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ABSTRACT

We present the results of a survey for trans-Neptunian objects (TNOs) based on Subaru archival images, originally
collected by Sheppard et al. in 2005 as part of a search for irregular satellites of Uranus. The survey region covers
2.8 deg2, centered on Uranus and observed near opposition on two adjacent nights. Our survey reaches half its
maximum detection efficiency at R = 25.69 ± 0.01. The objects detected correspond to 82 TNOs, five Centaurs,
and five irregular satellites. We model the cumulative number of TNOs brighter than a given apparent magnitude
with both a single power law (SPL) and a double power law (DPL). The best-fit SPL, with one object per square
degree at magnitude R0 = 22.6+0.3

−0.4 and a slope of α = 0.51+0.5
−0.6, is inconsistent with the results of similar searches

with shallower limiting magnitudes. The best-fit DPL, with a bright-end slope α1 = 0.7+0.2
−0.1, a faint-end slope

α2 = 0.3+0.2
−0.2, a differential number density at R = 23σ23 = 2.0+0.5

−0.5, and a magnitude break in the slope at
Req = 24.3+0.8

−0.1, is more likely than the SPL by a Bayes factor of ∼26. This is the first survey with sufficient
depth and areal coverage to identify the magnitude at which the break occurs without relying on the results of
other surveys. We estimate barycentric distances for the 73 objects that have 24 h arcs; only two have heliocentric
distances as large as ∼50 AU. We combine the distribution of observed distances with the size distribution that
corresponds to a DPL luminosity function to set a tight constraint on the existence of a distant TNO population.
We can exclude such a population at 60 AU, with 95% confidence, assuming it has the same size distribution and
albedo as the observed TNOs, if it exceeds 8% of mass of the observed TNOs.
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1. INTRODUCTION

The remnants of the protoplanetary disk, now in the form of
trans-Neptunian objects (TNOs), offer a unique way to study
the evolution of the solar system. The TNO size distribution
is defined by its initial properties, collisional history, and the
formation and evolution of the giant planets (Kenyon & Bromley
2004; Pan & Sari 2005; Kenyon et al. 2007). The orbital
dynamics of the TNOs is largely governed by interactions with
Neptune, and the radial distribution of TNOs also depends on
the giant planets’ evolution (see Morbidelli et al. 2007 for a
review). It has been suggested that the radial extent of TNOs
was truncated by the close passage of a star during the early
stages of solar system formation (Brunini & Fernandez 1996;
Ida et al. 2000; Kobayashi & Ida 2001; Kenyon & Bromley
2004).

A number of large-scale investigations that will signifi-
cantly advance our understanding of the outer solar system are
currently being designed, tested, and executed. Pan-STARRS
(Jewitt 2003), given its coverage of the sky and time baseline,
promises an accurate determination of the statistical properties
of the trans-neptunian region. LSST (Tyson & Angel 2001) and
SkyMapper (Keller et al. 2007) will extend the surveyed sky
to the Southern Hemisphere. The New Horizons (NH) mission
will give unprecedented views of the trans-Neptunian space
by approaching Pluto and other TNOs in mid-2015. Neverthe-
less, there remain important questions that will not be answered
by these studies. These large synoptic surveys will necessar-
ily have a shallow limiting magnitude. Deep surveys like this
will continue to be the only window into the smallest and far-
thest objects in the solar system. The answers to these questions
can influence how these projects are carried out and how their

∗ Based on data collected at the Subaru Telescope, which is operated by the
National Astronomical Observatory of Japan.

resulting data are interpreted. The distribution of faint objects
will matter when large surveys choose fields to be covered more
deeply. The TNO size distribution and radial extent of TNOs are
among the questions that will rely on pencil-beam surveys to be
answered.

Since the discovery of 1992 QB1 (Jewitt et al. 1992) a number
of wide-field surveys for TNOs have been completed (Jewitt
et al. 1998; Chiang & Brown 1999; Larsen et al. 2001; Trujillo
et al. 2001; Trujillo & Brown 2001; Millis et al. 2002; Trujillo &
Brown 2003; Elliot et al. 2005; Larsen et al. 2007). In addition
to determining much of the dynamical structure of the trans-
Neptunian region and identifying large, bright TNOs that are
amenable to follow-up observations, these surveys constrain the
bright end (R � 24) of the cumulative luminosity function of
TNOs, the number of objects per square degree brighter than a
given magnitude. This quantity has consistently been measured
to be a power law of the form

Σ(R) = 10α(R−R0), (1)

where R0 ∼ 23 is the magnitude at which one expects one object
per square degree and α is the slope of the distribution.

Ground-based efforts have also focused on detecting fainter
TNOs with deeper imaging of narrow areas of the sky. Many
have been successfully conducted in recent years (Gladman
et al. 1998, 2001; Allen et al. 2001, 2002; Petit et al. 2004,
2006; Fraser et al. 2008). These surveys have been concentrated
near the ecliptic plane and reach limiting magnitudes as faint
as R ∼ 26. These surveys also find that the cumulative surface
density of TNOs is consistent with a single power law (SPL).

However, the deepest search to date, using the Hubble Space
Telescope (HST) with the Advanced Camera for Surveys and
reaching a 50% detection efficiency at magnitude R = 28.5,
found 25 times fewer objects than expected from extrapolating
the brighter (R � 25) distribution (Bernstein et al. 2004). Their
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result indicates there is a break in the cumulative surface density
of objects near R ∼ 25.

Bernstein et al. (2004) necessarily relied upon the results of
other surveys to assess the deviation of the cumulative density
of objects from a SPL over a range of magnitudes. However, it
is difficult to combine the results of different surveys to obtain
a well-calibrated sample of the trans-Neptunian population.

Dynamical biases in latitude and longitude change the local
density of objects and the relative abundances of excited and
classical objects depending on the direction in which a survey is
conducted. This can be seen in the variety of results found
in the literature; a nice re-analysis and summary of some
surveys is presented by Fraser et al. (2008). Different surveys
sample a variety of ecliptic latitudes and longitudes, use various
analysis methods, or vary in observing conditions. It is necessary
to determine and correct for the effects of these differences
to characterize the physical and dynamical properties of the
TNO population. For bright TNOs, large synoptic surveys will
determine many of the biases in the observations as well as in
the population itself. However, for fainter TNOs, the simplest
way to overcome these difficulties is to observe a single region
of the sky.

All these surveys use the “digital tracking” method (Gladman
& Kavelaars 1997; Gladman et al. 1998, 2001; Allen et al. 2001,
2002), by which a series of consecutive short exposures are
digitally shifted and co-added to match the apparent motion of
real objects. This method has proven very useful in improving
the sensitivity of these ground- and space-based observations.
However, it relies on how fine the grid of velocities sampled
is, the good quality of a template image to subtract from each
exposure, extra processing of the images and a trained operator
to filter false positive detections due to saturated stars or other
artifacts. Our results were obtained by linking detections in
three different images described in Section 3. Our method’s
data reduction is more direct, requires less human interaction
and is easier to photometrically calibrate.

The radial extent of the classical TNO population is not known
with certainty. Although there is evidence for a sudden decrease
in density at r ∼ 50 AU (Trujillo et al. 2001; Gladman et al.
2001), the existence of a second farther population near the
ecliptic is difficult to rule out, due to the bias against detection
of more distant, fainter objects. We are slightly more sensible
to distant, slower moving objects. Since we do not rely on the
construction of a template field, usually made with data taken
on the same night, this increases the noise and would subtract
signal from very slow movers.

The objectives of this work are to better constrain the expected
break in the TNO luminosity function using a single survey and
to better understand the lack of detections at large heliocentric
distances. In the next section we describe the data and the
processing of images. In Section 3 we present our moving
object detection algorithm. We discuss the control population
and detection efficiency of our method in Section 4. In the final
two sections we present the results of our survey and discuss
their implications for the size and distance distribution of the
TNO population.

2. DATA

The observations considered in this project were taken on
UT 2003 August 29 and 30 with Suprime-Cam (Miyazaki
et al. 2002) mounted on the Subaru Telescope. Suprime-Cam is
a mosaic camera with 10 CCDs, each with 2048 × 4096 pixels.
Each mosaic image has a field of view (FOV) of 34′ × 27′. We

used SMOKA, the electronic archive of the Subaru Telescope
(Ichikawa 2002), to retrieve observations taken in 2003 August
in the vicinity of Uranus, near opposition. The fields were
originally observed by Sheppard et al. (2005). They surveyed a
total of 14 fields, with an areal coverage of 3.57 deg2 over the
course of two nights. All exposures were taken with the “Cousins
R” red filter, well matched to the colors of outer solar-system
objects.

The objective of the original investigation was to discover
Uranian irregular satellites. Sheppard et al. (2005) recovered
all previously known Uranian irregular satellites and discovered
two new such satellites. The faintest satellites detected have
magnitudes at R ∼ 25.5 (Sheppard et al. 2005; Kavelaars
et al. 2004). On the first night, the observers took two or three
exposures of ∼7 min of each field, separated by half an hour on
the first night. They re-observed those fields with two exposures
during the second night, with the pointings shifted to maintain
the same positions relative to Uranus. The survey was designed
to discover objects during the first night and to obtain better
orbital information using the second night’s data.

