
IPAC Image Processing and Data Archiving for the Palomar Transient Factory

RUSS R. LAHER,1 JASON SURACE,1 CARL J. GRILLMAIR,1 ERAN O. OFEK,2 DAVID LEVITAN,3 BRANIMIR SESAR,3

JULIAN C. VAN EYKEN,4 NICHOLAS M. LAW,5 GEORGE HELOU,6 NOUHAD HAMAM,6 FRANK J. MASCI,6

SEAN MATTINGLY,7 ED JACKSON,1 EUGEAN HACOPEANS,8 WEI MI,6 STEVE GROOM,6 HARRY TEPLITZ,6

VANDANA DESAI,1 DAVID HALE,9 ROGER SMITH,9 RICHARD WALTERS,10 ROBERT QUIMBY,3

MANSI KASLIWAL,3 ASSAF HORESH,3 ERIC BELLM,3 TOM BARLOW,3 ADAM WASZCZAK,11

THOMAS A. PRINCE,3 AND SHRINIVAS R. KULKARNI3

Received 2014 April 04; accepted 2014 May 28; published 2014 July 10

ABSTRACT. The Palomar Transient Factory (PTF) is a multiepochal robotic survey of the northern sky that
acquires data for the scientific study of transient and variable astrophysical phenomena. The camera and telescope
provide for wide-field imaging in optical bands. In the five years of operation since first light on 2008 December 13,
images taken with Mould-R and SDSS-g0 camera filters have been routinely acquired on a nightly basis (weather
permitting), and two different Hα filters were installed in 2011 May (656 and 663 nm). The PTF image-processing
and data-archival program at the Infrared Processing and Analysis Center (IPAC) is tailored to receive and reduce the
data, and, from it, generate and preserve astrometrically and photometrically calibrated images, extracted source
catalogs, and co-added reference images. Relational databases have been deployed to track these products in oper-
ations and the data archive. The fully automated system has benefited by lessons learned from past IPAC projects
and comprises advantageous features that are potentially incorporable into other ground-based observatories. Both
off-the-shelf and in-house software have been utilized for economy and rapid development. The PTF data archive is
curated by the NASA/IPAC Infrared Science Archive (IRSA). A state-of-the-art custom Web interface has been
deployed for downloading the raw images, processed images, and source catalogs from IRSA. Access to PTF data
products is currently limited to an initial public data release (M81, M44, M42, SDSS Stripe 82, and the Kepler
Survey Field). It is the intent of the PTF collaboration to release the full PTF data archive when sufficient funding
becomes available.

Online material: color figure

1. INTRODUCTION

The Palomar Transient Factory (PTF) is a robotic image-
data-acquisition system whose major hardware components in-
clude a 92 megapixel digital camera with changeable filters
mounted to the 48-inch Palomar Samuel Oschin Telescope.
The raison d’être of PTF is to advance our scientific knowledge
of transient and variable astrophysical phenomena. The camera
and telescope capacitate wide-field imaging in optical bands,
making PTF eminently suitable for conducting a multiepochal
survey. The Mount Palomar location of the observatory limits
the observations to north of ≈� 30° in declination. The cam-
era’s pixel size on the sky is 1.01″. In the 5 yr of operation since
first light on 2008 December 13 (Law et al. 2009), images taken
with Mould-R (hereafter R) and SDSS-g0 (hereafter g) camera
filters have been routinely acquired on a nightly basis (weather
permitting), and two different Hα filters were installed in 2011
May (656 and 663 nm). Law et al. (2009) present an overview of
PTF initial results and performance, and Law et al. (2010) give
an update after the first year of operation. Rau et al. (2009) de-
scribe the specific science cases that enabled the preliminary

1 Spitzer Science Center, California Institute of Technology, Pasadena, CA
91125,; laher@ipac.caltech.edu.

2 Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100
Rehovot, Israel.

