
The Astronomical Journal, 139:565–579, 2010 February doi:10.1088/0004-6256/139/2/565
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

DYNAMICAL EVOLUTION OF THIN DISPERSION-DOMINATED PLANETESIMAL DISKS

Roman R. Rafikov
1

and Zachary S. Slepian

Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540, USA; rrr@astro.princeton.edu
Received 2009 August 10; accepted 2009 November 20; published 2010 January 12

ABSTRACT

We study the dynamics of a vertically thin, dispersion-dominated disk of planetesimals with eccentricities ẽ

and inclinations ĩ (normalized in Hill units) satisfying ẽ � 1, ĩ � ẽ−2 � 1. This situation may be typical
(even if only temporarily) for, e.g., a population of protoplanetary cores in the end of the oligarchic phase of
planet formation. In this regime of orbital parameters, planetesimal scattering has an anisotropic character and
strongly differs from scattering in thick (ĩ ∼ ẽ) disks. We derive analytical expressions for the planetesimal
scattering coefficients and compare them with numerical calculations. We find significant discrepancies in the
inclination scattering coefficients obtained by the two approaches and ascribe this difference to the effects
not accounted for in the analytical calculation: multiple scattering events (temporary captures, which may be
relevant for the production of distant planetary satellites outside the Hill sphere) and distant interaction of
planetesimals prior to their close encounter. Our calculations show that the inclination of a thin, dispersion-
dominated planetesimal disk grows exponentially on a very short timescale implying that (1) such disks
must be very short-lived and (2) planetesimal accretion in this dynamical phase is insignificant. Our results
are also applicable to the dynamics of shear-dominated disks switching to the dispersion-dominated regime.
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1. INTRODUCTION

Terrestrial planets are thought to be formed by agglomeration
of a large number of primitive rocky or icy bodies known as
planetesimals (Safronov 1972). While the origin of planetesi-
mals themselves is still a rather uncertain issue (Youdin 2008)
the process of their collisional agglomeration has been exten-
sively explored (Wetherill & Stewart 1989, 1993; Kenyon &
Luu 1998; Kenyon & Bromley 2004, 2009). Gravitationally in-
duced bending of the trajectories of interacting bodies called
gravitational focusing (Safronov 1972) is known to play a very
important role in speeding up the agglomeration process. The
degree to which the planetesimal collision rate is amplified by
focusing depends sensitively on the velocity dispersion of the
planetesimals: the lower is the relative velocity between the in-
teracting bodies the higher are the gravitational focusing and the
collision cross section. Thus, understanding the accretion his-
tory of planetesimals is impossible without understanding their
dynamical evolution.

Evolution of planetesimal velocities is driven mainly by their
mutual gravitational interaction. A convenient way to character-
ize the shape of planetesimal orbits and their interaction is via
the so-called eccentricity and inclination vectors e and i defined
as (Ida 1990)

e = (ex, ey) = (e cos τ, e sin τ ),

i = (ix, iy) = (i cos ω, i sin ω), (1)

where e, i, τ , and ω are, respectively, the eccentricity, incli-
nation, and horizontal and vertical phases of the planetesimal.
Scattering of two low-mass planetesimals depends only on their
relative eccentricity and inclination vectors er = e1 − e2 and
ir = i1 − i2 (the so-called Hill approximation; see Hénon &
Petit 1986).

There are two important asymptotic regimes of planetesimal
interaction: shear-dominated and dispersion-dominated. The
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former is realized when the random component of planetesimal
velocity, determined by its eccentricity and inclination, is small
compared to the Hill velocity vH = ΩRH . Here Ω is the local
angular frequency in the disk, RH ≡ a(μ1 + μ2)1/3 is the Hill
radius, determined by the distance a to the central object and the
masses of the interacting bodies m1 and m2 relative to the central
mass M�: μi ≡ mi/M�, i = 1, 2. Introducing scaled relative
eccentricity2 ẽr and inclination ĩr vectors of the interacting
bodies as3 ẽr ≡ er/(μ1 + μ2)1/3 and ĩr ≡ ir/(μ1 + μ2)1/3,
one can rewrite the condition for the shear-dominated regime as

ẽ2
r + ĩ2

r � 1. (2)

The relative speed of a pair of interacting bodies in this regime
is set mainly by the Keplerian shear.

The dispersion-dominated regime of planetesimal interaction
is realized when

ẽ2
r + ĩ2

r � 1. (3)

In this case, the relative velocity of the planetesimals is deter-
mined mainly by their random epicyclic motion while Keplerian
shear plays only a minor role. This makes possible analytical
treatment of planetesimal dynamics (Ida 1990; Ida & Makino
1992; Tanaka & Ida 1996,1997; Stewart & Ida 2000), which
until now has been concentrated on the case when ĩ ∼ ẽ, so that
the random velocity distribution of planetesimals is roughly
isotropic. This assumption is very natural in advanced stages of
dynamical evolution of the dispersion-dominated planetesimal
population but it may fail in more general situations.

It is thought (Kokubo & Ida 1998; Rafikov 2004; Goldreich
et al. 2004) that at the very end of the oligarchic stage of plane-
tary growth in the inner parts of the solar system, just before the

2 In this paper, all quantities with a tilde are assumed to be scaled by the Hill
factor (μ1 + μ2)1/3.
3 In this paper, we use the Hill factor adopted by Hénon & Petit (1986),
which differs by 31/3 from the scaling used by some other authors.
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transition to a chaotic final stage of planetary assembly (some-
times called the stage of giant impacts), planetesimal coagula-
tion produced a number (several hundreds) of protoplanetary
cores with masses comparable to the mass of the Moon or Mars,
i.e., ∼(0.01 − 0.1) M⊕. These cores comprised a significant
fraction of all the refractory mass of the disk and were well-
separated in semimajor axis (typically by several Hill radii).

The orbits of these cores are initially not expected to cross
because their eccentricities are very small as a result of efficient
dynamical friction exerted on them by the residual population of
small planetesimals. However, with time the population of small
planetesimals gets eroded by collisional grinding and accretion
by cores, and the strength of dynamical friction goes down.
Distant mutual gravitational perturbations between nearby cores
then gradually increase their velocity dispersion, eventually
allowing their orbits to cross, which leads to collisions between
embryos and their growth into bigger bodies.

Since initially the inclinations of the cores were almost
zero distant perturbations cannot efficiently excite vertical
motion of cores. Moreover, even though dynamical friction
from the remaining planetesimals is no longer efficient in
curbing the eccentricity growth of the cores, it may still be
strong enough to continue damping their inclinations. As a
result, the protoplanetary cores are expected to reside in a
very thin disk with ĩ � 1 all the way until the point when
their orbits start to cross. When this happens one finds that
ĩ � 1 � ẽ, so that the condition ĩ ∼ ẽ usually assumed
in studies of planetesimal dynamical evolution is strongly
violated.

Thus, a vertically thin, dispersion-dominated planetesimal
disk can naturally arise in some circumstances. Since the col-
lision rate of planetesimals is a sensitive function of their
inclination—the smaller is the inclination, the higher is the col-
lision probability and the faster is the protoplanetary growth—it
is important to know how much time the population of cores
spends in the thin-disk configuration after their orbits become
crossing. If this time is sufficiently long, then core masses could
grow significantly by collisions even during the transient period
when their inclinations have not yet increased. This possibility
potentially may act to speed up the final assembly of terrestrial
planets.

A similar situation arises when one considers the transi-
tion of the shear-dominated planetesimal population into the
dispersion-dominated regime. Ida & Makino (1992) showed
that a planetesimal population starting in the shear-dominated
regime typically undergoes a phase in its dynamical evolution
when ĩ � 1 � ẽ (see their Figure 6 for illustration). This phase
does not persist for very long but while it lasts the dynamics
of the planetesimals are significantly different from the usually
assumed case of ĩ ∼ ẽ.

These considerations give us a motivation to explore the dy-
namical regime ĩ � 1 � e in this work. The paper is or-
ganized as follows: in Section 2, we describe the equations
governing the velocity evolution of the planetesimals while
in Section 3 we analytically compute the scattering coeffi-
cients entering these equations in the case of ĩ � 1 � ẽ,
and in Section 4, we compare our results with numerical cal-
culations. In Section 5, we use our results to examine the
velocity evolution of a population of protoplanetary cores
with crossing orbits. In Section 6, we provide comparison
with other studies and discuss additional applications of our
results.
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Figure 1. Schematic illustration of different regions in the ẽ − ĩ phase
space, showing the shear- and dispersion-dominated regions and the thin-disk
dynamical regime (shaded), which is also dispersion dominated (ẽ � 1).

2. VELOCITY EVOLUTION

To understand the velocity evolution of planetesimals, we
consider two populations of planetesimals with masses m1
and m2; populations of different masses contribute linearly to
velocity evolution so it is sufficient to consider just two masses.
We assume that for every planetesimal type ek, ik � 1 and
mk � M�, k = 1, 2, providing justification for using the Hill
approximation.

In this local approximation, the Keplerian orbit of a kth
planetesimal type is described by the following equations:

xk = hk − ek cos(t − τk), (4)

yk = λk − 3
2hkt + 2e sin(t − τk), (5)

zk = ik sin(t − ωk), (6)

where x, y, and z are Cartesian coordinates in the local radial,
azimuthal, and vertical directions centered at some reference
stellocentric distance, h is the planetesimal semimajor axis
separation from the origin of this coordinate system, and λ is
a constant related to the origin of time t (measured in units of
Ω−1).

