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ABSTRACT. The increasing importance of digital sky surveys collecting many millions of galaxy images has
reinforced the need for robust methods that can perform morphological analysis of large galaxy image databases.
Citizen science initiatives such as Galaxy Zoo showed that large data sets of galaxy images can be analyzed effec-
tively by nonscientist volunteers, but since databases generated by robotic telescopes grow much faster than the
processing power of any group of citizen scientists, it is clear that computer analysis is required. Here, we propose to
use citizen science data for training machine learning systems, and show experimental results demonstrating that
machine learning systems can be trained with citizen science data. Our findings show that the performance of
machine learning depends on the quality of the data, which can be improved by using samples that have a high
degree of agreement between the citizen scientists. The source code of the method is publicly available.

Online material: color figures

1. INTRODUCTION

Galaxies have diverse and complex shapes, and their mor-
phology carries fundamental information about the past, present,
and future universe. Many morphological schemes of galaxies
have been proposed, from the broad morphological classification
(spiral or elliptical), the class on the Hubble sequence, or more
specific morphological features such as the number of spiral
arms, number of nuclei, the size of the bulge, etc.

While in the preinformation era galaxies were observed and
imaged manually, in the past decade digital sky surveys pow-
ered by robotic telescopes have produced very large databases
of galaxy images, reinforcing the need for methods that can an-
alyze massive sets of galaxy images. The Sloan Digital Sky
Survey (York et al. 2000; Strauss et al. 2002) has imaged several
hundred million galaxies so far, and sky surveys such as the
Dark Energy Survey (DES) and the Large Synoptic Survey
Telescope (LSST) will image billions of galaxies. Since there
is no practical way to examine these galaxy images manually,
automatic analysis methods will be required to mine for dis-
coveries in these big image data and turn them into knowledge.

Methods for automatic morphological analysis of galaxy im-
ages have been proposed, and include GALFIT (Peng et al.
2002), GIM2D (Simard 1998, 2011; Simard et al. 2011), the
Gini coefficient method (Abraham et al. 2003), CAS method
(Conselice 2003), and MID statistics (Freeman et al. 2013).

However, these methods did not provide a complete solution
to the complex problem of automatic morphological analysis
of galaxy images and led to the contention that practical clas-
sification of large data sets of galaxy images should be carried
out by humans (Lintott et al. 2008, 2011; Willett et al. 2013;
Keel et al. 2013). Another approach to analyzing a large number
of galaxies is the use of nonexpert “citizen scientist” volunteers,
who access the galaxy images through a Web-based user inter-
face, and submit their annotation of the celestial object to a cen-
tral database. The successful implementation of that concept led
to the Galaxy Zoo project (Lintott et al. 2008), which is part of
the Zooniverse citizen science initiative. However, since digital
sky surveys such as LSST will acquire billions of galaxy im-
ages, citizen science alone will not be able to provide a scalable
solution for analyzing databases acquired by future sky surveys.

For instance, in Galaxy Zoo (Willett et al. 2013) ∼300; 000
galaxies were analyzed in about 3 years of work. Even if assum-
ing that all galaxies were analyzed with perfect accuracy by
the citizen scientists, LSST is expected to image ∼1010 galaxies
(Borne et al. 2009), which will take the citizen scientists ∼106
years to analyze with the same rate and group size as in Galaxy
Zoo 2 (GZ2). Even if the number of well-resolved images is
1000 times lower, this task is still beyond the capability of
any group of volunteers. Therefore, while citizen science has
provided an effective solution for analyzing the morphology
of large numbers of galaxies, the increasing data collection
power of digital sky surveys reinforces the development of au-
tomatic methods that will enhance the manual analysis. These
methods can be combined with citizen science analysis of the
image data, providing a solution that can scale with extremely
large databases of galaxy images (Borne 2013).
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Galaxy images can also be analyzed by using machine
learning (Shamir 2009; Banerji et al. 2010; Huertas-Company
et al. 2011). These methods are based on a pattern recognition
algorithm trained with manually annotated data, and then the
patterns found in these data are used to classify unknown sam-
ples that the algorithm was not trained with. By using training
data annotated by citizen scientists, effective machine learning
algorithms can potentially be trained with large and clean image
data sets, ultimately providing a robust solution for analyzing
far larger databases of galaxy images.