We chose this particular data set for the following reasons. The
data set is sensitive to R � 25.5 mag objects, in the magnitude
range in which Bernstein et al. (2004) find the break in the
TNO cumulative function to be. This sensitivity is reached
in a single exposure, avoiding the difficulties associated with
combining different images. There are 11 fields (2.8 deg2) with
three exposures on the first night, permitting a simple search
for moving objects. The fields were observed very close to
opposition, allowing a reliable distance estimate from the rate of
motion with only a 24 h arc. The sky coverage is large enough
to expect the discovery of ∼100 TNOs, allowing a significant
constraint on the cumulative luminosity function. Finally, the
data were easily obtained from the SMOKA system, after the
18 month proprietary period.

We performed the usual calibration of the images. For every
image, we performed an overscan correction, trimming, bias
frame subtraction, and flat-field division using standard IRAF1

routines. Calibration frames taken during these observations
were obtained from SMOKA.

3. MOVING OBJECT DETECTION

The apparent motion of outer solar-system objects viewed
near opposition is primarily due to the Earth’s translation. For
objects at the distance of Uranus the apparent motion can be as
large as ∼6′′ h−1. For TNOs this rate is typically ∼3′′ h−1. This
motion, with respect to background stars, is readily detected
even in the short (∼1 h) time baseline of this data set.

To find TNOs, Centaurs, and irregular satellites in this data
set, we use a variant of the search algorithm described and
implemented by Petit et al. (2004). This method is similar to
that used in other TNO surveys (for example, Levison & Duncan
1990; Irwin et al. 1995; Jewitt & Luu 1995; Trujillo et al. 2001;
Millis et al. 2002). The algorithm detects moving objects by
comparing the positions of all point sources in each of three
images of a patch of sky taken in the same night. Thus, as
mentioned earlier, we restricted our search to the 11 fields for
which there were three images taken on the first night. The
individual steps in the algorithm are as follows.

1 IRAF is distributed by the National Optical Astronomy Observatories,
which are operated by the Association of Universities for Research in
Astronomy, Inc., under cooperative agreement with the National Science
Foundation.
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First, for each search field we determine an astrometric
solution for the first image of the night. These astrometric
solutions are used later to guide the insertion of synthetic moving
objects. We used the Two Micron All Sky Survey (2MASS)
Point Source Catalog (Cutri et al. 2003) as an astrometric
reference. The root mean square (rms) in the astrometric solution
was typically of 0.2′′ or lower (close to the catalog’s precision).
The relative errors on the astrometric solutions for both nights
were comparable to the tolerance of the search algorithm.

We then register the second and third images with the first
image of the night. This allows for very accurate positioning
of stellar-like objects with respect to each other. This is done
for the individual CCDs, rather than for the entire mosaic. The
successive CCD images are linearly interpolated, automatically,
to the first using the positions of the background stars and
routines available in the ISIS package (Alard 2000). When
these routines fail to converge (due to numerous bad pixels or
saturated stars), we align the images interactively using routines
from IRAF.

At this stage, we insert the population of synthetic objects
that will be used to determine the detection efficiency of the
search, as described in Section 4.

We then use two different algorithms to search for point
sources. The first of these is a wavelet transform source
detection routine (see Petit et al. 2004 for a description). The
second is the publicly available SExtractor package (Bertin &
Arnouts 1996), which calculates the local image background
rms, convolves the image with a user-specified kernel, and then
identifies groups of pixels with values exceeding the background
variation by a given value. These two approaches have very
different false detection characteristics. Thus, we consider the
intersection of detections from both routines. (We use the flux
information given by SExtractor for the photometry described in
Section 5.) We use a detection threshold of 2.6σ . For SExtractor
this corresponds to four adjacent pixels with values that are at
least 1.3 times of the local background variation. At the end
of this stage, there are three lists of sources, one list for each
image. This results in up to ∼50,000 detections in each mosaic
image. Note that the expected motion of TNOs during a single
exposure (∼7 min) is small compared to the typical FWHM
(0.7′′). Thus, trailing does not significantly affect the source
detection.

In order to identify moving objects among all the point
sources detected, we apply a series of filters that eliminate
individual detections, as well as sequences of detections, that
are not consistent with the TNO population.

We first reject all detections that corresponded to stationary
objects, i.e. stars and galaxies. For each list of detections, we
eliminate those for which there is a corresponding detection
within 0.05′′ in at least one of the other two lists. We deliberately
chose a small threshold in order not to diminish our sensitivity
to very slow moving TNOs. This stage typically reduces the
number of detections to ∼10,000 per field.

The next step is to search for linear motion among the non-
stationary detections. We identify all groups of three detections
in the successive images that are consistent with straight line
motion (within 15◦ of the ecliptic), with a constant angular rate
between 0.5 and 10′′ h−1. The parameter space is chosen to
include the expected rate and direction of TNOs. We consider
all combinations of detections in the three different exposures
whose fit to a line had an rms of 0.3′′ or less. These criteria are
met by ∼1600 combinations per field, nearly all of which are
synthetic TNOs (see Section 4).

In the final stage, the search program outputs an image with
all the combinations found, showing a stamp centered on every
detection. We visually inspect these images to accept or reject
a given object images. This method allows the spurious and
acceptable detections to be rapidly distinguished (∼30 min per
field). Typically ∼20 objects are rejected in this stage per field,
the majority being optical artifacts, bad pixels, extended objects
or some combination of the above.

4. CONTROL POPULATION AND DETECTION
EFFICIENCY

Since our observations are flux limited it is necessary to
account for detection biases when estimating the intrinsic
number of TNOs as a function of magnitude. We characterize
our search using a population of synthetic TNOs inserted just
after the images have been calibrated and their astrometric
solutions determined. The procedure is done for each mosaic
field, rather than CCD by CCD. This process nicely accounts
for the possible motion across detector boundaries. The same
synthetic populations were used for the second night.

We used the Orbfit routines (Bernstein & Khushalani 2000)
to create a realistic population of synthetic TNOs. The char-
acteristics of the population were chosen to span the range of
observational properties expected of the TNOs. The position
of an object on the sky at the time of the first exposure was
drawn from a uniform distribution that encompassed the FOV
of the mosaic. Objects were implanted with distances between
20 AU and 200 AU, or alternatively 0.7′′ h−1 to 5.0′′ h−1. The
proper motion and radial velocity given to the object are taken
from a distribution that encompasses the possible rates found
in the solar system. This initial position and velocity vectors
are only accepted if they correspond to a bound orbit. If so, we
use the Orbfit routines to calculate the right ascension (R.A.)
and declination (decl.) of the object at the beginning and end
times of each exposure. We translate these sky positions into
locations on the mosaic using the astrometric solution derived
earlier.

For each exposure we compute a model for the point-spread
function (PSF). The model is the average of ∼10 bright,
isolated stars for every CCD. Given the known magnitude of
the synthetic TNO and the measured zero point, and accounting
for transparency changes through changes in the flux measured
in the PSF stars, we use IRAF routines to insert PSFs with this
flux at the calculated positions. We inserted objects from 22.5 to
26.5 mag, which spans the magnitudes of the TNO population
we expect to find. The flux of each object includes photon noise.
We did not consider variable objects, as this is unlikely to be
significant on ∼1 h timescales. We include the effect of trailing
by dividing the flux among several PSFs inserted at positions
linearly interpolated between those at the beginning and end of
the exposures. This process takes into account any background,
transparency, seeing, and focus variations that might affect the
limiting magnitude. Using this PSF model from each image,
we implant a set of ∼2000 objects per field. This results in a
sufficient number of synthetic objects per CCD to sample the
detection efficiency as a function of position.

Since we count objects up to a certain brightness and our
model describes the underlying TNO population, it is essential
to estimate what fraction of the population we detect as a
function of magnitude. In Figure 1 we include a histogram of the
fraction of objects that were recovered in each magnitude bin.
We implanted 25,074 objects in 11 fields, recovering 17,195 of
them.
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Figure 1. Detection efficiency as a function of magnitude, with an error given
by the number of objects implanted and found in each bin. The fitted curve
corresponds to Equation (2), where the best-fit values are A = 0.88 ± 0.01,
R50 = 25.69 ± 0.01, w1 = 0.28 ± 0.04, and w2 = 0.88 ± 0.15. R50
corresponds to the magnitude at which our method is 50% as efficient as its
maximum detection efficiency.

When plotting the cumulative function we used the local
efficiency function, each detection is weighed by the number of
objects recovered in the same field and within the observational
magnitude error. The detection efficiency could vary from field
to field. Since all fields were taken in the vicinity of Uranus,
efficiency could depend on location. However, its statistical
effect on the efficiency was negligible.

For the statistical analysis the effective efficiency function
will need to be integrated. Since it is simpler to integrate
analytical expressions, we used the total efficiency function that
considers all fields. Following Petit et al. (2006), we represent
it by

η(R) = A

4

(
1 − tanh

R − R50

w1

) (
1 − tanh

R − R50

w2

)
, (2)

where the best-fit values are A = 0.88 ± 0.01, R50 = 25.69 ±
0.01, w1 = 0.28±0.04, and w2 = 0.88±0.15. The errors were
obtained with a Markov Chain Monte Carlo simulation. The
parameter A corresponds to the maximum efficiency, achieved
for bright objects. R50 corresponds to the magnitude at which
the detection efficiency drops to half the maximum values. The
parameters w1 and w2 characterize the abruptness of the decline
of the detection efficiency. Figure 1 shows the average efficiency
function for our data set.

