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ABSTRACT

We present a two-dimensional (2D) fitting algorithm (Galfit, ver. 3) with new capabilities to study the structural
components of galaxies and other astronomical objects in digital images. Our technique improves on previous 2D
fitting algorithms by allowing for irregular, curved, logarithmic and power-law spirals, ring, and truncated shapes
in otherwise traditional parametric functions like the Sérsic, Moffat, King, Ferrer, etc., profiles. One can mix and
match these new shape features freely, with or without constraints, and apply them to an arbitrary number of model
components of numerous profile types, so as to produce realistic-looking galaxy model images. Yet, despite the
potential for extreme complexity, the meaning of the key parameters like the Sérsic index, effective radius, or
luminosity remains intuitive and essentially unchanged. The new features have an interesting potential for use to
quantify the degree of asymmetry of galaxies, to quantify low surface brightness tidal features beneath and beyond
luminous galaxies, to allow more realistic decompositions of galaxy subcomponents in the presence of strong
rings and spiral arms, and to enable ways to gauge the uncertainties when decomposing galaxy subcomponents.
We illustrate these new features by way of several case studies that display various levels of complexity.

Key words: galaxies: bulges – galaxies: fundamental parameters – galaxies: structure – techniques: image
processing – techniques: photometric
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1. INTRODUCTION

Images of astronomical objects store a wealth of informa-
tion that encodes the physical conditions and fossil records of
their evolution. Over the past decade, the ability of optical/
near-infrared telescopes to resolve objects improved by a fac-
tor of 10, and to detect faint surface brightnesses by at least
2 orders of magnitude. These advances now enable the study
of highly intricate details on subarcsecond scales (e.g., nuclear
star cluster, spiral structure, bars, inner ring, profile cusps, etc.)
and extremely faint outer regions of galaxies. Moreover, new
integral-field imaging capabilities blur the traditional boundary
of obtaining, analyzing, and interpreting imaging and spectro-
scopic data. Faced with the convergence in volume, quality, and
multiwavelength data sets like never before, one of the main
challenges toward making full use of the investments is devel-
oping sophisticated ways to extract information from the data
to facilitate new science.

1.1. Parametric and Non-parametric Analysis

Analyzing astronomical images is challenging because of the
diversity in object sizes and shapes, and nowhere is it more
difficult than for galaxies. Since the early era of photographic
plates, one of the key methods for studying the light distribution
of galaxies is to model it by using analytic functions—a
technique known as parametric fitting. This technique was first
applied to galaxies by de Vaucouleurs (1948) who showed that
the light distribution of elliptical galaxies tended to follow
a power-law form of exp(−r1/4). Subsequently, one of the
breakthroughs in our understanding of galaxy structure and
evolution came when Freeman (1970) showed that dynamically
“hot” stars in galaxies make up spheroidal bulges having a de

Vaucouleurs light profile, whereas “cold” stellar components
make up the more flattened, rotationally supported, exponential
disk region.

From that simple beginning, parametric fitting has been the
mainstay for galaxy imaging studies, and expanding into many
applications whenever the science calls for detailed and rigorous
analysis. Among some of the examples, past investigations
delved into the structural parameters of disk galaxies (e.g.,
de Jong 1996), the Tully–Fisher relation (e.g., Tully & Fisher
1977; Hinz et al. 2003; Bedregal et al. 2006), the evolution
of disky galaxies (Simard et al. 2002; Ravindranath et al.
2004; Barden et al. 2005), the cosmic evolution of galaxy
morphology (e.g., Lilly et al. 1998; Marleau & Simard 1998;
Hathi et al. 2009) in both ground-based surveys and Hubble
(Ultra-)Deep Fields (Williams et al. 1996; Beckwith et al.
2006), the morphological transformation of galaxies in cluster
environments (e.g., Dressler 1980), the fundamental plane of
spheroids (Djorgovski & Davis 1987; Dressler et al. 1987;
Bender et al. 1992), the red sequence of galaxies (Bell et al.
2004a, 2004b; Faber et al. 2007), morphological dissimilarities
between spheroidal galaxies and ellipticals (Kormendy 1985,
1987), the central structure of early-type galaxies (Kormendy
1985; Lauer et al. 1995, 2007; Faber et al. 1997; Ferrarese
et al. 2006a, 2006b) and implications for the formation of
massive black holes (Ravindranath et al. 2002; Kormendy &
Bender 2009), black hole versus bulge relations (Kormendy
& Richstone 1995) and their evolution (Rix et al. 2001; Peng
et al. 2006a, 2006b), the “extra light” due to gas dissipation
in galaxy centers (Kormendy 1999; Cote et al. 2006, 2007;
Kormendy et al. 2009; Hopkins et al. 2008, 2009), quasar
host galaxies (e.g., Hutchings et al. 1984; McLeod & Rieke
1994; McLure et al. 2000; Jahnke et al. 2004; Sánchez et al.
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2004; Kim et al. 2008b), gravitational lensing of quasar host
galaxies (Rix et al. 2001; Peng et al. 2006b), and the clustering
of dark matter through weak lensing (e.g., Heymans et al. 2006,
2008).

Since the original development of galaxy fitting nearly
70 years ago, where the analysis was performed on
one-dimensional (1D) surface brightness profiles (see also
Kormendy 1977; Burstein 1979; Boroson 1981; Kent 1985;
Andredakis & Sanders 1994; MacArthur et al. 2003), newer
techniques have emerged to directly analyze two-dimensional
(2D) images (e.g., Shaw & Gilmore 1989; McLeod & Rieke
1994; Byun & Freeman 1995; de Jong 1996; Moriondo et al.
1998; Simard 1998; Ratnatunga et al. 1999; Wadadekar et al.
1999; Simard et al. 2002; de Souza et al. 2004; Laurikainen
et al. 2004 ; Gadotti 2008). The benefit of performing 2D image
analysis is to potentially make full use of all spatial information
and to properly account for image smearing by the point-spread
function (PSF).

Even though 2D analysis can be quite sophisticated, there
are legitimate questions about whether it is more beneficial
than 1D for profile analysis. Proponents of the 1D tech-
nique are skeptical that perfect ellipsoid models are suitable
to use for galaxies that show isophotal twists, or that are non-
elliptical in shape. They note that not only is 1D analysis
more appealing because it is more straightforward to imple-
ment, but also the surface brightness profiles serve as visual
confirmation about the reality of fitting multiple-component
models.

However, beneath the apparent simplicity there are a number
of important subtleties to weigh. For instance, the decision about
how to extract 1D profiles is often not unique, nor are there
strong reasons to prefer major or minor axis profiles, or a profile
along some arc traced by spiral arms or isophote twists that
result from the superposition of multiple components oriented
at different angles. When symmetry is broken, it is also unclear
that there is an optimal or unique way to extract a 1D profile,
such as in irregular galaxies, overlapping galaxies, and galaxies
with double nuclei. Another factor to consider is that the process
of extracting 1D profiles reduces spatial information content: in
many situations, a bulge, disk, and bar can all have different
axis ratios, position angles (P.A.s), and profiles that help to
break model degeneracies, but this information is lost when the
data are collapsed into 1D. Lastly, for compact galaxies, 1D
profile fitting cannot properly correct for image smearing by
the PSF because 1D profile convolution is not mathematically
equivalent to convolution in a 2D image. While some of the
above concerns also affect 2D analysis (i.e., irregular galaxies),
most others benefit from treatment using 2D techniques. When
it comes to judging which models are more plausible, there
are few diagnostics more discerning than a moment’s glance
at 2D models and residual images; a good fit in 2D always
means that 1D profiles are necessarily a good fit. Proponents
of 2D analysis therefore believe that the benefits outweigh the
drawbacks. Moreover, many drawbacks can be mitigated by
breaking free from axisymmetry in 2D analysis, which we aim
to show in this study.

In the box of tools for morphology analysis, a complimen-
tary approach is non-parametric analysis. While we do not use
non-parametric methods in this study, it is useful to understand
the conceptual differences between the two approaches. We thus
provide a brief overview. In contrast to function fitting, the non-
parametric approach does not involve deciding what functional
form to use or how many. One method is to decompose an im-

age into “shapelets” or “wavelets” (e.g., Refregier 2003; Massey
et al. 2004), which is analogous to taking a 2D Fourier transform
of an image using mathematically orthogonal basis functions.
The main conceptual difference with parametric fitting is that
the shapelet basis functions do not represent physical subcom-
ponents of a galaxy. Moreover, the power spectrum of the basis
functions is quite useful for diagnosing the degree of galaxy dis-
tortions. There are also other non-parametric techniques (e.g.,
Abraham et al. 1994; Rudnick & Rix 1998; Conselice et al. 2000;
Lotz et al. 2004). To measure concentration non-parametrically,
one way is to compare fluxes within apertures of different radii;
whereas to measure asymmetry one can rotate an image by 180◦
and subtract it from the original image and measure the residuals
(e.g., Abraham et al. 1994; Conselice et al. 2000). Toward the
same goals, two studies, Abraham et al. (2003) and Lotz et al.
(2004), introduce the Gini index to measure the concentration
of a galaxy by comparing the relative distribution of pixel flux
values within a certain area. Lotz et al. (2004) also introduce a
method for measuring asymmetry through the M20 parameter,
which is the second-order moment of the brightest 20% of a
galaxy’s flux.

The application of non-parametric analysis has mostly been
to quantify galaxy mergers (e.g., Conselice et al. 2003; Lotz
et al. 2008). These techniques are generally much simpler to
implement than parametric fitting and have a strong virtue
that no assumptions are made about the galaxy profiles and
shapes. The trade-off is that the techniques often do not deal
with image smearing by the PSF and different sensitivity
thresholds between different surveys. Consequently, one has
to take particular care to compare compact with extended ob-
jects, measured in different apertures, or measured from im-
ages of different surface brightness depths (Lisker 2008). One
also should guard against contamination by intervening galax-
ies or stars because the techniques do not have a rigorous
way to separate overlapping objects. For separating objects,
extracting structural components of a galaxy, and extrapolat-
ing galaxy wings well into the background noise, there are
few, if any, alternatives to parametric analysis that are more
rigorous.

When comparing the merits of non-parametric and paramet-
ric analysis, the idea of ellipsoid models in parametric analysis
is sometimes considered to be a weakness, because galaxies,
after all, are not perfect ellipses in projection. However, it is
worth pointing out that the notion of there being a global av-
erage size inherently implies comparison against some kind of
approximate shape. Indeed, even in non-parametric techniques,
to measure a size in a 2D image, one assumes a basic shape ei-
ther explicitly (through using aperture photometry) or implicitly
(through calculating flux moments, which requires a center to
be defined). An ellipsoid is one of the simplest and most natural
low-order shapes against which all galaxies can be compared,
especially for measuring an average size. This notion is useful:
deviations from the basic ellipsoid shape can then be consid-
ered as higher order modifications, even for highly irregular
galaxies.

Nevertheless, there are many situations where it is desir-
able to use models that deviate from ellipsoid shapes. Con-
trary to the common practice, there are numerous ways to break
from axisymmetry. However, the harder challenge is to devise a
scheme that is intuitive to grasp and well motivated. Break-
ing free from axisymmetry allows for other interesting sci-
ence applications, including a promising new way to quantify
asymmetry.
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1.2. The Next Generation of Parametric Imaging Fitting

In this study, we present, as a proof of concept, new capa-
bilities in 2D image fitting that progress beyond the limitations
of traditional parametric fitting models. One key aspect of our
approach is to first identify a minimum basis set of features that
spans the range of galaxy morphologies and shapes. From expe-
rience, we determine those four “basic elements” to be bending,
Fourier, coordinate rotation, and truncation modes. Second, one
of the main reasons why parametric fitting is useful is that the
profile parameters are intuitive to grasp (e.g., concentration in-
dex, effective radius, total luminosity, etc.). Therefore, another
key requirement is that the traditional profile parameters must re-
tain their original, intuitive, meaning even under detailed shape
refinements, and even under such extreme cases as irregular
galaxies. This can be accomplished if the basic premise starts
with the traditional ellipsoid function, on top of which one can
add perturbations, rotations, irregularities, and curvature. This
is possible because of the fact that simple ellipsoid fits are a
reasonable way to quantify global average properties, and other
details can be considered to be higher order perturbations that
may be of other practical interest.

As we attempt to demonstrate, combining just the four basic
morphology elements can quickly yield a dizzying array of
possibilities for fitting galaxies. The end result can look highly
“realistic.” Indeed, it is now possible to fit many spiral galaxies,
asymmetric tidal features, irregular galaxies, ring galaxies,
dust lanes, truncated galaxies, arcs, among others (though,
certainly, there are limitations). However, it is important to
realize that “being possible” often does not mean “being
necessary” or “being practical.” Necessity ought to be judged
in the scientific context of whether it is worth the extra effort
to obtain diminishing returns. For instance, to measure total
galaxy luminosity, it is often unnecessary to fit high-order
Fourier modes or spiral rotations. For many science studies
interested in global parameterization, often a single ellipsoid
component would suffice. It is therefore important to always let
the science determine what kind of analysis is required, rather
than to use the new capabilities in the absence of a clearly defined
goal. Having provided some foregoing disclaimers, some of
the key scientific reasons motivating the new capabilities are
to: (1) quantify global asymmetry or substructure asymmetry;
(2) quantify bending modes for weak-lensing applications, or
fit arcs in the image plane for strong gravitational lenses;
(3) obtain more accurate substructure decomposition in the
presence of bars, spirals, rings, etc.; (4) obtain more accurate
global photometry; (5) quantify profile deviation in inner or
outer regions of a galaxy, such as disk truncations, deviations
from a Sérsic function, etc.; (6) Extract parametric information
to the limits imposed by resolution, signal-to-noise ratio (S/
N), and other small-scale fluctuations; and (7) quantify model-
dependent errors in the decomposition.

We thus begin by giving an overview of the Galfit software
(Section 2). Then, we introduce the radial profile functions that
one can use (Section 3), and illustrate how symmetric and asym-
metric shapes can be generated by modifying the coordinate
system in Section 4. Next, we introduce a new capability that
allows for radial profile truncation (Section 5). Enabling all the
capabilities may result in extremely complex galaxy shapes, the
interpretation of which may give concerns to those new to the
analysis. Therefore, we discuss the interpretations and model
degeneracies of the parameters in Section 6. We then apply
these new features to real galaxies in Section 7, followed by
concluding remarks (Section 8).

2. THE 2D FITTING PROGRAM Galfit

This study builds on an existing algorithm named Galfit
5

(Peng et al. 2002), which is a 2D parametric galaxy fitting algo-
rithm, in the same spirit as other widely used 2D image-fitting
algorithms (e.g., GIM2D: Simard 1998; Simard et al. 2002;
BUDDA: de Souza et al. 2004). Galfit is a stand-alone program
written in the C language, and can be run on most modern oper-
ating systems. To read and produce FITS images, Galfit calls
upon the CFITSIO package (Pence 1999). Galfit is designed to
allow for complex image decomposition tasks: by allowing for
an arbitrary number and mix of parametric functions (Sérsic,
Moffat, Gaussian, exponential, Nuker, etc.), it can simultane-
ously fit any number of galaxies and their substructures. It is
possible to use Galfit for both interactive analysis and galaxy
surveys where complete automation is required. However, au-
tomation requires the use of an external “wrapping” algorithm
written by the user that takes care of both the pre-processing
(object identification, initial parameter estimation) and post-
processing (extracting and tabulating fitting parameters) of the
fitting results.

2.1. χ2
ν and Error Analysis

Galfit is a nonlinear least-squares fitting algorithm that uses
the Levenberg–Marquardt technique to find the optimum solu-
tion to a fit. The Levenberg–Marquardt algorithm is currently the
most efficient one for searching large parameter spaces, allow-
ing for the possibility of fitting complex images with multiple
components and a large number of parameters. Galfit deter-
mines the goodness of fit by calculating χ2 and computing how
to adjust the parameters for the next step. It continues to iterate
until the χ2 no longer decreases appreciably. The indicator of
goodness of fit is the normalized or reduced χ2, χ2

ν :

χ2
ν = 1

Ndof

nx∑
x=1

ny∑
y=1

(fdata(x, y) − fmodel(x, y))2

σ (x, y)2 , (1)

where

fmodel(x, y) =
m∑

ν=1

fν(x, y;α1, . . . , αn). (2)

Here Ndof is the number of degrees of freedom in the fit; nx and
ny are the x and y image dimensions; and fdata(x, y) is the image
flux at pixel (x, y). The fmodel(x, y) is the sum of m functions
of fν(x, y;α1, . . . , αn), with n free parameters (α1, . . . , αn) in
the 2D model. The uncertainty as a function of pixel position,
σ (x, y), is the Poisson error at each pixel, which can be provided
as an input image. If no σ -image is given, one is generated based
on the gain and read-noise parameters contained in the image
header. Pixels in the image marked as being bad do not enter
into the calculation of χ2.

In the Levenberg–Marquardt algorithm, the minimization
process involves computing a Hessian matrix, which is closely
related to the covariance matrix of the parameters (e.g., see
Press et al. 1992). The covariance matrix is then directly related
to the formal uncertainty in the fitting parameters that Galfit

reports. However, the usefulness of the formal uncertainty is
limited to ideal situations where the fluctuations in the residual
image are only due to Poisson noise after removing the model.
This situation is mostly realized in idealized situations, such
as image simulations. In real images, the residuals are due to

5 http://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html
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structures like stars and galaxies that are not fitted, flat-fielding
errors, and imperfect functional match to the data. These factors
cause formal uncertainties reported in numerical fits to be only
lower estimates. In image fitting, more realistic uncertainties are
necessarily obtained by other processes, such as comparing fit
results based on different assumptions about the model rather
than through a formal covariance matrix.

In summary, the three images Galfit takes as input to
calculate least squares are the data, a σ -image, and an optional
bad pixel mask. To account for image smearing by the PSF,
Galfit will also require a PSF image.

2.2. Accounting for Telescope Optics and Atmospheric Seeing

The wavefront of light from distant sources is always per-
turbed by the act of producing an image, distortions due to
imperfect optics, and sometimes by Earth’s atmosphere, result-
ing in some blurring. To accurately compare the intrinsic shape
of an object with a model, image blurring must be taken into ac-
count. In image fitting, this is often done by convolving a model
image with the input PSF before comparing with the data. The
process of performing convolution is mathematically rigorous,
but the actual implementation has several subtleties.

One consideration is the computation speed, as the process
of convolving a model is frequently the most time-consuming
part of parametric fitting. The trade-off is that the smaller the
convolution region, the faster the computation time, but also the
less accurate. To achieve a compromise, Galfit allows the user
to decide on the size of the convolution region. This gives the
flexibility for one to hone in on a solution quickly before trying
to obtain higher accuracy in the final step.