The relative motion of two non-interacting planetesimals in
Hill units (r̃r = (r1 − r2)/a(μ1 + μ2)1/3) is given by equations

x̃r = h̃r − ẽr cos(t − τr ), (7)

ỹr = λ̃r − 3
2 h̃r t + 2ẽr sin(t − τr ), (8)

z̃r = ĩr sin(t − ωr ), (9)

where ẽr , ĩr are the relative eccentricity and inclination of the
planetesimals, h̃ ≡ (a1−a2)/a(μ1+μ2)1/3 is the semimajor axes
separation normalized in Hill units, and λ̃r = (λ1 − λ2)/a(μ1 +
μ2)1/3. In the following, we will drop the subscript “r” from all
variables characterizing relative motion of planetesimals where
it will not lead to confusion.

Because of the mutual gravitational attraction, relative orbital
elements appearing in Equations (7)–(9) do not remain con-
stant but change according to the following set of equations
(Hasegawa & Nakazawa 1990; Tanaka & Ida 1996):

dh̃

dt
= −2

∂φ

∂ỹ
, (10)
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dλ̃

dt
= 2

∂φ

∂x̃
− 3t

∂φ

∂ỹ
, (11)

dẽx

dt
= − sin t

∂φ

∂x̃
− 2 cos t

∂φ

∂ỹ
, (12)

dẽy

dt
= cos t

∂φ

∂x̃
− 2 sin t

∂φ

∂ỹ
, (13)

dĩx

dt
= − cos t

∂φ

∂z̃
, (14)

dĩy

dt
= − sin t

∂φ

∂z̃
, (15)

where
φ = −(x̃2 + ỹ2 + z̃2)−1/2 (16)

is the interaction potential.
In this work, we assume for simplicity that e and i of a kth

planetesimal population have Gaussian distribution:

ψ(ek, ik)dekdik = dekdik
4π2σ 2

e,kσ
2
i,k

exp

[
− e2

k

2σ 2
e,k

− i2k
2σ 2

i,k

]
, (17)

where σe,k and σi,k are the dispersions of eccentricity and incli-
nation of the kth population. Ida & Makino (1992) have found
that a Gaussian distribution accurately describes the distribution
of e and i found in direct N-body three-dimensional (3D) sim-
ulations of a large number of planetesimals gravitationally in-
teracting in the dispersion-dominated regime. At the same time,
in their dispersion-dominated simulations of two-dimensional
(2D) disks Ida & Makino found more high-energy particles
than a Gaussian distribution would predict. Despite this we still
use distribution (17) to represent velocities of planetesimals in
thin disks as this is not going to strongly affect the velocity
evolution but allows significant simplification.

Our goal is to find how σe,1 and σi,1 of a population with
mass m1 varies in time as a result of gravitational interactions
with planetesimals of mass m2 which have eccentricity and
inclination dispersions σe,2 and σi,2 (for now we neglect other
factors that may affect planetesimal velocities such as gas drag,
inelastic collisions, and so on). General evolution equations for
the case of distribution (17) have been previously derived by a
number of authors (Hornung et al. 1985; Ida 1990; Wetherill &
Stewart 1993; Stewart & Ida 2000). Here we adopt a specific
expression from Rafikov (2003):

∂σ 2
e,1

∂t

∣∣∣
2

= 3

4
ΩN2a

2(μ1 + μ2)4/3

×
[(

μ2

μ1 + μ2

)2

H1 + 2
μ2

μ1 + μ2

σ 2
e,1

σ 2
e,1 + σ 2

e,2

H2

]
,

(18)

where N2 is the surface number density of bodies with mass m2.
Dimensionless stirring coefficients H1,2 appearing in

Equation (18) are defined as

Hk =
∫

dẽdĩψ̃r (ẽ, ĩ)Ĥk(ẽ, ĩ), k = 1, 2, (19)

Ĥ1 ≡
∫ ∞

−∞
dh̃|h̃|〈(Δẽ)2〉τ,ω, (20)

Ĥ2 ≡
∫ ∞

−∞
dh̃|h̃|〈(ẽ · Δẽ)〉τ,ω. (21)

Here Δẽ is the change of ẽ in the course of scattering, and
〈· · ·〉τ,ω ≡ (4π2)−1

∫ ∫
dτdω implies averaging over the rel-

ative orbital phases characterizing vectors ẽ and ĩ. Function
ψ̃r (ẽr , ĩr ) is the distribution function of relative ẽ, ĩ and can be
shown (Stewart & Ida 2000; Rafikov 2003) to be given by

ψr (ẽ, ĩ)dẽdĩ = ẽdẽĩdĩ

σ̃ 2
e σ̃ 2

i

exp

[
− ẽ2

2σ̃ 2
e

− ĩ2

2σ̃ 2
i

]
, (22)

where σ̃ 2
e = (σ 2

e,1+σ 2
e,2)/(μ1+μ2)2/3 and σ̃ 2

i = (σ 2
i,1+σ 2

i,2)/(μ1+
μ2)2/3 are the dispersions of relative eccentricity and inclination.
Thus, functions Ĥ1 and Ĥ2 represent scattering coefficients
for a planetesimal population with a single value of relative
eccentricity e and inclination i, while H1 and H2 are these
coefficients averaged over the distribution (22) of e and i.

The term inside the brackets in Equation (18) proportional
to H1 is called gravitational stirring (Rafikov 2003) while the
term proportional to H2 is called gravitational friction and is
different from the “dynamical friction” used by other authors
(Stewart & Ida 2000; Ohtsuki et al. 2002).

Equation (18) also describes the self-stirring of population
with mass m1 if one changes the subscript “2” to “1” in its
right-hand side (which makes expression in brackets equal to
(H1 + 2H2)/4). For a continuous distribution of planetesimal
masses, Equation (18) should be generalized by integrating the
right-hand side over the mass spectrum.

Equations analogous to Equation (18) can be written for the
inclination evolution by replacing “e” by “i” everywhere in
Equations (18)–(21) and using scattering coefficients K̂1,2 and
K1,2 defined analogously to expressions (19)–(21) instead of
Ĥ1,2 and H1,2).

3. SCATTERING COEFFICIENTS

System (18)–(21) is a rather general set of equations derived
for a Gaussian distribution of orbital elements (17). It allows
one to determine how σe,k and σi,k (k = 1, 2) evolve in time
once coefficients H̃1,2 and K̃1,2 are known as functions of σ̃e

and σ̃i . These coefficients have been previously calculated by a
number of authors in the dispersion-dominated case under the
assumption that ĩ ∼ ẽ. However, as we demonstrate shortly,
these calculations become invalid once ĩ gets sufficiently small
while ẽ � 1. Thus our next step is to rederive scattering
coefficients in the case of ĩ � ẽ from the first principles.

In doing so, we will adopt an approach previously developed
by Ida et al. (1993) for the dispersion-dominated regime.
According to this method, (1) the approach trajectory of one
planetesimal far from another is represented as a straight line
and (2) the effect of perturbations from the central mass on the
gravitational scattering of the two planetesimals is neglected.
There is also an implicit assumption that (3) the scattering
coefficients are dominated (or at least strongly contributed to)
by those planetesimals whose trajectories pass very close to
the perturber. If the latter assumption is fulfilled, then the
other two are quite natural. Indeed, the first approximation
works well because most of the perturbation to the orbit of
the passing particle occurs near the point of closest approach
of the interacting bodies. In this region, the curvature of the
planetesimal trajectory caused by epicyclic motion can be
neglected, justifying the straight-line simplification. The second
approximation works because the most significant contribution
to scattering is due to trajectories passing very close to the
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perturber, within its Hill radius, where the influence of the third,
central body can be disregarded.

When ẽ ∼ ĩ � 1, the flux of approaching planetesimals
in the vicinity of any given perturber is roughly uniform on
scales ∼RH , and every decade in the initial impact parameter
of interacting bodies contributes roughly equally to the scatter-
ing coefficients (Binney & Tremaine 2008). This gives rise to
appearance of the so-called Coulomb logarithm, ln Λ, in expres-
sions for the scattering coefficients. The argument Λ is roughly
the ratio of the maximum impact parameter lmax ∼ ĩRH , beyond
which the density of approaching planetesimals is non-uniform,
to the impact parameter

lmin ∼ RH

ẽ2 + ĩ2
, (23)

at which the trajectories of incoming planetesimals experience
large-angle deflection.

Previous calculations of the scattering coefficients in the
dispersion-dominated regime assumed that lmax � lmin meaning
that ln Λ � 1. In this case, the scattering calculation for
closely approaching orbits with impact parameters ∼lmin � RH

which can be done analytically approximates quite well (with
logarithmic accuracy) the full scattering coefficients so that
the aforementioned assumption of the dominance of close
encounters for scattering coefficient calculation is roughly
fulfilled. Clearly, lmax � lmin requires that ĩ � 1/ẽ2, which
is essentially a condition for the standard expressions for the
dispersion-dominated scattering coefficients to be valid.

In this work, we look at the opposite extreme, namely a
situation when

ĩ � ĩcrit ≡ ẽ−2 � 1, ẽ � 1, (24)

(see Figure 1 for illustration). When this condition is satisfied,
the assumption of a uniform distribution of approaching plan-
etesimals around the scatterer does not hold even for l ∼ lmin.
Then a new calculation of scattering coefficients is needed.