The efficiency could also depend on the rate of motion.
We construct a rate analog to the magnitude efficiency (see
Figure 2). The detection efficiency is nearly independent of rate,
but our method is slightly less efficient at larger rates. A faster-
moving object that is detected in the first image has a greater
chance of falling close to a background star, or moving outside
the FOV; thus the detection efficiency declines with the rate of
motion. The lowest bin plot in Figure 2 is 1.5′′ h−1. Since we
implanted objects to have a population with a constant surface
density that bin is not well sampled. Even though we were
able to recover objects planted with rates as slow as 0.7′′ h−1

(parallax for objects at 200 AU) we consider a more conservative
limit. The rate at which an object moves one FWHM in 45 min,
the shortest separation between the first and third exposures, is
0.9′′ h−1 (150 AU).

To properly account for detection biases, both real and control
objects must go through exactly the same validation procedure.
We did not unveil the fake object list until all objects were
recognized as moving objects, either real or planted.

Figure 2. Histogram of the fraction of objects recovered as a function of rate.
Bins are chosen to have similar numbers of objects. This demonstrates that our
detection efficiency does not depend significantly upon the rate of motion.

5. RESULTS AND ANALYSIS

We found 92 moving objects, five corresponding to known
irregular Uranian satellites (those found by Kavelaars et al. 2004
and Sheppard et al. 2005), five to Centaurs, and 82 to TNOs.
The satellites that were missed were blended with stars in one
of the images and hence were not found by our algorithm.

We present our detections in Table 1. For each TNO, we
list its internal designation, its position at the time of the first
exposure (also listed), and its estimated magnitude with uncer-
tainties (along with an independent estimate of the photometric
uncertainty). We also list the measured sky plane rates of mo-
tion of the TNO, two estimates of the distance to the TNO (one
suited for two nights’ data and another based only on parallax,
both explained later), its orbital inclination, and separation from
Uranus at the time of discovery.

Three standard stars (Landolt 1992) were used to obtain
the zero point and airmass dependence of the photometry.
These were PG2213-006C (V = 15.11 ± 0.0045, V − R =
0.426 ± 0.0023) SA-92-417 (V = 15.92 ± 0.0127, V − R =
0.351±0.0151) and SA-92-347 (V = 15.75±0.0255, V −R =
0.339 ± 0.0295). Since their colors are similar to those of
typical TNOs (Peixinho et al. 2004) we did not apply a
color correction. We checked both nights were photometric
and stable. The possible dependence on seeing (FWHM) was
also investigated, finding it to be unimportant. The correction
term was negligible compared to the airmass correction. Every
detection’s magnitude was calculated, using the following
formula:

R = 27.36 − 2.5 log f5/t − 0.09X, (3)

where f5 corresponds to the flux in a five-pixel aperture, t is the
time in seconds and X is the airmass. This equation accounts
for an average 0.34 mag aperture correction between the known
magnitude of a synthetic object and its magnitude measured with
a five-pixel aperture. The search algorithm requires an object
to be found in all three exposures giving three independent
magnitude measurements that we average to obtain the results
shown in Table 1. The errors given on the magnitude values
correspond to the error on the flux.

In Figure 3 we plot the photometric errors, showing them to
be ∼0.1 mag. The magnitude dependence of the uncertainty is
shown in Figure 4. We estimate the uncertainties empirically,
calculating the standard deviation as a function of magnitude.
We then fit a second-degree polynomial, overlaid in Figure 4.
This estimate is shown for each real object as ∆Rmag in Table 1.
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Table 1
Fit Parametersa

Name MJD R.A. Decl. Rmag ∆Rmag dR.A./dt dDecl./dt dpar dbari i ∆α(Uranus)
(′′ h−1) (′′ h−1) (AU) (AU) (deg) (′)

sukbo88 52880.456823 22:09:09.42 −12:46:24.35 23.57+0.05
−0.05 0.07 −2.81 −1.04 43.0 42.9 ± 2.5 2.2 ± 1.1 60

sukbo57 52880.387131 22:09:15.90 −11:55:25.85 24.97+0.13
−0.15 0.14 −2.78 −1.02 43.4 43.2 ± 2.5 0.7 ± 0.8 38

sukbo17 52880.467440 22:09:24.36 −11:37:45.60 25.03+0.14
−0.16 0.14 −2.67 −1.01 45.2 44.9 ± 2.5 2.7 ± 1.6 42

sukbo23 52880.467440 22:09:26.17 −11:16:08.70 24.25+0.10
−0.11 0.10 −2.68 −0.90 46.0 45.5 ± 2.6 9.4 ± 3.6 56

sukbo59 52880.387131 22:09:33.47 −11:52:17.45 25.47+0.16
−0.19 0.17 −2.82 −1.04 42.9 42.6 ± 2.5 1.0 ± 1.1 34

sukbo52 52880.387131 22:09:36.21 −12:06:01.14 23.75+0.04
−0.04 0.08 −2.58 −0.96 47.0 46.9 ± 2.5 1.6 ± 1.3 33

sukbo90 52880.456823 22:09:38.29 −12:39:41.88 25.60+0.19
−0.23 0.17 −2.95 −1.09 40.8 40.6 ± 2.5 1.7 ± 0.8 51

sukbo24 52880.467440 22:09:40.30 −11:12:11.25 24.54+0.12
−0.13 0.12 −2.70 −1.00 44.8 44.5 ± 2.5 0.5 ± 1.2 58

sukbo51 52880.387131 22:09:45.05 −12:08:45.55 24.37+0.08
−0.08 0.11 −3.05 −1.11 39.5 39.2 ± 2.4 1.0 ± 0.7 31

sukbo50 52880.387131 22:09:47.61 −12:10:06.91 25.13+0.15
−0.17 0.15 −2.73 −0.98 44.6 44.3 ± 2.5 2.4 ± 1.4 31

sukbo54 52880.387131 22:09:48.36 −12:05:40.42 25.59+0.20
−0.25 0.17 −2.68 −0.99 45.2 45.0 ± 2.5 1.5 ± 1.2 30

sukbo22 52880.467440 22:09:51.25 −11:21:10.92 24.74+0.13
−0.15 0.13 −2.36 −1.02 50.8 50.8 ± 2.8 18.4 ± 7.0 49

sukbo55 52880.387131 22:09:51.26 −12:03:05.07 24.63+0.12
−0.14 0.12 −2.69 −1.03 44.7 44.6 ± 2.5 4.2 ± 1.9 29

sukbo48 52880.387131 22:09:53.94 −12:16:51.14 25.52+0.17
−0.20 0.17 −3.13 −1.54 37.6 37.9 ± 3.3 34.6 ± 16.4 32

sukbo60b 52880.387131 22:09:55.42 −11:50:18.49 25.77+0.19
−0.23 0.19 −2.82 −1.03 42.9 46.4 ± 12.0 c 29

sukbo58b 52880.387131 22:10:01.46 −11:52:42.62 25.68+0.20
−0.25 0.18 −2.85 −0.86 44.3 47.5 ± 11.1 c 27

sukbo91 52880.456823 22:10:26.15 −12:35:13.32 24.36+0.07
−0.08 0.11 −2.76 −1.06 43.5 43.4 ± 2.5 5.0 ± 2.0 40

sukbo21 52880.467440 22:10:27.48 −11:26:00.88 23.72+0.06
−0.06 0.07 −2.79 −1.06 43.1 42.9 ± 2.5 3.2 ± 1.6 40

sukbo16 52880.467440 22:10:30.60 −11:41:46.06 23.31+0.04
−0.05 0.06 −2.82 −1.00 43.2 42.8 ± 2.5 3.9 ± 1.8 27

sukbo53 52880.387131 22:10:31.56 −12:06:20.06 24.52+0.08
−0.09 0.11 −2.57 −0.95 47.2 47.0 ± 2.5 0.8 ± 0.1 20

sukbo56 52880.387131 22:10:32.98 −12:02:16.43 23.95+0.05
−0.05 0.09 −2.67 −1.01 45.2 45.2 ± 2.5 3.9 ± 1.8 18

sukbo93 52880.456823 22:10:36.60 −12:18:23.83 23.97+0.08
−0.09 0.09 −2.69 −1.00 44.9 44.8 ± 2.5 1.5 ± 1.1 25

sukbo92 52880.456823 22:10:39.91 −12:26:38.52 25.38+0.21
−0.27 0.16 −2.87 −1.07 42.0 41.8 ± 2.5 2.7 ± 1.3 31

sukbo94 52880.456823 22:10:42.50 −12:18:33.94 23.85+0.07
−0.07 0.08 −2.79 −1.01 43.5 43.3 ± 2.5 1.7 ± 1.1 24

sukbo45 52880.348317 22:10:51.30 −12:36:53.32 24.15+0.06
−0.07 0.10 −2.92 −1.09 41.2 41.1 ± 2.5 2.3 ± 1.0 39

sukbo49b 52880.387131 22:10:52.67 −12:13:42.84 25.41+0.17
−0.20 0.16 −2.89 −0.95 42.6 46.8 ± 12.0 c 19