Another important issue to consider is whether to convolve
each component separately or all of them together just once in
the final image. This is an important consideration because even
though the model functions are analytic, they are resampled by
discrete pixel grids, resulting in a “pixellated” profile instead of
one that is infinitely smooth. If an intrinsic model is sufficiently
sharp, the curvature may not be critically subsampled by the
pixels prior to convolution, regardless of whether the recorded
data are Nyquist sampled. The resulting profile after image
convolution therefore can depend very sensitively on how the
model is centered on a pixel. If such a model is created off-center,
pixellation effectively broadens out the model ever so slightly
more than normal once convolution is applied, but the effect
is noticeable in high-contrast imaging studies. Therefore, the
better way to deal with “pixellation broadening” is to convolve
each model component individually rather than the entire image
at once. To do so, Galfit creates every model on a pixel center;
the pixel fluxes near the center of the models are integrated over
the pixel area adaptively. Then to effect an off-centered model,
Galfit makes use of the convolution theorem by shifting the
PSF by the required amount before convolving it with the model.
This process circumvents the problem of artificial pixellation
broadening because whereas the model core region may not be
sufficiently resolved, the PSF ought to be.6

Shifting the PSF, however, can be quite problematic when it
is marginally Nyquist sampled, or if the diffraction patterns are
not critically sampled. Accurate shifting of the PSF is of basic
importance in high-contrast imaging studies. For instance, in
the case of studying active galaxies with a strong central point
source, issues of contrast, resolution, and sampling all conspire

6 If the PSF is not resolved, then the convolution process will not be accurate
regardless of the technique.

to make the PSF fitting crucial to deriving a reliable host model.
In such situations, the standard interpolation techniques (e.g.,
linear or spline) tend to broaden out the PSF core, so they
are only accurate in the extended outskirts where the gradient
is shallow. One alternative is to interpolate using the sinc
kernel, which is theoretically the perfect interpolation kernel
for critically sampled images, and preserves the intrinsic width
of the data. However, significant “ringing” appears around sharp
features (i.e., PSF or galaxy core). This effect can be nearly as
bad on a fit as pixellation broadening. An improved solution is
to taper the wing of the sinc kernel using a windowing function
(e.g., Lanczos), but the ringing often may still be quite large
beyond the PSF core, which must be further suppressed.

Galfit seeks a compromise by using a hybrid scheme where
the interpolation in the PSF core is done by using a sinc kernel
with a Kaiser window function so as to faithfully preserve the
width, but a bicubic spline interpolation is used in the wings. The
result of this scheme is that for a Gaussian having an FWHM
of 2 pixels, the interpolation is accurate to 0.1% in the center,
and 0.03% at the distance of the FWHM relative to the peak
(or 1% relative to the local flux). For oversampled PSFs, the
interpolation is even more accurate. Compared to bicubic spline
interpolation, our scheme is about 20 times more accurate. From
a more practical standpoint, the mismatch in the PSFs between
data taken using the Hubble Space Telescope (HST) imaging
cameras and synchronously observed PSFs is rarely better than
3% in the core. For all practical purposes, our interpolation
scheme therefore will more than suffice for the most demanding
high-contrast studies of quasar host galaxies at high redshift.

When the data are undersampled, convolution of the model
can still be done correctly if the convolution PSF provided
to Galfit is either critically sampled or oversampled. In this
situation, Galfit will generate a model on a finer grid, convolve
it with the PSF, then bin the result down to the resolution of the
data for comparison. One way for users to obtain an oversampled
PSF compared to the data is to dither the PSF observations by
fractional pixels. Another way is to numerically reconstruct a
more oversampled PSF star by extracting multiple stars from
the data image itself (e.g., via DAOphot, Stetson 1987).

However, lastly, we note that when the data and the convo-
lution PSF are both undersampled (i.e., with PSF FWHM < 2
pixels), convolution cannot be done accurately. In such a situa-
tion, for the purpose of image fitting, it is often better to broaden
out the data and the PSF to critical sampling than to perform the
analysis in the original resolution (Kim et al. 2008a).

2.3. The Concept of a Model Component

Using the new features, each model can take on a shape that is
completely unrecognizable from a traditional ellipsoid shape. It
is therefore necessary to clarify what constitutes a single model
component. In Galfit, each model component is referred to by
the name of the surface brightness profile, just as it is standard
practice to call something a Sérsic, Gaussian, or exponential
component in traditional models. As implied by this notion, no
matter how complex the shape, the flux declines monotonically
(unless modified by a truncation function, Section 5) from a
peak in every radial direction in a non-rotating frame, or along
an arc in a rotating frame, strictly following the functional
form specified by the user. The radial profile parameters are
mathematically decoupled from the azimuthal shape because
the radial profile functions are self-similar in the expression of
the radius parameter, i.e., with powers of (r/re), whereas the
complex azimuthal shapes are obtained by simply stretching
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# IMAGE and GALFIT CONTROL PARAMETERS

A) gal.fits # Input data image (FITS file)

B) imgblock.fits # Output data image block

C) none # Sigma image name (made from data if blank or "none")

D) psf.fits # # Input PSF image and (optional) diffusion kernel

E) 1 # PSF fine sampling factor relative to data

F) none # Bad pixel mask (FITS image or ASCII coord list)

G) none # File with parameter constraints (ASCII file)

H) 1 200 1 100 # Image region to fit (xmin xmax ymin ymax)

I) 100 100 # Size of the convolution box (x y)

J) 20.000 # Magnitude photometric zeropoint

K) 1.000 1.000 # Plate scale (dx dy) [arcsec per pixel]

O) both # Display type (regular, curses, both)

P) 0 # Choose: 0=optimize, 1=model, 2=imgblock, 3=subcomps

# INITIAL FITTING PARAMETERS

#

# For component type, the allowed functions are:

# sersic, expdisk, edgedisk, devauc, king, nuker, psf,

# gaussian, moffat, ferrer, and sky.

#

# Hidden parameters will only appear when they’re specified:

# Bn (n=integer, Bending Modes).

# C0 (diskiness/boxiness),

# Fn (n=integer, Azimuthal Fourier Modes).

# R0-R10 (coordinate rotation, for creating spiral structures).

# To, Ti, T0-T10 (truncation function).

#

# ------------------------------------------------------------------------------

# par) par value(s) fit toggle(s) # parameter description

# ------------------------------------------------------------------------------

# Component number: 1

0) sersic3 / # Component type

1) 50.0000 50.0000 1 1 # Position x, y

3) 15.0000 1 # Surface brghtnss @ outer R_break [mag/arcsec^2]

4) 30.0000 1 # R_e (effective radius) [pix]

5) 4.0000 1 # Sersic index n (de Vaucouleurs n=4)

9) 0.7000 1 # Axis ratio (b/a)

10) -30.0000 1 # Position angle (PA) [deg: Up=0, Left=90]

)s(rebmuntnenopmocybnoitacnurtrennI#2)iT

F5) 0.1500 20.0000 1 1 # Azim. Fourier mode 5, amplitude, & phase angle

# Component number: 2

T0) radial # Truncation type (radial, length, height)

T1) 45.0000 45.0000 1 1 # Position x, y

T4) 8.0000 1 # Break radius (99% normal flux) [pixels]

T5) 5.0000 1 # Softening length (1% normal flux) [pixels]

T9) 0.7000 1 # Axis ratio (optional)

T10) 45.0000 1 # Position angle (optional) [deg: Up=0, Left=90]

F1) 0.6000 20.0000 1 1 # Azim. Fourier mode 1, amplitude, & phase angle

B2) -5.000e+00 1 # Bending mode 2 amplitude

# Component number: 3

0) sersic # Component type

1) 150.0000 50.0000 1 1 # Position x, y

3) 7.0000 1 # Integrated magnitude

4) 15.0000 1 # R_e (effective radius) [pix]

5) 2.0000 1 # Sersic index n (de Vaucouleurs n=4)

9) 0.5000 1 # Axis ratio (b/a)

10) 0.0000 1 # Position angle (PA) [deg: Up=0, Left=90]
R0) power # PA rotation func. (power, log, none)

R1) 0.0000 1 # Spiral inner radius [pixels]

R2) 15.0000 1 # Spiral outer radius [pixels]

R3) 180.0000 1 # Cumul. rotation out to outer radius [degrees]

R4) 0.3000 1 # Asymptotic spiral powerlaw

R9) 10.0000 1 # Inclination to L.o.S. [degrees]

R10) 45.0000 1 # Sky position angle

F1) 0.3000 45.0000 1 1 # Azim. Fourier mode 1, amplitude, & phase angle

F5) 0.1000 90.0000 1 1 # Azim. Fourier mode 5, amplitude, & phase angle

Figure 1. Example of an input file. The object list is dynamic and can be extended as needed. Each model is modified by a mix of higher order Fourier modes, bending
modes, truncation, or spiral structure. These parameters produce the models shown in Figure 2.
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Figure 2. Shapes produced by parameters in the Galfit input file of Figure 1.
Left: a Sérsic light profile modified by a single Fourier mode m = 5, creating
the star shape. It is truncated in the inner region by a truncation function, which
is modified by a bending mode m = 2, with a lopsided Fourier mode of m = 1.
Right: a Sérsic light profile with Fourier modes m = 1 and m = 5 is modified by
a coordinate rotation function to create a lopsided, multi-armed, spiral structure.

the coordinate metric into more exotic grids than the standard
Cartesian grid. This idea is in fact implicit in all 2D image-
fitting algorithms, where the axis ratio parameter, q, turns a
circular profile into an ellipse by compressing the coordinate
axis along one direction, even though the functional form of the
profile remains the same in every direction. In the same manner,
the definition of a scale or effective radius in a component,
no matter how complex the shape, corresponds closely to that
of the best-fitting ellipse in the direction of the semimajor
axis.

Figure 1 demonstrates how Sérsic profiles can be modified by
bending modes, Fourier modes, and a spiral rotation function
in Galfit—the results of which are shown in Figure 2. In the
example, there are only two Sérsic model components, despite
the appearance of numerous parameters: both the “radial” and
“power” functions are modifications to the Sérsic profiles.
Furthermore, the Fourier and bending modes can modify the
Sérsic profiles, or modify the modifiers to the light profiles.
Each radial surface brightness profile has a single peak, and
the flux decline is monotonic radially (unless truncated by a
truncation function called “radial” in Figure 1) or in a rotating
coordinate system (called “power” in Figure 1). Therefore, for
each component, it is still meaningful to talk about, for example,
an “average” light profile (e.g., Sérsic), with an average Sérsic
concentration index n—no matter what the galaxy may look
like azimuthally. In this manner, even irregular galaxies can
be parameterized in terms of their average light profile. When
the average peak of an irregular galaxy is not located at the
geometric center, it has a high-amplitude m = 1 Fourier mode
(i.e., lopsidedness).

In such a way, no matter how complex the azimuthal shape,
interpreting the surface brightness profile parameters is just as
straightforward as the traditional ellipsoid.

3. THE RADIAL PROFILE FUNCTIONS

The radial profile functions describe the intensity falloff
of a model away from the peak, such as the Sérsic, Nuker,
or exponential models, among others. For example, early-
type galaxies typically have steep radial profiles whereas late-
type galaxies have shallower intensity slopes near the center.
The rate of decline is governed by a scale-length parameter.
The radial profile is often of primary interest in galaxy studies
from the standpoint of classification, and because the exact
functional form may have some bearing on the path of galaxy
evolution. In Galfit, the radial profile can have the following

functional forms, which are some of the most frequently seen in
the literature.

The Sérsic profile. The Sérsic power law is one of the most
frequently used functions to study galaxy morphology, and has
the following form:

Σ(r) = Σe exp

[
−κ

((
r

re

)1/n

− 1

)]
, (3)

where Σe is the pixel surface brightness at the effective radius
re. The parameter n is often referred to as the concentration
parameter. When n is large, it has a steep inner profile and a
highly extended outer wing. Inversely, when n is small, it has a
shallow inner profile and a steep truncation at large radius. The
parameter re is known as the effective radius such that half of the
total flux is within re. To make this definition true, the dependent
variable κ is coupled to n; thus, it is not a free parameter.
The classic de Vaucouleurs profile that describes a number of
galaxy bulges is a special case of the Sérsic profile when n =
4 (corresponding to κ = 7.67). As explained below, both the
exponential and Gaussian functions are also special cases of the
Sérsic function when n = 1 and n = 0.5, respectively. As such
the Sérsic profile is a common favorite when fitting a single
component.

The flux integrated out to r = ∞ for a Sérsic profile is

Ftot = 2πr2
e Σee

κnκ−2nΓ(2n)q/R(C0;m). (4)

The term R(C0;mi) is a geometric correction factor when the
azimuthal shape deviates from a perfect ellipse. As the concept
of azimuthal shapes will be discussed in Section 4, we will
only comment here that R(C0;mi) is simply the ratio of the
area between a perfect ellipse with the area of the more general
shape, having the same axis ratio q and unit radius. The shape
can be modified by Fourier modes (m being the mode number)
or diskiness/boxiness. For instance, when the shape is modified
by diskiness/boxiness, R(C0) has an analytic solution given by

R(C0) = π (C0 + 2)

4β(1/(C0 + 2), 1 + 1/(C0 + 2))
, (5)

where β is the Beta function. In general, when the Fourier
modes are used to modify an ellipsoid shape, there is no analytic
solution for R(mi), and so the area ratio must be integrated
numerically.

In Galfit, the flux parameter that one can use for the Sérsic
function is either the integrated magnitude mtot or some kind of
surface brightness magnitude, for example, at the center (μ0),
at the effective radius (μe), or at the break radius (μbreak) for
truncated profiles (see Section 5). The integrated magnitude
follows the standard definition:

mtot = −2.5log10

(
Ftot

texp

)
+ mag zpt, (6)

where texp is the exposure time from the image header. Each
Sérsic function can thus potentially have seven classical free
parameters in the fit: x0, y0, mtot, re, n, q, and θP.A.. The
non-classical parameters, C0, Fourier modes, bending modes,
and coordinate rotation may be added as needed. There is no
restriction on the number of Fourier modes, and bending modes,
but each Sérsic component can only have a single set of C0 and
coordinate rotation parameters (see Section 4 for details).
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Figure 3. Sérsic profile where re and Σe are held fixed. Note that the larger the
Sérsic index value n, the steeper the central core, and more extended the outer
wing. A low n has a flatter core and a more sharply truncated wing. Large Sérsic
index components are very sensitive to uncertainties in the sky background level
determination because of the extended wings.

(A color version of this figure is available in the online journal.)

The exponential disk profile. The exponential profile has some
historical significance, so Galfit is explicit about calling this
profile an exponential disk, even though an object that has an
exponential profile needs not be a classical disk. Historically,
an exponential disk has a scale length rs, which is not to be
confused with the effective radius re used in the Sérsic profile.
For situations where one is not trying to fit a classical disk,
it would be less confusing nomenclaturewise to use the Sérsic
function with n = 1, and quote the effective radius re. But
because the exponential disk profile is a special case of the
Sérsic function for n = 1 (see Figure 3), there is a relationship
between re and rs, given by

re = 1.678rs (for n = 1 only). (7)

The functional form of the exponential profile is

Σ(r) = Σ0 exp

(
− r

rs

)
, (8)

and the total flux is given by

Ftot = 2πr2
s Σ0q/R(C0;m). (9)

The six free parameters of the profile are x0, y0, mtot, rs, θP.A.,
and q.

The Gaussian profile. The Gaussian profile is another special
case of the Sérsic function with n = 0.5 (see Figure 3), but here
the size parameter is the FWHM instead of re. The functional
form is

Σ(r) = Σ0 exp

(−r2

2σ 2

)
, (10)

and the total flux is given by

Ftot = 2πσ 2Σ0q/R(C0;m), (11)

Figure 4. Modified Ferrer profile. The black reference curve has parameters
rout = 100, α = 0.5, β = 2, and Σ0 = 1000. The red curves differ from the
reference only in the α parameter, as indicated by the red numbers. Likewise,
the green curves differ from the reference only in the β parameter, as indicated
by the green numbers.

(A color version of this figure is available in the online journal.)

where FWHM = 2.355σ . The six free parameters of the profile
are x0, y0, mtot, FWHM, q, and θP.A..
The modified Ferrer profile. The Ferrer profile (Figure 4;
Binney & Tremaine 1987) has a nearly flat core and an outer
truncation. The sharpness of the truncation is governed by the
parameter α, whereas the central slope is controlled by the
parameter β. Because of the flat core and sharp truncation
behavior, historically it is often used to fit galaxy bars and
“lenses.” The profile,

Σ(r) = Σ0
(
1 − (r/rout)

2−β
)α

, (12)

is only defined within r � rout, beyond which the function has
a value of 0. The eight free parameters of the Ferrer profile are
x0, y0, central surface brightness, rout, α, β, q, and θP.A..

It is worth mentioning that a Sérsic profile with low index
n < 0.5 has similar profile shapes; thus it is often used instead
of the Ferrer function.

The empirical (modified) King profile. The empirical King
profile (Figure 5) is often used to fit the light profile of globular
clusters. It has the following form (Elson 1999):

Σ(r) = Σ0

[
1 − 1

(1 + (rt/rc)2)1/α

]−α

×
[

1

(1 + (r/rc)2)1/α
− 1

(1 + (rt/rc)2)1/α

]α

. (13)

The standard empirical King profile has a power law with the
index α = 2. In Galfit, α can be a free parameter. In this model,
the flux parameter to fit is the central surface brightness, μ0,
expressed in mag arcsec−2 (see Equation (20)). The other free
parameters are the core radius (rc) and the truncation radius (rt),
in addition to the geometrical parameters. Outside the truncation
radius, the function is set to 0. Thus, the total number of classical
free parameters is 8: x0, y0, μ0, rc, rt, α, q, and θP.A..
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Figure 5. Empirical King profile. The black reference curve has parameters
rc = 50, rt = 100, α = 2, and Σ0 = 1000. The red curves differ from
the reference curve only in the α parameter, as indicated by the red numbers.
Likewise, the green curves differ from the reference only in the rc parameter, as
indicated by the green numbers.

(A color version of this figure is available in the online journal.)

The Moffat profile. The profile of the HST WFPC2 PSF is well
described by the Moffat function (Figure 6). Other than that, the
Moffat function (Moffat 1969) is less frequently used than the
above functions for galaxy fitting. The functional profile is

Σ(r) = Σ0[
1 + (r/rd )2

]n , (14)

and the total flux is given by

Ftot = Σ0πr2
d q

(n − 1)R(C0;m)
. (15)

In Galfit, the size parameter to fit is the FWHM, where the
relation between rd and FWHM is

rd = FWHM

2
√

21/n − 1
. (16)

The seven free parameters are x0, y0, mtot (i.e., total magnitude,
instead of μ0) FWHM (instead of rd), the concentration index
n, q, and θP.A..

The Nuker profile. The Nuker profile (Figure 7) was introduced
by Lauer et al. (1995) to fit the central light distribution of nearby
galaxies, and it has the following form:

I (r) = Ib 2
β−γ

α

(
r

rb

)−γ [
1 +

(
r

rb

)α] γ−β

α

. (17)

The flux parameter to fit is μb, the surface brightness of the
profile at rb, which is defined as

μb = −2.5 log10

(
Ib

texpΔxΔy

)
+ mag zpt, (18)

where texp is the exposure time from the image header, and Δx
and Δy are the plate scale in arcsecond. The Nuker profile is a

Figure 6. Moffat profile. The black reference curve has parameters n = 2,
FWHM = 20, and Σ0 = 1000. The other colored lines differ only in the
concentration index n, as shown by the numbers. The dashed line shows a
Gaussian profile of the same FWHM.