In Appendix A, we present the details of such a calculation
which makes the following set of assumptions: (1) the planetes-
imals move at high relative velocities which allows us to use a
two-body scattering approximation, (2) the planetesimal veloc-
ities change only during close approaches, which are possible
only when h̃ < ẽ, (3) the gravitational interaction between plan-
etesimals at large separations is neglected, and (4) after changing
as a result of the encounter with the scatterer the planetesimal’s
orbital elements do not change further. These simplifications
allow us to derive the following set of expressions for the inte-
grands of the scattering coefficients; see Equations (20)–(21):

〈(Δẽ)2〉ω,τ = 20

3

ṽ

|h̃|
√

ẽ2 − h̃2
, (25)

〈ẽ · Δẽ〉ω,τ = −4

3

ẽ2

ṽ|h̃|
√

ẽ2 − h̃2
, (26)

〈(Δĩ)2〉ω,τ = 2

3

ṽ5 ĩ2

|h̃|
√

ẽ2 − h̃2
, (27)

〈ĩ · Δĩ〉ω,τ = −2

3

ĩ2

ṽ|h̃|
√

ẽ2 − h̃2
. (28)

Note that these expressions do not contain a Coulomb logarithm
and do not suffer from the ambiguity related to the choice

of minimum and maximum values of impact parameters lmin
and lmax typical for the 3D case. The physical reason for this
lies in the fact that in limit (24) the scattering coefficients are
dominated by trajectories with impact parameters l ∼ lmin, i.e.,
those leading to large-angle scattering. Thus, integrals over dl
appearing in the calculation of the scattering coefficients are
mostly contributed by l ∼ lmin in the quasi-2D case,4 so that
values of l much larger and much smaller than lmin affect the
coefficients only weakly. This is very different from the 3D
case, in which trajectories experiencing weak scattering provide
significant contribution to the scattering coefficients.

Integrating these equations over |h̃|dh̃ from 0 to ẽ (limits
within which a given planetesimal can experience a close en-
counter with the scatterer) and substituting into Equations (20)–
(21) we arrive at the following expressions for the scattering
coefficients corresponding to fixed ẽ and ĩ and averaged over
the phase angles τ and ω:

Ĥ1 = 40

3
E

(√
3

2

)
ẽr = 16.147ẽr , (29)

Ĥ2 = − 8

3
K

(√
3

2

)
ẽr = −5.751ẽr , (30)

K̂1 = 1

9

[
41

5
E

(√
3

2

)
− K

(√
3

2

)]
ĩ2
r ẽ

5
r

= 0.864ĩ2
r ẽ

5
r , (31)

K̂2 = − 4

3
K

(√
3

2

)
ĩ2
r

ẽr

= −2.875
ĩ2
r

ẽr

. (32)

Finally, averaging coefficients (29)–(32) over the Gaussian
distribution (17) one finds that

H1 = 20
√

2π

3
E

(√
3

2

)
σ̃e,r ≈ 20.237σ̃e,r , (33)

H2 = − 4
√

2π

3
K

(√
3

2

)
σ̃e,r ≈ −7.207σ̃e,r , (34)

K1 = 5
√

2π

3

[
41

5
E

(√
3

2

)
− K

(√
3

2

)]
σ̃ 2

i,r σ̃
5
e,r

≈ 32.478σ̃ 2
i,r σ̃

5
e,r , (35)

K2 = − 4
√

2π

3
K

(√
3

2

)
σ̃ 2

i,r

σ̃e,r

≈ −7.207
σ̃ 2

i,r

σ̃e,r

. (36)

These expressions represent the behavior of scattering coeffi-
cients in the limit (24).

4. COMPARISON WITH NUMERICAL RESULTS

To check our analytical results we ran a series of numerical
calculations. The latter are the Monte Carlo computations of
integrals in Equations (19)–(21) with Δẽr , Δĩr obtained by direct
integration of Equations (10)–(15). Equations for the evolution
of orbital elements have been integrated using the fourth-order
Runge–Kutta method with adaptive step size control (Press

4 Note that this property makes the assumptions adopted in our calculation
quite robust.
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et al. 1992). Conservation of Jacobi constant has been routinely
monitored and this integral of motion has been found to vary
during the calculation by at most one part in 105 for a very
small number of orbits. In the majority of calculations the Jacobi
constant has been conserved to relative accuracy of better than
10−10.

The orbits used in the Monte Carlo evaluation of integrals
have been drawn from the distribution of initial orbital parame-
ters appropriate for each particular scattering coefficient. When
computing 〈ẽ · Δẽ〉ω,τ , 〈(Δẽ)2〉ω,τ , etc. we select a set of values
of ẽ, ĩ, and h̃, and draw τ and ω randomly from a uniform
distribution between 0 and 2π . When computing Ĥ1,2, K̂1,2 we
also draw h̃ from a uniform distribution between −Lh and Lh,
while keeping ẽ, ĩ fixed. Finally, to compute H1,2, K1,2 we draw
ẽx , ẽy , ĩx , ĩy randomly from a Gaussian distribution (17) with
given dispersions σ̃e and σ̃i , while h̃ is drawn from a uniform
distribution between −Lh and Lh.

In all of our calculations of Ĥ1,2, K̂1,2, we use

Lh = 10 + 4ẽ, (37)

to ensure that even orbits with h̃ > ẽ are properly accounted
for. When computing H1,2, K1,2 we use the same prescription
for Lh but with σ̃e replacing ẽ. We adopted the following pre-
scription for the number of orbits used for evaluating scattering
coefficients:

N = 5 × 104[10 + (1 + ĩ)(1 + ẽ)2]. (38)

Thus, to compute scattering coefficients for ẽ = 15 we run
around 13 million scattering calculations. For H1,2, K1,2 we
used the same prescription with σ̃e, σ̃i replacing ẽ, ĩ.

In Figure 2, we present the results of the calculation of
Ĥ1,2, K̂1,2/ĩ

2 as a function of ẽ, for several values of ĩ =
10−1, 10−2, 10−4, 10−6, together with our analytical predic-
tions (29)–(32) shown by solid lines. Values of K̂1,2 are
scaled by ĩ2 to simplify comparison of curves corresponding to
different ĩ.

Figure 2(a) demonstrates rather good agreement between
analytical and numerical results for the gravitational stirring
coefficient Ĥ1 almost everywhere in the considered range.
Agreement at very small values of ẽ is likely a coincidence
since at ẽ ≈ 1 a transition to a shear-dominated scattering
should occur which invalidates our assumption of ẽ � 1. At
higher values of ẽ curves corresponding to different ĩ generally
line up with the analytical results quite well except for the
noticeable deviation of the ĩ = 0.1 curve from the analytical
result (29) which starts around ẽ ≈ 3 and becomes stronger as
ẽ grows. This deviation is expected since our analytical results
are valid only for ĩ satisfying constraint (24). For ĩ = 0.1, this
means that agreement with the analytical result is expected only
for ẽ � ĩ−1/2 ≈ 3, in good correspondence with Figure 2. This
point is reinforced by observing the deviation of ĩ = 10−2 results
from the analytical curve that starts at ẽ ≈ 10 ≈ (10−2)1/2, i.e.,
again agrees with constraint (24). Points for ĩ = 10−4 and 10−6

fall on top of each other in the whole range of calculation as
they should. They lie somewhat below the analytical prediction
for large values of ẽ, which we do not have a good explanation
for.

The same applies very well to the results for the gravitational
friction coefficient Ĥ2 shown in Figure 2(b). The only slight

Figure 2. Results of the numerical calculation of scattering coefficients (a) Ĥ1,
(b) Ĥ2, (c) K̂1/ĩ

2, (d) K̂2/ĩ
2, compared with analytical predictions (29)–(32),

represented by solid lines. Values of coefficients are shown as functions of ẽ

for ĩ = 10−1, 10−2, 10−4, 10−6 (see the legend in panel (b) for associating
different dot styles with particular ĩ).

difference is that the influence of the shear-dominated regime is
more pronounced for this scattering coefficient, as Ĥ2 settles
onto the analytical result (30) only at ẽ ≈ 2.5. Thus, the
scattering coefficients based on eccentricity changes agree with
theory quite well within the range of applicability of the
analytical results.

We now turn to coefficients K̂1,2 which are based on changes
in inclination. As one can see from Figure 2(c), the shear-
dominated regime affects the stirring coefficient K̂1 for ẽ � 2.5.
As expected from our previous discussion, K̂1 strongly deviates
from the analytical prediction starting at around ẽ ≈ 3 for
ĩ = 0.1 and at around ẽ ≈ 10 for ĩ = 10−2. However, the
results for ĩ = 10−4 and ĩ = 10−6 generally do not fall on
top of each other as one would expect given that the quadratic
scaling of K̂1,2 with ĩ has been removed in Figures 2(c) and
(d). Moreover, the values of K̂1 clearly deviate quite strongly
from the analytical prediction (31), sometimes by three orders
of magnitude, without any recognizable regular pattern.

The numerical results for the gravitational friction coefficient
K2 as compared with theory are even more surprising, as
Figure 2(d) demonstrates. Here, for small values of ẽ � 5,
K̂2 systematically increases with ẽ, while analytical result (32)
predicts that K̂2 should be a decreasing function of ẽ. At larger
ẽ, numerically computed values of K̂2 exhibit significant scatter
in a chaotic fashion. To be fair, one should note that some of
the theoretical expectations are confirmed by numerics even
for K̂2: a curve for ĩ = 0.1 again diverges from other curves
corresponding to smaller values of ĩ at ẽ ≈ 3.

In Figure 3, we look at the behavior of scattering coefficients
as functions of ĩ for a fixed value of ẽ. The main goal of these
plots is to illustrate the transition between the thin- and thick-
disk regimes of planetesimal scattering occurring at icrit ≈ ẽ−2.
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Figure 3. Plots of the same scattering coefficients as in Figure 2 but now as a
function of ĩ for ẽ = 4 and ẽ = 10 (see the legend in panel (b)). Analytical
results for the case of a thin disk are shown as solid lines for ẽ = 4 and as
dotted lines for ẽ = 10. Long-dashed lines show analytical scaling of scattering
coefficients in the 3D regime, when ĩ � ẽ−2.

The rather good accuracy of our analytical results can clearly
be seen in the behavior of Ĥ1,2 and even K̂1 (the situation is
less clear in the case of K̂2): the behavior of the scattering
coefficients changes dramatically at ĩ ≈ 10−2 for ẽ = 10 and at
ĩ ≈ 0.05 for ẽ = 4. The long-dashed lines in Figure 3 illustrate
the scaling of the scattering coefficients with ĩ in the thick-disk
regime (Stewart & Ida 2000), and show good agreement with
our numerical results when condition (24) is violated. It is clear
from Figures 3(a) and (b) that our thin-disk theory describes the
behavior of eccentricity-based coefficients Ĥ1,2 quite accurately
even for ẽ = 4, which is not very far from the shear-dominated
regime.