Here we test the use of galaxy image data classified by
citizen scientists as training data for machine learning. The data
set annotated by a large number of human participants can be
sufficiently large to train a machine learning system, and the
quality of the annotations provides a consistent and clean train-
ing set that can be used by machine learning algorithms.

2. GALAXY MORPHOLOGY ANALYSIS METHOD

Galaxy images are diverse and complex, and therefore re-
quire comprehensive image analysis algorithms that measure
many different aspects of the visual content. The image analysis
method used in this study is Wndchrm (Shamir et al. 2008b),
which first extracts a large set of numerical image content de-
scriptors reflecting complex image morphology. The Wndchrm
algorithm was developed initially for cell biology (Shamir et al.
2008a), but demonstrated its efficacy for other tasks that require
comprehensive morphological analysis such as art (Shamir &
Tarakhovsky 2012; Shamir et al. 2010b). It was also applied
to basic tasks in galaxy morphology such as automatic classifi-
cation between the broad galaxy morphological types of spiral,
elliptical, and edge-on (Shamir 2009), unsupervised analysis
of simulated galaxy mergers (Shamir et al. 2013a), and auto-
matic detection of peculiar galaxies (Shamir 2012; Shamir &
Wallin 2014).

In summary, Wndchrm first extracts a large set of 2883 nu-
merical image content descriptors that include texture features
such as the Gabor filters and Haralick and Tamura textures,
statistical distribution of the pixel intensities such as multiscale
histograms and first four moments, high-contrast features such
as edge and object statistics, polynomial representation of
the pixel values such as Chebyshev statistics and Zernike poly-
nomial, Radon features, fractals, and the Gini coefficient
described in Abraham et al. (2003). These features are not ex-
tracted merely from the raw pixels, but also from transforms of
the raw pixels and transforms of transforms. The image trans-
forms include the Fourier transform, Chebyshev transform,
Wavelet transform (Symlet 5), and the edge magnitude trans-
form, as well as combinations of these transforms (Shamir et al.
2008b, 2009; Shamir 2012; Shamir & Tarakhovsky 2012;
Shamir et al. 2013a).

Since the Wndchrm scheme is designed for different image
classification problems, it can be assumed that not all numerical
content descriptors are equally informative for a given image

classification problem, and some noninformative numerical
content descriptors can also add noise and degrade the classi-
fication accuracy. To select the most informative numerical
content descriptors, each feature is assigned with its Fisher
discriminant score, and 95% of the features with the lowest
Fisher discriminant scores are rejected. Then, the classification
is performed using a weighted nearest neighbor scheme such
that the Fisher discriminant scores assigned to the features
are used as weights (Shamir et al. 2008b; Shamir 2012; Shamir
& Tarakhovsky 2012; Shamir et al. 2013a), as described in
equation (1):

dðx; cÞ ¼

P

t∈Tc

½Pjxj
f¼1 W

2
fÞxf � tfÞ2�p

jTcj
; (1)

where Tc is the training set of class c, t is a feature vector from
Tc, jxj is the length of the feature vector x, xf is the value of
image feature f , Wf is the Fisher discriminant score of feature
f , jTcj is the number of training samples of class c, dðx; cÞ is the
computed distance from a given sample x to class c, and p is the
exponent, which is set to �5 as thoroughly discussed in Orlov
et al. (2008). The comprehensive set of image content descrip-
tors and the selection of the informative image features allow
the application of the algorithm to a broad variety of complex
image data (Shamir et al. 2008b; Shamir 2012; Shamir &
Tarakhovsky 2012; Shamir 2013). Source code for the method
is publicly available (Shamir et al. 2013b).