sukbo0 52880.337272 22:10:52.89 −12:13:41.26 25.23+0.15
−0.18 0.15 −2.84 −1.03 42.7 42.5 ± 2.5 1.3 ± 0.8 19

sukbo61b 52880.387131 22:10:53.87 −11:45:27.66 23.13+0.03
−0.03 0.05 −2.88 −1.08 41.7 43.1 ± 9.8 c 20

sukbo31 52880.342793 22:10:54.08 −11:45:26.57 23.19+0.03
−0.03 0.05 −2.84 −1.06 42.4 42.2 ± 2.5 1.2 ± 1.1 20

sukbo2 52880.337272 22:10:54.93 −12:12:09.59 25.64+0.19
−0.24 0.18 −2.72 −1.05 44.2 44.2 ± 2.5 6.1 ± 2.4 17

sukbo44 52880.348317 22:10:57.80 −12:42:51.61 25.25+0.14
−0.16 0.15 −3.11 −1.25 38.2 38.1 ± 2.5 9.8 ± 3.7 44

sukbo34 52880.342793 22:11:03.64 −11:31:33.24 24.17+0.07
−0.07 0.10 −2.77 −1.03 43.5 43.3 ± 2.5 0.9 ± 1.1 31

sukbo27 52880.472734 22:11:04.46 −13:09:42.98 25.16+0.14
−0.16 0.15 −2.94 −1.09 41.0 41.0 ± 2.5 2.7 ± 0.9 70

sukbo73 52880.397724 22:11:06.70 −10:54:01.82 24.96+0.13
−0.15 0.14 −2.65 −1.01 45.5 45.3 ± 2.5 2.3 ± 1.5 67

sukbo46 52880.348317 22:11:09.54 −12:35:08.71 24.58+0.10
−0.10 0.12 −2.59 −0.99 46.6 46.7 ± 2.5 5.5 ± 2.2 36

sukbo25 52880.472734 22:11:15.88 −13:17:16.77 24.95+0.17
−0.21 0.14 −3.13 −1.24 37.9 38.0 ± 2.5 8.6 ± 3.1 77

sukbo39 52880.348317 22:11:17.04 −12:51:56.40 25.37+0.17
−0.20 0.16 −2.79 −1.04 43.2 43.2 ± 2.5 2.3 ± 1.0 52

sukbo8 52880.337272 22:11:20.06 −12:03:12.63 25.13+0.13
−0.15 0.15 −2.80 −1.05 43.1 42.9 ± 2.5 1.7 ± 1.1 7

sukbo6 52880.337272 22:11:23.29 −12:05:17.03 25.80+0.21
−0.27 0.19 −2.83 −1.02 42.9 42.7 ± 2.5 1.7 ± 1.1 7

sukbo33 52880.342793 22:11:24.19 −11:37:12.39 24.19+0.06
−0.07 0.10 −2.96 −1.06 40.8 40.6 ± 2.5 2.8 ± 1.4 24

sukbo43 52880.348317 22:11:24.34 −12:48:33.44 25.18+0.16
−0.20 0.15 −2.84 −1.29 41.7 42.1 ± 2.9 25.5 ± 10.3 48

sukbo3 52880.337272 22:11:26.81 −12:11:39.44 25.60+0.18
−0.22 0.18 −2.75 −1.04 43.8 43.7 ± 2.5 3.2 ± 1.5 12

sukbo42 52880.348317 22:11:37.53 −12:49:36.33 24.55+0.10
−0.11 0.12 −2.87 −1.03 42.3 42.1 ± 2.5 2.6 ± 1.1 49

sukbo77 52880.397724 22:11:47.57 −10:51:02.90 23.34+0.03
−0.03 0.06 −2.83 −1.06 42.5 42.2 ± 2.5 1.0 ± 1.1 69

sukbo32 52880.342793 22:11:47.88 −11:38:28.77 24.70+0.09
−0.10 0.12 −2.79 −1.07 43.1 43.0 ± 2.5 3.7 ± 1.7 22

sukbo1 52880.337272 22:11:49.55 −12:12:54.47 25.62+0.18
−0.22 0.18 −2.78 −1.05 43.3 43.3 ± 2.5 3.1 ± 1.4 13

sukbo5 52880.337272 22:11:51.99 −12:07:17.95 24.27+0.07
−0.07 0.10 −2.89 −1.07 41.6 41.5 ± 2.5 1.2 ± 0.8 7

sukbo37b 52880.342793 22:11:53.44 −11:26:56.13 25.65+0.21
−0.26 0.18 −2.38 −0.59 60.1 c c 34

sukbo4 52880.337272 22:11:53.69 −12:10:54.32 24.46+0.08
−0.08 0.11 −3.19 −1.54 36.7 36.9 ± 3.0 29.8 ± 13.2 11

sukbo13 52880.337272 22:12:00.29 −11:59:26.11 25.37+0.17
−0.21 0.16 −2.81 −1.38 42.1 42.4 ± 3.4 35.2 ± 16.2 4

sukbo38 52880.342793 22:12:08.82 −11:16:55.93 25.29+0.15
−0.18 0.16 −2.51 −0.76 50.6 50.0 ± 2.8 21.0 ± 8.0 44

sukbo28 52880.472734 22:12:21.36 −13:01:26.73 23.39+0.05
−0.05 0.06 −2.77 −1.03 43.6 43.6 ± 2.5 2.6 ± 1.0 62

sukbo78 52880.397724 22:12:21.47 −10:42:48.31 22.64+0.02
−0.02 0.03 −2.78 −1.10 43.0 42.9 ± 2.5 6.6 ± 2.7 78
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Table 1
(Continued)

Name MJD R.A. Decl. Rmag ∆Rmag dR.A./dt dDecl./dt dpar dbari i ∆α(Uranus)
(′′ h−1) (′′ h−1) (AU) (AU) (deg) (′)

sukbo74 52880.397724 22:12:27.15 −10:52:56.00 22.99+0.02
−0.02 0.04 −2.72 −1.00 44.5 44.3 ± 2.5 1.7 ± 1.3 68

sukbo76 52880.397724 22:12:27.37 −10:51:42.55 25.49+0.17
−0.21 0.17 −2.86 −1.10 41.9 41.6 ± 2.5 3.1 ± 1.6 69

sukbo26 52880.472734 22:12:27.91 −13:17:09.62 25.17+0.17
−0.20 0.15 −2.86 −1.12 41.8 41.8 ± 2.5 7.8 ± 2.8 77

sukbo75 52880.397724 22:12:28.22 −10:51:23.92 25.59+0.17
−0.20 0.17 −2.84 −0.84 44.7 44.1 ± 2.8 23.3 ± 9.3 70

sukbo41 52880.348317 22:12:28.24 −12:50:19.12 24.92+0.13
−0.15 0.14 −2.95 −1.14 40.5 40.5 ± 2.5 5.4 ± 2.0 51

sukbo29 52880.472734 22:12:28.90 −13:00:29.66 23.86+0.06
−0.07 0.08 −2.91 −1.07 41.4 41.4 ± 2.5 1.9 ± 0.5 61

sukbo35 52880.342793 22:12:32.78 −11:31:13.39 25.58+0.17
−0.20 0.17 −2.72 −1.25 43.5 43.6 ± 2.9 25.3 ± 10.3 31

sukbo99 52880.462148 22:12:40.64 −12:27:42.77 24.28+0.09
−0.09 0.10 −2.76 −1.01 43.9 43.8 ± 2.5 1.3 ± 0.1 31

sukbo47b 52880.348317 22:12:41.16 −12:27:39.37 23.89+0.05
−0.05 0.08 −2.81 −1.07 42.8 c c 31

sukbo81 52880.403236 22:12:54.24 −11:39:25.88 25.26+0.15
−0.18 0.16 −3.06 −1.34 38.5 38.5 ± 2.6 18.1 ± 7.1 27

sukbo69 52880.392433 22:13:01.10 −11:52:24.31 25.26+0.15
−0.18 0.16 −2.98 −1.10 40.4 40.3 ± 2.4 0.8 ± 0.3 20

sukbo67 52880.392433 22:13:02.05 −12:08:55.50 24.66+0.09
−0.10 0.12 −2.88 −1.04 42.1 41.9 ± 2.5 2.0 ± 1.1 21

sukbo64 52880.392433 22:13:07.07 −12:12:25.08 24.48+0.08
−0.09 0.11 −2.92 −1.11 41.0 41.0 ± 2.5 2.6 ± 1.2 24

sukbo85 52880.403236 22:13:16.86 −11:25:45.74 24.20+0.06
−0.07 0.10 −2.76 −1.04 43.7 43.6 ± 2.5 1.9 ± 1.3 41

sukbo63 52880.392433 22:13:18.02 −12:13:17.31 25.37+0.16
−0.19 0.16 −2.81 −1.05 42.9 42.9 ± 2.5 1.9 ± 1.0 26

sukbo65 52880.392433 22:13:25.44 −12:09:50.02 25.52+0.16
−0.19 0.17 −2.69 −1.00 45.0 44.9 ± 2.5 1.6 ± 1.0 27

sukbo87b 52880.403236 22:13:26.02 −11:17:06.76 25.27+0.15
−0.18 0.16 −2.62 −0.94 46.5 c c 50