However, from Figures 3(c) and (d) one sees once again that
the inclination-based coefficients K̂1,2 deviate from analytical
predictions. Already for ẽ = 4 coefficient K̂1 exhibits stochastic
variations as a function of ĩ by a factor of order unity. At ẽ = 10,
these variations become quite dramatic and exhibit an increasing
trend with decreasing ĩ. This is rather surprising since one
expects analytical theory to work better for very small values of
ĩ, when condition (24) is satisfied by a large margin. This clearly
indicates that the theory is missing some important ingredient,
a conclusion which is additionally reinforced by Figure 3(d)
demonstrating rather poor agreement between numerical and
analytical values of K̂2.

In Figures 4 and 5, we show the behavior of scattering
coefficients H1,2, K1,2 averaged over the Gaussian distribution
of ẽ and ĩ. As expected, all the major features of Ĥ1,2,
K̂1,2 discussed above are preserved in these plots, although
the overall agreement with theory is additionally spoiled by
the fact that numerically computed H1,2, K1,2 represent a
Gaussian convolution of Ĥ1,2, K̂1,2 over an extended range
in ẽ and ĩ, and not everywhere inside this range are the

Figure 4. Same as Figure 2 but for scattering coefficients (a) H1, (b) H2,
(c) K1/σ̃

2
i , (d) K2/σ̃

2
i , corresponding to the Gaussian distribution of ẽ and

ĩ. Coefficients are shown as a function of σ̃e for several values of σ̃i =
10−1, 10−2, 10−4, 10−6 (see the legend in panel (b) for associating different
dot styles with different σ̃i )

basic assumptions (e.g., dispersion-dominated scattering) of our
analytical theory fulfilled. In particular, numerical coefficients
are affected to some extent by shear-dominated scattering
events, not accounted for in our theory. Also, at high σ̃i ∼
0.1 − 10−2 a significant fraction of numerically integrated
scattering events had values of ĩ ∼ ẽ corresponding to thick-
disk scattering, for which the behavior of coefficients is different
from our theory; see Figure 3.

Based on the results presented in Figures 2–5 we conclude that
analytical theory explains quite well the behavior of scattering
coefficients based on changes of ẽ, while it provides a rather poor
fit to the numerically determined behavior of the inclination-
based scattering coefficients. There may be several reasons for
this discrepancy, some of which are listed below.

1. It may be that the discrepancy arises when we integrate
the phase-averaged coefficients 〈ẽ · Δẽ〉ω,τ , 〈(Δẽ)2〉ω,τ , etc.
over h̃ to obtain Ĥ1,2, etc.; see definitions (20) and (21).
In particular, encounters with h̃ > ẽ neglected in our
analytical work may provide an important contribution to
the numerically computed rates.

2. The two-body approximation used in our analytical calcu-
lations does not work well.

3. Our assumption of a single close scattering per approaching
orbit may be faulty, as the scattered planetesimals may have
orbital parameters allowing them to experience additional
close approaches with the scatterer.

4. Our theory assumes that the changes in planetesimal orbital
elements occur only during the close approach, when the
planetesimal separation is � RH , while in reality it may be
that the more distant interactions between planetesimals at
separations � RH also play an important role.

We devote the rest of this section to exploring these
possibilities.
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Figure 5. Plots of the same scattering coefficients as in Figure 4 as a function
of σ̃i for σ̃e = 4 and σ̃e = 10 (see the legend in panel (b)). Analytical results
for the case of a thin disk are shown as solid lines for σ̃e = 4 and as dotted lines
for σ̃e = 10.

4.1. Integration Over h̃

To figure out whether the aforementioned discrepancy be-
tween the analytical and numerical inclination-based scatter-
ing coefficients can be caused by the integration of the phase-
averaged coefficients over h̃ we look at the behavior of the
phase-averaged coefficients. In Figure 6, we present their scal-
ing with ẽ for a fixed value of h̃ = 10 and several values of ĩ.
Similarly, in Figure 7 these coefficients are shown as functions
of h̃ for fixed ẽ and the same values of ĩ. Based on these plots
we can make several conclusions.

First, when ẽ > h̃ analytical predictions for 〈ẽ · Δẽ〉ω,τ

and 〈(Δẽ)2〉ω,τ fit our numerical results quite well. Coefficients
computed for ĩ = 0.1 deviate from theory because, as previously
described, they do not correspond to the thin-disk scattering
regime. At the same time 〈ĩ · Δĩ〉ω,τ and 〈(Δĩ)2〉ω,τ are still
significantly different from theory and exhibit rather erratic
behavior.

Second, the values of all scattering coefficients corresponding
to ẽ < h̃ are much smaller than their values for ẽ > h̃. In
the latter case, planetesimals can experience a close approach,
while in the former this is not possible, and changes of orbital
elements are much weaker than in the latter case. As a result,
contribution of orbits with ẽ < h̃ to scattering coefficients
is very small. In fact, one can see from Figure 7 that for
ẽ = 10, 〈(Δẽ)2〉ω,τ computed at h̃ = 10 (close encounters
possible) and h̃ = 11 (close encounters not possible) differ
by more than two orders of magnitude. The same is true for
〈ẽ · Δẽ〉ω,τ , while for 〈(Δĩ)2〉ω,τ and 〈ĩ · Δĩ〉ω,τ this difference
is six and three orders of magnitude, respectively. This very
well illustrates our point made in Section 3 that trajectories
experiencing large-angle scattering (possible only for ẽ > h̃)
strongly dominate scattering coefficients in the case of a thin
planetesimal disk.

Figure 6. Plots of phase-averaged scattering coefficients (a) 〈(Δẽ)2〉ω,τ , (b)
〈ẽ · Δẽ〉ω,τ , (c) 〈(Δĩ)2〉ω,τ , (d) 〈ĩ · Δĩ〉ω,τ , as functions of ẽ for a fixed value of
h̃ = 10 and several values of ĩ = 0.1, 10−2, 10−4, 10−6; see the legend in panel
(b). Note the rapid decay of scattering coefficients for ẽ < h̃. Dotted lines show
analytical predictions for ẽ > h̃.

Figure 7. Same as Figure 6 but with phase-averaged coefficients plotted as
functions of h̃ for ẽ = 10.

To summarize, the results displayed in Figures 6 and 7
make it clear that the well-separated orbits with ẽ < h̃, for
which strong scattering is impossible, do not contribute much
to the scattering coefficients. All the discrepancy between the
theoretical and numerical values of K̂1,2 and K1,2 is already
present in the corresponding phase-averaged coefficients, and
is not introduced by the integration of the phase-averaged
coefficients over only a finite range of h̃, |h̃| < ẽ.
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4.2. Accuracy of the Two-body Approximation

Next we consider whether the two-body approximation
adopted in our analytical calculations is valid for the case of
thin-disk scattering.

Previously, Tanaka & Ida (1996) have compared numerically
computed changes of orbital parameters resulting from grav-
itational scattering with analytical predictions derived in the
two-body approximation. They found good agreement between
the two, except for the narrow regions of the initial epicyclic
phases in which orbital parameters evolved in a chaotic man-
ner, if (1) h̃ � 2, (2) the encounter velocity ṽ0 � 4 and (3) a
small shift in the initial epicyclic phases τ and ω is introduced
to match analytical predictions. Tanaka & Ida (1996) have com-
pared only Δh calculated by both methods for ĩ = 0, and also the
changes of other orbital elements for ĩ ∼ ẽ � 1. None of these
cases corresponds to the regime of thin-disk scattering consid-
ered in this work although the former does describe quite well
the variation of the eccentricity-based scattering coefficients.
For that reason, we ran our own calculations with initial orbital
parameters selected to correspond to the thin-disk case.

In general, we find good agreement with the conclusions of
Tanaka & Ida (1996), as shown in particular in Figure 8 where
we display the changes of various orbital elements resulting
from gravitational scattering as well as the minimum approach
distance between the scattering bodies l̃min. In making this figure
we have slightly shifted analytical curves (shown as dotted lines)
in τ by Δτ = −0.05 to make them better match numerical
results (shown as solid curves). In practice, such a shift of the
orbital phase arises due to the distant interaction between the
planetesimals as they approach each other (Tanaka & Ida 1996).
Only one interval of τ in which strong scattering is possible is
shown, 0.3 < τ < 0.39; another one exists at 5.97 < τ < 6.05,
in accordance with the discussion in Appendix A, where the
existence of two values of τ for which close encounters are
possible for ẽ > h̃ is stated.

One can deduce from Figure 8 that analytical curves follow
the numerical results quite well for the majority of values of τ
except for the two narrow ranges of τ , namely 0.32 < τ < 0.33
and 0.35 < τ < 0.355. Inside these intervals, orbital elements
experience strong chaotic variations as τ changes, with Δh̃,
Δẽx , Δẽy deviating from analytical prediction by a factor
of order unity, while Δĩx , Δĩy differ from theory by several
orders of magnitude (off scale on these plots)! Although these
deviations are very significant we will show next that they
are not caused by the failure of the two-body approximation.
Thus, use of the two-body approximation cannot explain the
discrepancy between the numerical and analytical inclination-
based scattering coefficients.

4.3. Single-scattering Approximation

Our calculation has always assumed that changes of orbital
elements arising during a scattering event are final. In reality,
there may be a situation when a post-scattering orbital elements
are such that they cause another close approach between plan-
etesimals, leading to additional variation of orbital elements.
And this may happen not just once for a given incoming orbit.
Such multiple-scattering events are very typical for planetesi-
mals scattering in the shear-dominated regime but their impor-
tance in the high-velocity case is not very obvious.