3. GALAXY IMAGE DATA

The data used in the experiment are images of SDSS galaxies
analyzed by Galaxy Zoo 2 as part of the Zooniverse citizen sci-
ence initiative (Willett et al. 2013). Each image is a 120 × 120
JPEG image downloaded from the Catalog Archive Server
(CAS) of SDSS. Since Galaxy Zoo 2 galaxies are of different
angular sizes, the galaxy images are downloaded such that the
first image of each galaxy has a scale of 0:1″ pixel�1. Then, an
Otsu binary transform (Otsu 1979) is applied to separate fore-
ground pixels from the background. If more than 40 foreground
pixels are detected on the edge of the image, the scale is in-
creased by 0:05″ pixel�1 and the image is downloaded again,
until no more than 40 pixels are detected on the edge. That pro-
cess leads to images that contain the entire galaxy. These images
are smaller than the 424 × 424 images used in Galaxy Zoo 2,
but they contain many fewer background pixels than the Galaxy
Zoo 2 images. The initial scale of 0:1″ pixel�1 was determined
empirically as a scale that is too small to contain the entire gal-
axy in the frame. Galaxy Zoo 2 galaxies have relatively large
angular sizes, and therefore the initial size might need to be ad-
justed when processing images of a set of smaller galaxies.

The Galaxy Zoo 2 data release includes detailed morpho-
logical information about 304,122 galaxies annotated by
Zooniverse citizen scientists–nonexpert volunteers who do not
have formal training as scientists, but are able to contribute to
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scientific research in tasks such as basic data analysis. We used
in this study the 245,609 original Galaxy Zoo 2 images, and
excluded galaxies from Stripe 82 and other galaxies that were
added at a later time. Each citizen scientist was presented with a
galaxy image, and a set of questions they needed to answer
about its morphology such as signs of spirality, the number
of arms of the galaxy, and more, and provided answers to these
questions before continuing to the next galaxy image. Each
question in the sequence is based on the answer to the previous
question (Willett et al. 2013). For instance, if the participant’s
reply to the first question is that the galaxy is smooth, they were
not asked about the number of arms, but instead were asked
about the degree of roundness of the object.

This study is focused on galaxy morphology reflected by a set
of questions that the Zooniverse participants answered for each
galaxy they annotated (Willett et al. 2013). Galaxy Zoo 2 has a
total of 11 questions, and each participant provides answers to
between one and eight questions determined by the path on the
decision tree, such that the answer to a certain question deter-
mines the next question in the sequence (Willett et al. 2013).

The morphological features analyzed in the study are sum-
marized in Table 1.

The citizen science answers for each question provided the
data for the pattern recognition experiments. For example, the
first question provided two classes of images—galaxies that were
classified by the Zooniverse citizen scientists as smooth and
round, and galaxies that were classified as not smooth and round.
In the case of the first question the goal of the machine learning
method was to automatically identify between these two classes.
That was repeated for each of the questions described above.

As discussed above, GZ2 citizen scientists answer the ques-
tions in a sequence such that the next question is determined by
their answer to the previous questions. That might lead to some
answers that are based on a minority probability and can add
confusion to the algorithm. For instance, if 80% of the citizen
scientists voting on question 2 of a certain galaxy determine

that the galaxy is not an edge-on galaxy, it can be assumed that
the galaxy is not edge-on. However, the remaining 20% who
annotated the galaxy as edge-on are then prompted to answer
about the shape of the bulge (question 9), which is based on
a previous answer with minority probability and might therefore
not be optimal to be used as ground truth for training a machine
learning system.

To reduce the effect of answers based on minority votes,
we set a threshold of agreement such that votes that were dif-
ferent from the majority of the votes were ignored in the follow-
ing questions. For instance, if the agreement threshold is 80%
(Bamford et al. 2009; Willett et al. 2013), and more than 80%
voted “no” on question 2, the answers to the following questions
of those that voted “yes” are ignored.

Each galaxy was classified by multiple citizen scientists
(Willett et al. 2013). The median number of classifications
for each galaxy was 44, and the minimum number was 16. Su-
pervised machine learning requires clean ground truth data, and
therefore the training of a machine learning algorithm is gener-
ally more effective when using the cleanest available data. The
multiple classifications for each galaxy allow selecting the most
consistent subsets of the data by using the degree of agreement
between the citizen scientists, such that a higher agreement be-
tween the human classifiers reflects a more accurate classifica-
tion. For instance, it is possible to select a subset of the data such
that 90% or more of the voters agree on. If the agreement thresh-
old is set to 90% then only galaxies that 90% or more of the
citizen scientists marked as round are selected for the round
class, and only galaxies that 90% or more of the citizen scien-
tists classified as not round are selected for the not round class.
The rest of the galaxies are ignored. As mentioned above, the
90% agreement is also required in the sequence of answers that
led to the question. For the degree of agreement, two different
methods of Galaxy Zoo 2 were used. One is the raw count of the
votes for each question, and the other is the correction of the
votes for magnitude bias (Willett et al. 2013).