sukbo96 52880.462148 22:13:28.31 −12:42:21.29 25.40+0.21
−0.26 0.16 −2.74 −0.98 44.4 44.2 ± 2.5 3.3 ± 1.4 49

sukbo100 52880.462148 22:13:39.25 −12:26:53.85 24.31+0.08
−0.09 0.10 −2.99 −1.05 40.6 40.4 ± 2.5 4.3 ± 1.8 39

sukbo62b 52880.392433 22:13:42.77 −12:15:37.04 25.16+0.13
−0.14 0.15 −2.01 −1.34 60.1 65.2 ± 17.4 c 33

sukbo72 52880.392433 22:13:51.41 −11:46:46.76 25.14+0.14
−0.17 0.15 −2.81 −1.05 42.9 42.8 ± 2.5 1.0 ± 0.7 34

sukbo80 52880.403236 22:13:56.31 −11:40:41.22 25.38+0.18
−0.22 0.16 −2.70 −1.02 44.7 44.6 ± 2.5 1.8 ± 1.2 38

sukbo86 52880.403236 22:13:58.17 −11:23:21.45 24.94+0.12
−0.14 0.14 −3.13 −0.99 39.5 39.1 ± 2.5 14.8 ± 5.8 50

sukbo79 52880.403236 22:13:59.82 −11:41:10.37 24.61+0.14
−0.17 0.12 −3.06 −1.19 39.0 38.9 ± 2.4 4.7 ± 1.9 39

sukbo95 52880.462148 22:14:02.62 −12:47:04.86 24.71+0.14
−0.16 0.12 −2.81 −1.02 43.1 43.1 ± 2.5 1.7 ± 0.3 58

sukbo70 52880.392433 22:14:06.42 −11:48:59.37 25.04+0.12
−0.14 0.14 −2.76 −1.04 43.6 43.5 ± 2.5 2.1 ± 1.2 37

sukbo71 52880.392433 22:14:13.53 −11:47:47.21 24.25+0.08
−0.09 0.10 −3.00 −1.09 40.2 40.0 ± 2.4 1.9 ± 1.1 39

sukbo97 52880.462148 22:14:13.95 −12:38:36.76 24.73+0.12
−0.13 0.13 −2.84 −1.06 42.4 42.4 ± 2.5 2.1 ± 0.8 53

sukbo66b 52880.392433 22:14:22.17 −12:09:05.58 25.01+0.13
−0.15 0.14 −3.32 −1.65 35.2 34.9 ± 7.5 c 40

Notes.
a All 82 TNOs found. The second night data were used when possible. The measured magnitude in the R filter with nominal errors is shown in Rmag.
∆Rmag is a model for the photometric error based on the measure magnitudes of inserted, synthetic objects. dR.A./dt and dDecl./dt are estimates of
the measured motion of the object. The distance dpar is calculated with the assumption of a circular orbit. dbari is the barycentric distance estimate
and i is the inclination estimate given by the Orbfit code (Bernstein & Khushalani 2000). ∆α(Uranus) is the projected distance to Uranus during the
observations.
b These objects were not found in the second night of observations.
c The result is unconstrained.

We can accurately approximate the apparent motion of a TNO
over 24 h as a straight line with a constant rate. We include the
measured R.A. and decl. rates in Table 1. The apparent motion
of our objects compared with that which parallels the ecliptic is
plotted in Figure 5.

Near opposition, the change in the rate or direction of motion
over 24 h is negligible, making it easy to predict where the real
objects would be on the second night. However, nine objects
were not found on the second night. Our method is only ∼90%
efficient for the brightest objects on the first night, with 10%
lost to blending with field stars. It is expected that more than
10% of the objects will be lost on the second night, because of
confusion with stationary sources and because they are more
likely to move outside the FOV over 24 h.

We used the observations on the second night to improve the
distance determination when possible. We use the Bernstein &
Khushalani (2000) Orbfit routines to estimate plausible orbital
elements assuming there is no acceleration in the direction

Figure 3. Histogram of the magnitude error (∆R) as a function of R magnitude
for all implanted objects. The error is defined as the difference between the
implanted and measured magnitudes for the synthetic population. The dashed
line is a Gaussian of width ∼0.1 mag.
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Figure 4. The error in magnitude for synthetic objects as a function of magnitude
is shown for different magnitude bins. The error is defined as the FWHM of
the best-fit Gaussian to the histogram of errors for all objects in each bin. The
error bars correspond to the calculated uncertainty of the FWHM. The curve
is a quadratic fit to the data and defines the error estimate used for ∆Rmag in
Table 1.

tangential to the plane of the sky. For a 24 h arc, this results
in a ∼7% accuracy in the barycentric distance (dbari). For a
single night observation of objects the error on the distance
could be unbound. However, since the observations were taken
near opposition we are able to readily estimate heliocentric
distances (dpar) from the “parallactic motion.” We assume that
the observations are taken exactly at opposition and that the
orbits are circular. This distance estimate is not as reliable as
dbari but it serves as a consistency check.

5.1. Statistical Analysis

The probability of our data (D) given a model for the intrinsic
population (M) is denoted P (D|M) = L(M), where L is
the likelihood function. We consider the data in our survey
as a collection of N detections with measured magnitudes.
As derived in Schechter & Press (1976) if g(m) dm is the
expected number of detections between m and m + dm, then the
likelihood of a set mi where i = 1, . . . ,N is

L(M) = exp

[
−

∫ ∞

−∞
g(m) dm

] N∏
i=1

g(mi) dm. (4)

We are interested in characterizing g(m). As described in
Bernstein et al. (2004), we can think of g(m) as being the
probability of detecting an object and assigning it a magnitude
m given the survey characteristics and the real distribution of
objects on the sky. We consider an intrinsic differential surface
density of objects σ that only depends on magnitude and is
constant over the observed area as the model M . For a survey
with an efficiency function η, a function of magnitude only, we
can write

∫ ∞
−∞ g(m) dm = Ω

∫
η(m)σ (m) dm, where Ω is the

solid angle of the survey.
The likelihood of a model for the differential surface density

σ (m) is then given by

L(σ ) = e−Ω
∫

η(m)σ (m) dm
∏

i

∫
li(m)η(m)σ (m) dm. (5)

This is the probability of finding each object in the set of obser-
vations at its measured magnitude, scaled by the probability of
not finding anything else. The function li(m) is the probability
an object is given a magnitude mi given its intrinsic magnitude
is m.

If we consider the efficiency function and model it as rela-
tively linear over the magnitude uncertainty of an observation

Figure 5. Rate of motion in the sky for every TNO. Objects observed on one
night only are represented by triangles. The ecliptic motion is overplotted as a
solid line.

we can approximate our likelihood function as follows:

L(σ ) = e−Ω
∫

η(x)σ (x)dx
∏

i

η(mi)σ (mi). (6)

This is extremely useful when dealing with a large number of
objects and surveys. We compared the behavior of both exact
and approximate likelihood functions with our data and found
no noticeable differences.

If we want to sample the likelihood function over its parameter
space or calculate the total likelihood of a model we need to
consider priors, that is, the probability of a parameter q given a
certain model M , P (q|M). These priors reflect any knowledge
we have over the value of a parameter previous to our survey.
We chose priors that reflect the least previous knowledge into
the analysis. We chose uniform functions between limits set by
our survey, indicating our ignorance of those parameters. The
total probability of a model is

L(σ ) =
∫

P (q|σ )L(σ,q) dq. (7)

We can compare two competing models using their total
likelihoods by computing the odds ratio:

O21 = P (σ2|D)

P (σ1|D)
= P (σ2)

P (σ1)

P (D|σ2)

P (D|σ1)
= L(σ2)

L(σ1)
. (8)

The last equality holds if we do not have a good reason to
prefer “a priori” any of the two models. The ratio of the total
likelihoods is called the Bayes factor.

5.2. Single Power Law Model

One of our goals is to determine whether the results of
our survey indicate that the cumulative surface density can be
modeled by an SPL distribution or if the data favor a more
complicated model. We use a likelihood analysis to investigate
this.

The likelihood function is related to both the detection
efficiency of the survey and the differential surface density σ (R).
The important observation for the analysis is the number of
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Figure 6. Contours of the SPL likelihood function. The maximum likelihood
point is marked with a dot (α = 0.51,R0 = 22.6). Marked with a triangle is the
best value for the parameters based on Petit et al. (2006) (α = 0.76, R0 = 23.3).
This shows the discrepancy between our result and that of Petit et al. (2006).

objects we detect brighter than a given magnitude, namely the
cumulative surface density: Σ(R) = ∫ R

−∞ σ (x) dx. We use the
likelihood function given by Equation (5), with Ω = 2.83 deg2

and η(R) given by Equation (2).
For every object we model its photometric uncertainty using

the analytical model we considered previously, a Gaussian (li)
around its measured magnitude (see Figure 4).

The SPL model is written as follows:

σ1(R, α,R0) = α ln(10)10α(R−R0). (9)

In Figure 6 we plot the SPL likelihood as a function of R0
and α. The previously accepted values for the SPL parameters
(α = 0.76,R0 = 23.3) (Petit et al. 2006) are in strong disagree-
ment with our data, lying well outside our 3σ confidence region.
Most of the surveys that have consistently measured a slope of
α ∼ 0.7 for the cumulative distribution have brighter limiting
magnitudes (Gladman et al. 1998; Petit et al. 2004, 2006). The
exceptions are Gladman et al. (2001) and Fraser et al. (2008),
who quote a magnitude limit of R = 25.9 and R = 25.6, respec-
tively. Bernstein et al. (2004) performed a search complete to
R = 28.5. They discovered far too few objects to be consistent
with an SPL.