(A color version of this figure is available in the online journal.)

double power law, where (in Equation (17)) β is the outer power-
law slope, γ is the inner slope, and α controls the sharpness of
the transition. The motivation for using this profile is that the
nuclei of many galaxies appear to be fit well in 1D (see Lauer
et al. 1995) by a double power law. However, caution should be
exercised when using this function because, for example, a low
value of α (α � 2) can be mimicked by a combination of high
γ and low β (compare Figure 7(c) with the other two panels),
which presents a serious potential for degeneracy. In all, there
are nine free parameters: x0, y0, μb, rb, α, β, γ , q, and θP.A..

The edge-on disk profile. Both the Sérsic (Equation (3)) and
exponential disk profile (Equation (8)) are merely empirical
descriptors of a galaxy light profile. However, for edge-on disk
galaxies, there is a more physically motivated light profile: under
the assumption that the disk component is locally isothermal and
self-gravitating, the light profile distribution is given by van der
Kruit & Searle (1981):

Σ(r, h) = Σ0

(
r

rs

)
K1

(
r

rs

)
sech2

(
h

hs

)
, (19)

where Σ0 is the pixel central surface brightness, rs is the major-
axis disk scale length, hs is the perpendicular disk scale height,
and K1 is a Bessel function. The flux parameter being fitted in
Galfit is the central surface brightness:

μ0 = −2.5 log10

(
Σ0

texpΔxΔy

)
+ mag zpt. (20)

Note that if the disk is oriented horizontally, the coordinate r
is the x-distance (as opposed to the radius) of a pixel from the
origin. There are six free parameters in the profile model: x0, y0,
μ0, rs, hs, and θP.A..

The PSF profile. For unresolved sources, one can fit pure
stellar PSFs to an image (as opposed to functions with narrow
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Figure 7. Nuker profile. The black reference curve has parameters rb = 10, α = 2, β = 2, γ = 0, and Ib = 100. For the other colored lines, only one value differs
from the reference, as shown in the legend.

(A color version of this figure is available in the online journal.)

FWHM convolved with the PSF). The PSF function is simply
the convolution PSF image that the user provides, so there is
no prescribed analytical functional form. This is also the only
profile that is not convolved in Galfit. The PSF has only three
free parameters: x0, y0, and mtot. Because there is no analytical
form, the total magnitude is determined by integrating over the
PSF image and assuming that it contains 100% of the light. If the
PSF wing is vignetted, there will be a systematic offset between
the flux Galfit reports and the actual value.

If one wants to fit this “function,” it is important to make
sure that the input PSF is close to, or super-, Nyquist sampled.
The PSF interpolation used in shifting is done by a sinc function
with a Kaiser window, which can preserve the widths of the PSF
even under subpixel shifting. This is, in principle, better than
spline interpolation or other high-order interpolants. However,
if the PSF is undersampled, aliasing will occur, and the PSF
interpolation will be poor. In this situation, it is better to provide
an oversampled PSF to Galfit (and to specify the amount of
oversampling), even if the data are undersampled. With HST
data this can be done using TinyTim (Krist & Hook 1997) or by
combining stars. Galfit will take care of rebinning during the
fitting.

Note that the alternative to fitting a PSF is to fit a Gaussian
with a small width (e.g., 0.4–0.5 pixels), which Galfit will
convolve with the PSF. This is generally not advisable if a source
is a pure point source because convolving a narrow function with
the PSF will broaden out the overall profile, even if slightly. The
convergence can also be poor if the FWHM parameter starts
becoming smaller than 0.5 pixels. However, this technique can
still be useful to see if a source is truly resolved.

The background sky. The background sky is a flat plane with
a flux gradient along x- and y-directions. Thus it has a total of
three free parameters. The pivot point for the sky is fixed to the
geometric center (xc, yc) of the image, calculated by (npix +1)/2,
where npix is the number of pixels along one dimension. The tip
and tilt are calculated relative to that center. Because the galaxy
centroid located at (x, y) is in general not at the geometric center

(xc, yc) of the image, the sky value directly beneath the galaxy
centroid is calculated by

sky(x, y) = sky(xc, yc) + (x − xc)
dsky

dx
+ (y − yc)

dsky

dy
. (21)

4. THE AZIMUTHAL SHAPE FUNCTIONS

Whereas the radial profile governs the decline of galaxy flux
radially from a central peak, the azimuthal functions generate
the projected shape in the x–y plane of the image. For instance,
ellipsoidal, irregular, spiral, disky, and boxy shapes are all
created by azimuthal functions. All traditional 2D image-fitting
techniques use an ellipse as the fundamental shape, which is
obtained by stretching the coordinate grid along one dimension
compared to the orthogonal direction. Indeed, all azimuthal
functions are coordinate transformations. Therefore, to change
a shape from an ellipse into more exotic shapes, the coordinate
system [r(x, y)] can be further stretched or shrunk radially
from the peak, as a function of azimuth angle. This coordinate
transformation preserves the functional form of the surface
brightness profile in every direction because the profiles are self-
similar—that is, they are functions of (r/rscale). Thus defined,
the radial profile parameters (e.g., re, q, central concentration,
etc.) retain their original meaning regardless of the complexity
of the azimuthal shape.

We introduce four new ways to modify the azimuthal shape
of a model, beginning with the traditional ellipsoidal model.
On top of an ellipsoid, this section describes how one can add
Fourier modes, bending modes, and coordinate rotation func-
tions (power law and logarithmic). Each component can be mod-
ified by any one or all of the azimuthal functions simultaneously,
depending on the complexity of the galaxy one is trying to an-
alyze. The following section will cover truncation functions.

Generalized ellipses. The simplest azimuthal shape in Galfit is
the traditional generalized ellipse. This is the starting point for
all Galfit analysis, no matter how complex is the final outcome.
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Figure 8. Generalized ellipses with (a) axis ratio q = 1 and (b) axis ratio q = 0.5. Various values of the diskiness/boxiness parameter C0 are labeled.

The radial coordinate of the generalized ellipse is defined by

r(x, y) =
(

|x − x0|C0+2 +

∣∣∣∣y − y0

q

∣∣∣∣
C0+2

) 1
C0+2

. (22)

Here, the ellipse axes are aligned with the coordinate axes, and
(x0, y0) is the centroid of the ellipse. Defined by Athanassoula
et al. (1990), the ellipse is called “general” in the sense that
C0 is a free parameter, which controls the diskiness/boxiness
of the isophote. When C0 = 0, the isophotes are pure ellipses.
With decreasing C0 (C0 < 0), the shape becomes more disky
(diamond-like), and conversely, more boxy (rectangular) as C0
increases (C0 > 0; see Figure 8). The major axis of the ellipse
can be oriented to any P.A. Thus, there are a total of four
free parameters (x0, y0, q, θP.A.) in the standard ellipse and an
additional one, C0, for the generalized ellipse.

Fourier modes. Few galaxies look like perfect ellipsoids, and one
can better refine the azimuthal shape by adding perturbations in
the form of Fourier modes. The Fourier perturbation on a perfect
ellipsoid shape is defined in the following way:

r(x, y) = r0(x, y)

(
1 +

N∑
m=1

am cos (m(θ + φm))

)
. (23)

In the absence of Fourier modes in the parenthesis, the r0(x, y)
term is the radial coordinate for a traditional ellipse, and θ =
arctan ((y − y0)/((x − x0)q)) defined in Equation (22). The
Fourier amplitude for mode m is am. Defined as such, am is
the fractional deviation in radius from a generalized ellipse
of Equation (22). The number of modes N is unrestricted,
and any mode can be left out. The “phase angle,” φm, is
the relative alignment of mode m relative to the P.A. of the
generalized ellipse; the phase angle is 0◦ in the direction of
the semimajor axis of the generalized ellipse (rather than up),
increasing counterclockwise. Figure 9 shows some examples of
how Fourier modes modify a circle and an ellipse into other
shapes.

Each Fourier mode has two free parameters, am and φm, and
the number of modes the user can add is unrestricted. However,
the most useful modes are low-order ones (m = 1, 3, . . . , 6).
We note that the m = 2 mode is partially degenerate with the

Figure 9. Examples of Fourier modes. Top: low-amplitude (am = 0.05) Fourier
modes modifying a circular profile (q = 1.0) with phase angle φ = 0◦.
Bottom: high-amplitude (am = 0.5) Fourier modes modifying an elliptical
profile (q = 0.5) with phase angle φ = −45◦.

classical axis ratio parameter, q, for an ellipse. Therefore, the
use of m = 2 and q, together, should be largely avoided except
in some situations (e.g., peanut-looking bulges).
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The phase angles of the Fourier modes are also useful
information to keep in mind. Modes with the following phase
angles have the following symmetry properties.

1. Symmetry is about a central point: a1 = 0, regardless of
other mode phase and amplitude.

2. For all modes m, there is reflection symmetry at φm = 0◦,
± 180◦

m
. For m = even, this symmetry is about both the

major and minor axes, whereas for m = odd, the reflection
symmetry is only about the major axis.

3. For odd modes of m, there is additional reflection symmetry
about the minor axis at φm = ± 90◦

m
.

An irregular galaxy has angles that are “out of phase” whereas
regular galaxies have angles that are more “in phase” (i.e.,
reflectionally symmetric around either the minor or major axis).
Therefore, it is possible to quantify various forms and degree
of asymmetry by constructing indices based on the amplitude
and phase angles of the Fourier modes. The most intuitively
obvious asymmetry index is the m = 1 mode, which captures
the lopsidedness (AL) of a galaxy, i.e., the positioning of the
brightest central region relative to the fainter outer region of a
galaxy:

AL = |a1| . (24)

Asymmetric galaxies are also characterized by overall deviation
from an ellipse; thus, another intuitively useful quantity to
measure is the sum of the Fourier amplitudes:

AE =
N∑
m

|am| . (25)

Asymmetric galaxies by definition have high AE. However,
it is possible for galaxies with both high AE and AL to be
reflectionally symmetric; the degree of reflectional symmetry
may be an indicator for how well the galaxies are relaxed.
Reflection asymmetry is given by the index AR:

AR =
∑

m=even

|am| sin2

(
πm

φm

180◦

)

+
∑

m=odd

|am| sin2

(
πm

φm

90◦

)
, (26)

where φm is in degrees. In this formulation, the higher the
reflectional asymmetry, the higher the index AR. Used together,
these three descriptors provide highly useful ways to quantify
the degree galaxies are irregular. For instance, high values of AR
and AL most likely imply high global asymmetry in the intuitive
sense. Whereas a high value of AE with low AR implies high
regularity, but large deviation from an ellipse, such as edge-on
disky galaxies or a disky/boxy ellipticals.

Bending modes. Bending modes allow for power-law-shape
curvatures in the model, as opposed to spiral windings. The
coordinate transformation (x, y) �⇒ (x ′, y ′) is obtained by only
perturbing the y-axis (in a rotated frame) in the following way:

y ′ = y +
N∑

m=1

am

(
x

rscale

)m

, (27)

where x ′ = x, rscale is the scale radius of the model (i.e.,
reff for Sérsic, rs for exponential, etc.). Some examples of this

(a) (b) (c)

(d) (e) (f)

Figure 10. Examples of bending modes modifying a circular profile (q =
1.0) with C0 = 0 (unless indicated otherwise). Top row: low-amplitude
(am = 0.05rm

scale) bending modes. Bottom row: high-amplitude (am = 0.2rm
scale)

bending modes. Bending modes can be combined with Fourier modes to change
the higher order shape.

perturbation are shown in Figure 10. Note that m = 1 resembles
quite closely to the axis ratio parameter, q. However, the m = 1
bending mode is actually a shear term, the effect of which is
most easily seen when it operates on a purely boxy profile with
C0 ≈ 2 (Figure 8(a)), shearing it into a more disky shape (see
Figure 10(d)). The bending modes can be modified by Fourier
modes or diskiness/boxiness to change the higher order shape
of the overall model. This kind of coordinate transformation
again preserves the original meaning of the radial profiles. Here,
the object size parameter refers to the unstretched size, i.e.,
projected onto the original (x, y) Cartesian frame, as opposed
to a length along the curvature.

Coordinate rotation: the concept. Sometimes the isophotes of a
galaxy can rotate as a function of radius, as in the case of spiral
galaxies. To model spiral patterns, it is now possible to allow
for coordinate rotation in Galfit. Coordinate rotation in Galfit

means that the flux within circular annuli overlayed on a model
rotates as a function of radius, i.e., θ = f (r). The functional
form f (r) can be fairly arbitrary but the most familiar pattern in
nature is that of a logarithmic spiral, i.e., θ ∼ log(r). However,
many spiral galaxies deviate from logarithmic winding either
in the inner region, for instance, due to the presence of a bar,
or in the outer region, as might be due to tidal or non-relaxed
features. These structures pose a problem when fitting galaxy
images because one cannot simply mask out regions of non-
interest when the goal might be to obtain the cleanest separation
between a spiral and other embedded components. Therefore,
a pure logarithmic spiral, while useful to trace segments of a
spiral, is often not ideal for fitting the whole galaxy, but ought
to be modified in some ways. For this reason, we introduce
the concept of a hyperbolic tangent (tanh) modification to a
logarithmic or a power-law spiral.

A pure tanh function looks like Figure 11(a), showing that
f (r) asymptotes to constant values at r → ±∞, which is a
highly desirable feature. As shown in Figure 11(a), the function
can be scaled, stretched, and shifted so that θ (r) ≈ 0 at r < rin:
it is useful to model a bar-like feature, which, by definition,
has a constant P.A. as a function of radius. A tanh function
is also useful in the upper asymptotic limit because f (r) at
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(a) (b)

Figure 11. Hyperbolic tangent-power-law spiral angular rotation functions with outer spiral radius of rout = 100. (a) Examples of pure hyperbolic tangent spirals
(α = 0) with different bar radii (rin). (b) Examples with different bar radii and asymptotic power law α, as indicated. See Figures 12 and 13 for examples of how these
parameters translate into 2D images.

(A color version of this figure is available in the online journal.)

r > rout, when multiplied by another function f2(r), takes on
the form of f2(r), and the cross talk within rin is minimal, as
shown in Figure 11(b). In short, a tanh function allows for a
transition between two functions: a constant function at r < rin
and another r > rout, for example, a power law or a logarithmic
function. Moreover, the rate of that transition can be cleanly
managed and is easy to interpret. For this reason, a hyperbolic
tangent is also a function of choice later on in Section 5 when
we present the idea of a truncation function. Galfit allows for
two types of coordinate rotation functions, the power-law spiral
(α-tanh), and the logarithmic spiral (log-tanh), both of which are
motivated empirically. We note that even though the logarithmic
spiral is favored more in the literature, we find that the α-tanh
spiral is better able to capture the range of spiral behaviors found
in nature because of the one extra degree of freedom in α, which
can simulate the behavior of the log-tanh spiral over regimes of
interest. We therefore tend to prefer use of the α-tanh coordinate
rotation by default. We now give an overview of the two types
of coordinate rotation:

Coordinate rotation I: power-law-hyperbolic tangent (α-tanh).
The term “power law” refers to the fact that the pure tanh
function of Figure 11(a) is multiplied by a function of the
form ∼ rα . The exact functional form of the rotation function
is lengthy (see Appendix A), but the schematic functional
dependence of the power-law spiral on the parameters is given
by the following:

θ (r) = θout tanh
(
rin, rout, θincl, θ

sky
P.A.; r

) ×
[

1

2

(
r

rout
+ 1

)]α

.

(28)
As defined, the power-law rotation starts to take hold beyond
r = rout, and below which the tanh transition dominates.
Figure 11 shows a pure hyperbolic tangent rotation function
for several different values of the parameter rin (left), and a
combination of “bar” (rin) parameter and the asymptotic power-
law slope α (right), where r is the radial coordinate system and
θout is the rotation angle roughly at rout. The inner radius, rin,
is defined to be the radius where the rotation reaches roughly
20◦. This angle corresponds fairly closely to our intuitive notion
of bar length based on examining images, but is not a rigorous,

rin = 0 rout = 50 = 0inclθ
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Figure 12. Examples of pure (i.e., with the power law α = 0 or without
the logarithmic function) hyperbolic tangent coordinate rotation modifying an
elliptical profile with axis ratio q = 0.4. Note that all the figure panels share the
same parameters as shown up top, external to the figures. The spiral model has
no bar. The numbers within each panel show the amount of total winding (units
are in degrees) at the spiral rotation radius of 50. Note that outside r = 50, the
rotation angle becomes constant, due to the rotation function being a hyperbolic
tangent, thereby creating the appearance of a flattened disk, even though there
is not a separate disk component involved in the model.

physical definition. The angle θincl is the line-of-sight inclination
of the disk, where θincl = 0◦ is face-on and θincl = 90◦ is
perfectly edge-on.

To motivate intuition for the free parameters used in the coor-
dinate rotation definition, Figures 12 and 13 show a progressive
series of images for the spiral rotation function with different
combinations of parameter values. For instance, Figure 12 shows
a series of images of a pure hyperbolic tanh spiral with increas-
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Figure 13. Examples of power-law–hyperbolic tangent (α-tanh) coordinate rotation modifying a face-on (θincl = 0◦) elliptical profile with axis ratio q = 0.4. The
parameters of the rotation functions are shown on the top and right-hand side of the diagram. The top panels show the spiral rotation angle as a function of radius for
the panels in the same column. In the rightmost column, the spiral arms reverse direction at r = 30 because the spiral rotation function (top-right panel) decreases
with rotation angle.

ing maximum rotation angle (θout), all else being held constant at
the values indicated at the top. The spiral arm winding increases
with increasing θout, and the winding gets tighter, but the body
does not expand wider because rout is fixed. It is also important
to note that a face-on model does not necessarily mean that
the outermost isophotes are round. Rather, the ellipticity of the
outermost isophotes is related to the asymptotic behavior of the
rotation function, which asymptotes to a constant P.A. beyond a
radius of rout for a pure hyperbolic tangent (α = 0, Figure 11(a)).
The isophotes only appear circular in the main body of the spi-
ral structure when it has a large number of windings. Figure 13
shows several other examples of barred and unbarred spirals,
with progressively different α values, sky inclination angle, and
rotated to different sky P.A.s (θ sky

P.A.). The parameters for each
gray-scale figure are shown at the top and to the right of the
corresponding column and row. When the power-law index α is
negative, the spiral pattern can reverse course after reaching a
maximum value (see the rightmost column of Figure 13).

In summary, the hyperbolic tangent power-law function
has six free parameters: θout, rin, rout, α, θincl, and θ

sky
P.A.. The

thickness of the spiral structure is controlled by the axis ratio
q of the ellipsoid being modified by the hyperbolic tangent, or

by the Fourier modes that modify the ellipsoid. To create highly
intricate and asymmetric spiral structures, Fourier modes can be
used in conjunction with coordinate rotation.