TABLE 1

GALAXY ZOO 2 QUESTIONS AND POSSIBLE ANSWERS

Question number Question Possible answers

1 Is the galaxy simply smooth and rounded, with no sign of a disk? Smooth, feature or disk, star or artifact
2 Could this be a disk viewed edge-on? Yes, no
3 Is there a sign of a bar feature through the center of the galaxy? Yes, no
4 Is there any sign of a spiral arm pattern? Yes, no
5 How prominent is the central bulge, compared just noticeable

with the rest of the galaxy?
No bulge, just noticeable, obvious, dominant

6 Is there anything odd? Yes, no
7 How rounded is it? Completely round, in between, cigar-shaped
8 Is the odd feature a ring, or is the galaxy disturbed or

irregular?
ring, lens or arc, disturbed, irregular, other,
merger, dust lane

9 Does the galaxy have a bulge at its center? If so, what shape? rounded, boxy, no bulge
10 How tightly wound do the spiral arms appear? Tight, medium, loose
11 How many spiral arms are there? 1, 2, 3, 4, more than four, cannot tell

NOTE.—From Willett et al. (2013).
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A high level of disagreement between the citizen scientists
on a certain morphological feature of a certain galaxy indicates
that the morphology of that galaxy is not clear, and therefore
cannot be used to effectively train a machine learning algorithm.
However, the number of samples that satisfy an agreement level
threshold decreases as the agreement threshold gets higher,
leading to a smaller data set, consequently leaving fewer sam-
ples that a machine learning system can be trained with. There-
fore, optimizing the performance of the machine learning
system requires finding the degree of agreement that provides
the best classification accuracy for each of the questions.

To balance the data set used in each experiment we assigned
each class with the number of samples equal to the number of
samples in the smallest class. For instance, if a certain morpho-
logical feature had two classes, and the number of galaxies that
satisfied the 90% agreement level was 1000 for the first class
and 1500 for the second class, we randomly removed 500 im-
ages from the second class in each run so that the two classes
would have an equal number of samples. Balancing the number
of samples in the classes is important for avoiding bias in the
classification (Shamir et al. 2010a), as some machine learning
methods can prefer assigning a test sample with classes that are
represented by more samples in the training set.

4. MACHINE LEARNING USING CITIZEN
SCIENCE DATA

Figure 1 shows the classification accuracy of the different
questions for different levels of agreement among the citizen

scientists. For each question, the samples are divided into train-
ing and test sets such that the number of training and test
samples are equal across all classes as described in § 3, and
the classification accuracy is determined by the number of test
samples for which the automatic classification was in agreement
with the citizen science classification, divided by the total num-
ber of test samples.

Each experiment was repeated 40 times such that in each run
90% of the samples were randomly allocated for training, and
the remaining samples were used for testing. The classification
accuracy of the 40 runs was averaged to provide the final clas-
sification accuracy for the question.

As Figure 1 shows, when considering the human classifica-
tion as ground truth the automatic method was at least 85% ac-
curate for eight out of 10 morphological features analyzed in
Galaxy Zoo 2 when compared to the results of the volunteers.
For questions 1, 2, 4, and 7, the classification accuracy was
higher than 95%. For some of the questions, the number of gal-
axies was very low or zero when the agreement threshold was
high, and therefore some questions do not have results of auto-
matic classification accuracy at some agreement thresholds.