We check that our bright-end sample is consistent with
the previous surveys with shallower limiting magnitudes. In
Figure 7 we plot our sample’s likelihood function after imposing
an artificial efficiency limit at R = 24.5. The power-law index
is clearly consistent with the Petit et al. (2006) result and it
shows that our sample does not deviate from the SPL behavior
observed by others for magnitudes brighter than R ∼ 24.5.

To show that the deviation from an SPL at fainter magnitudes
is not an artifact of our efficiency function, we repeated the
experiment but instead imposed an artificial break at R = 25.2,
where our survey is 70% as efficient as its maximum efficiency.
The result can be seen in Figure 8; it shows that the Petit et al.
(2006) result is rejected at the 2σ level.

Figure 7. Contours of the SPL likelihood function for our sample limited to
R � 24.5. The maximum likelihood point is marked with a dot (α = 0.69,
R0 = 23.0). Marked with a triangle is the best value for the parameters based
on Petit et al. (2006). Both results consistent with each other. This shows that our
survey agrees with previous surveys if we consider only the range of magnitudes
to which those surveys are sensitive.

Figure 8. Contours of the SPL likelihood function for our sample limited to
R � 25.2, where our survey is 70% efficient. The maximum likelihood point
is marked with a dot (α = 0.57, R0 = 22.8) and the triangle is the Petit et al.
(2006) result. We see that both results are inconsistent at more than a 2σ level.
This demonstrates that our result does not rely on the detection of objects at
magnitudes where our detection efficiency is declining.

5.3. Double Power Law Model

Now we have shown that our results are not well modeled
by an SPL; we test a more complicated model. Any model that
includes a break in the surface density distribution will have
more free parameters than an SPL. Alternatives with three and
four parameters were tried by Bernstein et al. (2004) to explain
the aforementioned under-abundance of detections. We will
focus on the “DPL” model, the harmonic mean of two different
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Figure 9. The probability density function for α and R0 from the MCMC simulation is shown as a histogram. The likelihood function in Figure 6, shown as the
marginal probability over each parameter is plotted as the solid curve. The solid, heavy line indicates the global maximum obtained by the MCMC run and the thin
lines indicate the 1σ credible region of the parameter, inside of which we find 68.3% of the probability.

power laws. Though a model with three parameters would be
easier to implement, it does not provide the immediate insight
into the TNO population that the DPL provides. The DPL has
four free parameters, allowing two different asymptotic power
law behaviors for the distribution (that can be linked to the size
distribution of small and large objects), a break in the luminosity
distribution, and a differential density constant.

The larger number of parameters makes the likelihood func-
tion more difficult to sample; thus we use a Markov Chain Monte
Carlo (MCMC) approach (for an MCMC review see Tegmark
et al. 2004). We use a Metropolis–Hastings algorithm to sample
the likelihood function with a Gaussian proposal distribution.
The parameters were set to yield a ∼25% acceptance rate. We
considered a run of 100,000 iterations. To check for consistency
we tried different initial conditions and compared the results,
no disagreement was found. We also checked the performance
of our MCMC code with the SPL model. In Figure 9 we show
the marginalized probability for both parameters α and R0 from
MCMC and the exact result. There is evident agreement between
the two approaches.

The DPL likelihood function is obtained by replacing the
corresponding surface number density (Equation (10)) in the
likelihood function (Equation (5)) with

σ2(R) = C[10−α1(R−23) + 10(α2−α1)(Req−23)−α2(R−23)]−1,

C = σ23(1 + 10(α2−α1)(Req−23)). (10)

In Figure 10 we show the DPL likelihood as a function of the
bright-end slope α1, the faint-end slope α2, the value of the
surface number density at R = 23 σ23, and the break magnitude
Req. All parameters but α1 are well constrained by the data.

Given the small number of bright TNOs detected in our survey,
the limited constraint on α1 is not surprising.

5.4. Cumulative Number Density

Using the detection efficiency (Equation (2)) we can estimate
the number of objects we missed for each object found. We
construct a cumulative function of the unbiased population
plotting each object individually, representing with its detection
a number of objects with similar magnitudes. Since we plot a
cumulative function, the errors are correlated (see Figure 11).

We go on to compare the total likelihood of both models,
as described in Section 5.1. A simple way of doing this
is to examine the goodness-of-fit of the cumulative number
density. Figure 11 shows the data and the best solution for the
SPL and DPL cases. Note that these power laws correspond
to the cumulative number densities, Σ1(R) = 10α(R−R0) and
Σ2(R) = ∫ R

−∞ σ2(x) dx.
It is expected that a DPL gives a better fit to the data than an

SPL model. The question is whether this better fit overcomes
the increased complexity in the model. This can be answered
by calculating the quotient of the total Bayesian probabilities
of the models (Bayes factor, details in Appendix 5.1). If the
total probability for a given model is larger than another then
it is preferred. Using the results of the MCMC simulations we
compute this factor. The resulting total probabilities depend
on suitable priors that reflect our ignorance on the parameters.
We selected uniform priors for all our variables. For the
SPL we chose α ε [0.35,0.85], R0 ε [21.0,24.0], while the
DPL priors were uniform, α1 ε [0.5,1.0], α2 ε [0.1,0.7], σ23 ε
[0.5,5.0], Req ε [23.0,26.0]. The calculated Occam’s factor is
Osd = 26, meaning that a DPL model is more likely to be a
better representation for the brightness distribution of our data.
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Figure 10. The DPL likelihood for our survey as a function of all parameters is shown in each window. The most likely parameters and their 1σ confidence regions,
represented by the solid, heavy line and the two thin lines, are α1 = 0.7+0.2

−0.1, α2 = 0.3+0.2
−0.2, σ23 = 2.0+0.5

−0.5, and Req = 24.3+0.8
−0.1.

Figure 11. The cumulative number density for our survey. The best previous
model is plotted in the short-dashed line. Our most likely solution for the SPL
is plotted in the long-dashed line. The best DPL fit is shown as a solid line. The
quoted size corresponds to an object at 42 AU and 4% albedo.

5.5. Other Surveys

Bernstein et al. (2004) combined the results of their HST
survey with those of Chiang & Brown (1999), Gladman et al.
(1998), Allen et al. (2002), Trujillo et al. (2001), Larsen et al.
(2001), and Trujillo & Brown (2003). We include most of the

objects listed in that work and those conducted since. Table 2
differs from Bernstein et al. (2004, Table 2) in the exclusion of
the two widest searches and the inclusion of two newer surveys
(Petit et al. 2006; Fraser et al. 2008), as well as ours. We excluded
the two surveys because of the complexity in establishing the
searched area near the ecliptic. For the sake of comparison
with Bernstein et al. (2004) we used the same criteria regarding
detected objects as well as the caveats provided therein. We
included surveys for which the location of the searched area,
effective area of the search, magnitude at which the efficiency
drops by 50% must be given. We included objects that have
an observed magnitude where their efficiency function is more
than 15% the maximum efficiency of the survey. We point out
that all our detections satisfy this requirement.

We are interested in computing the likelihood of a model
given the data from each survey. For this we only need
the list of objects that meet our criteria, an estimate of the
efficiency function, the surveyed area, and a way to translate
all measurements to the red filter R for each survey. We use
the approximation given in Equation (6). Figure 12 shows
the 333 objects that we considered. It shows the existence
of a very pronounced lack of detections at faint magnitudes.
Our likelihood analysis is summarized in Figure 13 with 1σ
confidence limits for the parameters.

An interesting aspect of our search is that the data have
been available since 2003 August. Our survey’s most likely
distribution expects ∼12 detections for the HST field while three
were found. This provides independent support to the existence
of a break in the TNO luminosity function.

5.6. Classical and Excited Population

We use the criteria in Bernstein et al. (2004) to identify
“Classical” and “Excited” objects. TNOs with distance at
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Figure 12. The cumulative number density for all surveys in Table 2. The
best previous model is plotted in the black dashed line. Our most likely DPL is
plotted in the long-dashed line. The most likely DPL (see Figure 13) considering
all surveys is plotted as a full line. The apparent bump in density at around
R ∼ 25.8 corresponds to five objects in Gladman et al. (2001).

discovery d between 38 AU and 55 AU and inclination i � 5 deg
are considered “Classical” and the rest are considered “Excited.”
In Table 2 we list each survey with the corresponding number
of TNOs in each category.

This survey was considered by itself and together with the
surveys in Table 2. We investigated how does the DPL luminos-
ity function change when applied to the different populations.
We repeated the MCMC analysis for both populations and for
our survey and the combined survey. We also considered the
priors used in Bernstein et al. (2004), −0.5 < α1, α2 < 1.5 to
constrain the parameter space.

The results of the MCMC simulations are summarized in
Table 3. These results are very similar to those of Bernstein
et al. (2004). However, we have included three new surveys
(this survey and those of Petit et al. 2006 and Fraser et al. 2008),
two of which (this survey and that of Fraser et al. 2008) sample
magnitudes fainter than R ∼ 25.5 where excited objects were
specially undersampled.