To see that multiple scattering is indeed possible even in the
dispersion-dominated regime we take a closer look at Figure 8(i)

Figure 8. Changes of relative orbital parameters (a) (Δĩ)2, (b) ĩ · Δĩ, (c) (Δẽ)2,
(d) ẽ·Δẽ, (e) Δĩx , (f) Δĩy , (g) Δẽx , (h) Δẽy , (i) Δh̃, and (j) the minimum separation
l̃min of planetesimals plotted as a function of their relative horizontal epicyclic
phase τ (at large separation prior to scattering). Initial orbital parameters
corresponding to this calculation are shown at the top of the plot. Only an
interval 0.3 < τ < 0.39 in which strong scattering takes place is displayed.
Solid curves show the numerical results while the dotted lines are the analytical
predictions. Note the chaotic variation of orbital parameters for 0.32 < τ < 0.33
and 0.35 < τ < 0.355.

where we plot Δh̃ as a function of τ . One can see that chaotic
orbits strongly deviating from analytical prediction (shown as
a dotted line) exist almost solely in those regions where Δh

predicted by theory happens to be ≈ −h̃ (Δh ≈ −5 ≈ −h̃ in the
case displayed in this figure). This is not a coincidence, and what
really happens is the following. First, planetesimals scatter and
their orbital elements change in full agreement with analytical
theory. This means, however, that post-scattering h̃ ∼ 1 and
the guiding center of the planetesimal orbit is now moving very
slowly with respect to the scatterer, while eccentricity is still
quite high. Right after scattering planetesimals are very close
to each other, and Keplerian shear does not allow their guiding
centers to recede very far because h̃ is small, so that after one
orbital period planetesimals may closely approach each other
again and experience another scattering. This second scattering
may or may not dislodge them from close proximity of each
other but it will certainly affect their final orbital elements,
explaining the deviation of Δh̃ and other orbital elements from
theoretical predictions when Δh ≈ −h̃. Thus, we conclude that

1. Chaotic variations of orbital elements result from multiple
scatterings of planetesimals in the course of close encounter
rather than from the failure of the two-body approximation.

2. Phase intervals where theoretical Δh̃ ≈ −h̃ are naturally
occupied by chaotic orbits (there are also other possibilities
for producing multiple scattering orbits, see below).

These observations greatly help in explaining the puzzling
results for the inclination-based scattering coefficients. From
pure geometry it is clear that the highest inclination ĩ1 which a
high-velocity particle with initial inclination ĩ0 can attain after
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a single-scattering event is5

ĩ1 ∼ ĩ0ṽ
3
0 . (39)

This is easily seen in Figures 8(e) and (f) which show that
maximum ĩ1 ∼ 10−2 for ĩ0 ∼ 10−4: since ṽ0 = (ẽ2 −
(3/4)h̃2)1/2 ≈ 4.2 one should expect maximum ĩ1 ∼ 10−4 ×
4.23 ≈ 0.007, very close to what we find in reality outside of
the region of chaotic orbits.

At the same time Figures 8(e) and (f) show that chaotic orbits
often exhibit final ĩ much larger than predicted by Equation (39).
This, of course, is naturally explained by the fact that chaotic
orbits result from multiple scattering. Every scattering of a high-
velocity orbit can potentially increase inclination by a factor
ṽ3

0 � 1 (the approach velocity of planetesimals does not change
very strongly after multiple scatterings and is still ∼ṽ0; this can
be understood from the conservation of Jacobi constant). Thus,
after n scatterings maximum possible inclination would have
been ĩn ∼ ĩ0ṽ

3n
0 , except that in practice ĩ cannot exceed ṽ0. The

highest final ĩ that we could find for the parameters of Figure 8
is ≈ 0.7 but one has to keep in mind that orbits in the chaotic
region exhibit quasi-fractal behavior in that the denser is the grid
in τ used for computing Δĩ the richer the behavior found. Thus,
we could have easily missed orbits with even higher final ĩ. On
theoretical grounds we expect the maximum ĩ in this figure at
the level of 10−4 × 4.23×2 ≈ 0.5 if only n = 2 close scatterings
have taken place.

In Figure 9, we illustrate a multiple-scattering event for an
orbit with initial parameters ẽ = 15, ĩ = 10−6 and h̃ ≈ 12.6
(in this case ṽ0 ≈ 10.2). From Figures 9(b) and (c) one can
see that as a result of the first scattering h̃ becomes very small
while ĩ jumps up by ∼102. After that the planetesimal loops
around its scatterer for several orbital periods, as illustrated
in Figures 9(d)–(f), until the second strong scattering takes
place, resulting in final h̃ ≈ 20. This allows the planetesimal to
leave the vicinity of its scatterer. During the second scattering
ĩ is again boosted up by more than two orders of magnitude,
resulting in final ĩ ≈ 0.03. This is much larger than 10−6 ×
10.23 ≈ 10−3—the maximum ĩ1 one would expect from single
scattering.

It is easy to show (see Equations (A9)–(A11)) that the
interval of the horizontal phase τ corresponding to the large-
angle scattering on regular single-scattering orbits has width
Δτreg ∼ ṽ−3

0 . At the same time, the width of the τ -interval for
which |h̃ + Δh̃| ∼ 1 and multiple scattering is possible can be
demonstrated to be Δτch ∼ h̃−1ṽ−3

0 ; see Equation (A11). Since
Δτch � Δτreg for h̃ ∼ ẽ � 1, we infer that the chaotic orbits
occupy smaller volume of phase space than the regular orbits
with strong scattering do (keep in mind that not all chaotic
orbits for which |h + Δh| ∼ 1 result in strong scattering). But
when multiple scattering on chaotic orbit does take place its
corresponding Δĩ may easily have magnitude far exceeding
maximum Δĩ achievable on the regular, single-scattering orbit
(this statement is only true for ĩ � ẽ−2; see below).

5 Highest inclination results from scattering by ≈ π/2, which requires the
impact parameter of the incoming trajectory to be l̃ ∼ ṽ−2

0 , at initial vertical
separation of order ĩ0RH . The final velocity of the receding planetesimal is ṽ0
and from simple geometry its vertical component (which is equivalent to
inclination in Hill units) is ṽ0 × (ĩ0/l̃) ∼ ĩ0ṽ

3
0 .

Figure 9. (a)–(c) Variation of the relative orbital elements of two planetesimals
in the course of a multiple-scattering event, for initial orbital elements indicated
at the top of the plot. Evolution of (a) the relative distance between the bodies
r̃ , (b) their relative inclination ĩ, and (c) their ẽ (solid line) and h̃ (dotted
line) are shown. This trajectory exhibits two strong scattering events in each
of which ĩ gets boosted up by two orders of magnitude. (d)–(f) Trajectory of
relative motion in the course of scattering shown (d) in the ỹ–x̃ coordinates
and (e) in ỹ–z̃ coordinates. A zoomed-in version of panel (e) is shown in panel
(f) to better illustrate the complexity of vertical motion before the final scattering
causes planetesimals to recede from each other. In panel (d), we show both the
instantaneous position of planetesimal that is being scattered (solid line) and
the trajectory of its guiding center (dotted line). See the text for more details.

This helps us understand the erratic behavior of scattering
coefficients K̂1,2 in Figure 2. In particular, multiple scattering
orbits very strongly affect K̂1 since Δĩ enters the calculation
of this stirring coefficient in a second power. Because of that,
even though chaotic orbits arise for only a small subset of
horizontal epicyclic phases they affect the value of numerically
determined K̂1 very strongly. According to Equation (27),
〈(Δĩ)2〉ω,τ ≈ 6.5 × 10−10 for the values of ẽ, h̃, and ĩ used
in making Figure 9. At the same time a single orbit as displayed
in Figure 9 has (Δĩ)2 ∼ 10−4, more than 106 times higher
than the theoretical phase average of this quantity. It is thus not
surprising that even though we have used a very large number
of orbits in computing scattering coefficients (according to the
prescription (38) our calculation of K̂1 for ẽ = 15 used 13.3
million orbits) chaotic orbits still affect them quite significantly.

We can also explain why the scatter in numerical values of
K̂1 and the deviation from analytical prediction both become
stronger as ĩ decreases: the maximum possible value of ĩ

resulting from scattering is always limited from above by ĩ ∼ ṽ0,
so that the maximum stochastic (Δĩ)2 ∼ v2

0, independent of
initial ĩ. However, the analytical value of K̂1 ∝ ĩ2, so that
the ratio of analytical K̂1 to the numerical one increases as ĩ
decreases.

It is not even clear that our calculation of K̂1 in Figure 2 has
converged—one cannot guarantee that increasing the number of
orbits would not increase even more the number of extremely
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Figure 10. Same as Figure 9 but for a different choice of orbital elements
indicated at the top of the plot characterized by small initial h̃. Note an
exponential growth of ĩ by several orders of magnitude in panel (b). In panel
(d), we plot only a small fraction of data during the scattering event as dots to
better illustrate the underlying structure. See the text for more details.

chaotic orbits with very large Δĩ, which would then dominate
the calculation. The only thing that argues against this scenario
is the saturation of final ĩ at the level of ṽ0 even for very
large number of repeated scatterings. Nevertheless, until we
understand how much of the phase space volume corresponds
to chaotic orbits with very large Δĩ we cannot draw a final
conclusion about the convergence of K̂1 and we leave this
subject for future investigation. Paradoxically, the agreement
between the numerical and analytical results may be better if
one uses smaller number of orbits in the numerical calculation
of K̂1,2 since then the chance of randomly picking one of the
high-Δĩ, multiple scattering orbits is also smaller.