It is also clear from the graph that the classification accuracy
increased as the agreement threshold between the citizen scien-
tists gets higher, showing that higher agreement between the
citizen scientists provides more consistent data, leading to better
ability of the machine learning method to classify between the
samples despite the smaller training set. However, when the
training set became too small the machine learning became less
accurate, resulting in degraded classification accuracy. Table 2

FIG. 1.—Classification accuracy of the automated method for the different questions and different agreement thresholds among the citizen scientists who annotated the
data. The classification accuracy is measured by the number of test samples that their automatic classification was in agreement with the citizen science classification,
divided by the total number of test samples. The error bars show the standard deviation of the classification accuracy in the 40 different runs such that in each run different
samples are randomly allocated to training and test sets. See the electronic edition of the PASP for a color version of this figure.
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shows the number of galaxies per class and the total number of
galaxies used for each of the questions, and for different levels
of agreement. As mentioned above, the number of galaxies per
class used by the machine learning algorithm was the number of
galaxies in the smallest class.

In question 1 there were a small number of images that were
identified as stars or artifacts. Since for automatic classification
the number of samples should be the same for all classes
(Shamir et al. 2010a), including the stars or artifacts would force
the other classes to also contain just very few samples, and
therefore the objects classified as stars or artifacts were ignored.
When the number of galaxies was very high, it was limited to
25,000 galaxies per class due to response time considerations. In

several cases the number of galaxies per class dropped to zero
when the agreement threshold was 80% or 90%, as one of the
classes did not have even one sample that satisfied that level of
agreement.

For the irregular galaxies (question 8), just a few galaxies
met the threshold of 60% of agreement between the human vot-
ers of Galaxy Zoo 2, and the classes “lens” and “disturbed”
were ignored as they contained no galaxies. Previous studies
show that the problem of automatically detecting irregular gal-
axies can be approached as a novelty detection problem rather
than a classification problem (Shamir 2012; Shamir & Wallin
2014). It should be noted that the use of citizen science analysis
for the detection of irregular galaxies should also be examined

TABLE 2

NUMBER OF GALAXIES PER CLASS AND THE TOTAL NUMBER OF GALAXIES FOR EACH GZ2 AGREEMENT THRESHOLD

Question >50% >60% >70% >80% >90% >95% >97%

1 25,000 (241,679) 25,000 (213,890) 25,000 (181,715) 25000 (132,748) 19693 (50,946) 6635 (19,248) 2332 (12,193)
2 10,367 (61,515) 6705 (53,058) 3955 (41,193) 2003 (27,891) 645 (183,25) 225 (10,154) 127 (6761)
3 13,993 (55,488) 9964 (46,176) 6506 (37,181) 3720 (27,788) 1399 (17,646) 386 (9913) 171 (6629)
4 9846 (55,396) 4334 (42,130) 1522 (32,119) 323 (23,681) 11 (15,106) 1 (8421) 0 (5479)
5 13,028 (42,780) 5866 (24,385) 510 (10,583) 110 (2499) 3 (143) 0 (9) 0 (2)
6 22,889 (242,291) 15,791 (224,645) 9921 (202,509) 5369 (170,574) 1957 (115,692) 691 (65,638) 417 (46,159)
7 24,203 (172,761) 16,442 (138,128) 8593 (100,328) 2117 (55,774) 103 (9545) 6 (961) 4 (221)
8 37 (15,219) 9 (7483) 1 (3078) 0 (1008) 0 (163) 0 (18) 0 (11)
9 97 (9272) 44 (4860) 18 (2076) 8 (562) 3 (48) 0 (4) 0 (1)
10 5471 (33,536) 3371 (16,289) 1337 (6332) 119 (2061) 6 (469) 0 (118) 0 (51)
11 226 (21,814) 120 (14,966) 58 (10,900) 24 (8490) 0 (5948) 0 (3568) 0 (2343)

NOTE.—Table displays number of galaxies per class used in Wndchrm and the total number of galaxies (in parentheses) for each GZ2 agreement threshold.

FIG. 2.—Classification accuracy of the automated method for the different questions and different agreement thresholds using Galaxy Zoo 2 debiased data. See the
electronic edition of the PASP for a color version of this figure.
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carefully, as identifying peculiar celestial objects effectively re-
quires substantial experience that might be beyond the knowl-
edge of the typical nonastronomer.

The method also failed to provide good classification accu-
racy for question 11, which is the number of arms of the galaxy.
When using galaxies that were classified by citizen scientists
with agreement threshold of 60%, the computer method identi-
fied the number of galaxies with accuracy of just ∼34%. These
performance figures suggest that the method might not be in-
formative for that specific morphological feature. Automatically
determining the number of arms in a galaxy is known as a diffi-
cult task even when the data are clean (Davis & Hayes 2014;
Seigar et al. 2005; Peng et al. 2010).