5.7. Size, Distance, and Inclination Distribution

The size distribution is closely related to the distribution of
apparent magnitudes. It is customary to assume all objects are
located at the same distance and that the size distribution is an
SPL and hence the cumulative brightness distribution is also a
power law. The parameters of the two distributions are related
by q = 5α + 1, where q is the exponent of the differential size
distribution (dn = D−qdD) and α is the exponent of the SPL
cumulative luminosity function.

With our rough distance estimates and assuming a 4% albedo
for TNOs, we can compute the real size distribution of the
objects in our survey (we adopt mR = −27.6 for the R-band
magnitude of the Sun). In Figure 14 we show the cumulative
size distribution for our survey. However, the typical error in
distance ∼7% translates into a 0.3 mag photometric error, triple
the median photometric error in our survey (see Figure 3).
Thus, instead of repeating the statistical analysis for the size
distribution directly, we transform our luminosity function into

Figure 13. The DPL likelihood function marginalized over each parameter for all the surveys in Table 2. We see the maximum and 68% confidence region. The most
likely value for each parameter and 1σ confidence limits are: α1 = 0.75+0.12

−0.08, α2 = 0.23+0.07
−0.14, σ23 = 1.50+0.18

−0.12 and Req = 24.8+0.5
−0.9.
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Figure 14. Number of TNOs observed in 1 deg2 as a function of size. The
solid line shows the model based on our survey. The dashed line is the model
that considers all surveys. Both models are properly scaled to match the density
observed in our survey.

Table 2
Surveysa

Paper Ω R50 NC
b NE

b Nobs Nexp

deg2

Chiang & Brown (1999)c 0.01 27.0 1 1 2 1
Gladman et al. (2001)d 0.322 25.9 7 8 15 15
Trujillo et al. (2001)e 28.3 23.7 38 27 71 64
Allen et al. (2002) 2.30 25.1 15 15 30 39
Bernstein et al. (2004) 0.019 28.5 3 0 3 5
Petit et al. (2006) N 5.88 24.2 6 21 27 22
Petit et al. (2006) U 5.97 24.6 16 20 36 34
Fraser et al. (2008) 3.0 20.8 36 31 67 74
This surveye 2.83 25.69 54 18 82 74

Notes.
a Details of the surveys considered in this work. Ω is the total
surveyed area. R50 defines the R magnitude at which the survey’s
detection efficiency is 50% its maximum efficiency. The total number
of objects discovered that had magnitude brighter than that at which
the survey is 15% its maximum efficiency is Nobs, as defined in
Bernstein et al. (2004). The expected number of objects for each
survey given our most likely DPL luminosity function model for all
surveys combined (see Figure 13) is Nexp.
b Objects with inclination i � 5 deg and at a distance 38 AU < d <

55 AU are considered as Classical NC and the rest as Excited NE .
c Based on Table 3 and comments in Gladman et al. (2001).
d Based on Table 2 and comments in Bernstein et al. (2004).
e In the Classical and Extended classification we only considered
objects for which there was distance and inclination information.

Table 3
DPL Parameter Estimationa

Survey α1 α2 σ23 Req

All surveys TNO 0.75+0.12
−0.08 0.23+0.07

−0.14 1.50+0.18
−0.12 24.8+0.5

−0.9

Classical 1.4+0.1
−0.3 0.32+0.04

−0.06 0.82+0.13
−0.12 23.3+0.3

−0.3

Excited 0.61+0.07
−0.05 −0.3+0.4

−0.2 0.68+0.09
−0.08 25.7+0.7

−0.6

This surveyb TNO 0.7+0.2
−0.1 0.3+0.2

−0.2 2.0+0.5
−0.5 24.3+0.8

−0.1

Classical 1.2+0.3
−0.4 0.15+0.20

−0.15 1.5+0.5
−0.5 23.6+0.6

−0.7

Notes.
a Best-fit parameters and 1σ confidence limits based on MCMC
simulations. All surveys are detailed in Table 2.
b In this survey there were only 18 excited objects, too few to
constrain a four-parameter model. However we could fit an SPL
with α = 0.62 ± 0.12 and R0 = 24.2 ± 0.3 to this population.

a size distribution assuming all objects are located at 42 AU. The
best DPL fits for the luminosity function are plotted as a function

Figure 15. Magnitude and distance for all 82 TNOs found. The black dots are
objects observed in both nights and the triangles are those with only one night’s
observation. We assume a 4% albedo to plot the constant size curves for 100,
200 and 400 km in black.

of size. The solid line is the fit to this survey and the dashed line
corresponds to the fit to the surveys in Table 2. We also consider
a toy model based on the DPL; it corresponds to two power
laws with indices q1 = 5α1 + 1 and q2 = 5α2 + 1 that are joined
at the size for which an object at 42 AU would be observed
to have magnitude Req. We plot the cumulative function of the
toy models for both DPLs to show the asymptotic behaviors
as a light solid line and a light dashed line respectively, both
arbitrarily offset vertically for clarity. In Figure 14 there is a
clear agreement between the real size distribution and the fit for
the DPL models indicates that the assumption that all TNOs are
at the same distance is justified.

In Figure 15 we plot the distance and magnitude for each
object. The distance corresponds to dbari in Table 1 with the
exception of those objects that were not recovered on the second
night for which we plot the circular orbit approximation (dpar).
We consider only the subset of 73 objects with 24 h arcs data,
with a distance error of 5%.

All but two objects are located at less than 50 AU from the
Sun, although we are able to detect D = 250 km TNOs at
distances of 80 AU, with 50% efficiency. This lack of distant
detections has been noted previously (Allen et al. 2001; Trujillo
et al. 2001; Bernstein et al. 2004) with the recurrent hint that
there is an “edge” to the Kuiper belt.

Given the size distribution that corresponds to our best fit
luminosity function we are able to calculate the distance bias in
our sample and obtain the real distance distribution. We follow
the approach of Trujillo et al. (2001). The true and observed
distributions are related by f (r) dr ∝ β(r)fo(r) dr , where
β(r)−1 = ∫ r1

r0
n(D)dD is the bias factor and n(D) is the TNO

size distribution. This is done for 10 magnitude bins between
22nd and 26th magnitude and independent estimates of the bias
function are obtained. We used the average to test the effect of
the DPL size distribution to the distance distribution of objects,
as shown in Figure 16. We see an abrupt drop in the abundance
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Figure 16. Shape of the debiased distance distribution of TNOs assuming a
constant albedo = 4%. The triangles assume a size distribution with a power
law of index q = 4. The dark points assume the DPL size distributions. The
bias corrections β are overplotted as a dot-dashed line for an SPL with exponent
q = 4, a solid line for a broken power law based on our survey and as a dashed
line for parameters based on all surveys combined.

of objects at r ∼ 47 AU, regardless of the size distribution
considered, as has been described by others (Trujillo et al. 2001;
Petit et al. 2006). However, a DPL size distribution gives a much
tighter constraint on the existence of a distant population. This
is due to its much shallower size distribution for small bodies
as can be seen in the bias correction for the DPL for our survey
and the one for all surveys.

Given the fact that we detect no objects farther than 50 AU
we can constrain the surface density Σ of a different population
located outside 50 AU. At 95% confidence level, the detection
of no objects is consistent with an expectation of three detected
objects. We calculated this for the observed population Nexp =
Ω

∫ ∞
0 η(x)Σ(x) dx, where η is the detection efficiency of our

survey. We assume for simplicity that the size distribution
of the distant population is the same as what we have measured
for the objects in our survey. We will also assume that each object
in the population is shifted to larger heliocentric distances by
the same factor. It is useful to define the limit on a distant
population at distance d as the maximum fraction of the
observed population’s surface density that a population can have
to be consistent with no detections. We denote this fraction as
g(d), following the notation in Bernstein et al. (2004). For 60 AU
we find g = 0.08, compared to g = 0.17 found by Bernstein et
al. (2004). Our survey rejects another population with the same
mass closer than 110 AU. Thus, we place a tight limit on the
existence of a distant population. We support the conclusion of
Bernstein et al. (2004) that if such a population exists, it is either
substantially less massive than the observed classical Kuiper belt
or it is comprised of small bodies that are beyond our detection
threshold.

Using the inclination information in Table 1 we can show the
inclination distribution for the objects in our survey. The results
are shown in Figure 18. This is very similar to the results in
Brown (2001).

5.8. Mass

We use the results of our MCMC analysis to estimate the total
mass of TNOs to which our survey is sensitive. At each step in
the MCMC runs, we compute the mass that corresponds to
the DPL parameters (again, assuming a heliocentric distance
of 42 AU and a geometric albedo of 0.04). We follow the

parameterization used in Bernstein et al. (2004):

Mtot = M23Ω
∫

σ (R)10−0.6(R−23)dRf −1

[
ρ

1000 kg m−3

]

×
[

d

42 AU

]6 [
p

0.04

]−3/2

, (11)

where M23 = 6.3 × 1018 kg = 1.055 × 10−6M⊕ and f is the
fraction of objects from the given population that are located
within Ω.

