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ABSTRACT

The nonlinear stability of the triangular libration point, L4, when both of the primaries are oblate spheroids as well
as sources of radiation has been studied. It is found that L, is stable for all mass ratios in the range of linear stability
except for three mass ratios depending upon oblateness coefficients and mass reduction factors.
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1. INTRODUCTION

The restricted three-body problem describes the motion of an
infinitesimal mass moving under the gravitational effect of the
two finite masses, called primaries, which move in circular orbits
around their center of mass on account of their mutual attraction
and the infinitesimal mass not influencing the motion of the
primaries. It is originally formulated due to the approximately
circular motion of the planets around the sun, and the small
masses of the asteroids and the satellites of the planets compared
to the planets’ masses.

This classical restricted three-body problem is not valid when
at least one of the interacting bodies is an intense emitter of
radiation. In this connection, it is reasonable to modify the
model by superposing a light repulsion field whose source
coincides with the source of the gravitational field provided by
the radiating body on the gravitational field of the main bodies.
According to Radzievsky (1950, 1953), the problem in such a
statement is called the photogravitational problem. He discussed
it for three specific bodies: the sun, a planet, and a dust particle.
It was found that an allowance for direct solar radiation pressure
results in a change in the positions of the libration points.

In certain stellar dynamics problems it is altogether inade-
quate to consider solely the gravitational interaction force. For
example, when a star acts upon a particle in a cloud of gas
and dust, the dominant factor is by no means gravity, but the
repulsive force of the radiation pressure. Since a large frac-
tion of all stars belong to binary systems, the particle motion
in the field of a double star offers special interest. Probably
the simplest dynamical model of such a system is the restricted
circular photogravitational three-body problem. Among the pos-
sible motions of a particle, the equilibrium states at the libration
points in a reference frame sharing the orbital motion of the stars
were studied by Schuerman (1980) and Kunitsyn & Tureshbaev
(1985).

In stellar systems numerous examples are available where a
body is moving under the gravitational field of two radiating
bodies. Simmons et al. (1985) obtained a complete solution of
the restricted three-body problem. They discussed the existence
and linear stability of the equilibrium points for all values of
radiation pressures of both luminous bodies and all values of
mass ratios. The participating bodies in the classical restricted
three-body problem are strictly spherical in shape, but in actual
situations we find that several heavenly bodies, such as Saturn
and Jupiter, are sufficiently oblate. The minor planets and
meteoroids have irregular shapes. In these cases, on account
of the small dimensions of the bodies in comparison with their
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distances from the primaries, they are considered to be point
masses, but in many cases the dimensions of the bodies are
larger than the distances from their respective primaries. Thus,
the above assumption is not justified, and the results obtained
are far from a realistic approach. The lack of sphericity, or the
oblateness, of the planet causes large perturbations from a two-
body orbit. The motions of artificial Earth satellites are examples
of this. This enables many researchers to study the restricted
problem by taking into account the shapes (oblateness) of the
bodies (SubbaRao & Sharma, 1975; Bhatnagar & Chawla, 1979,
Elipe & Ferrer, 1985; Elipe 1992; Markellos et al. 1996; Chandra
& Kumar, 2004).

An investigation of the positions of libration points, when the
more massive primary is a source of radiation and the smaller
one is an oblate spheroid, was carried out by, e.g., Sharma
(1987). He showed that the triangular points are linearly stable
for the mass parameter 0 < i < i and the critical mass value
Uerie decreases with the increase in oblateness and radiation
force.

The effect of oblateness and radiation pressure forces of
the primaries on the location and the linear stability of the
triangular points in the restricted three-body problem was
analyzed by Singh & Ishwar (1999). They considered both
primaries as sources of radiation as well as oblate spheroids,
and observed that these points are stable for 0 < © < e
and unstable for u.,, < @ < 1/2, where ¢, is the critical
value of the mass parameter and depends on the radiating and
oblateness coefficients. The same problem under the influence
of small perturbations in the Coriolis and the centrifugal forces
was studied by AbdulRaheem & Singh (2006). Dealing with
the overall effect they observed that the range of stability of
triangular points decreases.

Many mathematicians and astronomers have been interested
in the study of the stability of an equilibrium point for all
time and all the orders of the terms in the expansion of the
Hamiltonian. The nonlinear stability of the trianglar libration
points in the classical restricted three-body problem was in-
vestigated by Deprit & Deprit-Bartholome (1967). Bhatnagar
& Hallan (1983) discussed the effect of perturbations in the
Coriolis and centrifugal forces on the nonlinear stability of
equilibrium points. Later, analytical studies of the nonlinear
stability of L, under different aspects were also carried out by
Niedzielska (1994), Subba Rao & Sharma (1997), Hallan et al.
(2000), Gozdziewski (2003), and Chandra & Kumar (2004).

