, shown in the upper panel of Figure 7, indicates a cyclic variation. Assuming that the period oscillation is cyclic, then, based on the least-squares method, a sinusoidal term was added to a linear ephemeris to give a better fit to the (OC)1 curve (solid line in the upper panel of Figure 7). The following equation is obtained:

Equation (2)

The sinusoidal term in Equation (2) suggests a cyclic variation with a period of about 7.39 yr and a semiamplitude of about A3 = 0.00896(± 0.00153) days, which is more easily seen from Figure 8, where the (OC)2 values with respect to the linear part of Equation (2) are displayed. The residuals computed from Equation (2) are given in the lower panel of Figure 7, which are in a horizontal line on average, except for some scatter.

Figure 7.

Figure 7. (OC)1 diagram of GSC 03526-01995 calculated with the linear ephemeris of Equation (1) based on all available photoelectric and CCD times of light minimum. The solid line refers to a combination of a linear ephemeris and a cyclic period variation, and the dashed line to a new linear ephemeris. The residuals from the whole effect are displayed in the lower panel.

Standard image High-resolution image
Figure 8.

Figure 8. (OC)2 curve of GSC 03526-01995 with respect to the linear part of Equation (2) and their description by the sinusoidal term (solid line). The solid line refers to a theoretical orbit of the additional component in the system.

Standard image High-resolution image

5. DISCUSSIONS AND CONCLUSIONS

Based on our RI light curves, the photometric solutions for GSC 03526-01995 were derived. We found that GSC 03526-01995 is a W UMa-type contact binary system with a degree of contact factor f = 18.2%, and a mass ratio of q = M2/M1 = 2.84553, whose asymmetric light curves could be modeled by a dark spot on the more massive component. According to the classification of W UMa contact binaries given by Binnendijk (1970), GSC 03526-01995 is a W-subtype contact binary. Additionally, the discovery of a high-latitude dark spot in 2012 at phase 0.75 may make GSC 03526-01995 an interesting system to study.

By combining our 10 determinations of times of light minimum with those compiled from the literature, we found that the orbital period of GSC 03526-01995 shows a cyclic period variation with a period of 7.39 yr and a semiamplitude of 0.00896 days. The plot of the mass ratio versus secondary component's spectral type definitely rules out the magnetic activity cycles as a unique cause for a cyclical period variation among binaries with a late-type component (Liao & Qian 2010). Moreover, the statistical findings of ours also indicated that 64.2% of EW-type binaries show cyclical orbital period variation and the most plausible explanation of this is the light-travel time effect (Liao & Qian 2010), considering that the sinusoidal period change of GSC 03526-01995 is attributed to the light-time effect via the presence of an additional body. For GSC 03526-01995, it is a K spectral-type contact binary star according to the Allen's table (Cox 2000) for the values of JH and HK. Therefore, we estimated the mass of the more massive component of binary: M2 = 0.8 M (Cox 2000). According to the photometric mass ratio of q = 2.84553 derived in our photometric analysis, the mass of the another component M1 = 0.28 M can be estimated. Using the known equation,

Equation (3)

the parameters of the additional component star were estimated: the mass function for the additional component is determined to be f(m) = 0.069(± 0.035) M, the lowest mass of the additional companion is 0.57(± 0.13) M, and this body is orbiting the binary at a distance shorter than 2.93(± 0.82) AU. According to Allen's table (Cox 2000), this companion is estimated to be a K6–9 star, which is brighter than the star 1 in GSC 03526-01995 so that it should contribute light to the whole system. To verify the presence of a third body, during the photometric solution, we added a third light (i.e., we made l3 an adjustable parameter), but l3 is usually negative or too small for the contribution of such third body, which suggests that the third companion might itself be a binary composed of two nearly identical 0.285 stars. This situation appears in many eclipsing binaries, e.g., AD And (Liao & Qian 2009), V899 Her (Qian et al. 2006), VZ Lib (Qian et al. 2008), and ASAS J011328-3821.1 (Hełminiak et al. 2012). Therefore, the system may be a quadruple system containing four late-type stars. Of course, to check the existence of the third body, new photometric and spectroscopic observations and a detailed investigation of those data are urgently required in the future. Table 7 lists the physical parameters (i.e., the period P, the contact degree f, the orbital inclination i, mass ratio q, the spectral type) and the form of period changes for some available short-period (Porb < 0.3 days) contact binary systems. From this table, we can see that the values of physical parameters and the form of period changes we derived for the short-period contact binary star GSC 03526-01995 are typical ones.

Table 7. A Sample of Short-period Contact Binaries

Name Period (days) i f(%) q Sp. The Form of the OC Plot Ref.
CC Com 0.220686 89.8 17 1.90 K4/5V A secular decrease+A cyclic variation (1,2)
V523 Cas 0.233691 85.08 21.6 0.52 K4V A secular decrease+A cyclic variation (2,3,4)
RW Com 0.2373 72.43 15 0.343 K2/5V A secular decrease+A cyclic variation (5,6)
EI CVn 0.260775 84.5 20 0.461 K5 A secular decrease+A cyclic variation (7)
EK Com 0.267 89.800 15 0.349 K0V A secular decrease (8,9)
DD Com 0.26920811 74.9 8.8 3.69 G5-G6: A secular increase (10)
BM UMa 0.2712 89.5 17 0.54 K0V A secular decrease+A cyclic variation (11)
V743 Sgr 0.277 82.9 10 0.319 G8-K0 A secular decrease (9,12)
VW Cep 0.278315 63 22 0.35 G5 A secular decrease+A cyclic variation (2,13)
BX Peg 0.2804134 88.0 23.1 2.688 G4-G5 A secular decrease+A cyclic variation (14)
AD Cnc 0.2837 65.57 8.3 1.298 K0 A secular increase+A cyclic variation (15)
XY Leo 0.2847 68.63 25 0.729 K0V A secular increase+A cyclic variation (5,16)
RW Dor 0.2857 76.32 20 0.63 G4/5V A secular decrease (5,17)
V700 Cyg 0.290633 84.05 15.1 0.5437 G2V A secular increase+A cyclic variation (18)
GSC 03526-01995 0.292258 88.376 18.2 2.84533 K: A linear ephemeris +A cyclic variation (19)
TZ Boo 0.29715993 85.45 52.5 0.207 F-G5 A secular decrease+A cyclic variation (20)

References: (1) Köse et al. 2011; (2) Yang et al. 2009a; (3) Zola et al. 2010; (4) Samec et al. 2004; (5) Sukanta & Harinder 2011; (6) Yang & Liu 2003; (7) Yang 2011; (8) Sukanta et al. 2010; (9) Dryomova & Svechnikov 2006; (10) Zhu et al. 2010; (11) Yang et al. 2009b; (12) Pribulla et al. 2003; (13) Kaszás et al. (1998; (14) Lee et al. 2004; (15) Qian et al. 2007; (16) Yakut et al. 2003; (17) Marino et al. 2007; (18) Yang & Dai 2009; (19) this paper; (20) Christopoulou et al. 2011.

Download table as:  ASCIITypeset image

This work was partly supported by the Special Foundation of the President of the Chinese Academy of Sciences, Yunnan Natural Science Foundation (Y1XB041001), and the Chinese Natural Science Foundation (Nos. 11133007, 11203066, and 11103074).

Footnotes

Please wait… references are loading.
10.1088/0004-6256/144/6/178