In the course of our investigation, we have also found that
orbits with ẽ � 1 and h̃ � 1 (like the one shown in
Figure 9) are not the biggest contributors to chaos in K̂1,2.
It turns out that inclination-based scattering coefficients are
most strongly affected by orbits with ẽ � 1 and h̃ ∼ 1,
i.e., orbits which are initially close to the separatrix between
the horseshoe and passing orbits. An example of planetesimal
scattering corresponding to this case is shown in Figure 10
for initial h̃ ≈ 1.02, ẽ = 10, ĩ = 10−6. This event is
characterized by a very long time interval, more than 103

orbital periods, during which planetesimals stay close to each
other. They essentially form a temporary distant satellite system
(note that the distance between planetesimals is larger than
RH), which slowly evolves in time. Figure 9(b) demonstrates
that during this temporary capture h̃ oscillates around zero
not allowing planetesimals to recede from each other. Their
relative inclination increases exponentially (with rather long
time constant) by four orders of magnitude in an orderly fashion.
Finally, a strong scattering event occurs, which boosts up ĩ by
∼102 and dislodges the planetesimal from its scatterer’s vicinity.

Figure 11. Same as Figure 10 but for a different choice of orbital elements
indicated at the top of the plot. Note that while after the first scattering h̃ is not
particularly close to unity, multiple scattering still takes place. See the text for
more details.

For this event (Δĩ)2 ∼ 1, while a single-scattering calculation
would predict 〈(Δĩ)2〉ω,τ ≈ 6.7×10−9 for the values of ẽ, h̃, and
ĩ shown on top of Figure 11. As a result, this single-scattering
event completely determines the calculation of K̂1.

It is worth pointing out here that multiple scattering in general
does not require Δh̃ ≈ −h̃, and Figure 11 illustrates this
statement. This figure shows a double-scattering event for initial
h̃ = 5, ẽ = 12, and ĩ = 10−4. As can be seen in Figure 11(c)
after the first strong scattering event h̃ ≈ 3.5 and Keplerian shear
ensures that the bodies will not stay close to each other for very
long. However, before the planetesimal leaves its scatterer’s
vicinity, its epicyclic motion brings it back into their mutual
Hill sphere where another scattering event occurs. This type of
multiple-scattering event does not affect coefficients K̂1,2 nearly
as much as events with Δh̃ ≈ −h̃.

While for ĩ � ẽ−2 multiple scattering has enormous effect on
inclination-based scattering coefficients, it has almost no effect
on the eccentricity-based coefficients, which is immediately
obvious from Figures 2 and 4, nor is its effect important for the
inclination-based coefficients as ĩ increases beyond ẽ−2. The
first statement follows from a simple fact that the maximum Δẽ
on chaotic orbits is ∼ẽ, which is the same as maximum Δẽ on
regular orbits—the maximum change of velocity in two-body
scattering is ∼ṽ0 irrespective of the number of close approaches.
But the phase space volume occupied by chaotic orbits is smaller
than Δτreg, which makes their contribution to the eccentricity-
based coefficients unimportant.

The second statement results from the fact that the maximum
possible Δĩ of chaotic orbits is also of order ẽ irrespective of
the initial ĩ, simply because of the Jacobi constant conservation.
As inclination grows to ĩ ∼ ẽ−2 a significant fraction (order
unity) of the regular orbits that lead to large-angle scattering
start passing above and below the scatterer and are deflected
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down or up with large vertical velocity ∼ṽ0, corresponding to
Δi ∼ ṽ0 ∼ ẽ. Since the phase space volume occupied by these
regular orbits is much larger than Δτch, the role of multiple
scattering in determining the value of the inclination-based
coefficients for ĩ � ẽ−2 becomes insignificant.

To summarize, for ĩ � ẽ−2 multiple scattering explains
the discrepancy between the analytical and numerical results
for K̂1 and stochastic scatter at high ẽ in values of K̂2 quite
well. However, this explanation does not work so well for the
systematic deviation of the numerical K̂2 from the analytical
one clearly seen in Figure 2(d) for virtually all values of ẽ: even
at small ẽ, when the stochastic scatter is small, K̂2 increases
contrary to theory. Note that while the lower envelope of K̂1 for
a given ĩ agrees quite well with the analytical prediction (and
multiple scattering explains the remaining stochasticity), this is
clearly not true for K̂2.

4.4. Distant Interaction

To understand the systematic deviation of the numerical K̂2
from the analytical prediction (32) we first note that coefficient
〈ĩ · Δĩ〉ω,τ used in calculating of K̂2 also systematically differs
from the analytical prediction given by Equation (28); see
Figures 6(d) and 7(d). This may seem surprising since in
Figure 8(b) the numerically determined ĩ · Δĩ follows quite
closely analytical prediction as a function of horizontal phase τ .
Chaotic variations of ĩ · Δĩ, due to multiple scattering noticeable
in this plot within narrow intervals of τ , cannot explain the
systematic discrepancy for K̂2—they can only be responsible for
the random scatter in the calculation of K̂2. However, Figure 8(b)
does not show how ĩ · Δĩ depends on ω (this figure was made
for a single value of ω) and this dependence turns out to be very
important.

In Figures 12(a)–(d) we display the dependence of (Δĩ)2,
ĩ · Δĩ, Δĩy , and Δĩx on ω for a fixed τ . The value of τ = 0.347
is chosen in order to avoid intervals of chaotic variation of the
orbital elements6 in order to isolate the subsequent analysis from
the effects of multiple scattering. The general agreement of the
numerical and analytical curves, including those of ĩ · Δĩ, is
quite good in this figure. However, to calculate 〈ĩ · Δĩ〉ω,τ we
need to integrate ĩ · Δĩ over ω and it is quite obvious from
Figure 12(b) that ĩ · Δĩ is very close to a pure sinusoid. Its
ω-average 〈ĩ · Δĩ〉ω should then be very small and strongly
dependent on the deviations of ĩ · Δĩ from a pure sinusoid.
As a result, if the numerical and analytical values of ĩ · Δĩ
deviate from the sinusoid differently, one can get a significant
discrepancy between theory and numerical calculations.

This is exactly what is going on as we demonstrate in
Figures 12(e) and (f) where we plot 〈(Δĩ)2〉ω and 〈ĩ · Δĩ〉ω as
functions of τ . One can see that averaging over ω does not affect
the agreement between numerical and analytical (Δĩ)2 seen in
Figure 12(a) because it is an intrinsically positive quantity. But
ω-averaging of ĩ · Δĩ does lead to a dramatic difference between
analytical and numerical 〈ĩ · Δĩ〉ω in Figure 12(f) for the reason
we just described. In Figure 12(g), we show the ratio of 〈ĩ · Δĩ〉ω
determined by the two methods, and one can clearly see that the
numerical result significantly exceeds the analytical one (both in
regions of chaotic and orderly behavior of orbital parameters), in

6 See Figure 8 which is made for the same set of initial orbital parameters as
Figure 12.

Figure 12. (a)–(d) Variation of (a) (Δĩ)2, (b) ĩ · Δĩ, (c) Δĩy , and (d) Δĩx with
vertical epicyclic phase ω for a particular set of initial orbital parameters (shown
on top of the left column). Theoretical predictions are shown with the dotted line
while numerical results are in solid lines. (e)–(g) Plots of (e) (Δĩ)2 and (f) ĩ · Δĩ

averaged over ω as functions of τ for a particular set of initial orbital parameters
(shown on top of the right column). Solid lines are numerical results, and dotted
lines are analytical predictions. Panel (g) shows the ratio of the numerically
computed average of ĩ · Δĩ over ω to the analytical prediction for the same
quantity. Panels (f) and (g) clearly demonstrate that theory underpredicts 〈ĩ ·Δĩ〉ω
by about an order of magnitude.

agreement with the fact that the numerical K̂2 is systematically
higher than the analytical K̂2; see Figure 2(d).

What may produce such a difference in scaling of analytical
and numerical ĩ · Δĩ with ω? In Appendix B, we provide a
simple calculation of 〈ĩ · Δĩ〉ω allowing for a small but non-
zero difference δωdist of the relative vertical epicyclic phase of
interacting planetesimals ω at large separation and right before
the close encounter. Such a phase difference in ω arises because
of the distant interaction between planetesimals prior to their
encounter and is analogous to the shift in horizontal phase τ
which was invoked in Figure 8 to better match analytical and
numerical results (see also Tanaka & Ida 1996). We show in
Appendix B that although |δωdist| is expected to be small, its
effect on the calculation of 〈ĩ · Δĩ〉ω is very important (and
dominates this calculation) as long as ṽ3

0 |δωdist| � 1.
The rather surprising result that a small variation of vertical

phase ω can strongly affect the calculation of dynamical friction
coefficients K̂2 and K2 is explained by strong cancellation
that takes place when one averages ĩ · Δĩ over ω: some terms
proportional to δωdist that average to zero when δωdist ≡ 0
can become very large after averaging when δωdist �= 0. In
a graphical form the same issue has already been illustrated
in Figure 12. Also, a careful inspection of our calculation of
all other scattering coefficients including 〈(Δĩ)2〉ω,τ shows that
unlike 〈ĩ · Δĩ〉ω,τ they are not affected by non-zero δωdist �= 0
since they do not suffer from cancellation effects when averaged
over ω. For these coefficients, our calculation neglecting the
effects of distant interaction presented in Appendix A remains
valid.
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Another important point to make here is that although there
is a large difference between the numerical and analytical
K̂2 and K2, this discrepancy is not always critical for the
inclination evolution of planetesimals in the regime (24). Indeed,
as Figures 4 and 5 show, K1/K2 ∼ 104 for σ̃e � 5 − 10,
which according to Equation (18) implies that the gravitational
friction term becomes important for inclination evolution only
if μ1 � μ2, i.e., for the velocity evolution of massive bodies
driven by their interaction with low-mass planetesimals.

The issue of distant interaction and its effect on the scattering
calculation clearly deserves further work but we postpone it for
a separate investigation. For now it is enough for us to just state
that distant interactions serve as a plausible explanation for the
deviations between the numerical and analytical calculations of
〈ĩ · Δĩ〉ω,τ , K̂2 and K2.