Our aim is to study the combined effects of oblateness
and radiation of the primaries on the nonlinear stability of
the libration point L4 as it has been found that they produce
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significant changes in the location and stability (Singh & Ishwar
1999) of the triangular points. We also know that the inclusion
of the nonlinear terms sometimes changes the entire pattern
of the stability and, hence, we intend to study the stability in
the nonlinear sense as well. By applying Lyapunov’s theorem
(Lyapunov 1956) to the linear stability results in Singh &
Ishwar (1999) mentioned earlier, we can state that L, for
Ueo < M < 1/2 is unstable in the nonlinear sense also. So,
we need to study the nonlinear stability of Ly for 0 < p < pteo.
For this, we will apply Arnold’s theorem (Arnold 1961) and
follow the procedure adopted by Bhatnagar & Hallan (1983).
Arnold (1961) proved that if

l. kiwy + kyw, # 0O for all pairs (ky, ky) of rational integers
where w;, w, are the basic frequencies for the linear
dynamical system and

2. The determinant D # 0, where D = det(b;;) (i,j =

1,2,3), by = (F537) 12— G = 1.2), biz = by =

(57) 1,100 = 1.2)

bz =0and H = w1l; — wy b + %(AI% +2BL I + Clzz) + .-
is the normalized Hamiltonian with I, I, as the action momenta
coordinates, and A, B, C as second-order coefficients in the
frequencies, then on each energy manifold H = h in the
neighborhood of equilibrium, there exists invariant tori of quasi-
periodic motions which divide the manifolds, and consequently,
the equilibrium is stable. This is valid for a system with two
degrees of freedom, which is the case under consideration.
Moser (1962) showed that Arnold’s theorem is true if the first
condition of the theorem is replaced by kjw; + kyw, # 0 for all
pairs (kq, ko) of rational integers such that |k;| + |ky| < 4.

Markellos et al. (1996), Subba Rao & Sharma (1997), and
Chandra & Kumar (2004) studied the nonlinear stability of Ly
when the bigger primary is an oblate spheroid. We consider here
the case where both primaries are oblate spheroids as well as
sources of radiation. We use A;(i = 1, 2) for the oblateness
coefficients of the bigger and smaller primaries, respectively,
such that 0 < A; <« 1 (McCuskey 1963). We denote the
radiation factors as g;(i = 1,2) for the bigger and smaller
primaries and these are given by F, = F,(1 — g;) such that
0 < 1 —¢g; < 1 (Radzievsky 1950). For simplicity we further
substitute g; = 1— €, ¢, = 1— €,|€] <« 1,|€/| « 1 and
restrict ourselves to linear terms in A;, €, and €. Then the
coefficients of A; throughout the paper are exactly the same as
worked out in the paper of Markellos et al. (1996), Subba Rao
& Sharma (1997), Chandra & Kumar (2004).

This paper should be read in conjunction with the papers by
Bhatnagar & Hallan (1983) and Subba Rao & Sharma (1997)
as, to save space, we are not mentioning the values of various
variables given in those papers, although they are used in this

paper.
2. EQUATIONS OF MOTION

Using dimensionless variables and a synodic coordinate
system (x, y) as Szebehely (1967) and Singh & Ishwar (1999)
did, the equations of motion of the infinitesimal mass can be

written as
X —2ny =U,, ¥+2nx =U,, (1)

2

1-— A 1-— A
U:%(x2+y2)+ch( M)_’_@_’_ 191( M)+ 24214

r ) 2rf 2r§’

ri=(x = +y% ry = +1—p?+y% )
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where r; and r, are the distances of the infinitesimal mass from
the primaries and p is the ratio of the mass of the smaller
primary to the total mass of the primaries and 0 < u < 1/2.
The perturbed mean motion of the primaries, n, is given by

n* =1+3(A; + Ay). 3)

The coordinates of the triangular point L4, obtained by Singh &
Ishwar (1999), are

1 2 .
Xo=—3 |:J/ + 5(% — @)+ Ai1q1 — Azqz] withy =1-2u

3 2 1
Yo = (%) |:1 - §(A1 + Ay + §(A1611 + A2q3) “4)

21 21
—§( —611)—§( —612):|~

3. LINEAR STABILITY

The Lagrangian function of the problem can be written as

L =172 +3%) +n(xy — xy) + (0*/2)(x* + y?)