3 Division of Physics, Mathematics, and Astronomy, California Institute of
Technology, Pasadena, CA 91125.

4Department of Physics, University of California, Santa Barbara, CA 93106.
5Department of Physics and Astronomy, University of North Carolina, Chapel

Hill, NC 27599.
6 Infrared Processing and Analysis Center, California Institute of Technology,

Pasadena, CA 91125.
7Department of Physics and Astronomy, The University of Iowa, Iowa City,

IA 52242.
8Anre Technologies Inc., 3115 Foothill Blvd., Suite M202, La Crescenta, CA

91214.
9Caltech Optical Observatories, California Institute of Technology, Pasadena,

CA 91125.
10Kavli Institute for the Physics and Mathematics of the Universe (WPI), To-

dai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha,
Kashiwa-shi, Chiba, 277-8583, Japan.

11Division of Geological and Planetary Sciences, California Institute of Tech-
nology, Pasadena, CA 91125.

674

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 126:674–710, 2014 July
© 2014. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

planning of PTF observations. The PTF project has been very
successful in delivering a large scientific return, as evidenced by
the many astronomical discoveries from its data; e.g., Sesar et al.
(2012); Arcavi et al. (2010); and van Eyken et al. (2011). As
such, it is expected to continue for several more years.

This document presents a comprehensive report on the image-
processing and data archival system developed for PTF at the
Infrared Processing and Analysis Center (IPAC). A simplified
diagram of the data and processing flow is given in Figure 1.
The IPAC system is fully automated and designed to receive
and reduce PTF data, and generate and preserve astrometrically
and photometrically calibrated images, extracted source catalogs
and co-added reference images. The system has both software
and hardware components. At the top level, it consists of a data-
base and a collection of mostly Perl and some Python and shell
scripts that codify the complex tasks required, such as data ingest,
image processing and source-catalog generation, product archiv-
ing, and metadata delivery to the archive. The PTF data archive is
curated by the NASA/IPAC Infrared Science Archive12 (IRSA).
An overview of the system has been given by Grillmair et al.
(2010), and the intent of this document is to present a complete
description of our system and put forward additional details that
heretofore have been generally unavailable.

The software makes use of relational databases that are
queryable via structured query language (SQL). The PTF oper-
ations database, for brevity, is simply referred to herein as the
database. Other databases utilized by the system are called out,
as necessary, when explaining their purpose.

Data-structure information useful for working directly with
PTF camera-image files, which is important for understanding
pipeline processes, is given in § 2. By “pipeline,” we mean a
scripted set of processes that are performed on the PTF data,
in order to generate useful products for calibration or scientific
analysis. Significant events that occurred during the project’s
multiyear timeline are documented in § 3. Our approach to de-
veloping the system is given in § 4. The system’s hardware ar-
chitecture is laid out in § 5, and the design of the database
schema is outlined in § 6. The PTF-data-ingest subsystem is
entirely described in § 7. The tools and methodology we have
developed for science data quality analysis (SDQA) are elabo-
rated in § 8. The image-processing pipelines, along with those
for calibration, are detailed in § 9. The image-data and source-
catalog archive, as well as methods for data distribution to users,
are explained in § 10. This paper would be incomplete without
reviewing the lessons we have learned throughout the multiyear
and overlapping periods of development and operations, and so
we cover them in § 11. Our conclusions are given in § 12. Fi-
nally, the Appendix presents the simple method of photometric
calibration that was implemented prior to when the more sophis-
ticated one of Ofek et al. (2012) was brought into operation.

2. CAMERA-IMAGE FILES

The PTF camera has 12 charge-coupled devices (CCDs)
and was purchased from the Canada-France-Hawaii Telescope
(Rahmer et al. 2008). The CCDs are numbered CCDID ¼
0;…; 11. Eleven of the CCDs are fully functioning, and one
is regrettably inoperable (CCDID ¼ 3; there is a broken trace
that was deemed too risky to repair). Each CCD has 2048×
4096 pixels. The layout of the CCDs in the camera focal plane
is 2 rows × 6 columns, where the rows are east-west aligned and
the columns north-south. This configuration enables digital im-
aging of an area approximately 3:45° × 2:30° on the sky (were it
not for the inoperable CCD). Law et al. (2009, 2010) give ad-
ditional details about the camera, system performance, and first
results.