We note that the “bar” radius (rin) is a mathematical tool.
Even though the rin term in the coordinate rotation does look
like a bar when it is sufficiently positive, it should be regarded
only as a mathematical construct to grant the rotation function
as much flexibility as possible. This construct can reflect reality,
but it does not have to. For instance, mathematically, a negative
rin radius (Figure 11(b)) is perfectly sensible because of the
way Equations (28) and (29) (for logarithmic spirals, below) are
defined: a negative rin value just means that the spiral rotation
function has a finite rotation angle at r = 0 relative to the initial
ellipsoid out of which it is constructed. When there is clearly no
bar, the rin parameter can become quite negative; in this case,
the fit is often indistinguishable from one where the bar radius
is 0. Furthermore, often times, one may not wish to create a bar
and a spiral out of one smoothly continuous function for various
reasons, for instance, because they may have different widths,
the spiral may not extend into the center, or the spiral may start
off in a ring. In these situations, one can “detach” the bar from the
spiral by using a truncation function (see Section 5), by instead
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(a) (b)

Figure 14. Logarithmic–hyperbolic tangent spiral angular rotation functions. (a) Examples of different bar radii, where the outer hyperbolic spiral radius is rout = rin+10.
The lower horizontal dashed line shows the rotation angle at the “bar” radius (rin). (b) Examples with different “bar” radii (rin) and winding-scale radii rws, as indicated,
illustrating the degree of flexibility of the spiral rotation rate. The rotation angle at rout is fixed to 150◦, as shown by the upper horizontal dashed line. The left-most,
black curve is close to being a pure logarithmic function, recasted so that at r = 0, the rotation angle θ = 0◦.

(A color version of this figure is available in the online journal.)

creating a bar with a separate Sérsic, Ferrer, or other function.
When this is done, a “bar radius” is still useful mathematically
in the coordinate rotation function, but it may bear no physical
relation to the physical bar.

Finally, we draw attention to some limitations of the spiral
rotation formulation. While the α-tanh rotation function works
surprisingly well for many spiral galaxies, the function is
smooth, so “kinks” in the spiral structure cannot yet be modeled,
even though it is possible to do so by allowing for “kinks” in the
rotation function. Lastly, the spiral structure cannot wind back
onto itself, because that would require the rotation function to
be multi-valued.

Coordinate rotation II: logarithmic-hyperbolic tangent (log-
tanh). The winding rate of spiral arms in late-type galaxies
is often thought to be logarithmic with radius rather than power
law, with radius. Thus, Galfit also allows for a logarithmic-
hyperbolic tangent coordinate rotation function, which is de-
fined as

θ (r) = θout tanh
(
rin, rout, θincl, θ

sky
P.A.; r

)
×

[
log

(
r

rws
+ 1

) /
log

(
rout

rws
+ 1

)]
. (29)

Like the α-tanh rotation function, the log-tanh function has
a hyperbolic tangent part that regulates the bar length and
the speed of rotation within rout (see Figure 15). Beyond rout
the asymptotic rotation rate is that of the logarithm function,
which has a winding scale radius of rws; the larger the winding
scale radius, the tighter the winding. Thus, like the α-tanh
spiral, the log-tanh spiral rotation function also has six free
parameters: θout, rin, rout, rws, θincl, and θ

sky
P.A.. Note that in terms

of capabilities, the α-tanh function can often reproduce the log-
tanh function and more. Therefore, the α-tanh is probably a
more useful rotation function in practice.

Note that Galfit does not allow for a pure logarithmic spiral
because such a function has a negative-infinity rotation angle
at r = 0. Therefore, in Galfit, at r = 0 the rotation function
reaches θ = 0 (Figure 14). Lastly, it is also important to keep
in mind that the meaning of the “bar radius,” just as described

500 500 50050 50 50

50

0

50

50

0

50

50

0

50

θ

r r

r

in out

out ws

0 10

150

20 30

257 5.55

40

310

50

5.5

0 10

90

0

180

0

360

0

180

0

180

0

1802.5 1.0

5.5 5.5 5.5

0.1

101010

10 10

log − tanh spiral: θ     = 0PA
sky

inclθ     = 0

Figure 15. Logarithmic-hyperbolic tangent spiral (log–tanh) angular rotation
examples, all face-on (θincl = 0◦) and θ

sky
P.A. = 0◦. The top-left panel shows the

meaning of the rotation parameter values at the corners of each box. As with the
α-tanh spirals, the log–tanh spiral can be tilted and rotated to any sky projection
angle, or combined with Fourier modes to produce lopsided or multi-armed
spiral structures (not shown), and with the truncation function to produce an
inner ring or an outer taper. The top-left panel figure, for all practical purposes,
is a pure logarithmic spiral with a winding scale radius rws = 5.

in the section for α-tanh rotation function, is a mathematical
construct.

5. THE TRUNCATION FUNCTION

Truncation functions allow for the possibility of creating
rings, outer profile cutoffs, dust lanes, or a composite profile
in the sense that the inner region behaves as one function and
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(a) (b)

Figure 16. Examples of hyperbolic truncation functions on n = 4 and n = 1 Sérsic profiles. (a) A continuous n = 4 model represented as two truncated models of
otherwise identical re, n, and central surface brightness, with truncation radii at r = 15 and r = 20, as marked by the vertical dashed lines. The black curve is the
sum of the inner and outer functions. This shows that, outside the truncation region, there is very little “cross talk” between the inner and outer components. (b) A
composite profile made up of an n = 4 nucleus truncated in the wings and an n = 1 truncated in the core, with truncation radii r = 10 and r = 20. Note that the hump
in the summed model would give rise to a ring in a 2D model.

(A color version of this figure is available in the online journal.)

the outer behaves as another. The truncation function can modify
both the radial profile and azimuthal shape. A ring can be created
by truncating the inner region of a light profile. Likewise, when
a galaxy has spiral arms that do not reach the center, it can be
viewed as being truncated in the inner region.

5.1. General Principle

In Galfit, each truncation function can modify one or more
light profile models. Also, any number of light profiles can
share the same truncation function. The truncation function in
Galfit is a hyperbolic tangent function (see Equation (B2) in
Appendix B). Schematically, a truncated component is created
by multiplying a radial light profile function, f0,i(x, y; . . .), by
one or more truncation functions, Pm or 1 − Pn (depending
on whether the type is an inner or an outer truncation), in the
following way:

fi(x, y; . . .) = f0,i(x, y; xc,i , yc,i, . . . , qi, θP.A.,i)

×
m∏

Pm(x, y; xc,m, yc,m, rbreak,m, Δrsoft,m, qm, θP.A.,m)

×
n∏

[1 − Pn(x, y; xc,n, yc,n, rbreak,n, Δrsoft,n, qn, θP.A.,n)].

(30)

The break radius, rbreak, is defined to be the location where the
profile is 99% of the original (i.e., untruncated) model flux at
that radius. The parameter Δrsoft is the softening length, so that
r = rbreak ± Δrsoft is where the flux drops to 1% of that of an
untruncated model at the same radius (the ± sign depends on
whether the truncation is inner or outer). The inner truncation
function (Pm) tapers a light profile in the inner regions of a light
profile, whereas the outer truncation function (1 − Pn) tapers a
light profile in the wings.

The behavior of the hyperbolic tangent function is ideal
for truncation because it asymptotes to 1 at the break radius
r � rbreak and 0 at the softening radius r < rsoft, and vice
versa for the complement function. Thus, when multiplied to a
light profile f (r), the functional behavior exterior to the break
radius has intuitively obvious meanings. For example, as shown

in Figure 16(a), if a Sérsic function with n = 4 is truncated in
the wings (shown in red), the core has exactly an n = 4 profile
interior to rbreak (marked with a vertical dashed line), which is
a free parameter to fit. Likewise, an n = 4 profile truncated
in the core (green) has exactly an n = 4 profile exterior to
the outer break radius. Thus, when one sums two functions of
different Sérsic indices n (Figure 16(b)) the asymptotic profiles
of the wing and core retain their original meaning, and there is
very little cross talk outside of the truncation region (denoted
by vertical dashed lines in Figure 16).

Use of the truncation functions is highly flexible. There can be
an unrestricted number of inner and outer truncation functions
for each light profile model. Furthermore, multiple light profile
models can share in the same truncation functions. This is useful,
for instance, when trying to fit a dust lane (inner truncation) in
a fairly edge-on galaxy that may affect both the bulge and the
disk components. Just as with light profile models, the truncation
functions can be modified by Fourier modes, bending modes,
etc., independent of the higher order modes for the light profile
they are modifying.

5.2. Different Variations of the Truncation Function

Truncation models appear in many physical contexts, such
as dust lanes, rings, spirals that do not reach the center, joining
a spiral with a bar, or cutoff of the outer disk. To allow the
truncation parameters to be more intuitive to understand given
situations at hand, Galfit offers several variations. In addition
to inner and outer truncations, truncation functions can share
in the same parameters as the parent light profile. There are
radial and length/height truncations, softening radius versus
softening length (default versus type 2), inclined versus non-
inclined (default versus type b) truncations, and, lastly, four
different ways to normalize the flux—the most sensible choice
depends on how a profile is truncated. We now discuss each of
these variations in more detail.

Parameter sharing. In the most general form, each trun-
cation function has its own set of free parameters:
x0, y0, rbreak, Δrsoft, q, and θP.A.. However, by default, the pa-
rameters x0, y0, q, and θP.A. are tied to the light profile model,
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and are activated only when the user explicitly specifies a value
for them.

Radial (“radial”) versus length (“length”) or height (“height”)
truncations. The most useful type of truncation is one that has
radial symmetry to first order, i.e., where it has a center, an
ellipticity, and an axis ratio. However, in the case of a perfectly
edge-on disk galaxy (“edgedisk” model), an additional type
is allowed that truncates linearly in length or in height. For
instance, a dust lane running through the length of the galaxy has
an inner height truncation. For the “edgedisk” profile, Galfit

also allows for a radial truncation, as with all other functions.
The one drawback to height and length truncations is that they
cannot be modified by Fourier and higher order modes like the
radial truncations.

Softening length (“radial”) versus softening radius (“radial2”).
Sometimes, instead of softening length (Δrsoft), it is more useful
for the fit parameter to be a softening radius (rsoft), especially
when one desires to hold the parameter fixed. That is also
allowed in Galfit as a type 2 truncation function, designated,
for example, as “radial2.” The default option does not have a
numerical suffix.

Inclined (default, “radial”) versus non-inclined (“radial-b”)
truncations.) A spiral rotation function is an infinitesimally thin,
planar structure. Nevertheless, it should be thought of as a 3D
structure in the sense that the plane of the spiral can be rotated
through three Euler angles, not just in P.A. on the sky. When a
truncation function is modifying a spiral model, it is therefore
sometimes useful to think about the truncation in the plane of
the spiral model. When Fourier modes and radial truncations
are modifying a spiral structure, the default (“radial”) is for the
modification to take place in the plane of the spiral structure.
However, there are some instances when that may not be ideal
(e.g., a face-on spiral may actually be ellipsoidal). In those
situations, one can choose “radial-b,” which would allow a
truncation function to modify the spiral structure in the plane
of the sky, even though the spiral structure can tip and tilt as
needed.

Lastly, the truncation function can be type 2b (i.e., “radial2-
b”) as well.

Flux normalization. The most intuitive flux normalization for a
truncated profile is the total luminosity. Unfortunately, both the
total luminosity and the derivative of the free parameters with
respect to the total luminosity are especially time consuming to
work out computationally and slow down the iteration process.
There are generally no closed form analytic solutions to the
problem. Therefore, the alternative is to allow for different ways
to normalize a component flux. The user may choose whichever
one is more sensible, given the situation and the science task at
hand. The default depends on the truncation type.

1. Inner truncation: the flux is normalized at the break radius.
This is most sensible for a ring model because this radius
roughly corresponds to the peak flux of the ring.

2. Outer truncation: flux normalized at the center.
3. Both inner and outer truncations: same as the case for inner

truncation.
However, there are many situations when the default is not

desirable. Instead, the user can choose the radius where the flux
is normalized. To be pedagogical, we explicitly show here the
normalization for just the Sérsic function:

1. function: default (e.g., “sersic,” “nuker,” “king,” etc.). See
the details for individual functions.

2. function1: flux normalized at the center r = 0 (i.e., Σ0). A
function that is given originally by forig(r) is now defined

as fmod(r) = Σ0
forig(r)
forig(0) . For the Sérsic profile (i.e., called

“sersic1”), the profile function is redefined in the following
way, written explicitly as

fmod(r) = Σ0

exp

[
−κ

((
r
re

)1/n

− 1

)]
exp [κ]

. (31)

For the Ferrer and King profiles, this normalization is the
same as the default normalization.

3. function2: flux parameter is the surface brightness at a
model’s native size parameter (parameter 4 of the light
profile model). For a Sérsic profile, called “sersic2,” this
means the effective radius re. So, fmod(r) = Σe

forig(r)
forig(re) . For

example, a Sérsic profile now has the following explicit
form:

fmod(r) = Σe exp

[
−κ

((
r

re

)1/n

− 1

)]
. (32)

For the Nuker profile this normalization is the same as the
default normalization.

4. function3: flux parameter is the surface brightness (Σbreak)
at the break radius (rbreak). This is the most useful situation
when a truncation results in a large-scale galaxy ring, so that
the surface brightness parameter corresponds closely to the
peak of the light profile model. When the truncation is not
concentric with the light profile model, this kind of normal-
ization is not very intuitive. For “radial” truncation, rbreak
is parameter 4, whereas for “radial2,” rbreak is parameter 4
for outer truncation and parameter 5 for inner truncation.
When the “sersic3” option is chosen, the rbreak parameter
comes automatically from the first truncation component
with which a certain light profile model is associated.
In our example of the Sérsic profile, fmod(r) =
Σbreak

forig(r)
forig(rbreak) . For example, a Sérsic profile now has the

following explicit form:

fmod(r) = Σbreak

exp

[
−κ

((
r
re

)1/n

− 1

)]

exp

[
−κ

((
rbreak
re

)1/n

− 1

)] . (33)

Figure 17 demonstrates just some of the possibilities allowed
when fitting truncations. In addition to the regular ellipsoid
shape, the higher order modes like diskiness/boxiness param-
eters, bending modes, and Fourier modes can also modify the
shape of the truncation functions. One can also use the trun-
cation function on a spiral model, on models with Fourier and
bending modes, and diskiness/boxiness models, some of which
are shown in Figures 17(d), 17(e), 16(f), and 17(i). When a trun-
cation function acts on a spiral component, it can do so either in
the plane of the disk (“type a”) or in the plane of the sky (“type
b;” e.g., “radial-b”). While the default is in the plane of the disk,
the parameters are more intuitive in type b cases when the disk
is tilted and rotated.
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Figure 17. Examples of truncation functions acting on a single-component light
profile of various shapes. (a) Inner truncation of a round profile, creating a ring.
(b) The truncation function can be modified by Fourier modes, just like the
light profile. (c) The truncation function can be offset in position relative to
the light profile. (d) The truncation function can act on a spiral model. (e) The
truncation can tilt in the same way as the spiral. (f) The truncation function can
be modified by Fourier modes while acting on a spiral model. (g) A round light
profile is being truncated in the wing by a pentagonal (Fourier mode 5) truncation
function. (h) A round light profile is being truncated in the inner region by a
triangular function (Fourier mode 3), and in the wing by a pentagonal function.
(i) A three-arm, lopsided, spiral light profile model is truncated in the wing by
a pentagonal function, and in the inner region by a triangular function.

5.3. Caveats About Using the Truncation Function

The use of truncation functions should be carefully supervised
because unexpected things can happen, such as the size or the
concentration index of a component can grow without bound.
This behavior is due to the fact that there are degeneracies
between the sharpness of truncation and the steepness/size of
the galaxy. Therefore, truncation functions should only be used
on objects that clearly have truncations.

When two functions are joined by using a truncation function,
the cross-talk region is located in between the two truncation
radii: it is worth bearing in mind the definition that at the break
and softening radii, the fluxes are 99% and 1% that of the same
model without truncation, respectively. In other words, the larger
the truncation length, the larger the cross-talk region. Therefore,
when one (or more) of the parameters rbreak, rbreak +Δrsoft, or rsoft
is either too small (� few pixels) or larger than the image size,
it probably indicates that profile truncation parameters are not
meaningful. Rather, it more likely reveals the fact that there is a
mismatch between the light profile model and the actual galaxy
profile.

6. INTERPRETATION, PARAMETER DEGENERACIES,
UNIQUENESS, LOCAL MINIMA, AND ERROR

ANALYSIS

Now that we have introduced several ways to modify an
ellipse into more exotic shapes, a natural question to ask is how

unique or robust are the modifications. A single-component
ellipsoid fit can often be used to quantify the global average
profile of galaxies. However, beyond that, decisions about what
procedure to use get to be more complicated. On the one
hand, the science goal might call for fitting detailed structures
inside a galaxy (e.g., a bulge, bar, nuclear star cluster, etc.).
On the other hand, doing so raises concerns about parameter
degeneracies, uniqueness, and local minima solutions when the
analysis becomes complex. It is therefore useful to consider in
some depth what causes degeneracies and the different contexts
in which they appear. Doing so allows for better understanding
for how to deal with them and how to properly interpret results
from complex analysis. For, not all complex analyses are more
suspect, nor are all simple analyses more robust.

The term “degeneracy” has a specific mathematical connota-
tion, namely, the relation of a + b = c is degenerate in a and b
for a constant value of c. In the galaxy fitting literature, “degen-
eracy” is often more loosely used to also refer to “non-unique”
or “local minimum” solutions (e.g., a fit oriented at 90◦ from
the best orientation), or strong “parameter correlation” (e.g.,
sky is anti-correlated with the Sérsic index n). We will mostly
not make the subtle distinctions here and instead will use the
term “parameter degeneracy” generically to refer to all such
situations.

However, when fitting galaxies, it is more important to dis-
tinguish between the aforementioned real degeneracies from
“pseudo”-ones. Real degeneracies refer to correlated parame-
ters, local minima, and mathematically degenerate solutions.
By contrast, “pseudo”-degeneracies involve convergence issues
when an algorithm is used beyond its technical limits, or when
users provide bad input model priors to fit the data. They may
have nothing to do with real degeneracies, yet the behavior of
convergence may seem to suggest otherwise. Whereas prob-
lems with real degeneracies are often resolvable by using full
spatial information of 2D images, pseudo-degeneracy problems
are solved through experience and by using sound scientific or
technical judgment, as we elaborate further.

In this section, we discuss how most of the parameter
degeneracy problems are avoidable with proper input priors
and proper fitting supervision, even when large numbers of
free parameters are involved. We also discuss why, contrary to
popular notions, when it comes to avoiding model degeneracy
and local minima, it is not sufficient to only choose a model
that is the simplest. Rather, it is a judicious combination of
simplicity and realism that make for the most robust solutions.
Lastly, these discussions are intimately connected to the issue
of error analysis because error measurements are nearly always
dominated by systematic issues rather than photon noise in
galaxy fitting. We therefore discuss why it is more important
to quantify model-dependent systematic errors rather than to
rely on statistical estimates.