+ (L= waqi/ri+pga/ra+ Argi(1 = 1) /2 + Agqape [ 2r3.
Shifting the origin to L4 and expanding in power series of x and
y, we have

Ly = (& +3%)/2+n(xy — xy) + (n*/2)

x (x? +y?) — Ex? — Fy? — Gxy,
Ly = T1x* 3+ 1/2Tox’y) + Taxy” + 1/3(Tey’)  (5)
Ly = N1x4 + N2x3y + N3)c2y2 + N4xy3 + N5y4.

Consequently,
Hy = (P} + P})/2+n(yP, — xPy)) + Ex* + Fy* + Gxy,
H, = (3% +99)/2 — n®(x*> +y?) /2 + Ex*> + Fy* + Gxy,  (6)
Hy=—L3, Hy=—L4
where
E = [2—3A,— 124,y —3A,+ 124,y —2 € +6 €y
-2¢€ —6€ y]/16
F = —[10+21A;+21A, —2€ -2 +6€y
—6 €' yl/16,
G = 3[6A;+13A1y —6A,+13A,y —2 €
+2€ +2ey/3+2€ y/3+6y1/8,
T, = [—24y + 18A; —T5A1y + 79A2/2 — 354,y /2
+21e+2l ey/3—21€ +21 € y]/13,
T, = —/3[6+43A, +60A;y +434, — 60A,y
—3e-3cy-3&+3< y]/16
Ty = [33y/4+33A,/4+195A,y/8 — 334, /4
+195A4,y/8 =33 € /8 —33 € /8
+33€ /8—33 € y/8]/4

Ty = —/3[18+69A; — 414, —9 € —9 ¢
+y(=1104; —9 € +9 €')]/32.
N1 = —37/128 —285A,/256 — 25A,y /32

—36A,/64 + 15454,y /256 — 29 € /128
+113 € /384 —29 € /128 — 113 € y/384.



3288

N> = ~/3[25y/32 — 45A,/32 + 2654,y /192
+135A,/96 + 2654,y /192
+735 € /384+925 € /1152
—35¢ /32 —5¢ y/288]

Ny = 12364 +255A,/32+ 12154, /128 + 12454, /128
—525A,y/64 — 583 € /128
+467 € y/128 — 303 €' /128 + 863 €' /128

Ny = —/3[45y/32 +45A,/32 +355A,y /64 + 435 A, /64
—85A,/32+35 € /32
+25¢€y/96+105 € /64 — 475 € y/192]

Ns = 3/128 — 225A,/256 — 105A,y /64 + 435A, /64
—85A2y/32+35 € /32425 € /96
+105 €' /64 — 475 € /192 )

with considerations

a=1l-¢ @=1-¢€, e, €K1
All these values are different from the classical case due to the
radiation and oblateness of both primaries. When A, = € =
€’ = 0, these values agree with those found by Subba Rao &
Sharma (1997).

The characteristic equation corresponding to Hamiltonian H,

is given by
MW+2E+ F+n)A+4EF —G>+n* = 2n*(E+ F) = 0. (8)

The roots of Equation (8) are purely imaginary if its discriminant
A > 0 and thus it is a necessary condition for the stability, in the
linear sense, around the L4 point. The solution of the equation
A = 0 for pu gives the critical mass value u., of the mass
parameter.

This implies that (Singh & Ishwar 1999)

Meo = 0.03852089 ... —0.28500178... A; —0.00891747 ...
—0.0627795... A, — 0.00891747 ... €.

For A, = € = € = 0 the value of u, agrees with that given

by Subba Rao & Sharma (1975), Markellos et al. (1996), and

Chandra & Kumar (2004). The range of stability, in the linear

sense, can be written as 0 < @ < ¢ If Equation (8) has

four imaginary roots, +iw;, iw, where w;, w, are the basic

frequencies, then we have

0l + w3 = (1/16)[16 + y(24A, — 24A,)],
0<a)2<1/\/§<a}1 <1
wlw} = (1/16)27+117A; + 1174, +6 € +6 €

—y2Q7+117A, + 117A, +6 € +6 €), (9)

which give

y? = (160} — 1607 +27) /27 + {20807 (1 — w]) /81
+8yw? /9 A, + 20807 (1 — w?) /81
— 8y} 9} As + {320}(1 — o) /243) €
+{3207(1 — w})/243} €. (10)
The results given by Equations (9) and (10) in the case