We consider the complete TNO population and the Classical
and Excited sub-samples. The DPL size distribution allows us to
compute the value of the integral in Equation (11); however the
total mass of a given population depends heavily on the mean
values of the assumed physical parameters. The mass probability
distribution is calculated assuming all other parameters are fixed.
The uncertainties on the rest of the parameters (density, albedo,
distance, and fraction in the surveyed area) can be accounted
for independently. We considered an effective area of ±3 deg
from the ecliptic, giving Ω = 21,600 deg2 and that all objects in
each population are located within that area (f = 1). We have
also assumed mean albedo p = 0.04, distance d = 42 AU, and
density ρ = 1000 kg m−3.

In Figure 17 the mass distribution is plotted for our survey
alone (solid lines) and for the combination of all the surveys
listed in Table 2 (dot-dashed lines). In black we show the
entire TNO sample. The most probable mass in TNOs for the
combination of all surveys is Mtno = 0.020+0.004

−0.003M⊕ while for
our survey alone we obtain Mtno = 0.025+0.016

−0.007M⊕. These are
consistent with each other and with the previous estimate by
Bernstein et al. (2004). This is not surprising since most of
the mass is present in TNOs with sizes comparable to the size
at which the distribution breaks. The slight overabundance of
TNOs in our survey with respect to other surveys yields a higher
mass for the TNO population. It is important to note that in
Equation (11) the total mass diverges if either α1 < 0.6 or
α2 > 0.6. We also see in Figure 17 that for the results of
our survey alone there is a long tail to higher masses. This
is due to the poor constraint on the bright end of the TNO
luminosity function given the limited areal coverage of our
survey (2.83 deg2). However, the combination of all surveys
yields a better constraint, and we obtain convergent masses for
all steps in our MCMC run.

When we consider the Classical and Excited populations
separately the mass distributions change. In Figure 17 we show
the mass in Classical objects in green and that in Excited objects
in red. Using all the surveys the mass in classical objects is
very well constrained to be Mcla = 0.008 ± 0.001M⊕. Based
on our survey alone, we find Mcla = 0.013 ± 0.003M⊕. The
overabundance of Classical objects in our survey is responsible
for that seen in the entire TNO population.

The mass in Excited objects using all surveys is Mexc =
0.010+0.021

−0.003M⊕, larger than that found for the Classical TNOs,
and is also less well constrained, with a long tail to higher
masses. This reflects the relatively poor constraint on the size
distribution of Excited objects, where the limits are set by what
values for the exponent of the power-law size distribution are
considered to be physically plausible. With only 18 Excited
objects in our survey we have a very poor constraint on
the individual DPL parameters. However, the mass is well
constrained. We find Mexc = 0.005+0.004

−0.003M⊕, less than the mass
in Classical TNOs. This is due to the relative under-abundance of
Excited objects in our survey. This can be explained by the fact
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Figure 17. Mass distribution for our population of TNOs. We extend our result
over a solid angle of 360 × 6 deg2, assuming the fraction of the population that
is within this solid angle f is 1. The solid lines represent the results from our
survey alone while all surveys in Table 2 are shown as dot-dashed lines. The
black lines correspond to the whole TNO sample; green and red are used for the
Classical and Excited sub-samples, respectively.

Figure 18. Inclination probability distribution of TNOs in our survey.

the survey was conducted in the direction of Uranus, separated
about 18.5 deg from Neptune, where we expect Plutinos to be
near apocenter and hence faint and under-represented.

6. CONCLUSIONS

We have presented a TNO survey that is both deep (R50 =
25.6) and broad (∼2.8 deg2), finding 82 TNOs. The survey
is very well characterized and simple, reaching its limiting
magnitude in single exposures.

We have studied the luminosity function of the TNOs
in our survey. We found a significant deviation from an SPL
behavior in the cumulative function at R ∼ 25. We have shown
that our data are consistent with an SPL, and with many other
shallower surveys, if we consider only objects brighter than
R = 24.5. We have also demonstrated that the apparent devia-
tion from an SPL is not an artifact of our detection efficiency.

Whether our data support a break in the luminosity function
is a matter of statistical analysis. We compared two models,
one where the distribution increases exponentially with an SPL
and one where there are two different slopes in the sampled
magnitude region, and compute the total probability of each
model with Bayesian statistics (Gregory 2005) (see details in
Section 5.1). The ratio of the total likelihood for a DPL and an
SPL model is ∼26. This can be interpreted as the DPL model
being 26 times more probable than the SPL given our data
set.

We conclude that our survey provides significant evidence for
a break in the TNO luminosity function. This is the first survey
that is able to make such a claim without relying upon the results
of other surveys. Our result is easy to interpret since we do not
have to make assumptions about the distribution of objects in
different parts of the sky. Nonetheless, the comparison with
other surveys is fundamental since there are published searches
that sample the same magnitude region. We have considered
most of the published data up to 2007 July regarding surveys
of the trans-neptunian space in the same spirit of Bernstein
et al. (2004). Again, our DPL model accurately describes the
cumulative number density for all surveys combined.

Only two ground-based surveys are as deep as the present
one, and they have not seen a significant deviation from an SPL.
The survey of Gladman et al. (2001) covered much less area and,
consequently, discovered many fewer TNOs in this magnitude
range (17 objects for the entire survey). Given the small
numbers, our results are not inconsistent with those of Gladman
et al. (2001). Fraser et al. (2008) report the combined results
of surveys taken at different ecliptic latitudes and longitudes.
They fit for an SPL but account for variations in the sky surface
density, which may be due to surveying at different ecliptic
longitudes and latitudes, by allowing an offset in the luminosity
function zero point for each survey. This substantially increases
the number of free parameters and, we believe, allows deviations
from an SPL within individual surveys to be obscured when the
results of several surveys are combined. We believe that this
explains the difference between the present results and those of
Fraser et al. (2008).

We make the assumption that all objects are located at the
same distance, so the luminosity function can be translated into
a size distribution. For every object with a reliable distance
estimate a nominal size can be computed (we assume an albedo
of p = 0.04). The size distribution of our survey was compared
with the single distance approximation and we showed they
agree. We then interpret the DPL size distribution.

The break in the size distribution reflects the size at which
collisional processes take over gravitational ones. This is, the
largest object that is expected to be disrupted in a collision in
the age of the solar system. The best DPL model for our survey
features a break at D = 130(p/0.04)−0.5 km bodies while for
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all surveys it is at D = 100(p/0.04)−0.5 km. Current models
expect the break to occur at smaller sizes, D � 50 km for
Pan & Sari (2005) and D � 100 km for Kenyon & Bromley
(2004). We consider these models to be consistent with our
result given the assumptions on poorly constrained quantities
like the albedos on the observational side as well as initial
conditions in the theory are not well constrained. The effect of
a distribution of albedos and a possible correlation with object
size and heliocentric distances should be studied.

The inclination distribution for our survey is consistent with
what is expected from previous results (Brown 2001). However,
we do not have enough objects to do a detailed study of
the distribution. We do, however, separate our population into
classical (“cold”) and excited (“hot”) objects. We study the size
distribution of these samples and find them to show differences
as done previously by Bernstein et al. (2004).

We calculate the probability distribution for the total mass
in TNOs, Classical and excited objects that are consistent with
our observations and all considered surveys. For all surveys
combined we find Mtno = 0.020+0.004

−0.003M⊕. It is interesting
to note that for the Classical population the mass is very
well constrained to be Mcla = 0.008 ± 0.001M⊕ while the
excited population gives a larger and poorly constrained mass of
Mexc = 0.010+0.021

−0.003M⊕. This provides evidence for a difference
between the “hot” and “cold” populations. Our survey gives a
consistent but slightly higher answer for Classical objects which
we believe is due to the local overabundance of objects in our
survey. We only have 18 excited objects in our sample, too few to
constrain the parameters of the luminosity function, but enough
to show there is an under-abundance of Excited objects in our
survey. This is explained by the direction of our fields, close to
where most of the Plutinos come to apocenter.

Given the size distribution we calculate a distance bias
correction (Trujillo & Brown 2001). We then obtain the real
distance distribution of objects, assuming we are just as likely
to find faint objects that are close as those that are far. Our
survey is very well suited to detecting objects that show
slow parallactic movement (distant); our detection efficiency
is essentially independent of rate for rates larger than 0.9′′ h−1

(distances closer than 150 AU). According to Dones (1997),
Jewitt et al. (1998), and Trujillo & Brown (2001) the fraction
h of objects found outside 48 AU should be about 40% for a
population with a smooth brightness distribution that extends
beyond 50 AU. In our sample there are 73 TNOs with reliable
distance estimates, of which 71 are located between 30 AU and
47 AU, and only two at ∼50 AU, accounting for h = 3%.
Once we take into account the biases associated with distance
these numbers indicate an abrupt drop in the radial density of the
Kuiper belt. If we also consider the size distribution break found
in our sample we also rule out the existence of a far population
of TNOs near the plane of the ecliptic. We have found more
evidence for an edge of the Classical belt population at around
47 AU and placed a constraint on the surface density of objects
for an unseen population at 60 AU of 8% that of the observed
Classical belt. We also set a minimum distance for a “belt-like”
population with the same mass as that of the Classical belt of
110 AU.

Deeper surveys will help better constrain where the break
in the luminosity function occurs and complete the picture of
the trans-Neptunian space. The size distribution would be better
determined if these surveys are also careful in obtaining follow-
up observations to measure accurate distances for faint objects.
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