We note that the discussions below are mostly based on
experience, which we present using practical examples rather
than to show using rigorous proof. Carrying out a rigorous
proof is not only beyond the scope of this study, but it is
nearly impossible to do in a general manner because different
scientific applications have different sensitivities to different
types of degeneracies. We are also aware that presenting a
full discussion of degeneracy issues lends credence to the
common notion that multi-component analysis is dangerously
complex. However, the reality is not nearly so dire when
one has a proper understanding of the underlying issues and
causes.
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6.1. True Numerical Degeneracies Caused by Correlated or
Non-unique Parameters

There are well-known situations when different parameters
in one or more functions are capable of modeling the same
profile behavior. This scenario is the one most commonly
referred to in generic discussions about model degeneracies.
For instance, very large Sérsic index values (n � 4) have highly
extended wings, the presence of which is non-unique with the
sky parameter. A high n, caused by profile mismatch or poor
model prior, can often suppress the sky estimate. It is therefore
advisable to estimate the sky independent of the fit, and to
hold it fixed to the best estimate. As a second example, in the
Nuker profile (Equation (17)), there are three parameters (α,
β, and γ ) that control the inner/outer slopes and sharpness of
the bending (Figure 7). When the break radius rb of a Nuker
profile is sufficiently small and profile mismatch sufficiently
large, model discrimination relies entirely on the power law
γ−β

α
. Because there are numerous ways to yield a specific value

for γ−β

α
in the model, it leads to a degenerate situation involving

three parameters.
As another example, a low-amplitude second Fourier mode

and the first bending mode (shear) can both be degenerate with
the axis ratio q parameter of an ellipse; therefore, they should
not be used together except in obvious situations where doing so
is useful. Lastly, in the spiral rotation function, the periodicity of
the rotation function can sometimes be a source of “degeneracy.”
Multiple windings can approximate a smooth continuous model,
whether or not there is a spiral structure present. For instance, a
classical Sérsic ellipsoid can be simulated by a spiral model with
a very large θout. While the fit is not good and easy to diagnose
by an end user, it is nevertheless a numerically allowed solution.

The above situations are not meant to be a complete laundry
list, but they are the most common situations. In complex
analysis, one always needs to be circumspect about the potential
hazards of mixing and matching different functions whose
parameters produce similar profile behaviors. Even though
Galfit allows for a great deal of flexibility in the analysis,
it is ultimately up to the user to decide on what to allow, based
on the goals of the science, and to understand when potentially
degenerate parameters may be used effectively.

The above discussion may also seem to imply degeneracies
or non-uniqueness are too numerous for complex analysis
to be practical or reliable. That notion is only true when it
is not possible to verify the results of a fit and to try out
other solutions. Such a scenario is more common for large-
scale galaxy surveys, in which automated, detailed, analysis is
admittedly quite difficult to conduct sensibly. However, even
in those scenarios, there are many situations where mutually
coupled parameters do not affect the other main parameters
of scientific interest: degeneracies in the Fourier modes often
do not have any bearing on the total luminosity or size of a
component. Moreover, when an analysis is done manually, it is
reassuring that the problems are almost always easy to recognize
and remedy when they do happen, even by simple inspection of
the model and residual images.

6.2. Pseudo-degeneracies Caused by Technical Conditions
(e.g., Model Profile Resolution, Parameter Boundaries)

Occasionally, what appears to be numerical degeneracy prob-
lems may be caused by someone using a code outside the algo-
rithm’s physical capabilities. As such, it is a pseudo-degeneracy.
Different algorithms have different limitations that affect con-

vergence, whether the code is gradient descent, Metropolis, or
otherwise. This situation may appear like parameter degeneracy
because restarting the fit does indeed yield a different solu-
tion, but in fact the code may be hamstrung in its convergence.
For example, gradient descent algorithms require the calcula-
tion of a gradient, and thus can run into problems when the
gradient cannot be calculated properly. In simulated annealing
algorithms (e.g., Press et al. 1992), parameter boundaries and
annealing speed control the algorithmic behavior: anneal too
quickly, the solution may settle into a local minimum. To search
larger parameter spaces requires longer annealing times.

While all algorithms have conditions under which they
perform poorly, pseudo-degeneracies can always be recognized
and mitigated. Galfit is based on a Levenberg–Marquardt
subroutine that performs the least-squares minimization. In
part a gradient descent algorithm, the convergence behavior
is affected by the calculation of gradient images that determines
the direction of steepest χ2 descent. When the gradient images
are problematic, they affect the convergence to a proper solution.
There are three main problematic situations. The first, and most
common, occurs when a model becomes extremely compact
(FWHM � 0.5 pixels), so that the profile gradient cannot
be resolved: all the gradient information in the model fits
into a single pixel. This situation mostly arises when working
with high-contrast imaging data, such as quasar host galaxy
decomposition, when one of the subcomponents may be used
to reduce the strong residuals caused by a PSF mismatch. A
similar situation arises when a model is very thin (axis ratio
q � 0.05) and the object is compact; here, the gradient does
not exist along one spatial direction because of the lack of pixel
resolution. Another rare example occurs when the inclination
angle of a spiral rotation component is close to perfectly face-
on (θincl → 0 in Equations (28) and (29)), when the derivative
image for the inclination parameter approaches zero.

Another abnormal numerical behavior may occur when one
places parameter constraints on a model to prevent some
parameters from wandering too far from their initial values.
Doing so may cause poor convergence by forcing the solution
into a tight “corner,” when the best solution is somewhere
beyond it. A typical situation is where there are other sources in
the image that are not masked or fitted by models, but that are
sufficiently luminous to influence the fit of the target of interest.
In this situation, no amount of effort will produce a sensible
solution, because the best solution is outside of the parameter
boundaries, even though the desired solution may be within.
Pseudo-degeneracies occur in this situation both because there
is an abnormal condition imposed and because the input prior
for the model is poor.

While technical issues with code operation add a layer
of complexity to image analysis, in practice the majority of
situations one encounters are straightforward to recognize by
observing when the parameters take on extremely large or
small values. However, clearly recognizing the problem as being
pseudo-degeneracies is the key. Once diagnosed, these situations
are easy to guard against, by holding those parameters fixed
when they go below certain values. In practice, technical issues
are not problematic even when Galfit is used for automated
analysis (Häussler et al. 2007).7

7 While these conditions can always be anticipated in advance, implementing
a solution in the code is more tricky, because the act of doing so may also
induce other convergence difficulties. This leads to a false sense of security
about the robustness of a solution.
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6.3. Pseudo-degeneracies Caused by Bad Input Model Priors

One of the most common causes of degeneracy problems in
galaxy fitting analysis comes from using input priors that are not
well suited to the data. The most common “input priors” involve
the choice of the type or the number of components in a model.8

Input priors are ideal when the number of components of a model
used in a fit matches the number of luminous components in a
galaxy. However, often times one may choose to use either fewer
or more components than needed by the data.

A common example where the input prior is bad is when one
uses fewer model components than called for by the data. Two
of the main reasons for doing so are to reduce the number of
components/free parameters, or to allow automated analysis,
where it is not yet possible to tailor fits to individual galaxies.
This approach is often an intentional course of action taken
by many studies, especially when it comes to automating two-
component analysis; the goal, ostensibly, is to decompose a
galaxy into bulge and disk components. Seemingly reasonable
and justifiable on the notion of reducing the potential for
degeneracy, the approach is generally regarded by most people
to be a positive attribute, rather than a source of problem itself.
Yet, that intuitive notion conflicts with the basic principle of how
least-squares algorithms work, and leads to perhaps the most
common causes of (pseudo-)degeneracy problems cautioned by
the literature.

To understand why using fewer components than necessary
is bad, it is important to appreciate that galaxy fitting analysis is
fundamentally flux weighted. Thus, when a luminous structure
is not accounted for, other subcomponents try to compensate,
however imperfectly, for its presence. For instance, one may use
a two-component model fit to a galaxy that has a bulge, disk,
and bar. Doing so may have several different outcomes. One
solution is where one component is a sum of (disk+bar) while
the other is the bulge. Another can be (bulge+bar) and disk, or
perhaps a compromise (e.g., bulge + 0.7 bar; disk + 0.3 bar).
Which scenario occurs depends on the relative contrast (i.e., flux
weighting) of the bar to the bulge and disk, and potentially on the
initial parameters of the three components; small perturbations
may “bump” the solution out from one minimum into another.
It is quite possible for there to be a “global minimum” solution
to this problem. However, when the most meaningful solution,
physically, is simply disallowed by the input prior, a globally
minimum χ2 cannot lend much credence to the reality of the
model components.

An input model prior might also be bad if the model involves
using more subcomponents than inherently present in a galaxy.
In this situation, the results depend strongly on the degree of
profile mismatch between the model function and the data. If
there is a significant mismatch, all the components cooperate
to reduce the residuals. For instance, it is always possible to
fit multiple exponential models to a single-component de Vau-
couleurs profile. If the goal is to obtain the total flux, the sum
would do a better job than using a single exponential. How-
ever, individually, the structural parameters may not have much
physical meaning.

Another example involving model prior is in the area of
high-contrast imaging, where the goal is to deblend a central,
unresolved, point source from a diffuse underlying object (e.g.,
quasar and host galaxy). To do so reliably requires an accurate
PSF model for the unresolved source, or else the residuals may
overwhelm the extended object, causing unreliable fits. Here,

8 An input prior does not refer to the accuracy of the initial parameter guesses.

the prior is the PSF model. Quantifying how the prior affects
the fitting results involves trying out different PSFs, or to include
extra components to account for the PSF residuals, depending
on the science goal.

These examples illustrate some of the most common situ-
ations where the reliability of a fit depends less on the num-
ber of free parameters and more on having a proper model to
describe the data. Beyond a single-component analysis, the need
to make such a decision means that it will be difficult to au-
tomate highly detailed decompositions of galaxies. However,
while multi-subcomponent fitting is difficult to automate, it is
reassuring that making a wise decision, interactively, is often
not particularly difficult when a science goal is clearly defined.
Moreover, for galaxy surveys, where the goal is to fit single-
component profiles to galaxies, multi-object decomposition is
quite feasible to automate (e.g., M. Barden et al. 2010, in prepa-
ration; Häussler et al. 2007).

In summary, pseudo-degeneracy conditions exist because
least-squares fitting fundamentally involves flux weighting:
when luminous flux distributions are present in an image,
the models are attracted toward them to reduce the residuals.
Therefore, when all components are not properly modeled, the
result may be tricky to interpret not because of potential for
model degeneracies, but that the solution may have no physical
meaning even if there is a global minimum. The solution is
to increase the complexity of the analysis progressively until
all luminous components are properly accounted. This process
does not imply, however, that it is necessary to account for
every component inside a galaxy for the solution to have any
meaning, only that components of similar flux ratios ought to
be simultaneously accounted in detailed analysis; with a few
exceptions (e.g., locally dominant features like nuclear star
cluster, nuclear ring), components with low fluxes generally
do not significantly disturb the parameters of the much more
luminous subcomponents.

6.4. Parameter Degeneracies Can be Broken by Spatial
Information in 2D

One of the most common notions regarding fitting degeneracy
is that the more free parameters there are, the greater is the
potential for degeneracy problems. However, the sheer number
of parameters is often not itself an indication of a potential for
parameter cross talk. Consider, for instance, that it is equally
robust to fit thousands of well-separated stars as it is to fit an
isolated one. The same is true for galaxies, even though they
are considerably more extended and may overlap: in large-scale
image simulations, Häussler et al. (2007) studied automated
batch analysis of galaxies using one Sérsic profile per galaxy.
They find that simultaneously fitting overlapping or neighboring
objects using multiple components (often 3–10 Sérsic models at
a time) recovers the input simulated parameters more accurately
than fitting a galaxy singly while masking out the neighbors.

Indeed, spatially well-localized sources, like a bar, ring, or
off-nuclear star clusters, are virtually free from degeneracies
caused by cross-talk with other components. A galaxy bar
is well determined because it is more elongated, has a flat-
ter radial profile, and is more sharply defined than the sur-
rounding bulge and disk components, despite being embed-
ded within. Compact objects that are off-centered may also be
well determined if the rest of the galaxy can be modeled ac-
curately. Contrary to notions that more model components lead
to greater degeneracy, it is important to consider the qualitative
aspects of those components: not accounting for strong features
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explicitly can yield a less reliable and less physically meaningful
fit because the solution is a compromise between the different
subcomponents.

6.5. Measurement Uncertainties, Parameter Correlation, and
Parameter Degeneracies

The issue of parameter degeneracies closely ties into the topic
of measurement uncertainties, especially when the result of the
analysis may depend on the input model in fitting galaxies.
When the model fits the data perfectly (i.e., the residuals are
only due to Poisson noise) it is possible to infer parameter
uncertainties from the covariance matrix of free parameters,
which is produced during least-squares minimization by the
Levenberg–Marquardt algorithm. In galaxy fitting, ideal situ-
ations are often not realized because the differences between
the data and the model profile involve not only random (e.g.,
Poisson) sources, but also systematics from non-stochastic (e.g.,
profile function or shape mismatch, neighboring galaxies, etc.),
and stochastic factors (overall smoothness, for instance, due to
star clusters). The one exception is under low S/N situations,
when Poisson noise exceeds model imperfection. In most other
situations, non-random factors dominate the residuals, causing
uncertainties inferred from covariance matrices to be underesti-
mated. Therefore, it is frequently not very meaningful in galaxy
fitting to cite measurement uncertainties for the fitting parame-
ters in the traditional sense.

One way to quantify uncertainties, possible in large galaxy
surveys, is to allow the scatter of the data points in physical
relations (e.g., radius versus luminosity, luminosity versus
metallicity, etc.) to articulate the overall uncertainty of the
measurements, even if individual errors could not be easily
obtained. Such a scatter inherently involves a convolution
of several error sources: the intrinsic scatter present in a
physical relation, Poisson measurement error, stochastic and
non-stochastic systematic errors due to model imperfections.
Intrinsic scatter, being a fact of nature, remains present in
physical relationships even should the data have infinite S/N,
and even if the models are perfect fits to the data. Intrinsic scatter
is often a scientifically interesting quantity, but it is difficult to
differentiate from scatter caused by systematic and stochastic
errors, which do not vanish given infinite S/N.

In the absence of large galaxy surveys, it is then important
to quantify stochastic and non-stochastic systematic errors
for individual objects. Some example situations include the
black hole mass versus galaxy relation studies (Kormendy &
Richstone 1995; Gebhardt et al. 2000; Ferrarese & Merritt 2000)
and the fundamental plane (Djorgovski & Davis 1987).

In general, it is very difficult to pinpoint all the causes of
non-stochastic systematic errors in an analysis, and to quantify
their magnitude. However, one common cause is profile model
mismatch: to the extent that one does not know the intrinsic
model of a galaxy a priori, the uncertainty in measuring
the parameters is wedded to one’s assumptions about the
model. Therefore, the process of quantifying systematic, model-
dependent errors involves exploring the degree of parameter
coupling, by trying out different models and seeing how the
parameters of key scientific interest change. Another source
of systematic error is due to comparing results from different
algorithms. In this scenario, the most sensible practice is
therefore to only compare parameters that are derived using
the same fitting technique (rather than 1D versus 2D), and using
the same pixel and flux weighting scheme (instead of Poisson
versus non-Poisson) during analysis.

In contrast, stochastic errors arising from general non-
smoothness of a galaxy profile are caused by, for example, star-
forming patches, dust lanes, etc. Existing on small scales and
widely dispersed, non-smoothness cannot be easily identified
and modeled in a practical manner using multiple components.
Even if it is possible to do so, whether they ought to be fitted
explicitly, masked, or not treated at all, falls under the purview
of the science goal. Stochastic fluctuations often influence the
analysis in a manner analogous to having large correlated noise
in the data. If the fluctuations can be quantified, one possible
solution is to include them in the fit as a variance term of χ2

(Equation (1)). To estimate the fluctuations requires first obtain-
ing a smooth underlying model, which is not always easy to do
if galaxies have steep and/or irregular profiles.

While it is generally difficult to disentangle stochastic from
non-stochastic sources of systematic errors, there also do not
seem to be obvious benefits for doing so from a scientific
standpoint. For most applications, one should only be interested
in the overall magnitude of the systematic errors in a collective
sense. One way forward is therefore to understand which
parameters are most strongly coupled, then compare the results
of different solutions judging by which ones are physically
plausible. For instance, one common interest in bulge-to-disk
(B/D) decomposition is to quantify the uncertainty of the Sérsic
index n. We know that the Sérsic index n takes on a large
value when a profile has both a steep core and an extended
wing (see Figure 3). Therefore, quantifying systematic errors in
measuring the Sérsic n might involve masking or fitting nuclear
sources/neighboring contamination, trying out different PSFs,
or fitting the disk by allowing for different disk Sérsic index
values. Properly judging the causes of systematic errors and
accounting for them often would lead to more natural fits and
more sensible parameter values, without the need to hold certain
parameters fixed to preconceived answers.

In exploring the parameter space as described, there is often
a concern that parameter degeneracies are too numerous or
problematic to understand, which brings the discussion back
full circle. As discussed in previous sections, when the cause
of parameter degeneracy is properly identified, and when the
model priors are well conceived, our experience has been
that spatial information in 2D can often effectively break
many potential degeneracies between the components. Even
when the size, luminosity, and central concentration of the
different components correlate, they often interact in fairly
superficial ways, and do not dramatically change what the model
components represent physically. However, in situations where
cross talk is significant and there is no reason to prefer one
solution over another (when the input prior is befitting), then
differences in the answer speak to the degree of the parameter
uncertainty that is of key interest to quantify, rather than to
avoid, because ultimately the models are empirically motivated.

In summary, to the extent that the results may depend on
model assumptions, parameter exploration is the only viable way
to quantify true measurement errors in the fit parameters. Thus,
when used properly, parameter coupling/degeneracy, rather
than complicating the interpretation, offers a deeper insight into
the reliability of the overall analysis. We illustrate the above
ideas more explicitly in the following examples.

7. EXAMPLES OF DETAILED DECOMPOSITION

To demonstrate how to use the new features to extract complex
structures, we analyze five galaxies that are well resolved:
IC 4710, an edge-on disk galaxy, Arp 147, M51, and NGC 289.
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Figure 18. Detailed analysis of IC 4710. (a) Original data. (b) Best single-component Sérsic profile fit with Fourier modes from m = 1 to m = 10. (c) Best
two-component Sérsic profile fit each with Fourier modes, corresponding to the parameters shown in Table 1. (d) Best-fit residuals. (e) Component 1 of 2 in the best-fit
model of panel (c). (f) Component 2 of 2 in the best-fit model. (g) A traditional single-component ellipsoid fit. (h) Residuals from the model in panel (g). (i) The 1D
surface brightness profile. The individual components are shown as dashed lines, and the solid line coursing through the data is the sum of the two components. The
lower panel shows the residuals of data—model.