Ay = € =€ = 0 agree with those found by Subba Rao
& Sharma (1997).
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4. FIRST-ORDER NORMALIZATION

Following the method given in Whittaker (1965), we use a
canonical transformation from the phase space x, y, P,, P, into
the phase space of the angles (¢, ¢») and the actions (11, I3) so
that H, be normalized:

X=JT an
where
N 04
X=|p| J=Upi<ij<4 T= IQJIZ
P, P

Qj = (21]/a)j)1/2 sinq&j P_] = (2Ij.(1)j)1/2 COS¢j(j = 1, 2),
and the elements of the dyadic J can be obtained by adopting the
method of Breakwell & Pringle (1966). Elements of J necessary
for further analysis are given in Appendix A.

The transformation changes the second-order part of the
Hamiltonian into the normal form H, = w11} — s [>.

5. SECOND-ORDER NORMALIZATION

For transforming the Hamiltonian A to the Birkhoff’s normal
forms, we have utilized Henrard’s method (Deprit & Deprit-
Bartholome 1967). We have expanded the coordinates (x, y) of
the infinitesimal body in double d’Alembert series:

x=Y B¢ 11, b), y=) B}($rd 01, b) (12)

jz=1 j>1

where the homogeneous components B}’O and B?’l are of degree
J, I and I, are to be taken as constants of integration, while ¢
and ¢, are to be determined as linear functions of time such that

¢ = v + Zfzj(h,lz), ¢ = —n + Zfzj(h, ).

izl izl

The first-order components Bll’0 and B?’l are the values of x
and y obtained by Equation (11). Proceeding as in Deprit &
Deprit-Bartholome (1967), we observe that the second-order

components BZ]’0 and Bg ! are solutions of the partial differential
equations

AA By = @y, AABY = -, (13)

with

A =D*+0w7,i=1,2; D=w(d/dp1) — (d/d¢),
®, = (D* + S)X2 + (S, D + S3)Y>,
¥y = (D = $3)X2 — (D* — Sp)Ya, Sy =2F —n,

S, =2[1+3/4)(A +A)], S3=-G, S4=n>-2E.

X», Y, are obtained by substituting respectively in dL3/dx,
dL3/0dy the first-order components for x and y.

Equation (13) can be solved for le,o and Bg‘l by using the
formula

1 {cos(m¢1+n¢2)} 1 {cos(m¢1+n¢2)}

or or
AiA, sin(maeq + ng») sin(me¢; + ng,)

Am,n
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where
Apy = [w% — (mw; — nwz)z] [w% — (mw; — na)z)z]

provided A, , # 0.

Since A g = Ap,; = 0, the terms cos ¢, sin ¢y, cos ¢, and
sin¢, are the critical terms. ®, and ¥, are free from such
terms. By condition (1) of Moser’s theorem (Moser 1962), none
of the divisors Ay g, Ag2, A1 Ar,_1, is zero. The second-order
components le'O and Bg " are as follows:

By® = riIy + 12l + 131, c0s 26 + 141> cos 26 + 151y sin 26,
+ 161y sin 2 + 71,2 1) cos(¢y + )
F gD P17 cos(@r — ) + ol P 1) singy + b2)
+ il 21, sin(g1 — ¢o)
BY!' =511 + 530 + 531, €08 261 + 5415 cOs 20
+ 85511 sin2¢; + sl sin2¢,
F 5 1P 1 cos(y + o) + s3I 15 cos(dy — )
+501/2 1)/ sin(¢) + o)
+ 100,21, sin(@1 — o)

The coefficients r; and s; for k = 1,2,...,10 are given in
Appendix B.

6. SECOND-ORDER COEFFICIENTS IN THE
FREQUENCIES

Following Henrard’s method, we find that the third-order
components B31’0 and Bg !in the coordinates x, y and the second-
order polynomials f, and g, in the frequencies ¢; and ¢, satisfy