The difficulty in identifying the number of arms can also be
explained by the inconsistency of the data, as the degree of dis-
agreement between the answers provided by the citizen scien-
tists to that question was high. For instance, when the agreement
threshold between the citizen scientists was set to 60% each
class had 120 samples, and when it was set of 75% the number
of galaxies per class was 31. However, the experiments with
question 9 show that the algorithm is able to achieve higher clas-
sification accuracy with a smaller training set, indicating that
answering question 11 is more difficult for the machine learning
algorithm than answering question 9.

As discussed in § 3, the experiments were also done using the
correction of the raw votes for the magnitude bias. The results of
the experiment using the debiased data are displayed in Figure 2.

As the figure shows, using the debiased GZ2 data led to a
slight change in the ability of the algorithm to automatically
classify the galaxies by their morphology. The questions that
improve the most by using the debiased data are question 2
and 4.

The automatic classification of the galaxies is based on a
very large feature set of 2883 image features, and the high di-
mensionality of the feature set makes it difficult to conceptual-
ize the identification of galaxy images based on each question.
The most informative features are selected automatically by
their ability to provide separation between the classes in the
training set, and therefore for each question different image fea-
tures are selected. The dynamic selection of image features al-
lows the same algorithm to answer the different questions.
Table 3 shows the most informative groups of image numerical
content descriptors and the image transforms they are extracted
from, as determine by the Fisher discriminant scores.

Many of the numerical content descriptors in the table are
extracted from image transforms or multiorder image trans-
forms, and are therefore difficult to conceptualize by human in-
tuition. For instance, the Haralick textures extracted from the
Fourier transform of the edges of the original image contain in-
formation that is useful for classifying the image, but due to the
transforms it is difficult to intuitively identify the visual cues
that it extracts.

As the table shows, many of the features are informative for
more than one question, but the features are different for each
question, and no single set of features can be used for all possi-
ble questions. The reason for the different image content
descriptors is that each morphological feature is better identified
by different image cues, and therefore different types of numer-
ical content descriptors are more informative for different
galaxy morphological features. For instance, fractal features
are the most informative descriptors for the first question, as
the spiral shape of a galaxy has a certain degree of fractality,
which does not exist in smooth galaxies (Shamir 2009). For
the same reason it can be assumed that fractals are also domi-
nant in the classification based on question 4, which is the ex-
istence of signs of spiral arms, and question 3, where fractals
can differentiate between bars and regular spiral arms. In ques-
tion 2, pixel statistics such as multiscale histogram and first four
moments are found informative, which can be explained by the
different surface size of a face-on galaxy compared to edge-on.
Multiscale histograms are also useful for question 5, where a
prominent bulge is expected to lead to a small group of pixels
brighter than the rest of the foreground pixels, and therefore be
reflected by the pixel intensity histogram.

A group of numerical content descriptors informative for all
questions is the Zernike polynomials. Zernike features are ef-
fective for reflecting variations in the unit disk (Teague
1979) and are therefore useful for the analysis of morphology
of round objects such as cells (Shamir et al. 2008a), round joints
(Shamir et al. 2009) and, in the case of this study, also galaxies.

Question 7, which is the roundness of the object, is classified
by a combination of Zernike polynomials and pixel statistics, as
the Zernike features are sensitive to the unit disk and the pixel
statistics is affected by the number of foreground pixels, which
grows as the object is more round.

5. CONCLUSION

As robotic telescopes acquiring big astronomical image data
become increasingly important, methods that can automatically
analyze astronomical images will be required to turn these data
into knowledge and optimize the scientific return. Digital sky
surveys are becoming increasingly important in astronomy,
and that trend is bound to continue. Future surveys such as
LSSTwill produce the world’s largest public database, reinforc-
ing the development of automatic methods that can take a gal-
axy image as input, and provides its basic morphological
characteristic as output. Such automatic methods can analyze
all galaxy images acquired by LSST, and create data products
of galaxy morphological features that will be added to the gal-
axy photometric data in future LSST data releases.