These galaxies are chosen because they represent examples
where traditional analysis using perfectly ellipsoid models tend
to leave some question as to what is physically being measured
and to the robustness of the photometry and decomposition.
The primary purpose here is to illustrate the basic building
blocks of galaxy morphology, not to address what are the most
“scientifically interesting” or useful applications—the scope of
which is far too broad to address. As such, each individual
example is not intended to necessarily be “interesting” in its own
right. For instance, while parameterizing a ring galaxy like Arp
147 may not itself be too worthwhile scientifically, the concept
has other relevance to deblending Einstein rings from lensing
galaxies in the image plane of strong gravitational lenses, or
separating a ring from a bulge, disk, and bar in spiral galaxies.
Indeed, these are heuristic examples meant to generate new
ideas for potentially interesting applications, and to illustrate
the dynamic range of capabilities in our new approach.

Another goal of this section is to illustrate two seemingly
contradictory notions when it comes to galaxy morphology
analysis:

1. Sometimes it is not necessary to perform “full-blown”
analysis, including spiral structures, Fourier modes, rings,

etc. The detailed analysis below will show when it is not
necessary to utilize the full machinery in order to meet the
science requirements, such as when the interest is to only
quantify global properties. However, . . .

2. Sometimes it is necessary to perform full-blown analysis.
In situations where detailed decomposition matters (e.g.,
quantifying bulge–disk–bar fractions) the most reliable
analysis is to make full use of the machinery available.

Indeed, the availability of new tools does not in any way
invalidate or weaken the conclusions of hundreds of studies
that came before this one—quite the contrary. Rather, the main
message is that given the new capabilities, it is more important
now than ever to weigh the relative benefits of sophistication
against the drawback of increased difficulty and time, whereas
no such options existed before.

7.1. IC 4710

IC 4710 is an SB(s)m galaxy, which has a bar-like feature in
the middle of a roundish outer structure, as shown in the R-band
image of Figure 18, which comes from the Carnegie–Irvine
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Table 1
IC 4710 Fitting Results

Parameter # – sersic – Δx (′ ′) Δy (′ ′) mag re (′ ′) n q θP.A. (deg) Comments
fourier . . . mode: ampl. & phase

(deg)
mode: ampl. & phase

(deg)
mode: ampl. & phase (deg)

Best fit 1 – sersic – 0.00 0.00 13.71 48.92 0.55 0.32 −63.36
0.16 0.08 0.00 0.17 0.00 0.00 0.07

Inner fourier . . . 1: 0.16 1: −97.40 3: 0.17 3: −17.95 4: 0.06 4: 17.67
component . . . 1: 0.00 1: 1.18 3: 0.00 3: 0.21 4: 0.00 4: 0.32

fourier . . . 5: 0.05 5: 18.37 6: −0.06 6: 13.22 7: 0.03 7: −1.20
. . . 5: 0.00 5: 0.34 6: 0.00 6: 0.23 7: 0.00 7: 0.63

fourier . . . 8: 0.05 8: 10.92 9: 0.01 9: 4.55 10: 0.03 10: −6.68
. . . 8: 0.00 8: 0.17 9: 0.00 9: 1.63 10: 0.00 10: 0.29

Outer 2 – sersic – 1.97 26.28 12.49 57.24 0.37 0.90 41.38
component 0.24 0.19 0.00 0.09 0.00 0.00 0.85

fourier . . . 1: −0.31 1: −39.25 3: 0.03 3: 55.46 4: 0.03 4: −27.65
. . . 1: 0.00 1: 0.86 3: 0.00 3: 1.31 4: 0.00 4: 0.89

fourier . . . 5: 0.04 5: −15.73 6: 0.02 6: −12.47 7: 0.01 7: 16.56
. . . 5: 0.00 5: 0.87 6: 0.00 6: 1.15 7: 0.00 7: 1.74

fourier . . . 8: −0.03 8: −13.49 9: 0.01 9: −19.63 10: 0.02 10: −15.64
. . . 8: 0.00 8: 0.86 9: 0.00 9: 0.91 10: 0.00 10: 0.92

merit χ2 = 167438.77 Ndof = 127966 Nfree = 53 χ2
ν = 1.31

Single 1 – sersic – 0.00 0.00 12.15 60.37 0.69 0.82 −63.51
component 0.06 0.05 0.00 0.12 0.00 0.00 0.31

merit χ2 = 247304.81 Ndof = 128009 Nfree = 10 χ2
ν = 1.93

Single 1 – sersic – 0.00 0.00 12.15 59.00 0.69 0.83 −64.43
component 0.12 0.09 0.00 0.09 0.00 0.00 0.24
with fourier . . . 1: −0.05 1: 72.02 3: −0.07 3: 27.55 4: −0.02 4: −7.37
Fourier . . . 1: 0.00 1: 2.39 3: 0.00 3: 0.31 4: 0.00 4: 0.48
modes fourier . . . 5: 0.02 5: 5.54 6: −0.01 6: −7.72 7: −0.02 7: 15.40

. . . 5: 0.00 5: 0.54 6: 0.00 6: 0.80 7: 0.00 7: 0.33
fourier . . . 8: 0.01 8: 0.28 9: 0.01 9: 3.16 10: −0.02 10: 1.12

. . . 8: 0.00 8: 0.50 9: 0.00 9: 0.63 10: 0.00 10: 0.25
merit χ2 = 235140.44 Ndof = 127991 Nfree = 28 χ2

ν = 1.84

Notes. Best-fitting parameters for IC 4710. The meaning of the object parameters is shown at the top for each model component. The statistical uncertainties for
each model component, based on the covariance matrix of the fit, are shown in the row underneath the best-fitting model parameters. Systematic uncertainties due to
imperfect model–data match are typically 1%–10% for the fluxes, 10%–20% for the sizes, and 20%–30% for the Sérsic index. For the Fourier modes, the phase angle
is relative to the major axis of the light profile component. Note that the sky parameters are not shown. The “Best fit” parameters (top section) correspond to panel
(c) in Figure 18, “Single component” parameters (middle section) correspond to panel (g), and “Single component with Fourier modes” parameters (bottom section)
correspond to panel (b).

Nearby Galaxy Survey (CINGS) project.9 Prior to the analysis,
we masked out the stars using the SExtractor software (Bertin &
Arnouts 1996). We analyze this galaxy using, for comparison,
both one- and two-component regular and higher order models
with Fourier modes, shown in Figures 18(b)–(i). The best-fit
parameters are given in Table 1, which illustrates three different
sets of analysis parameters: best fit using two components
(Figure 18(c)), a model using just the traditional ellipsoid
component (Figure 18(g)), and the same single-component
model with Fourier modes added (Figure 18(b)). Figure 18(i)
shows the radial surface brightness profile of the data and the
individual subcomponents of the best model.

There are several points to understand from comparing
detailed and simple analyses. The best-fitting ellipsoid model
(Figure 18(g)) is oriented more parallel to the bar-like, higher
surface brightness component than the lower surface brightness
body; however, the ellipsoid model is much broader than the
bar (Figure 18(e)). This happens because a single-component
fit is a compromise between the various subcomponents of a
galaxy, and, as such, it reflects neither one perfectly. Allowing
the azimuthal shape to change by adding nine Fourier modes

9 http://users.obs.carnegiescience.edu/lho/projects/CINGS/CINGS.html

results in a shape shown in Figure 18(b). Note that because
the profile is restricted to having a Sérsic functional form in
every direction radially from the peak, the shape does not have
complete freedom to take on any shape, as opposed to a shapelet
or wavelet-type Fourier inversion: it is merely a higher order
perturbation of the best-fitting ellipse. Indeed, in comparing
single-component fit parameters in Table 1 for the two models,
the main Sérsic structural parameters hardly budged, despite the
Fourier model having 18 more free parameters. Therefore, the
marginal returns in using more free parameters are negligible
in this situation when it comes to the main Sérsic structural
parameters. However, if the scientific interest is to quantify the
global symmetry, then the higher order modes are of interest.

Another point of interest is how higher order models affect the
accuracy of the global photometry. It is natural to expect when
a model is unrealistic for a galaxy that the photometry is also
unreliable. In Figure 18(c), it is evident that a two-component
model is more appropriate than the single-component fits of
Figures 18(b) and (g). However, when the flux of the two-
component model is summed, one finds that the difference with
the single-component fits is only 0.03 mag. This and subsequent
examples illustrate empirically that the process of least-squares
minimization using even naı̈ve ellipsoids is often capable of

http://users.obs.carnegiescience.edu/lho/projects/CINGS/CINGS.html
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Figure 19. Detailed analysis of an edge-on disk galaxy from GEMS. (a) Original data. (b) Best two-component Sérsic profile fit each with Fourier modes, corresponding
to the parameters shown in Table 2. (c) Best-fit residuals. (d) The fit residuals using traditional (i.e., purely ellipsoid) models without masking the dust lane.
(e) Residuals after subtracting the best traditional models, masking out the dust lane. (f) The bulge component of the best-fit model. (g) The edge-on disk component
of the best-fit model. (h) The extended halo component of the best-fit model. (i) The 1D surface brightness profile. The individual components are shown as dashed
lines, and the solid line coursing through the data is the sum of the different components. The lower panel shows the residuals of data—model.

providing accurate photometry to within 0.1–0.2 mag, even if
the galaxy shape departs from ellipsoid models quite drastically.

Lastly, Figures 18(e) and (f) demonstrate that it is quite
feasible to unambiguously disentangle embedded components
that have different shapes, using higher order Fourier modes.
Despite there being a large number of parameters, it is visually
clear based on Figures 18(e) and (f) that parameter degeneracy
is not an issue, because the shapes of the components are
quite different. In part, this is possible because of the way
Fourier modes are implemented in Galfit: the profile function
is preserved in every direction radially from the peak, even in
situations where the shape is irregular, as in Figure 18(e).

7.2. GEMS Edge-on Galaxy

This edge-on galaxy (Figure 19, Table 2) comes from the
Galaxy Evolution from Morphology and SED (GEMS; Rix et al.
2004) project, which is an HST imaging survey of the Chandra
Deep Field-South. Belying a benign morphological appearance
is a dust lane (Figure 19(e)) that courses through the center,
complicating the traditional ellipsoid fitting technique.

The analysis of even this simple object can be quite involved.
The best-fitting model involves three components: a fairly

compact bulge, an edge-on disk component, and a puffy stellar
halo enveloping both. Since the halo component is more
luminous than the bulge component, a two-component model
fit would naturally ascribe the halo component to the bulge,
despite there being a distinctly rounder component at the center.
Like the previous example, each of the three components
(Figures 19(f)–(h)) is modified by Fourier modes. Furthermore,
the best fit includes an actual model for the dust lane (component
4, Table 2). The dust lane is modeled by an inner truncation
function as discussed in Section 5.

A truncation model is shown as a model “component” in the
fit; it is unique because it is not a light profile model, and one
cannot generate an image to see what it looks like. Instead,
its influence is to be seen on all the light profile models (i.e.,
components 1–3; Figures 19(f)–(h)), where it reduces the light
by the same fraction for all components. In every other way, the
truncation function behaves exactly like a light profile model:
it can have its own centroid (or not), and it can be modified by
Fourier modes, as shown in Table 2. The benefit of using a single
truncation model for all three light profile models is not only to
reduce the degrees of freedom, but it is also physically motivated
because foreground dust attenuates all background light sources
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Table 2
GEMS Disk Galaxy Fitting Results

Parameter # – sersic2 – Δx (′ ′) Δy (′ ′) mag/arcsec2 re (′ ′) n q θP.A. (deg) Comments
fourier . . . mode: ampl. & phase mode: ampl. & phase mode: ampl. & phase

(deg) (deg) (deg)

# – radial – Δx (′ ′) Δy (′ ′) . . . rbreak (′ ′) Δrsoft q θP.A. (deg)

Best 1 – sersic2 / – 0.00 0.00 19.80 0.40 1.60 0.72 44.00 Trunc. by comp.
fit 0.00 0.00 0.01 0.00 0.01 0.00 0.16 inner: 4

fourier . . . 1: −0.04 1: −92.16 3: −0.00 3: −51.36 4: 0.03 4: −6.61
. . . 1: 0.00 1: 3.23 3: 0.00 3: 30.65 4: 0.00 4: 0.53

fourier . . . 5: −0.01 5: −5.74 6: 0.01 6: −7.31 . . . . . .

. . . 5: 0.00 5: 2.35 6: 0.00 6: 1.74 . . . . . .

2 – sersic2 / – {0.00} {0.00} 22.19 2.29 0.85 0.31 41.30 Trunc. by comp.
{0.00} {0.00} 0.02 0.01 0.01 0.00 0.03 inner: 4

fourier . . . 1: −0.04 1: −24.97 3: 0.02 3: 26.37 4: −0.02 4: −0.04
. . . 1: 0.00 1: 1.82 3: 0.00 3: 1.03 4: 0.00 4: 0.79

fourier . . . 5: 0.00 5: 6.19 6: −0.01 6: 6.62 . . . . . .

. . . 5: 0.00 5: 5.63 6: 0.00 6: 1.35 . . . . . .

3 – sersic2 / – {0.00} {0.00} 23.92 4.45 1.08 0.49 41.06 Trunc. by comp.
{0.00} {0.00} 0.03 0.05 0.02 0.00 0.10 inner: 4

fourier . . . 1: 0.04 1: 4.59 3: 0.01 3: −3.37 4: −0.01 4: 40.55
. . . 1: 0.00 1: 1.16 3: 0.00 3: 1.99 4: 0.00 4: 3.94

fourier . . . 5: 0.01 5: −7.19 6: −0.01 6: −3.25 . . . . . .

. . . 5: 0.00 5: 1.40 6: 0.00 6: 0.73 . . . . . .

4 – radial – 0.02 −0.14 . . . 1.48 1.48 0.09 41.38 Truncates comp.
0.00 0.00 . . . 0.01 0.02 0.00 0.05 inner: 1 2 3

fourier . . . 1: −0.12 1: −156.83 3: 0.10 3: −20.62 4: 0.19 4: 9.20
. . . 1: 0.00 1: 1.23 3: 0.00 3: 0.52 4: 0.00 4: 0.15

fourier . . . 5: 0.10 5: 2.17 6: 0.14 6: 6.62 . . . . . .

. . . 5: 0.00 5: 0.19 6: 0.00 6: 0.10 . . . . . .

merit χ2 = 1474348.38 Ndof = 1435846 Nfree = 64 χ2
ν = 1.03

Tradit. 1 – sersic2 – 0.00 0.00 19.98 0.38 1.32 0.74 42.75
ellipsoid 0.00 0.00 0.00 0.00 0.01 0.00 0.31
model 2 – sersic2 – {0.00} {0.00} 22.78 2.57 0.85 0.25 41.21
with {0.00} {0.00} 0.03 0.02 0.01 0.00 0.06
dust 3 – sersic2 – {0.00} {0.00} 23.12 3.34 1.77 0.49 41.30
masking {0.00} {0.00} 0.04 0.04 0.03 0.00 0.08

merit χ2 = 1478767.62 Ndof = 1434511 Nfree = 18 χ2
ν = 1.03

Notes. Best-fitting parameters for an edge-on disk galaxy in GEMS. See Table 1 for details. The curly braces ({...}) around parameters indicate that they are coupled
relative to the first component. Note that the flux amplitude of sersic2 is normalized to the surface brightness at re, as defined in Equation (32). The “Best fit” parameters
(top section) correspond to panel (b) in Figure 19, “Traditional ellipsoid model” parameters (bottom section) produce residuals shown in panel (c), and the model is
not shown.

by an equal fractional amount. Nevertheless, if desired, it is also
possible to allow each component to be attenuated differently.

This example also demonstrates how the result of the analysis
depends on the input prior of the model. In the fit using
traditional ellipsoid parameters, a mask is used to minimize
the effect of the dust on the analysis. Yet, the effects cannot
be completely removed. As shown in Table 2, the inclusion
of the truncation model can significantly affect the structural
parameters: the surface brightnesses can differ by 0.8 mag
arcsec−2, and the sizes by 10%–20%, even in this seemingly
uncomplicated situation. Moreover, the differences far surpass
the statistical uncertainties shown in Table 2. To the extent that it
is not possible to judge which model is more physically correct,
both measurements ought to be treated as equally valid. In that
situation, the uncertainties, due entirely to model assumptions,
are roughly ∼ 0.4 mag in surface brightness and ∼ 10% in size.

7.3. Arp 147

The HST/F814W image of the field Arp 147 contains two
ring galaxies (Figure 20, Table 3), one of which has a bulge-
like component with a tidally disturbed outer region (Galaxy 1),
and the other is a pure ring (Galaxy 2). The best-fitting model

for Galaxy 2 is a single-component ring, modified by Fourier
modes, as seen in Figure 20(b), whereas Galaxy 1 requires two
ring components, a bulge, and an inner fine-structure component
(Figures 20(e)–(h)). The fine-structure component of Galaxy
1 can easily be seen in the surface brightness profile as an
upturn within r = 0.′′2 of Figure 20(i, left). In addition, the tidal
component is slightly bent, which is modeled elegantly using
the bending modes of Equation (27). As in the case of a dust
lane, the ring model comes about by truncating the inner region
of a pure Sérsic profile (see Section 5. The only difference here
is that the truncation radii are a larger fraction of the galaxy
size. Whereas for the edge-on galaxy, it makes more sense to
normalize the flux at the effective radius (Equation (32)), for
ring galaxies, normalizing the flux at the break radius (Equation
(33)) is more intuitive, because it is closer to the peak of the
profile model. In fact, the peak of the ring is about half-way
between rbreak and rbreak + Δrsoft, but the exact location depends
on the profile type.

It is again instructive to compare a traditional fit using
simple Sérsic ellipsoid models (Table 3, bottom) with more
sophisticated analysis (Table 3, top). In terms of the total flux
for Galaxy 1, the magnitude of the most sophisticated model
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Figure 20. Detailed analysis of Arp 147. (a) Original data. (b) Best Sérsic profile fits of the two galaxies, all with Fourier modes, corresponding to the parameters shown
in Table 3. (c) Best-fit residuals. (d) The fit residuals using traditional, i.e., axisymmetric ellipsoidal model components. (e) The bulge component of the right-hand
galaxy in panel (b). (f) The inner fine-structure component of the best-fit model. (g) The ring component of the best-fit model. (h) The extended tidal-feature-like
component of the best-fit model. (i) The 1D surface brightness profile of the two galaxies. The individual components are shown as dashed lines, and the solid line
coursing through the data is the sum of the different components. The lower panel shows the residuals of data–model.

is m = 14.18, compared to m = 14.32 for a model based on
classical ellipsoids. Interestingly, a single-component fit (not
shown) to Galaxy 1 yields a magnitude of m = 14.15. For
Galaxy 2, we know from the outset that classical ellipsoid
models are entirely inappropriate to use. Yet, despite every
reason to believe that the photometry would be inaccurate, we
find that the total flux of the traditional ellipsoid fit is only
0.2 mag different from the most realistic ring model. These
two examples show once again that a single-component Sérsic
ellipsoid fit to complicated galaxies can produce quite accurate
measurement of the total flux.