5. VELOCITY EVOLUTION OF PROTOPLANETARY
CORES

Here we use our results as obtained in previous sections
to understand the velocity evolution of a sparse population
of protoplanetary cores in the end of the oligarchic phase,
when their orbits become crossing—a situation described in
Section 1. For simplicity, we will assume the masses of all cores
Mc to be roughly equal, i.e., μ1 = μ2 = μ = Mc/M� and
σ{e,i},1 = σ{e,i},2 = σ{e,i}, which allows us to omit the term
proportional to K2 in the equation for inclination evolution;
see Section 4.4. Also, we will neglect the effects of multiple
scattering on the inclination evolution, which is justified to some
extent by the small number of bodies involved (and the small
number of their close encounters); see Section 4.3. We can then
use our analytical expressions for the scattering coefficients to
study velocity evolution.

We assume that initially σ̃e = σ̃e0 � 1 and σ̃i = σ̃i0 satisfies
constraint (24). Equation (18) supplemented with expressions
for the scattering coefficients yields the following set of velocity
evolution equations:

dσe

dt
= CeT

−1
e μ1/3, (40)

dσi

dt
= CiT

−1
e σi σ̃

5
e , (41)

where evolution time Te is given by

Te = 1

ΩNpR2
H

= μ1/3M�

ΩΣpa2
(42)

≈ 150 yr

(
Mc

0.01 M⊕

)1/3 (
AU

a

)1/2 (
30 g cm−2

Σp

)

for M� = M�, and coefficients Ce, Ci are constants of order
unity (their values can be found from Equations (33)–(35)).
Note that these equations apply equally well both to the dense
population of planetesimals with overlapping orbits and to the
sparse population of cores with crossing orbits.

One can understand the origin of these equations qualitatively
based on the fact that scattering coefficients are dominated
by the large-angle scattering events in the thin–disk case,
i.e., those that require the impact parameter lmin ∼ RH/ṽ2

0.
Since we consider the case ẽ � 1, the relative velocity
between planetesimals is ∼ṽ0ΩRH . Then a mean time between
encounters of a given body with other bodies at an impact

parameter lmin is Tπ/2 ∼ ṽ0/(ΩNpR2
H ), where Np = Σp/Mc

is the planetesimal (or core) surface number density. When a
large-angle scattering event occurs e2 changes by ∼e2, while i2

changes by ∼i2ṽ6
0; see Section 4.3. Then dσ 2

e /dt ∼ e2/Tπ/2,
while dσ 2

i /dt ∼ i2ṽ6
0/Tπ/2, which results in Equations (40)–

(41) if we recall that ṽ0 ∼ σ̃e.
Integrating Equations (40)–(41), we find

σ̃e = σ̃e0 + Ce

t

Te

, (43)

σ̃i = σ̃i0 exp

[
Ci

6Ce

(
σ̃ 6

e − σ̃ 6
e0

)]
. (44)

For t � Te one has σ̃e ≈ σ̃e0 and

σ̃i = σ̃i0 exp

[
Ciσ̃

5
e0

t

Te

]
. (45)

One can see from these solutions that growth of σi has a rather
explosive character: σi increases exponentially and at the very
beginning the inclination growth timescale is ∼σ̃−5

e0 Te � Te

since σe0 � 1. As a result, while σi grows by several orders
of magnitude, σe does not change that much. This means that
protoplanetary cores should very rapidly transition from the very
thin, almost 2D configuration to a vertically extended disk in
which condition (24) is no longer fulfilled.

In reality, inclination will grow not in a continuous fashion
as described by Equations (44) and (45) but more in a step-like
way by a factor of ∼ṽ3

0 as large-angle scattering events occur
at time intervals of order Tπ/2. Continuous description is going
to be useful only after a large number of large-angle scattering
events have taken place (and during this period ĩ would have
grown a lot).

Onset of the core orbit crossings not only increases the cores’
inclination but also makes possible collisions between cores
leading to their growth. While the disk is geometrically thin, the
collision probability of cores is rather large, and one may wonder
whether the cores would grow appreciably during the short
period of time while condition (24) is still fulfilled. What matters
for the core growth during this period is both the accretion rate
(which is very high) and the time during which the inclination of
the disk is still in the regime (24), which is short. Careful analysis
shows that the relative core mass increase during the “thin-disk”
epoch of the core population evolution is very small, much less
than unity, provided that ṽ0 is less than the escape speed from the
core surface. A simple reason for this is that when the relative
speed of bodies is less than their surface escape speed lmin is
larger than the impact parameter leading to collisions between
the cores, so that the inclination strongly increases before cores
have had a significant chance to collide. Thus, all of the late core
agglomeration resulting in present-day terrestrial planets occurs
only after the disk has become geometrically rather thick, i.e.,
already when σi ∼ σe.

A similar picture of velocity evolution—relatively rapid
growth of inclination compared to the growth of eccentricity—
is expected also in the rather general situation of a planetesimal
disk transitioning from the shear-dominated to the dispersion-
dominated dynamical regime as a result of gravitational scat-
tering. Indeed, in the shear-dominated case eccentricity growth
is expected to be much faster than the growth of inclination
because of the geometry of gravitational scattering of plan-
etesimals in a dynamically cold disk. Thus, when σ̃e becomes
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comparable to unity and continues to grow condition (24) is ful-
filled, meaning that very soon after leaving the shear-dominated
regime the planetesimal disk should rapidly increase its incli-
nation in accordance with Equations (43)–(45). This qualitative
picture has indeed been observed in calculations of planetesimal
velocity evolution based on direct N-body simulations (Ida &
Makino 1992).

6. DISCUSSION

In this paper, we have explored for the first time a rather
special dynamical regime of planetesimal velocity evolution
represented by condition (24). Previous work toward under-
standing planetesimal dynamics has primarily been focused on
thick planetesimal disks with i ∼ e (e.g., Stewart & Ida 2000;
Ohtsuki et al. 2002). Thin disks have been considered by Palmer
et al. (1993) but their study assumed a razor-thin disk, i.e., i = 0,
which precluded them from studying a very important aspect of
the problem—excitation of inclination in a thin disk. They have
explored horizontal velocity excitation in a 2D disk; however,
their results cannot be directly compared with ours: Palmer et al.
computed quantities like dv2

r /dt—growth rate of the radial ve-
locity dispersion of planetesimals—which cannot be directly
related to our dσ 2

e /dt since for the latter one also needs to know
the growth rate of azimuthal velocity dispersion. Nevertheless,
their dv2

r /dt scales linearly with σe, in agreement with our
Equations (29), (30) and (33), (34) for eccentricity-based scat-
tering coefficients. Ida (1990) has also recovered a linear depen-
dence of 2D horizontal excitation rates on σe numerically.

The transition between the thin-disk and thick-disk regimes
of scattering which occurs at ĩ ∼ ĩcrit has not been previously
investigated. It is known from the studies of thick planetesimal
disks that scattering coefficients tend to diverge as ĩ → 0
(e.g., Stewart & Ida 2000). On the other hand, Ida (1990)
has found numerically that in a purely 2D disk horizontal
scattering coefficients are finite, which led him to a conjecture
that these coefficients should change discontinuously at ĩ = 0.
Our present study shows this not to be the case. Instead, 3D rates
increase with decreasing ĩ until ĩ reaches ĩcrit at which point
the geometry of scattering changes and scattering coefficients
smoothly transition to their 2D values. This process is best
illustrated in Figure 3 where we plot both our thin-disk results
and the scaling of scattering coefficients with ĩ in the 3D regime.
Using analytical expressions for various scattering coefficients
in Stewart & Ida (2000), we have verified that the magnitudes
of 3D scattering coefficients coincide (up to numerical constant
of order unity) with values of our 2D scattering coefficients at
ĩ ∼ ĩcrit.

Our final comment concerns multiple scattering encounters
resulting in temporary captures such as the orbit shown in
Figure 10. A long time spent by one body in the vicinity of
the Hill sphere of another opens up the possibility of capturing
this body into a distant satellite orbit if some weak additional
perturbation (e.g., gas drag, collision with/or gravitational
perturbation by an additional passing planetesimal) affects the
mutual orbit of the bodies. By a distant satellite we imply a
satellite with separation larger than the mutual Hill sphere of
the two bodies, and it seems plausible that the formation of
such a configuration should somehow involve a high-velocity
encounter between the two objects (relative speed of a distant
satellite and its parent body exceeds Hill velocity ΩRH ).

Multiple scattering encounters between low-velocity plan-
etesimals potentially leading to the formation of satellites with

separations less than RH have been studied by, e.g., Iwasaki
& Ohtsuki (2007) and Schlichting & Sari (2008). The high-
velocity regime of multiple scattering in the context of tem-
porary capture has not yet been explored theoretically and is
likely to differ from the low-velocity regime. In particular,
Schlichting & Sari (2008) found that the probability of form-
ing a temporary satellite system drops exponentially with the
duration of the temporary capture in the low-velocity regime,
and that essentially no temporary capture systems should ex-
ist for more than several tens of Ω−1. However, in the high-
velocity case, we are finding orbits like the one displayed
in Figure 10, which exhibit temporary capture for more than
103 Ω−1.

Distant satellites have not yet been discovered in planetary
systems but their dynamics were investigated theoretically by
a number of authors (Jackson 1913; Lidov & Vashkov’yak
1994a, 1994b). In particular, recently Shen & Tremaine (2008)
have demonstrated using a mapping approach that distant
satellites around some planets (Jupiter, Uranus, and Neptune)
are stable on timescales comparable to the lifetime of the solar
system. Temporary captures resulting from multiple scattering
of dispersion-dominated planetesimals described in Section 4.3
present one of the possible ways in which such distant satellites
may be formed. The dependence of the efficiency of this
formation channel on the dynamical state of the planetesimal
disk may provide us with an important probe of the dynamical
characteristics of the early solar system. Needless to say, issues
like planetary migration or possible chaotic epochs of the
dynamical evolution of the solar system planets (Tsiganis et al.
2005; Gomes et al. 2005) must significantly complicate the
interpretation of future detection (or non-detection) of distant
satellites. Nevertheless, the investigation of their formation
efficiency in temporary capture events like the one shown in
Figure 10 is a worthwhile exercise.