PTF camera-image files, which contain the “raw” data, are
FITS13 files with multiple extensions. Each file corresponds to a
single camera exposure, and includes a primary HDU (header+
data unit) containing summary header information pertinent to
the exposure. The primary HDU has no image data, but does
include observational metadata, such as where the telescope
was pointed, Moon and Sun positional and illumination data,
weather conditions, and instrumental and observational param-
eters. Tables 1 and 2 selectively list the PTF primary-header
keywords, many of whose values are also written to the Expo-
sures database table during the data-ingest process (see § 6 and
§ 7). A camera-image file also includes 12 additional HDUs or
FITS extensions corresponding to the camera’s 12 CCDs, where
each FITS extension contains the header information and image
data for a particular CCD.

The PTF camera-image data are unsigned 16 bit values that
are stored as signed 16 bit integers (BITPIX ¼ 16), since
FITS does not directly support unsigned integers as a fundamen-
tal data type.14 Thus, the image data values are shifted by 32,768

FIG. 1.—Data and processing flow for the IPAC-PTF system.

12 http://irsa.ipac.caltech.edu/.

13FITS stands for “Flexible Image Transport System”; see http://fits.gsfc.nasa
.gov.

14 See the CFITSIO User’s Reference Guide.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 675

2014 PASP, 126:674–710

data numbers (DN, a.k.a. analog-to-digital units) when read into
computer memory (BZERO ¼ 32768 is the standard FITS-
header keyword that controls the data shifting when the data
are read in via a CFITSIO or comparable function), and so
the raw-image data are in the 0–65,535 DN range. The raw-
image size is 2078 × 4128 pixels, a larger region than covered
by the actual pixels in a CCD because it includes regions of bias
overscan “pixels” (which are the data values read out during
the pixel sampling time outside of a CCD row or column of
detectors).

The FILTER, EXPTIME, SEEING, and AIRMASS values
associated with camera images are among the variables that
have a significant impact on the character and quality of the

image data. The exposure time is nominally 60 s, but this is
varied as needed for targets of opportunity or reduced to avoid
saturation for some targets; e.g., SN 2011fe (Nugent et al.
2011). There is also variation in some of the parameters and
imaging properties from one CCD to another (some of the
CCDs are better than the others in image-quality terms).

The exposures have GMT time stamps in the camera-image
filenames and FITS headers. This conveniently permits all ex-
posures taken in a given night to have the same date of obser-
vation (no date boundaries are crossed during an observing
night). An example of a typical camera-image filename is

PTF201108182046_2_o_8242.fits.

TABLE 1

SELECT KEYWORDS IN THE PTF-CAMERA-IMAGE PRIMARY HEADER

Keyword Definition

ORIGIN Origin of data (always “Palomar Transient Factory”)
TELESCOP Name of telescope (always “P48”)
INSTRUME Instrument name (always “PTF/MOSAIC”)
OBSLAT Telescope geodetic latitude in WGS84 (always 33.3574°)
OBSLON Telescope geodetic longitude in World Geodetic System (WGS) 84 (always −116.8599º)a
OBSALT Telescope geodetic altitude in WGS84 (always 1703.2 m)
EQUINOX Equinox (always 2000 Julian years)
OBSTYPE Observation typeb