It is sometimes desirable to conduct B/D decompositions,
and Galaxy 1 is an ideal candidate to conduct a comparison. In
the traditional ellipsoid model (Table 3, bottom), the B/D ratio
is 0.65. The more sophisticated model (Table 3, top) requires
summing the ring+tidal feature components to obtain the disk
component, which yields 14.65 mag, thus a B/D ratio of 0.54. In
this situation, most of the differences arise from measuring the
disk component, which differs by 0.2 mag, whereas the bulge
component is quite robust, with a difference of only 0.01 mag.

It is also of interest to understand how the structural param-
eters are affected by different model choices, in particular for
the ring Galaxy 2. Whereas the effective radius for the ring
model is only 0.′′78, for the ellipsoid model it is 8.′′28. This is
understandable, bearing in mind that the ring has a radius of
nearly 8′′. To a classical Sérsic profile, the galaxy appears to
have a very flat (in fact, a deficit) core, which leads to a low
Sérsic index of n = 0.12. As most of the flux is at 8′′, beyond
which the ring flux quickly fades, the ring radius is closely re-
lated to the effective radius for a classical Sérsic model. For the
inner-truncated ring model (component 7), however, the physi-
cal size of the ring is captured by the break radius rbreak param-
eter, whereas the re term no longer has the classical meaning
of the effective radius (i.e., half the light is within re). Instead,
re for component 7 is essentially an exponentially declining
scale-length parameter, given by Equation (33). As the flux
dies away quickly beyond the peak, as shown in Figure 20(i),
the scale length re for the ring model must therefore be quite
small. The differences in the re parameter between the tradi-
tional model and the truncated model are therefore only due to
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Table 3
Arp 147 Fitting Results

Parameter # – sersic – Δx (′ ′) Δy (′ ′) mag re (′ ′) n q θP.A. (deg) Comments
# – sersic3 – Δx (′ ′) Δy (′ ′) mag/arcsec2 re (′ ′) n q θP.A. (deg)

fourier . . . mode: ampl. & phase mode: ampl. & phase mode: ampl. & phase
(deg) (deg) (deg)

bending . . . mode: amplitude (′ ′) mode: amplitude (′ ′) mode: amplitude (′ ′)
# – radial – . . . . . . . . . rbreak (′ ′) Δrsoft q θP.A. (deg)

Galaxy 1 1 – sersic – 0.00 0.00 15.49 1.26 0.47 0.50 194.70 Bulge
0.00 0.00 0.00 0.00 0.00 0.00 0.05 Inner fine

2 – sersic – 0.07 0.13 17.39 0.35 0.43 0.60 150.75 structure
0.00 0.00 0.01 0.00 0.01 0.00 0.39

3 – sersic3 / – −0.08 0.33 23.84 1.21 0.96 0.18 187.42 Trunc. by comp.
0.01 0.03 0.02 0.02 0.01 0.00 0.03 inner: 5 (ring)

fourier . . . 1: 0.03 1: 49.11 3: 0.02 3: 15.69 4: 0.04 4: 4.24
. . . 1: 0.00 1: 9.08 3: 0.00 3: 1.04 4: 0.00 4: 0.45

4 – sersic3 / – 0.09 −0.34 22.04 3.81 1.94 0.42 184.08 Trunc. by comp.
0.01 0.02 0.01 0.04 0.03 0.00 0.04 inner: 5 (Tidal

fourier . . . 1: 0.16 1: 21.49 3: 0.09 3: 18.36 4: −0.01 4: 16.13 feature)
. . . 1: 0.00 1: 0.82 3: 0.00 3: 0.17 4: 0.00 4: 1.55

bending . . . 2: −0.14 . . . . . . . . . . . . . . .

. . . 2: 0.00 . . . . . . . . . . . . . . .

5 – radial – . . . . . . . . . 10.94 6.00 0.18 187.61 Truncates comp.
. . . . . . . . . 0.02 0.06 0.00 0.03 inner: 3 4

fourier . . . 1: 0.05 1: 39.00 3: 0.02 3: 19.88 4: 0.04 4: 3.88
. . . 1: 0.00 1: 4.97 3: 0.00 3: 1.18 4: 0.00 4: 0.39

Galaxy 2 6 – sersic3 / – −18.29 −7.93 22.14 0.78 1.85 0.79 187.91 Trunc. by comp.
0.01 0.01 0.00 0.01 0.01 0.00 0.12 inner: 7 (Ring)

fourier . . . 1: 0.23 1: −113.97 3: 0.07 3: 15.27 4: −0.02 4: 23.33 magtot = 14.90
. . . 1: 0.00 1: 0.53 3: 0.00 3: 0.12 4: 0.00 4: 0.39

7 – radial – . . . . . . . . . 10.77 6.08 0.82 195.16 Truncates comp.
. . . . . . . . . 0.01 0.01 0.00 0.19 inner: 6

fourier . . . 1: 0.17 1: −149.22 3: 0.07 3: 4.98 4: 0.02 4: −31.52
. . . 1: 0.00 1: 0.99 3: 0.00 3: 0.17 4: 0.00 4: 0.38

merit χ2 = 714735.38 Ndof = 357760 Nfree = 77 χ2
ν = 2.00

Tradit. 1 – sersic – 0.00 0.00 15.33 1.07 0.90 0.62 193.49 Bulge
ellipsoid 0.00 0.00 0.00 0.00 0.00 0.00 0.11
model 2 – sersic – −0.12 0.55 14.86 6.63 0.43 0.34 184.20 Disk

0.00 0.01 0.00 0.01 0.00 0.00 0.04
Galaxy 2 3 – sersic – −15.61 −8.66 15.09 8.28 0.12 0.80 201.65 Ring

0.01 0.01 0.00 0.01 0.00 0.00 0.29 galaxy
merit χ2 = 1435193.25 Ndof = 357813 Nfree = 24 χ2

ν = 4.01

Notes. Best-fitting parameters for Arp 147. See Table 1 for details. Note that the flux amplitude of sersic3 is normalized to the surface brightness at rbreak, as defined
in Equation (33), whereas sersic magnitude means the total flux. The “Best fit” parameters (top section) correspond to panel (b) in Figure 20, “Traditional ellipsoid
model” parameters (bottom section) produce residuals shown in panel (d), and the model is not shown. The free parameters for the sky are not listed.

definitions, and not due to systematic or random measurement
uncertainties.

7.4. M51

The classical Whirlpool galaxy is a beautiful system where
a grand-design spiral, M51A, is interacting with another spiral,
M51B (Figure 21, Table 4). In addition to there being obvious
spiral structures for both galaxies, there are large tidal distur-
bances that emerge from M51B, as seen in the Sloan Digital Sky
Survey (SDSS) r-band image provided by D. Finkbeiner. Be-
cause they are closely overlapping, a desirable goal is to deblend
M51A and B, as well as to model the spiral and tidal structures,
simultaneously.

As with previous examples, we fit this galaxy using both the
most sophisticated analysis (Table 4, top) in our toolbox, and
comparing the results to the traditional axisymmetric ellipsoids
(Table 4, bottom) analysis. The traditional analysis requires two
components each, in order to decompose a galaxy ostensibly

into a bulge and a disk. The reduction in χ2
ν between the two

methods is modest, because most of the residuals come from
high-frequency star-forming regions that are not removed by
models which are fundamentally smooth, despite being modified
by radial Fourier modes and spiral rotations.

In the most detailed analysis of M51A, we use two spiral arm
components and two components for the bulge. There is actually
not a strong need to use two components for the bulge except to
better capture the detailed profile shape, which has an inflection
at r ≈ 0.′4, as seen in Figure 21(i). On the other hand, the use of
two spiral components is necessary because the spiral arm has
a “kink” in the rotation that cannot be created by using a single
smooth rotation function. The spiral structures are modified by
Fourier modes to create both a slight lopsidedness and other
subtle features. Because there are more degrees of freedom in a
two-arm spiral, the higher order Fourier modes also can “see”
detailed structures, like the reverse flaring of the spiral structure
in Figure 21(f).
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Figure 21. Detailed analysis of M51. (a) Original data. (b) Best Sérsic profile fits of the M51A and B, all with Fourier modes, corresponding to the parameters shown
in Table 4. (c) Best-fit residuals. (d) The fit residuals using traditional, axisymmetric, ellipsoidal model components. (e) The extended grand-design spiral component
of M51A model in panel (b). (f) The inner fine-structure spiral component of the best-fit model. (g) The spiral component of M51B. (h) The extended tidal-feature-like
component of M51B, using simultaneous bending and Fourier modes. A bulge component is present but not shown in the figures of M51A and B. (i) The 1D surface
brightness profile of the two galaxies. The individual components are shown as dashed lines, and the solid line coursing through the data is the sum of the different
components. The lower panel shows the residuals of data–model.

For M51B, we employ three components in the fit, a bulge
(component 5 in Table 4, top), a tidal feature component
(component 6), and a spiral function (component 7), which
model the three most visually striking components. The tidal
feature is mostly obtained by using the second and third bending
modes of Equation (27), as illustrated in Figure 10. However,
bending modes 2 and 3 are symmetric functions, so the high
degree of asymmetry comes about because of combined action
with the Fourier modes, which is shown to have a high amplitude
of 0.23 for the m = 1 mode, as well as moderate values for other
modes. Incidentally, despite the complexity of the higher order
structures, all the parameter values are determined automatically
by Galfit without the need for an user to provide initial guesses
(i.e., initially all 0 values) and without tweaking at any point in
the analysis (which is hardly feasible anyhow).

For even those who are experienced with detailed paramet-
ric fitting, one of the alarming facts about this analysis is that
it employs 103 free parameters in the best-fit model. So there
are natural concerns about parameter degeneracies. However,
as we have discussed in Section 6.5, parameter degeneracies do
not arise purely based on the number of free parameters, but

rather on the types of parameters involved. The availability of
spatial information in 2D provides one of the most important
ways to break parameter degeneracies. We see this explicitly in
Figures 21(e)–(h), where there is little evidence that the sub-
components for M51A are strongly influenced by M51B, and
vice versa. Furthermore, within each galaxy, the subcompo-
nents are so different in shape, both qualitatively and quan-
titatively, that the amount of cross talk between them is also
not significant. Therefore, despite the extreme complexity of
this system, and the use of 103 free parameters, we find that
degeneracies between the parameters are not an issue. Or, if
they exist, they do so at a low enough level that they do not
significantly affect the main parameters of interest, like the
luminosity of the subcomponents, or the profile shapes and
sizes.

There are, however, seemingly degenerate conditions that
have little to do with parameter coupling. Instead, these are
attributed to the fact that M51 has many non-smooth struc-
tural features, caused by dust lanes, star-forming regions, tidal
disturbances, and so forth. Such spatially localized features,
if strong enough, can influence Galfit to “lock” on to them
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Table 4
M51 Fitting Results

Parameter # – sersic – Δx (′) Δy (′) mag re (′) n q θP.A. (deg) Comments
power . . . rin (′) rout (′) θrot (deg) α θincl (deg) θsky (deg)
fourier . . . mode: ampl. & phase (deg) mode: ampl. & phase (deg) mode: ampl. & phase

(deg)

bending . . . mode: amplitude (′) mode: amplitude (′) mode: amplitude (′)
Best 1 – sersic – 0.00 0.00 13.09 0.04 1.18 0.91 −15.25 Compound
fit 0.00 0.00 0.04 0.00 0.04 0.01 4.74 bulge

2 – sersic – {0.00} {0.00} 10.49 0.26 0.67 0.88 −65.31 Compound
M51A {0.00} {0.00} 0.00 0.00 0.01 0.00 0.66 bulge

3 – sersic – {0.00} {0.00} 8.50 2.78 0.35 0.75 −87.22 Compound
{0.00} {0.00} 0.00 0.00 0.00 0.00 39.53 spiral

power . . . −1.29 4.28 −718.11 0.29 40.42 −82.20
. . . 0.20 0.03 41.39 0.02 0.05 0.10

fourier . . . 1: −0.07 1: 109.10 3: 0.03 3: 4.07 4: 0.02 4: −36.57
. . . 1: 0.00 1: 0.44 3: 0.00 3: 0.43 4: 0.00 4: 0.35

fourier . . . 5: 0.02 5: 24.34 . . . . . . . . . . . .

. . . 5: 0.00 5: 0.32 . . . . . . . . . . . .

4 – sersic – {0.00} {0.00} 10.06 1.88 0.14 0.39 5.45 Compound
{0.00} {0.00} 0.00 0.00 0.00 0.00 4190.51 spiral

power . . . 0.66 2.34 −172.67 −0.11 −0.01 15.58
. . . 0.02 0.01 3.51 0.01 1100.08 4190.50

fourier . . . 1: −0.15 1: 25.39 3: 0.02 3: −32.12 4: 0.15 4: 8.38
. . . 1: 0.00 1: 0.62 3: 0.00 3: 1.50 4: 0.00 4: 0.19

fourier . . . 5: 0.02 5: −4.02 . . . . . . . . . . . .

. . . 5: 0.00 5: 0.82 . . . . . . . . . . . .

M51B 5 – sersic – −0.19 4.44 12.06 0.05 0.89 0.62 −72.22 Compound
0.00 0.00 0.01 0.00 0.01 0.00 0.38 bulge

6 – sersic – −0.16 4.43 11.93 0.18 1.06 0.81 −2.79 Compound
0.00 0.00 0.02 0.00 0.03 0.01 1.45 bulge

7 – sersic – −0.45 5.19 9.93 2.51 [1.00] 0.62 −96.19 Tidal
0.01 0.01 0.00 0.01 . . . 0.00 0.36 structure

bending . . . 2: 0.03 3: −0.15 . . . . . . . . . . . .

. . . 2: 0.02 3: 0.00 . . . . . . . . . . . .

fourier . . . 1: 0.34 1: 17.20 3: −0.25 3: 32.55 4: 0.14 4: −3.73
. . . 1: 0.00 1: 0.81 3: 0.00 3: 0.40 4: 0.00 4: 0.43

fourier . . . 5: 0.03 5: 7.32 . . . . . . . . . . . .

. . . 5: 0.00 5: 1.16 . . . . . . . . . . . .

8 – sersic – −0.10 4.52 10.20 0.90 0.72 0.58 −46.52 Bar and
0.00 0.00 0.00 0.00 0.00 0.00 0.56 spiral

power . . . 0.88 1.08 46.34 1.60 42.29 52.50
. . . 0.00 0.00 0.66 0.01 0.16 0.25

fourier . . . 1: 0.07 1: 103.72 3: 0.05 3: 28.79 4: 0.01 4: −0.11
. . . 1: 0.00 1: 1.59 3: 0.00 3: 0.52 4: 0.00 4: 4.25

fourier . . . 5: 0.01 5: 23.12 . . . . . . . . . . . .

. . . 5: 0.00 5: 1.09 . . . . . . . . . . . .

merit χ2 = 34279512.00 Ndof = 632434 Nfree = 104 χ2
ν = 54.20

Trad. 1 – sersic – 0.00 0.00 10.05 0.33 1.75 0.85 −62.09
ellipsoid 0.00 0.00 0.00 0.00 0.01 0.00 0.55
model 2 – sersic – −0.06 −0.13 8.47 2.21 0.33 0.75 26.69
M51A 0.00 0.00 0.00 0.00 0.00 0.00 0.13
M51B 3 – sersic – −0.18 4.40 8.93 2.54 8.02 0.92 −44.73

0.00 0.00 0.03 0.11 0.09 0.00 1.24
4 – sersic – −0.04 4.90 10.66 1.45 1.66 0.57 71.33

0.00 0.00 0.02 0.02 0.02 0.00 0.42
merit χ2 = 42126720.00 Ndof = 632507 Nfree = 31 χ2

ν = 66.60

Notes. Best-fitting parameters for M51. See Table 3 for details. The “Best fit” parameters (top section) correspond to panel (b) in Figure 21, “Traditional ellipsoid
model” parameters (bottom section) produce residuals shown in panel (d), and the model is not shown. The free parameters for the sky are not listed. The parameter
in square brackets, [...], is held constant in the fit. The curly braces ({...}) around parameters indicate that they are coupled relative to the first component.

if the initial conditions happened to be sufficiently close. The
consequences appear as degeneracies when, in fact, there are
many small local minima solutions. This graininess in the χ2

terrain introduces slight perturbations to the models, and may
even cause fairly large shape differences in the final solutions.

However, to a large extent, it rarely affects the main parameters
of interest, such as the luminosity of a particular component or
its size, which are determined by much more global features
than the nuisances of local fluctuations to which higher order
parameters are more sensitive.
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Figure 22. Detailed analysis of NGC 289 from CINGS. (a) Original data. (b) Best Sérsic profile fits with spiral rotation functions and Fourier modes, corresponding to
the parameters shown in Table 5. (c) Best-fit residuals. (d) The fit residuals using traditional, axisymmetric, ellipsoidal model components. (e) The fine details of the
inner bar structure of panel (b). (f) Spiral component 1 of 3 of the best-fit model. (g) The spiral component 2 of 3. (h) The spiral component 3 of 3. A bulge component
is present but not shown in the figures. (i) The 1D surface brightness profile of the galaxy. The individual components are shown as dashed lines, and the solid line
coursing through the data is the sum of the different components. The lower panel shows the residuals of data –model.

To gain some intuitive insight into the effects of complex
analysis, it is instructive to compare simple and complex
methods with regard to global and subcomponent properties. In
terms of the total luminosity, here we find excellent agreement
between sophisticated and traditional analysis, respectively, of
mr = 8.24 versus mr = 8.25 for M51A, and mr = 8.80 versus
mr = 8.73 for M51B. While this level of agreement may at
first seem surprising, it is expected given the basic premise of
least-squares minimization. In fact, even a single-component fit
to M51A yields mr = 8.0, and for M51B mr = 9.0, which
are both quite close to the overall best-fit models, despite the
complications in the image. The main reason for the discrepancy
here is the uncertainty in the sky, due to there being a large
gradient. This fundamentally sets the limit on the accuracy
of the photometry to perhaps no better than 0.1 to 0.2 mag,
independent of the analysis method.

The most sensitive benchmark for understanding differences
in the analysis is in detailed decompositions. Here we compare
the B/D decomposition results. In the traditional ellipsoid
analysis, we find a B/D ratio of 0.23 for M51A and 4.9 for
M51B. The large B/D ratio for M51B is clearly unphysical,
and is driven by the large Sérsic index (n = 8.0) of the bulge

component, which is increased to accommodate the flux in the
outskirts due to tidal features. In the most detailed analysis, the
B/D ratio for M51A is 0.16, whereas for M51B it is merely
0.17. Examining the bulge of M51A more closely, we find that
the detailed analysis yields a total flux of 10.38 mag, whereas
the traditional analysis extracts a brighter bulge of 10.05 mag.
The differences come from the fact that the light of the inner
spiral is in part driving up the Sérsic index of the bulge when it
is not properly accounted. It is probably safe to conclude that a
magnitude of 10.05 is a firm upper limit to the bulge luminosity.