the partial differential equations:
MM By = @3 —2/,P — 28,0,

0.1 (14)
AMA By =3 —2/,U — 28V,

with
@3 = [D? — {1 +3(A, + A2)/2 — 2F}1X;
+[2{1 +3(A; + A2)/4)D — G1Y3,
Y3 = [D> — {1+3(A; + A)/2 — 2E}]Y;
—[2{1+3(A, + A2)/4}D + G X3
P = (3/3¢)[{@]0°/9¢] — 1 = 3(A| + A2)/2
+2F H{wi19B,"° /3¢ — (1 +3A1/4+3A,/4)B)"}
+{2(1+3A,/4+3A2/4)w,0/0¢; — G}
x {w1dB)" /3¢ +(1+3A1/2+3A,/2)B)' 1]
0 = (0/3¢n)[{®397 /33 — 1 —3(A; + Ar)/2+2F }
X | =3B /3¢y — (1 +3A1/4+3A,/4)B)"}
+{=2(1 +3A,/4+3A,/4)0,3/3¢, — G}
X |~ d B! /3y + (1 +3A,/4+34,/4)B]"}]
U= 0/0¢)[{wd*/d¢; — 1 —3A,/2 —3A,/2 +2E}
x {w10B]" /3¢ + (1 +3A1/4+3A,/4)B"}
— {200 +3A, /4 +3A,/4)w13/d¢; + G}{wlaB?"/aqs1
—(1+3A,/4+3A,/4)B)"'}]
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V = (0/3¢)[{w30° /a5 — 1 —3A1/2 —3A,/2+2E}
x {—w20B"" /s + (1 +3A1/4 +3A,/4)B)"'}
+{—2(1+3A,/4+3A2/8),3/3¢, + G}

x {—wdB)" /3¢ + (1 +3A1 /4 +3A2/HB)'}],

X3, Y3 are the homogeneous components of order 3 obtained by
substituting, respectively,

x=B""+B", y=B"+B),
. d d
into—(Lz+ Ly), —(L3+ Ly).
ox dy
We do not require to find out the components B31’O and Bg 1 We
find the coefficients of cos ¢; , sin ¢y, cos ¢,, and sin ¢, on the
right-hand sides of Equation (14). They are the critical terms.

We eliminate these terms by properly choosing the coefficients
in the polynomials

fr= foli + forba,

Further, we find that

and g = g20l1 + 80212

1 (coefficient of cos ¢ in @3) _

fao= 2 (coefficient of cos ¢; in P)
1 (coefficient of cos ¢,in @3)
fro0= go=73 - . = Db,
2 (coefficient of cos ¢, in Q)
1 (coefficient of cos ¢, in ¥3)
82,0 =

—2 (coefficient of cos¢, in Q)
with

A=A +(A12+A13Y)A1 + (A1 + A1 57)A
+(Ajs+A17y) € +(Ajg+Agy) €,

B = B11+(Bi2+ Bi3y)A1 +(Bia+ Bis57)A2
+(Big+ B17y) € +(Big+ Bioy) €,

C=Ci1+(Ci2+C13y)A1 +(Cra+ C157)A2
+(C16+Cr7y) € +(Ci1g+ Cioy) €,

where the coefficients A, B, C are given in Appendix C.

7. STABILITY

Since condition (1) of Moser’s theorem (Moser 1962) is
applicable, Birkloff’s normalization up to third order can be
obtained. Condition (1) of Moser’s theorem is satisfied in the
interval 0 < u < [t if the mass ratio does not take the critical
values:

e, = 0.0242938 ... —0.1790727 ... A; — 0.0368505 ... A,
—0.0055364 ... € —0.0055364... €

e, = 0.013516... —0.099383...A; —0.019383... A,
—0.0030452... € —0.0030452... €.

These results, in the case A, =€ =¢€"= 0, agree with those
found by Markellos et al. (1996), Subba Rao & Sharma (1997),
and Chandra & Kumar (2004).

Normalized Hamiltonian up to fourth order is

H=ol —oL+i(A +2BLIL+CIy) +- -,

where the coefficients A, B, C are given in Appendix C.
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Calculating the determinant D occurring in condition (2) of
the Moser (1962) theorem, we have