IMGTYP Same as OBSTYPE
OBJECT Astronomical object of interest; currently, always set to “PTF_survey”
OBJRA Sexagesimal right ascension of requested field in J2000 (HH:MM:SS.SSS)
OBJDEC Sexagesimal declination of requested field in J2000 (DD:MM:SS.SS)
OBJRAD Decimal right ascension of requested field in J2000 (degrees)
OBJDECD Decimal declination of requested field in J2000 (degrees)
PTFFIELD PTF field number
PTFPID Project type number
PTFFLAG Project category flag (either 0 for “non-PTF” or 1 for “PTF” observations)
PIXSCALE Pixel scale (always 1.01″)
REFERENC PTF website (always “http://www.astro.caltech.edu/ptf”)
PTFPRPI PTF Project Principal Investigator (always “Kulkarni”)
OPERMODE Mode of operation (either “OCS,”c “Manual”, or “N/A”)
CHECKSUM Header-plus-data unit checksum
DATE Date the camera-image file was created (YYYY-MM-DD)
DATE-OBS UTC date and time of shutter opening (YYYY-MM-DDTHH:MM:SS.SSS)
UTC-OBS Same as DATE-OBS
OBSJD Julian date corresponding to DATE-OBS (days)
HJD Heliocentric Julian Date corresponding to DATE-OBS (days)
OBSMJD Modified Julian Date corresponding to DATE-OBS (days)
OBSLST Mean local sidereal time corresponding to DATE-OBS (HH:MM:SS.S)
EXPTIME Requested exposure time (s)
AEXPTIME Actual exposure time (s)
DOMESTAT Dome shutter status at beginning of exposure (either “open,” “closed,” or “unknown”)
DOMEAZ Dome azimuth (degrees)
FILTERID Filter identification number (ID)
FILTER Filter name (e.g., “R”, “g”, “Ha656”, or “Ha663”)
FILTERSL Filter-changer slot position (designated either 1 or 2)
SOFTVER Palomar software version (Telescope.Camera.Operations.Scheduling)
HDR_VER Header version

a Some FITS headers list this value incorrectly as positive.
bPossible setting is “object,” “dark,” “bias,” “dome,” “twilight,” “focus,” “pointing,” or “test.” Dome and twilight

images are potentially useful for constructing flats.
c OCS stands for “observatory control system.”

676 LAHER ET AL.

2014 PASP, 126:674–710

Embedded in the filename is the date concatenated with four
digits of the fractional day. The next filename field is the filter
number. The next field is a one-character moniker for the image
type: “o” stands for “object,” “b” stands for “bias,” “k” stands
for “dark,” etc. The last field before the “.fits” filename exten-
sion is a nonunique counter, which is reset to zero when the
camera is rebooted (which can happen in the course of a night,
although infrequently).

3. SIGNIFICANT PROJECT EVENTS

There were three different events that occurred during the
course of the project that affected how the processing is done

and how the results are interpreted. There was a fourth event,
which occurred last, that is mostly programmatic in nature. It
is convenient to view these events as having transpired during
the day, in between nightly data-taking periods.

On 2009 October 9, the camera electronics were reconfig-
ured, which greatly improved the camera’s dynamic range,
thus raising the DN levels at which the pixel detectors saturate.
Image data taken up to this date saturate in the 17,000–
36,000 DN range, depending on the CCD. After the upgrade,
the data saturation occurs in the 49,000–55,000 DN range.
Table 3 lists the CCD-dependent saturation values, before and
after the upgrade.

TABLE 2

SELECT KEYWORDS IN THE PTF-CAMERA-IMAGE PRIMARY HEADER (CONTINUED FROM TABLE 1)

Keyword Definition

SEEING Seeing full width at half-maximum (FWHM; pixels), an average of FWHM_IMAGE values computed by SExtractor
PEAKDIST Mean of distance of brightest pixel to centroid pixel (pixels) from SExtractora