Automatic methods can also work in concert with manual
analysis and citizen science. For instance, citizen science can
be effective for tasks that are more difficult for pattern recogni-
tion methods, such as detection of peculiar galaxies. Automatic
algorithms can mine the database of ∼10 billion galaxy images
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and detect peculiar galaxy candidates (Shamir 2012; Shamir &
Wallin 2014), and human analysis can complete the analysis by
removing the false positives, which are the vast majority of the
data, to detect the actual rare galaxy types. Manual analysis can
also be useful to validate the data and produce clean data sets by
annotating in-between cases and galaxies that machines cannot
classify with high accuracy. In such data analysis pipeline,
human analysis will be used after automatic preprocessing of
the data. Human analysis can be more accurate than machine
analysis, but since the availability of human analysis is limited
by the number of citizen scientists, its effectiveness can be op-
timized if used to analyze data that cannot be analyzed effec-
tively by computers.

Another important link between human and machine analy-
sis is the development of pattern recognition systems that can
analyze galaxy images. Manually annotated data sets with sam-
ple size of a few million samples can be used to select clean
subsets of samples, and train machine learning systems that
can then automatically perform the data annotations. The supe-
rior pattern recognition of the human brain utilized by citizen
science can also be tasked with doing routine checks of auto-
matically classified data and examining cases that are unusual
or ambiguous. A partnership between human computing and
automated algorithms may ultimately be one of the best
approaches for dealing with image classification in large astro-
nomical data sets.

One of the interesting aspects of citizen science data is the
level of agreement between the voters for each image. With a
single expert, only one classification for each image is provided.
However, when a few dozen volunteers examine the images, the
level of agreement depends on the characteristics of the image
being examined. Supervised machine learning algorithms re-
quire consistent ground truth data for training, and the results
of this paper show strong link between the agreement of the
citizen scientists on the data annotation and the ability of the
machine learning system to analyze these data. By leveraging
the range of votes, we obtain a measure of reliability of the clas-
sifications that cannot be achieved by a single expert, providing
a clean set of samples. This measure of reliability in the human
classifications provides a natural match for machine learning
algorithms, which often provide a likelihood value for each
classification.

Another interesting aspect of citizen science data is how
some classification questions seem to be harder than others.
Asking volunteers to determine if a galaxy is round or has fea-
tures seems to be relatively simple task that results in high
agreement between volunteers at least in some images. However
asking volunteers to count the number of spiral arms results in
lower-consistency data. For this particular question, this incon-
sistency may be because few galaxies have visible spiral arms
and even fewer have an unusual number of spiral arms. These
questions may help identify some cases with unusual character-
istics such as three-armed spirals, but it would be difficult to
draw any strong statistical conclusions from the crowd-sourced
results. Knowing that these questions are particularly difficult
for volunteers suggests that some automated approaches that
might provide better results in these particular cases should
be developed and applied.

Automatic analysis of morphological features of galaxies can
be conceptualized as a pure classification problem, such as
the broad classification between elliptical and spiral galaxies.
However, galaxy morphologies result from a complex set of
interactions through hierarchical assembly, there are many in-
between cases, and therefore the classification of galaxies to
one of several distinct classes can be oversimplification of
the problem. Similar to citizen science, a machine learning ap-
proach to the problem can be assigning each galaxy a set of
likelihood values to each morphological class, in addition to
the most likely distinct class in which the celestial object be-
longs (Huertas-Company et al. 2011). These likelihood values
can reflect the uncertainty of the classification.

For the training of a machine learning system, it is important
to use consistent data. Since data sets of celestial objects gen-
erated by digital sky surveys are normally large, in many studies
the in-between cases can be ignored when training a machine
learning system, while the remaining data set of “clean” samples
can still be sufficiently large for effective training.

One of the obvious disadvantages of the method is the time
and efforts involved in collecting human annotation of hundreds
of thousands of celestial objects, each is annotated by multiple
voters to obtain a set of morphological descriptors. However,
the successful experience of Zooniverse has clearly shown that
analyzing such data sets manually is feasible, and citizen sci-
ence data makes it possible to quantify the accuracy of machine
learning algorithms.
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