D = —(Awj +2Bwjw; + Coy).
Putting the values of A, B, and C, we have

D = [(644u” — 541u> +36)/8(4u> — 1)(25u> — 4)]
+(D2+ D3y)A1 + (D4 + Dsy)Az
+(Dg + D7y) € +(Dg + Dgy) €
with
D, = [(39176u* — 14359u® + 492)]/[48(4u’ — 1)(25u> — 4)],
D3 = [3(15936001'° + 2122096u® — 13052000u° + 5408175u*
— 840076u® +23616)]/[16(4u* — 1)
x (25u* — 4> (16u> + 117)],
Dy = [59944u° + 14269689u* — 12215187u?
+1662841/[1962(4u* — 1)2(25u* — 4)],
Ds = [55977008u'* + 16915980u® — 694540170u
+171574880u* — 31023250u> + 7329271/
[208(4u” — 1)*(25u® — 4)*(16u* + 117)],
D = [195560u® — 549558u* + 24575u>
+48]/[432(4u® — 1)*(25u* — 1)]
Dy = [48947712u'? + 617901664u'° — 454674128u®
+ 2454064161 — 73692732u” + 8118909u> — 71472]/
[96(4u> — 1)}(25u* — 4)*(16u® + 117]
Dg = [19440u® — 578504u® + 272091u* — 33970u?
+216]/[654(4u® — 1)>(25u* — 4)],
Dy = [252817792u'? + 2444733120u'° — 1258751060u"
— 45728424u8 + 32733556u* — 53364994 + 631382]/
[48(4u® — 1)} (25u® — 4)*(16u® + 117)].
Moser’s second condition is violated for the unperturbed prob-
lem, i.e., for Ay = Ay =e=¢€'= 0 when o = 0.0109136.. ..
When Ay, Ay €,€’# 0, wetake u = o +aA; +a’Ay +a’ €
+a” € + such thatD = 0. It is seen that the second condition
of Moser’s theorem is satisfied, that is D # 0 if in the interval
0 < i < Weo, the mass ratio does not take the value
Uy = o+ @A+’ Ay +a” € +a €,
where

a =—0.1036878 ...,
o =—0.4748319.. .,

o' =0.5456468 . . .,
a” = —0.1432604 . ...

8. CONCLUSION

By taking both the primaries as oblate spheroids as well as
sources of radiation, it has been seen that, in the nonlinear sense,
the triangular point L4 is stable for all mass ratios in the range
of linear stability except for three mass ratios,

Me, =0.0242...—-0.1790... A; —0.0368... A,
—0.0055... € —0.0055... €,

e, =0.0135...-0.0993...A; —0.093... 4,
—0.0030... € —0.0030... €,

e, = 0.0109... —0.1036... A; +0.5456... A,
—04748...€ —0.1432... €,

at which the Moser (1962) theorem fails.

Vol. 137

When A A, =e=¢€’ = 0, the values of u(i = 1, 2, 3) agree
with those found by Deprit & Deprit-Bartholome (1967).

When A, =€ =€’= 0, the values of j; are the same as those
found by Markellos et al. (1996), Subba Rao & Sharma (1997),
and Chandra & Kumar (2004).

The author is extremely thankful to Professor B. Ish-
war, Department of Mathematics, B. R. A. Bihar University,
Muzaffarpur, India for his valuable suggestions.

APPENDIX A

Ji3=1U[1+33A, /4l — 3Ay J4ki + 334, /Al
+3Asy J4ki — (3wt —7) € [217k;
— (Bwi —7) ey /203t — (Bt —7) € J203k7
+ (Twt +2) € y [207k7] 201k

D = —doi[l+6ki Ay JAI} —3A1y [4ki + 6k1 A, [ AL}
+3Asy [4ki + (Tot +2) € [203k;
+(Twi +2) € y [203k7 + (Tw} +2) € [217k;
— (Bwi —7) € y /2037 ] /11Ky

Dz = V3[6y + (—16w]} + 88w? — 63)A, /6k?
+ (10407 + 135) Ay /217
— (— 16w} + 88w] — 63) A, 6k}
+ (10407 + 135) Ayy /217 + (1120% — 1360
— 221w} — 189) € /9k{I}
— (240} + 20} —33) € y [I}ki — (1120 + 1360
— 22lo7 — 189) € /9ki1;
— (240} +2lw] —33) € y [17k7],

with

B=wi+9J =12 ki=2wl-1, k=1-"2ws.

The values of J; 4J22J24 can be obtained respectively from
J1.3, —Jz,l, J2,3 by replacing w1 by w7, 11 by 12, k] by kz, k% by
—k% wherever they occur keeping A, A,, €, € unchanged.

APPENDIX B

N=r,Y +rioA1 +1i3A1y +ri4As +risAsy +rig €
+ri;€y+rig€ +rig€y

=71, +rj2A1+73A1Y +rj4As+rj5Ay +Tj6 €
trig€y+rig€ +rjo €y,

Si =5, +S,‘,2A1 +S,',3A1)/ +S,"4A2 + S,"5A2)/ +Si6 €

+5,7 €Y +5i8 € +si9 €'y,
Sj =18,V +5241+5;341Y +5;4A2+ ;547 +5j6 €
+Sj’7 cy +Sj’8 E/ +Sj’9 E/ Y,
fori =1,2,3,4,7,8and j = 5,6,9, 10.