ELLIP Clipped median of ellipticityb for all nonextended field objects from SExtractor
ELLIPPA Mean of ellipse rotation angle (degrees) from SExtractor
FOCUSPOS Focus position (mm)
AZIMUTH Telescope azimuth (degrees)
ALTITUDE Telescope altitude (degrees)
AIRMASS Telescope air mass
TRACKRA Telescope tracking speed along R.A. with respect to sidereal time (arcseconds hr�1)
TRACKDEC Telescope tracking speed along decl. with respect to sidereal time (arcseconds hr�1)
TELRA Telescope-pointing right ascension (degrees)
TELDEC Telescope-pointing declination (degrees)
TELHA Telescope-pointing hour angle (degrees)
HOURANG Mean hour angle (HH:MM:SS.SS) based on OBSLST
CCD0TEMP Temperature sensor on CCDID ¼ 0 (K)
CCD9TEMP Temperature sensor on CCDID ¼ 9 (K)
CCD5TEMP Temperature sensor on CCDID ¼ 5 (K)
CCD11TEM Temperature sensor on CCDID ¼ 11 (K)
HSTEMP Heat spreader temperature (K)
DHE0TEMP Detector head electronics temperature, master (K)
DHE1TEMP Detector head electronics temperature, slave (K)
DEWWTEMP Dewar wall temperature (K)
HEADTEMP Cryogen cooler cold head temperature (K)
RSTEMP Temperature sensor on radiation shield (K)
DETHEAT Detector focal plane heater power (%)
WINDSCAL Wind screen altitude (degrees)
WINDDIR Azimuth of wind direction (degrees)
WINDSPED Wind speed (km hr�1)
OUTTEMP Outside temperature (°C)
OUTRELHU Outside relative humidity fraction
OUTDEWPT Outside dew point (°C)
MOONRA Moon right ascension in J2000 (degrees)
MOONDEC Moon declination in J2000 (degrees)
MOONILLF Moon illuminated fraction
MOONPHAS Moon phase angle (degrees)
MOONESB Moon excess in sky V -band brightness (magnitude)
MOONALT Moon altitude (degrees)
SUNAZ Sun azimuth (degrees)
SUNALT Sun altitude (degrees)

a If the value is larger than just a few tenths of a pixel, it may indicate a focus or telescope-tracking problem. There are 33 exposures with failed
telescope tracking, acquired mostly in 2009, and their PEAKDIST values are generally greater than a pixel.

b The ellipticity is from the SExtractor ELLIPTICITY output parameter. The formula A=B in the FITS-header comment should be changed to
1�B=A, where A and B are defined in the SExtractor documentation.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 677

2014 PASP, 126:674–710

On 2010 July 15, the positions of the R and g filters were
swapped in the filter wheel. This not only made the expected
filter positions in the filter wheel time dependent, but also al-
tered the positions of the ghost reflections on the focal plane
(and, hence, in the images).

On 2010 September 2, the “fogging problem” was solved,
which had been causing a diffuseness in the images around
bright stars, and was the result of an oil film slowly building
up on the camera’s cold CCD window during the times between
the more-or-less bimonthly window cleanings. Ofek et al.
(2012) discuss the resolution of this problem in more detail.

On 2013 January 1, the official PTF program ended and the
“intermediate” PTF (iPTF) program started.15 Coincidently,
PTF-archive users will notice that DAOPHOT source catalogs
(Stetson 1987) are available from this point on, in addition to the
already available SExtractor source catalogs (Bertin 2006a),
which is the result of pipeline upgrades that were delivered
around that time. Also, this was around the time that the
IPAC-PTF reference-image, real-time, and difference-image
pipelines came online.

4. DEVELOPMENT APPROACH

This section covers our design philosophy and assumptions
and the software guidelines that we followed in our develop-
ment approach.

4.1. Design Philosophy and Assumptions

The development of the data-ingest, image-processing, archi-
val, and distribution components for PTF data and products
have leveraged existing astronomical software and the relevant
infrastructure of ongoing projects at IPAC.

Database design procedures developed at IPAC have been
followed in order to keep the system as generic as possible
and not reliant on a particular brand of database. This allows
the flexibility of switching from one database to another over
the project’s many years of operation, as necessary.

We strived for short database table and column names to
minimize keyboard typing (and mostly achieved this) and to
quicken learning the database schema. We avoided renaming
primary keys when used as foreign keys in other tables, in order
to keep table joins simple. (A primary key is a column in a table
that stores a unique identification number for each record in the
table, and a foreign key is a column in a table that stores the
primary key of another table and serves to associate a record
in one table with a record in another table.)