7. SUMMARY

We investigated the dynamical evolution of vertically thin,
dispersion-dominated planetesimal disks with eccentricities and
inclinations obeying constraint (24). In this regime of orbital
parameters, planetesimals see an anisotropic flux of incoming
bodies (unlike in the case of thick disks), which dramatically
changes the character of gravitational scattering. In particu-
lar, planetesimal velocity evolution is dominated by large-angle
scattering events, unlike in the thick-disk case. We derived ana-
lytical expressions for the scattering coefficients in the thin-disk
regime and compared them with numerical integrations of test
orbits in the Hill approximation. We found good agreement
between the two approaches for the eccentricity scattering coef-
ficients, while the numerical inclination scattering coefficients
significantly differ from their analytical analogs. We demon-
strated that this discrepancy is caused by the important role of
multiple scattering events not captured in our analytical calcu-
lations, and by the distant interactions of planetesimals in their
approach phase before close encounter. Based on these results
we have studied the velocity evolution of a population of pro-
toplanetary cores in the end of the oligarchic phase and shown
that the initially small inclination of this population grows very
rapidly (exponentially) on a very short timescale. The results
of this work are useful for understanding the velocity evolution
of shear-dominated planetesimal disks at the transition to the
dispersion-dominated regime and for the formation of distant
satellites of planets.
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APPENDIX A

SCATTERING COEFFICIENTS IN THE
TWO-DIMENSIONAL REGIME

To compute and analyze scattering coefficients characteristic
for thin planetesimal disks we utilize an approach developed by
Nakazawa et al. (1989), Ida et al. (1993), Tanaka & Ida (1996).
For given h̃, ẽ, and ĩ there are two values of the horizontal phase,
τc,± and time tc,±:

τ±
c = ±

[
4

3

(
ẽ2

h̃2
− 1

)1/2

−
∣∣∣ arccos

(
h̃/ẽ

) ∣∣∣
]

,

t±c = ±4

3

(
ẽ2

h̃2
− 1

)1/2

, (A1)

corresponding to the relative orbit passing through the origin
(i.e., x = y = 0) in the zero-inclination case (i.e., z identically
equal to zero). In the case of ĩ ∼ ẽ, the passage through the
origin also implies that z = 0 resulting in a constraint on ω.
However, in the case of a very thin disk with very small but non-
zero inclination, all values of ω correspond roughly to the same
separation from the origin, which is mainly determined by the
value of τ . Orbits passing close to the origin can be expanded
about τ±

c in terms of η± = τ − τ±
c with the result that prior to

interaction one planetesimal approaches another with velocity
(scaled in Hill units by ΩRH ) ṽ0 = (ṽ0,x, ṽ0,y , ṽ0,z) given by

ṽ±
0,x = ±(ẽ2 − h̃2)1/2, ṽ±

0,y = 1
2 h̃, ṽ±

0,z = ĩ cos(t±c − ω),

(A2)

and moving on a straight line orbit with the following coordi-
nates of the point of closest approach:

x̃±
c = ±(ẽ2 − h̃2)1/2

(
ẽ2

ṽ2
0

− 1

)
η±, ỹ±

c = 1

2
h̃

(
ẽ2

ṽ2
0

− 4

)
η±,

z̃±
c = ĩ sin(t±c − ω), (A3)

where ṽ0 = |ṽ0| = [ẽ2 − (3/4)h̃2]1/2. The impact parameter of
the approach trajectory scaled by RH is

l̃± = l±

RH

= [
(x̃±

c )2 + (ỹ±
c )2 + (z̃±

c )2
]1/2

= 3

2

h̃

ṽ0
(ẽ2 − h̃2)1/2η±. (A4)

In all these expressions, we have neglected terms higher order
in ĩ.

In the two-body approximation that we adopt here, gravi-
tational interaction of planetesimals changes the straight line
trajectory into a hyperbola defined as

r = l cos θ

sin θ + cos f
, tan θ = 1

lv2
0

, (A5)

where 2θ is the bending angle of the trajectory (angle between
the incoming and outgoing asymptotes of the orbit) and f is
the true anomaly of the orbit (angle between the line of foci
and a particular point on a hyperbola), varying from π/2 + θ
(incoming) to −π/2 − θ (outgoing). It is trivial to show that
in (x, y, z) ≡ (x1, x2, x3) coordinates this hyperbola can be
represented as

xi = r

[
xc,i

l
cos(f − θ ) − v0,i

v0
sin(f − θ )

]
, i = 1, 2, 3.

(A6)

Also, conservation of angular momentum allows one to relate f
and t via

df

dt
= lv0

r2
. (A7)

To compute the changes of orbital elements from Equa-
tions (10)–(15), we also adopt the approximation of “instan-
taneous interaction” meaning that we keep time t fixed (and
equal to tc,±) throughout the scattering process. This approx-
imation works well in high-velocity encounters like the ones
we are considering here because the interaction time is short. It
allows us to integrate Equation (14) as follows (and all others
in an analogous fashion):

Δĩ1 ≈ − cos tc

∞∫
−∞

∂φ

∂z̃
dt = −cos tc

lṽ0

π/2+θ∫
−π/2−θ

r2 ∂φ

∂z̃
df, (A8)

where we choose a value of τ±
c closest7 to a given value of τ and

then select a value of tc corresponding to τc; see Equation (A1).
Then, using Equations (A1)–(A8) one finds that

Δẽx ≈ −
∑
n=±

(
sin tnc gn

1 + 2 cos tnc gn
2

)
, Δẽy

≈
∑
n=±

(
cos tnc gn

1 − 2 sin tnc gn
2

)
, (A9)

Δĩx ≈ −
∑
n=±

cos tnc gn
3 , Δĩy ≈ −

∑
n=±

sin tnc gn
3 , (A10)

Δh̃ ≈ −2
∑
n=±

gn
2 , gn

i = 2
ṽn

i + x̃n
i ṽ3

0

1 + (l̃nṽ2
0)2

, (A11)

where i = 1, 2, 3 stands for x, y, z, correspondingly.
In Figure 8, we compare analytical and numerical results for

the changes of various orbital elements in the thin-disk limit
ĩ � 1 � ẽ, which is a matter of interest for us here. As
has previously been shown by Tanaka & Ida (1996), analytical
results match numerical ones for most values of τ if one shifts
the origin of τ by a small amount, dτ � 1. This shift arises from
the distant interaction of the two planetesimals before they have
experienced a close encounter. Such a shift in τ does not affect
in any way our calculation of scattering coefficients averaged
over τ .

A striking feature of Figure 8 is the existence of narrow
intervals of τ in which numerical results strongly deviate in a

7 Ambiguity in the choice of the origin of our τ -expansion arises when
|τ − τ+

c | ∼ |τ − τ−
c |. However, trajectories corresponding to these values of τ

do not produce noticeable contribution to the scattering coefficients.
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seemingly chaotic fashion from the analytical ones. Deviations
of Δẽ, can be of order Δẽ itself, but the discrepancy between the
numerical and analytical Δĩ exceeds the analytical value of Δĩ
by orders of magnitude for some values of τ . The implications
of these deviations are discussed in more detail in Section 4.

Neglecting for now this additional complication we average
expressions (A9) and (A10) over ω and τ and finally arrive at
Equations (25)–(28).

APPENDIX B

ROLE OF DISTANT ENCOUNTERS

Let ω0 be the initial relative vertical phase of two planetes-
imals at infinity and ω be the value of this phase right before
the close encounter. Their difference δωdist = ω − ω0 is small
but non-zero because of the distant interaction of planetesimals
preceding their close encounter. Previously, we assumed ω to be
equal to ω0 (i.e., δωdist = 0) thus neglecting the effect of distant
interaction. Let us now see how the fact that δωdist �= 0 affects
the calculation of 〈ĩ · Δĩ〉ω.

Using Equations (A2), (A3), (A10), and (A11), we find

ĩ · Δĩ = ĩ cos ω0Δĩx + ĩ sin ω0Δĩy

= −2ĩ2 ∑
n=±

cos
(
tnc −ω

)
cos

(
tnc −ω0

)
+ṽ3

0 sin
(
tnc −ω

)
cos

(
tnc −ω0

)
1+(lnṽ2

0 )2 .

(B1)

If we now average this expression over ω0 we find (recall that
l± and ṽ0 are virtually independent of ω0 in the thin-disk regime
when ĩ � ẽ)

〈ĩ · Δĩ〉ω ≈ −ĩ2
∑
n=±

1 − 2ṽ3
0

ˆδωdist

1 + (lnṽ2
0)2

, (B2)

where

ˆδωdist = 1

2π

∫ 2π

0
δωdist(ω0) cos2

(
tnc − ω0

)
dω0. (B3)

If the distant interaction prior to encounter were not taken into
account then δωdist = 0 and Equation (B2) would be missing the
second term in the numerator because averaging over ω0 would
kill this term completely. However, when distant interaction and

the possibility of non-zero δωdist are allowed for the omission
of the second term may not be justified even if |δωdist| � 1
because ṽ3

0 � 1 in the situation that we consider. Then it may
be possible that the product ṽ3

0
ˆδωdist � 1 and dominates the

numerator of Equation (B2), which makes our neglect of distant
interaction in the calculation of 〈ĩ·Δĩ〉ω unjustified. Thus, distant
interaction of planetesimals can indeed explain the discrepancy
between analytical and numerical values of 〈ĩ · Δĩ〉ω observed in
Figure 12.
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