The values of all Fi1,rj1,ri2,rj2,Fi3, rqu, Si 1, qul, 8i2,
8.2, 8i.3, Sj3 are the same as those in the paper by Subba Rao &
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Sharma (1997):

ri4 = [—9584640° — 17095680} + 141197440
+ 1569005207 — 9561825w?
+3082941] /27648w; 17k{ (1 — o)
r s = [—6123520} — 7808400 — 254301340}
+2831380w] + 1700271] /10247 I}k7 (1 — w})
ri6 = [200704w;* — 2838528w;" — 96279040}
+452013600 — 50694340} — 2258551w?
+9372528] /13824071, k(1 — w?),
— [126720,° + 295200 + 325680 + 95792
+168210w; — 130491] /64w 11k} (1 — )
ris = [10240}” + 19643120,° — 3916800}
— 54365120 + 2663658w] — 3674889w?
+256962] /69120i1 'k} (1 — o})
rio = [84480," — 790080} — 654550 — 1860640
— 8996407 +88938] /128wil,*k{ (1 — w}),
r3 4 = [203530,° — 453420} + 5283908 — 730590}
+253940] — 1145] /(288w 17k *23).
135 = [17550) — 58090] — 987660 — 2544] /
(16011 *k*21),
r36 = [16535w; — 2039430, + 175280} + 231970}
— 8891200 — 3361197 + 786267 / (144w, *k1*z7),

38 =136, 139 = —737

rs4 = /3[28902400|* + 5891840, + 14624000}
— 55211200 + 22460620} — 68083507 + 105705]/
(864wili *k*z]),

rs;s = /3[ 18000} — 44960 — 2731w
+ 189007 — 243]/ (6wil %k *2}),

rse = —/3[—563200* — 576128w;* + 620624w;"
— 173040% — 16383480 + 1669932w; — 902583w?
+124659] / (288011, *k{z]).

rs; = —/3[—1608960|* + 8192w, — 2717520}
— 5316440 + 75944920 — 664848w; + 104976] /
(288wl k{2,

ry7

I'sg ="rs6 T59= —TI57
r74 = —[1561° — 536325u* — 819024°

+15809u” — 34119u — 16140]/8uz3(5u — 2)°
r7s = 3[6156u* + 42688u° + 24721u>

+145069u + 27438]/825(5u — 2)(16u* + 117),
r76 = [184u° +36964u* + 83154u> — 20520u>

+48117u + 165601/96uz3(5u — 2)%,
r7.7 = 3[1296u* + 52996u° + 72849u” + 168072u

+53848]/64z3(5u — 2)(16u* + 117),

78 =r76,r79 = —riz
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ro4 = /3[32774u* — 3568u° — 24u* + 36882u
+8536814/(1 — 2u)/12z3(5u — 2)(16u* + 117)
ros = 3./3[1284u” + 4055u> + 1650u>
— 1924u +271/16uz3(5u — 2)2,/(1 — 2u),
roe = /3[1012u* — 5468u> — 84u” + 53972u
+48956],/(1 — 2u)/8z3(5u — 2)(16u* + 117),
ro7 = 3./3[5462u” + 6412u> + 2436u>
— 184u + 81]/8uz3(5u — 2)2/(1 — 2u)
F9 8 = 19,6, 99 = —F9;7
s1.4 = /3[8532340,° + 3132660} + 115364800
+20235825w] — 928456907 + 1032645] /
691201,k (1 — 7).
S1.5 = 4/3[3248600} — 121585520 + 132352610}
— 24138357 — 2300032] / (2048 11k} (1 — w7}),
S1,6 = +/3[1008020}% + 1535328w;" — 322955458}
+192311460¢ — 8256628w] + 3381658w]
— 8727857] /6912311 *k{ (1 — w?),
s1.7 = 4/3[246860° — 921300} + 653230 — 599440
— 45282007 +222465] /32011, *k} (1 — 7).
sis = /3[12560]* + 8553678w|° — 1347300 +31620250¢
— 86585601 + 74890567 — 852967]/
34560711 'k (1 — o]).
S1.0 = 4/3[56160]° + 828090} — 735250¢ + 8252920}
+ 16568 — 63598] /25601, *k (1 — i),
s34 = 4/3[168810° — 64001} + 6321530}
+16593w] — 11657t + 6352] /(288w1l1 k1 *z7),
s35 = /3[ 16560 + 5701w} — 23459w] +2862] /
(320111 *kz1)
$3.6 = +/3[249540|* — 6699530|° + 635270} + 322860
— 46513001 + 11831607 — 956210] / (288wl *k*z7),
83,7 = +/3[—5028100{° + 1156520 — 154180 + 468880
— 36571007 +325795] / (144wl *k{z]),
$3,8 = 83,6, 83,9 = —837
ss.4 = (1658w + 2853w + 5258w}
— 1628w} + 1768) / (541,%k:*23),
s5.;5 = (281605 +36390w] — 1159w + 5308) /81;*k1%z1),
ss.6 = (87520} + 11530 — 88160}
+53530] + 1844) / (121,%k{23),
s5,7 = (67510 — 8559w} + 6353w} — 1008) /(811*k3z1),
S5,8 = 85,6, 85,9 = —857
— J/3(1180u° — 45081u* + 15932u° + 283362u>
+ 148157u + 638264)/72(5u — 2)(16u> + 117)z3
s7.5 = — +/3(84u* +8212u° — 1654u*
+1553u — 3372)/16u(54 — 2)°z3