Finally, it is worthwhile to compare how the disk parameters
differ between the analyses to gain an understanding for how
coordinate rotation affects the interpretation of the parameters
for the spiral models. From Table 4, we find that the Sérsic
indices of the simple and complex models are essentially
identical for M51A, at n ≈ 0.33. The interpretation for M51B is
more complicated, because the “disk” in an ellipsoidal model is
not qualitatively the same structure as the spiral analysis. In fact,
it is necessary to hold the Sérsic index of the tidal component 6
fixed in the analysis. Nevertheless, there are clearly quantitative
differences in that the simple analysis is larger by 55% in n.
With regard to the effective radius, the traditional analysis of
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Table 5
NGC 289 Fitting Results

Parameter # – sersic – Δx (′ ′) Δy (′ ′) mag re (′ ′) n q θP.A. (deg) Comments
power . . . rin (′ ′) rout (′ ′) θrot (deg) α θincl (deg) θsky (deg)
fourier . . . mode: ampl. & phase mode: ampl. & phase mode: ampl. & phase

(deg) (deg) (deg)

Best 1 – sersic – 0.00 0.00 11.69 64.01 1.72 0.78 61.27 Bulge
fit 0.09 0.10 0.01 0.75 0.03 0.00 0.43

2 – sersic – −2.63 −1.92 13.27 6.05 1.02 0.51 77.83 Inner
NGC 289 0.02 0.01 0.01 0.04 0.01 0.00 0.29 bar

fourier . . . 1: 0.10 1: 63.87 3: −0.05 3: −4.23 4: −0.05 4: −20.77
. . . 1: 0.01 1: 4.87 3: 0.00 3: 0.92 4: 0.00 4: 0.95

fourier . . . 5: 0.03 5: 4.62 6: 0.06 6: −2.09 . . . . . .

. . . 5: 0.00 5: 1.32 6: 0.00 6: 0.61 . . . . . .

3 – sersic – −2.25 −2.77 12.30 32.86 0.54 0.32 −85.94 Spiral
0.02 0.02 0.01 0.15 0.00 0.00 0.53 comp. 1

power . . . 19.23 34.40 85.51 1.48 52.11 136.18
. . . 0.14 0.14 0.94 0.02 0.08 0.10

fourier . . . 1: 0.14 1: −97.28 3: −0.05 3: −8.55 4: 0.02 4: 3.41
. . . 1: 0.00 1: 0.74 3: 0.00 3: 1.13 4: 0.00 4: 2.09

fourier . . . 5: 0.02 5: −3.77 6: 0.01 6: 10.09 . . . . . .

. . . 5: 0.00 5: 0.99 6: 0.00 6: 3.36 . . . . . .

4 – sersic – −4.54 −4.10 12.13 52.28 0.74 0.56 −32.85 Spiral
0.04 0.03 0.01 0.22 0.01 0.00 28.48 comp. 2

power . . . −26.32 71.31 450.01 0.77 53.30 140.24
. . . 4.45 0.59 25.64 0.06 0.05 0.07

fourier . . . 1: −0.12 1: 84.16 3: 0.06 3: 32.07 4: −0.06 4: −30.37
. . . 1: 0.00 1: 0.64 3: 0.00 3: 0.45 4: 0.00 4: 0.38

fourier . . . 5: 0.04 5: −6.47 6: 0.02 6: −20.35 . . . . . .

. . . 5: 0.00 5: 0.32 6: 0.00 6: 0.81 . . . . . .

5 – sersic – −2.40 −1.90 11.82 50.67 0.46 0.68 −45.45 Spiral
0.04 0.04 0.00 0.30 0.00 0.00 35.81 comp. 3

power . . . −9.09 75.87 411.91 −0.04 64.81 112.75
. . . 4.42 0.69 36.56 0.01 0.13 0.09

fourier . . . 1: −0.11 1: −33.85 3: 0.01 3: 1.93 4: −0.00 4: 9.85
. . . 1: 0.00 1: 1.08 3: 0.00 3: 3.10 4: 0.00 4: 6.71

fourier . . . 5: 0.00 5: −16.26 6: 0.02 6: −6.02 . . . . . .

. . . 5: 0.00 5: 10.08 6: 0.00 6: 0.58 . . . . . .

Neighbor 6 – sersic – 67.90 −181.06 14.69 20.03 1.93 0.72 −34.31
galaxy 0.04 0.05 0.01 0.34 0.03 0.01 0.99

merit χ2 = 158680.39 Ndof = 150419 Nfree = 103 χ2
ν = 1.05

Tradit. 1 – sersic – 0.00 0.00 11.03 41.90 1.62 0.74 54.96 “bulge”?
ellipsoid 0.04 0.03 0.01 0.33 0.01 0.00 0.21
model 2 – sersic – 2.01 −3.52 11.69 36.98 0.29 0.55 23.85 disk

0.04 0.05 0.01 0.06 0.00 0.00 0.12
3 – sersic – 0.02 −1.10 12.70 10.83 1.24 0.43 67.37 bar

0.02 0.01 0.03 0.08 0.01 0.00 0.19
Neighbor 4 – sersic – 70.60 −179.97 14.71 19.62 1.90 0.72 −34.01
galaxy 0.04 0.05 0.01 0.34 0.03 0.01 1.11

merit χ2 = 200361.19 Ndof = 150491 Nfree = 31 χ2
ν = 1.33

Notes. Best-fitting parameters for NGC 289. See Table 1 for details. The “Best fit” parameters (top section) correspond to panel (b) in Figure 22, “Traditional ellipsoid
model” parameters (bottom section) produce residuals shown in panel (d), and the model is not shown. The free parameters for the sky are not listed.

M51A finds the disk size to be about 2.′2, which compares
favorably with the spiral model size of 2.′8, or a 25% difference.
Furthermore, the disk magnitudes for M51A differ only by
0.03 mag between simple and complex.

These comparisons therefore demonstrate that despite the
complex analysis being much more realistic looking, fundamen-
tally the meaning of the structural parameters (size, luminosity,
concentration index) is unchanged from the original definition,
even in the situation of spiral components. This is a useful fact
because our prior intuitions, honed on fitting ellipsoidal mod-
els, continue to be applicable. We note that the generally good
agreement between detailed and simplistic analysis witnessed
here and in previous examples is not entirely coincidental. It

so happens because all shapes are fundamentally perturbations
of the best-fitting ellipsoidal model, even if the result bears no
resemblance to the original ellipse.

7.5. NGC 289

NGC 289 is an SAB(rs)bc galaxy, with a weak bar and a
complex inner spiral system (Figure 22, Table 5) that resembles
a ring. Upon closer examination, the ring appearance comes
about because there exists a bifurcation in the spiral structure
that connects up with the opposing spiral arm. Furthermore, the
bar is also multi-component, with the inner component oriented
at an angle nearly 45◦ from the strong outer bar.
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The best-fit analysis involves three spiral components, an
inner and an outer bar component, and a bulge (Table 5, top).
All except for the bulge component are modified by five Fourier
modes, and are shown in Figures 22(e)–(h). The requirement
of components 3 and 4 (Figures 22(f) and (g)) is clear, because
they are what form the most striking and intricate patterns in the
center, while the requirement of component 5 (Figure 22(h)) is
only evident in the residuals, and makes up some of the diffuse
light within the inner 60′′ region. Although it does not seem like
an essential component, the inner bar structure (Figure 22(e))
qualitatively affects the detailed residual pattern at the center,
and is therefore included. When all the detailed inner structures
are properly accounted for, it is straightforward to infer the bulge
component, and assess the uncertainties by varying different
parameters of the bulge. Doing so does not affect the inner fine
structures because they are sharp and well localized.

Conducting the same decomposition using traditional ellip-
soid models (Table 5, bottom), we opted to fit three components,
ostensibly to model a bulge, disk, and a bar. The result produces
residuals seen in Figure 22(d), revealing the intricate details of
the inner spiral system. From the fit, even though the disk and
the bar component are sensible, the bulge component is actually
fitting a diffuse disk component, which, in retrospect, is that
shown in Figure 22(h). Because that inner spiral component
is quite luminous, and because there exists a bulge component
superposed on top of it, this quasi-bulge model is almost 0.7
mag brighter than that inferred through the detailed modeling
above. Adding a fourth ellipsoid model is not possible, because
the central spiral residuals are so great that they completely
suppress the addition of another component, causing the flux to
go to zero.

Once again, comparing the total luminosity between the best-
fit model with the ellipsoid fit, we find an excellent agreement of
m = 10.37 mag versus m = 10.42, respectively. For a single-
component ellipsoid fit, there is also an excellent agreement
of m = 10.46, despite the main structural details not being
unaccounted.

8. DISCUSSION AND CONCLUSIONS

This study is a proof of concept for how to conduct more real-
istic image-fitting analysis using purely parametric functions, by
breaking free from traditional assumptions about axisymmetry.
We introduced several new ideas, including the use of Fourier
and bending modes, spiral rotation functions, and truncation
functions. These features can be used individually, or combined
in arbitrary ways. While these features are individually quite
simplistic, used collectively they proliferate a dizzying array of
possibilities. Even so, the interpretation of each component re-
mains intuitive, down to the meaning of each fitting parameter.
Indeed, the interpretation of the traditional ellipsoidal profile
parameters, such as those for the Sérsic function, remains es-
sentially unchanged under modification. We then applied these
techniques to five case studies, illustrating that highly complex
and intricate structures can be modeled using fully parametric
techniques.

There are many practical applications for these techniques.
For instance, the Fourier modes are useful for quantifying
the average global symmetry of a galaxy, and can easily be
automated for galaxy surveys. It is also possible to disentangle
bright from faint asymmetries, and to conduct more robust
B/D decompositions in some galaxies. It would be useful to
quantify how much of the total flux is in a bulge versus the
tidally distorted component, which has implications for issues

such as late- versus early-stage mergers, or major versus minor
mergers.

More than just a presentation of new techniques, one of the
main purposes of this study is to highlight a method to more
realistically quantify measurement uncertainties in high-S/N
images. In galaxy fitting, the most desirable goal will always be
to obtain a fit with the lowest χ2, using the simplest model. In
the past, this idea was closely tied to the practice of using one-
or two-component ellipsoid models, out of necessity. Simplicity
is not necessarily congruent with propriety or reality. This study
promotes the notion that simple models can be realistic. It also
opens up new possibilities for more detailed analysis depending
on the image complexity. However, this possibility is both a
blessing and a curse. For, the fact there is not one generic
solution for any galaxy leads to the following conundrum in
image analysis, but one that illustrates the merit of our approach:

“What model should one adopt, how much detail is enough,
and what about degeneracies?” We have shown that detailed
decomposition analysis can be arbitrarily sophisticated. It is for
that same reason there is often not a single, unique answer.
However, the essential fact, as seen through our examples and
other detailed analysis outside of this work, is that the marginal
return of adding complexity quickly diminishes. Therefore, the
above conundrum is in practice easy to address by conduct-
ing analyses of varying sophistication without prejudice, then
judging the outcome by taking a clear view of what goal is to
be achieved. If different solutions yield the same result for a
desired science goal (e.g., bulge luminosity, B/D ratio, aver-
age size, total luminosity, etc.), then it does not matter which
model one adopts. If they yield different outcomes, then the
most realistic analysis ought to be the more true. However, if
it is not possible to decide on the correct model, the different
results by definition give an estimate of the model-dependent
measurement uncertainty. This last attribute, rather than being
a perceived weakness, is fundamentally that which makes the
analysis quantitatively rigorous.

Despite the flexibility allowed by the models, this paper is
merely an initial demonstration of concept and leaves many
issues unsolved. Currently, the formulation of the spiral rotation
function is fairly rigid, and cannot produce arms that wind
back onto itself (although that can be approximated using
the ring feature in Galfit). The amount of curvature in the
bending modes can only fit arcs and not fuller semi-circles
(which can partly be modeled using a lopsided ring). There
remains substantial room for future growth in profile types,
shape definitions, and toward spatial-spectral decompositions
for integral-field data.

C.Y.P. gratefully acknowledges discussions with and sugges-
tions from many people over the course of this work, including
Lauren A. MacArthur who greatly improved this manuscript,
J. Greene, C. Brasseur, D. McIntosh, J. Hesser, T. Puzia, K.
Jahnke, S. Zibetti, E. Bell, A. Barth, E. Laurikainen, M. Bar-
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APPENDIX A

HYPERBOLIC TANGENT ROTATION FUNCTION

The hyperbolic tangent (tanh(rin, rout, θincl, θ
sky
P.A.; r)) portion

of the α-tanh (Equation (28)) and log-tanh (Equation (29))
rotation functions is given by Equation (A5) below. The constant
CDEF is defined such that at the mathematical “bar radius”
rin, the rotation angle θ reaches 20◦. This definition is entirely
empirical. Figure A1 shows a pure tanh rotation function, where
the rotation angle reaches a maximum θout near r = rout.
Beyond rout, the rotation angle levels off at θout. This function is
multiplied with either a logarithmic or a power-law function to
produce the desired asymptotic rotation behavior seen in more
realistic galaxies (see Section 4).

CDEF = 0.23 (constant for “bar′′ definition) (A1)

A = 2 × CDEF

|θout| + CDEF
− 1.00001 (A2)

outθ

r

rin

out

Figure A1. Schematics of a hyperbolic tangent rotation function. rin is the inner
radius where the rotation angle reaches 20◦ relative to the P.A. of the best-fitting
ellipse of a component. Below rin the function flattens out to 0◦. rout is the outer
radius, beyond which the function flattens out to a constant rotation angle, and
θout is the total amount of rotation out to rout.

B = (
2 − tanh−1(A)

) (
rout

rout − rin

)
(A3)

r =
√

Δx2 + Δy2 (circular − centric distance) (A4)

tanh
(
rin, rout, θincl, θ

sky
P.A.; r

) ≡ 0.5×
(

tanh

[
B

(
r

rout
− 1

)
+ 2

]
+ 1

)
.

(A5)

APPENDIX B

HYPERBOLIC TANGENT TRUNCATION FUNCTION

The hyperbolic tangent truncation function (tanh(x0, y0;
rbreak, rsoft, q, θP.A.)) (see Section 5) is very similar to the co-
ordinate rotation formulation in Appendix A, except for differ-
ent constants that define the flux ratio at the truncation radii:
at r = rbreak the flux is 99% of the untruncated model profile,
whereas at r = rsoft the flux is 1%. With this definition, Equation
(B2) is the truncation function:

B = 2.65 − 4.98

(
rbreak

rbreak − rsoft

)
(B1)

tanh(x0, y0; rbreak, rsoft, q, θP.A.) ≡ 0.5

×
(

tanh

[
(2 − B)

r

rbreak
+ B

]
+ 1

)
. (B2)

Note that the radius r is a generalized radius (as opposed to
a circular-centric distance), i.e., one that is perturbed by C0,
bending modes, or Fourier modes, of the truncation function.
When the softening length (Δrsoft) is used as a free parameter, it
is defined as Δrsoft = rbreak − rsoft.

http://www.sdss.org/
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Häussler, B., et al. 2007, ApJS, 172, 615
Heymans, C., et al. 2006, MNRAS, 371, L60
Heymans, C., et al. 2008, MNRAS, 385, 1431
Hinz, J. L., Rieke, G. H., & Caldwell, N. 2003, AJ, 126, 2622
Hopkins, P. F., Cox, T. J., Dutta, S. N., Hernquist, L., Kormendy, J., & Lauer,

T. R. 2009, ApJS, 181, 135
Hopkins, P. F., Hernquist, L., Cox, T. J., Dutta, S. N., & Rothberg, B. 2008, ApJ,

679, 156
Hutchings, J. B., Crampton, D., & Campbell, B. 1984, ApJ, 280, 41
Jahnke, K., et al. 2004, ApJ, 614, 568
Kent, S. M. 1985, ApJS, 59, 115
Kim, M., Ho, L. C., Peng, C. Y., Barth, A. J., & Im, M. 2008a, ApJS, 179,

283

Kim, M., Ho, L. C., Peng, C. Y., Barth, A. J., Im, M., Martini, P., & Nelson,
C. H. 2008b, ApJ, 687, 767

Kormendy, J. 1977, ApJ, 217, 406
Kormendy, J. 1985, ApJ, 292, L9
Kormendy, J. 1987, in Nearly Normal Galaxies from the Planck Time to the

Present, 163
Kormendy, J. 1999, in ASP Conf. Ser. 182, Galaxy Dynamics: A Rutgers Symp.,

ed. D. R. Merritt, M. Valluri, & J. A. Sellwood (San Francisco, CA: ASP),
124

Kormendy, J., & Bender, R. 2009, ApJ, 691, L142
Kormendy, J., & Richstone, D. 1995, ARA&A, 33, 581
Kormendy, J., et al. 2009, ApJS, 182, 216
Krist, J. E., & Hook, R. N. 1997, in The 1997 HST Calibration Workshop with a

New Generation of Instruments, ed. S. Casertano, R. Jedrzejewski, T. Keyes,
& M. Stevens (Baltimore, MD: STScI), 192

Lauer, T. R., et al. 1995, AJ, 110, 2622
Lauer, T. R., et al. 2007, ApJ, 664, 226
Laurikainen, E., et al. 2004, MNRAS, 355, 1251
Lilly, S., et al. 1998, ApJ, 500, 75
Lisker, T. 2008, ApJS, 179, 319
Lotz, J. M., Primack, J., & Madau, P. 2004, AJ, 128, 163
Lotz, J. M., et al. 2008, ApJ, 672, 177
MacArthur, L. A., Courteau, S., & Holtzman, J. A. 2003, ApJ, 582, 689
Marleau, F. R., & Simard, L. 1998, ApJ, 507, 585
Massey, R., Refregier, A., Conselice, C. J., David, J., & Bacon, J. 2004, MNRAS,

348, 214
McLeod, K. K., & Rieke, G. H. 1994, ApJ, 431, 137
McLure, R. J., Dunlop, J. S., & Kukula, M. J. 2000, MNRAS, 318, 693
Moffat, A. F. J. 1969, A&A, 3, 455
Moriondo, G., Giovanardi, C., & Hunt, L. K. 1998, A&AS, 130, 81
Pence, W. 1999, in ASP Conf. Ser. 172, Astronomical Data Analysis Software

and Systems VIII, ed. D. M. Mehringer, R. L. Plante, & D. A. Roberts (San
Francisco, CA: ASP), 487

Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266
Peng, C. Y., Impey, C. D., Ho, L. C., Barton, E. J., & Rix, H.-W. 2006a, ApJ,

640, 114
Peng, C. Y., Impey, C. D., Rix, H.-W., Kochanek, C. S., Keeton, C. R., Falco,

E. E., Lehár, J., & McLeod, B. A. 2006b, ApJ, 649, 616
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,

Numerical Recipes in C. The Art of Scientific Computing (2nd ed.;
Cambridge: Cambridge Univ. Press)

Ratnatunga, K. U., Griffiths, R. E., & Ostrander, E. J. 1999, AJ, 118, 86
Ravindranath, S., Ho, L. C., & Filippenko, A. V. 2002, ApJ, 566, 801
Ravindranath, S., et al. 2004, ApJ, 604, L9
Refregier, A. 2003, MNRAS, 338, 35
Rix, H.-W., Falco, E. E., Impey, C., Kochanek, C., Lehár, J., McLeod, B.,
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