The metadata stored in the database on a regular basis during
normal operations come directly from, or are derivable from,
information in either the header or filename of camera-image
files containing the raw data, as well as nightly-observing meta-
data files. Thus, very little prior information about scheduling of
specific observations is required.

We expect to have to be able to deal with occasional corrupt
or incomplete data. The software must therefore be very robust,
and, for example, be able to supply missing information, if
possible. Having the ability to flag bad data in various ways
is useful. This and the means of preventing certain data from
undergoing processing are necessary parts of the software
and database design.

Another important aspect of our design is versioning.
Software, product, and archive versioning are handled indepen-
dently in our design, and this simplifies the data and processing
management. A data set, for example, may be subjected to sev-
eral rounds of reprocessing to smooth out processing wrinkles
before its products are ready to be archived.

4.2. Software Guidelines

An effort has been made to follow best programming prac-
tices. A very small set of guidelines were followed for the soft-
ware development, and no computer-language restrictions were
imposed so long as the software met performance expectations.
We have made use of a variety of programming languages
in this project, as our team is quite diverse in preferences
and expertise.

The source code is checked into a version control system
(CVS). An updated CVS version string is automatically embed-
ded into every source-code file each time a new file version is
checked into the CVS repository, and this facilitates tracking
deployed software versions when debugging code. The Web-
based software-version-control system called GNATS is used
for tracking software changes and coordinating software
releases.

All Perl scripts are executed from a common installation of
Perl that is specified via environment variable PERL_PATH and
require explicit variable declaration (“use strict;”). Minimal use

TABLE 3

CCD-DEPENDENT SATURATION VALUES, BEFORE AND AFTER

THE PTF-CAMERA-ELECTRONICS UPGRADE, WHICH

OCCURRED ON 2009 OCTOBER 9

CCDID Before (DN) After (DN)

0 34,000 53,000
1 36,000 54,000
2 25,000 55,000
3 N/A N/A
4 31,000 49,000
5 33,000 50,000
6 26,000 55,000
7 17,000 55,000
8 42,000 53,000
9 19,000 52,000
10 25,000 52,000
11 36,000 53,000

15 http://ptf.caltech.edu/iptf/.

678 LAHER ET AL.

2014 PASP, 126:674–710

is made of global variables. Stand-alone blocks of code are
wrapped as subroutines and put into a library for reuse and com-
plexity hiding.

Modules requiring fast computing speed were generally de-
veloped in the C language on Mac laptops and tested there prior
to deployment on the Linux pipeline machines. Thus, the soft-
ware benefited from multiplatform testing, which enhances its
robustness and improves the chances of uncovering bugs.

All in-house software, which excludes third-party software,
is designed to return a system value in the 0–31 range for normal
termination, in the 32–63 range for execution with warnings,
and > ¼ 64 if an error occurs. At the discretion of the program-
mer, specific values are designated for special conditions, warn-
ings, and errors that are particular to the software under
development.

All scripts generate log files that are written to the PTF logs
directory, which is appropriately organized into subdirectories
categorized by process type. The log files are very verbose, and
explicit information is given about the processes executed,
along with the input parameters and command-line options
and switches used. Software version numbers are included,
as well as is timing information, which is useful for benchmark
profiling.

5. SYSTEM ARCHITECTURE

Figure 2 shows the principal hardware components of the
IPAC-PTF system, which are located on the Caltech campus.
Firewalls, servers, and pipeline machines, which are depicted
as rectangular boxes in the figure, are currently connected to
a 10 gigabit s�1 network (this was upgraded in 2012 from
1 gigabit s�1). Firewalls provide the necessary security and iso-
lation between the PTF transfer machine that receives nightly
PTF data, the IRSA Web services, and the operations and ar-
chive networks. A demilitarized zone (DMZ) outside of the in-
ner firewall has been set up for the PTF transfer machine. A
separate DMZ exists for the IRSA search engine and Web
server.