$7.4
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S7.6 = — /3(114u° — 39368u” + 80456u> — 10820u>

+34168u — 33582)/36(5u — 2)(16u* + 117)z3

S7.7 = — /3(3496u* — 82756u° — 92346u°

+ 148052u + 91637)/64(5u — 2)°z3
4 = (20278u> + 16643u* — 30128u> + 14286u>
+4802u + 4563)/48u(5u — 2)*z3

So.5 = 3(3641u> + 1814u’* + 5263u + 7209)/

8(5u — 2)(16u> + 117)z3,
6 = (72082u° + 68809u* — 23756u> — 28270u>
+32883u — 3609)/36u(5u — 2)*z3./(1 — 2u),

So.7 = 3(3786u° + 3606u> + 39491 — 8008)./(1 — 2u)/

8(5u — 2)(16u2 + 117)z3,

$9.8 = 89,6, 89,9 = —89,7

Zi=1-50},20=1-5w3
23 = Libkiko/u, u = wyw;.

The values of 7, s, for k = 2,4,6 can be obtained
respectively from those for k = 1, 3,5 by replacing w; by
—wy, 1] by lzkf by —k%zl by z, wherever they occur and the
values of ry, s for k = 8, 10 can be obtained respectively from

those for k = 7, 9 by replacing u by —u, keeping z3 unchanged,
wherever they occur.

APPENDIX C

The values of all Ay 1, A1, A13, B1,1, Bi2, B13, C1,1, C1.2,
and C) 3 are the same as those in the paper by Subba Rao &
Sharma (1997):

Arg = (1319 — 1263907 + 18275w] —
436(1 — 207)*(1 - 50?),

Ars = (57 +52507 — 9500 + 31180 + 11320) /
52(1 — 207) (1 = 507)

A = (24 — 62407 +4160] —
864(1 — 207)° (1 — 50?)

Ai7 = (32 — 84207 — 608w] —
64(1 —207) (1 - 507)°

Ars = (72 — 884w — 204w] + 16000 + 648w}) /
872(1 — 207)° (1 — 50?)

Ao = (36 — 43207 + 4480 + 12080 + 8960}) /
64(1 — 207) (1 — 5077,

Bi4 = w10 (2223 — 6817w]w3) /36(1 — 2w?)
x (1 - 2a)2)(1 — 50)1)(1 - 5a)2)

159805) /

20040 + 856w') /

16280 + 18560}/
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= (89211 — 20429980 w3 + 10285776} w}
— 160520985 — 1215804w1w2)/32w1a)2 (4a)1 +9)
x (43 +9)(1 — 207) (1 — 203) (1 — Swl) (1- 5w2)
B = ww(1854 — 3256wiw3) /48(1 — 207)
x (1 —2w3)(1 - swf)(l — 5w3)
By 7 = (40332 — 24562800w] w3 + 1603200w] ]
— 1214086405 — 10432080)1&)2)/48601602 (4a)1 +9)
x (403 +9) (1 = 207) (1 — 203) (1 = 50?)(1 = 503)
Big = w1w2(1264 4868w]a)2)/48(1 - Zwl)
X (1 — sz)(l — Swl)(l — 50)2)
By = (16004 + 1284430w;w; — 1216028w]w;
— 814420420008 — 8034956a)1a)2)/48a)1a)2 (4a)1 +9)
x (40} +9)(1 = 207) (1 — 203) (1 — 507)° (1 — 503)°.

Ci;(i =1,2,3,...,9) can be obtained respectively from Ay;
by replacing w; by w;.
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