The hardware has redundancy to minimize downtime. Two
data-ingest machines, a primary and a backup, are available for
the data-ingest process (see § 7), but only one of these machines
is required at any given time. There are 12 identical pipeline
machines for parallel processing, but only 11 are needed for
the pipelines, and so the remaining machine serves as a backup.
The pipeline machines have 64 bit Linux operating systems in-
stalled (Red Hat Enterprise 6, upgraded from 5 in early 2013),
and each has eight CPU cores and 16 Gbyte (GB) of memory.
There are two database servers: a primary for regular PTF op-
erations and a secondary for the database backup. Currently, the
database servers are running the Solaris-10 operating system,
but are accessible by database clients running under Linux.

There is ample disk space, which is attached to the operations
file server, for staging camera-image files during the data
ingest and temporarily storing pipeline intermediate and final

products. These disks, which are called sandboxes, are cross-
mounted to all pipeline machines for the pipeline image
processing. This design strategy minimizes network traffic by
allowing intermediate products to be available for a short time
for debugging purposes and only transferring final products to
the archive. The IRSA archive file server is set up to allow the
copying of files from PTF operations through the firewall. The
IRSA archive disk storage is currently 250 Tbyte (TB), and this
will be augmented as needed over the project lifetime. It is ex-
pected that this disk capacity will be doubled by the end of the
project. In general, the multi-terabyte disk storage is broken up
into 8 TB or 16 TB partitions to facilitate disk management and
file backups.

6. DATABASE

We initially implemented the database in Informix to take
advantage of Informix tools, interfaces, methodologies, and ex-
pertise developed under the Spitzer project. After a few months,
we made the decision to switch to an open-source PostgreSQL
database, as our Informix licensing did not allow us to install the
database server on another machine and purchasing an addi-
tional license was not an option due to limited funding. All
in all, it was a smooth transition, and there was a several-month
period of overlap where we were able to switch between Infor-
mix and PostgreSQL databases simply by changing a few en-
vironment variables.

Figure 3 depicts the database schema for the basic tables
associated with ingesting PTF data. Some of the details in
the figure are explained in its caption and in § 7. Briefly, the
Nights database table tracks whether any given night has been
successfully ingested (status ¼ 1) or not (status ¼ 0). A re-
cord for each camera exposure is stored in the Exposures data-
base table, and each record includes the camera-image filename,
whether the exposure is good (status ¼ 1) or not (status ¼ 0,
such as in the rare case of bad sidereal tracking), and other

FIG. 2.—Computing, network, and archiving hardware for the IPAC-PTF
system.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 679

2014 PASP, 126:674–710

exposure and data-file metadata. The exposure metadata is ob-
tained directly from the primary FITS header of the camera-
image file (see § 2). The remaining database tables in the figure
track the database-normalized attributes of the exposures. The
Filters database table, for example, contains one record per
unique camera filter used to acquire the exposures.

Not shown in Figure 3 is the FieldCoverage database table,
which contains the most complete set available of fields to be
scheduled for multiepochal observation, whereas all other tables
for information about PTF data store only records for data that
have already been acquired. This table is not required for the data
ingest, but is used by the pipeline that performs the astrometric
calibration (see § 9.15), since it includes columns that identify
cached astrometric catalogs for each PTF field. A fairly complete
list of PTF-operations database tables is given in Table 4.

Figure 4 shows a portion of the database schema relevant to
the pipeline image processing. The key features of the database
tables involved are given in the remainder of this section. The
various utilities of these database tables are discussed through-
out this paper as well. For conciseness, several equally impor-
tant database tables are not shown, but are discussed presently
(e.g., see § 9.15). These include tables for science data quality
analysis (SDQA), photometric calibration, and tracking artifacts
such as ghosts and halos.

The Pipelines database table assigns a unique index to each
pipeline and stores useful pipeline metadata, such as their pri-
ority order of execution. See § 9.1 and § 9.5 for a detailed dis-
cussion of the table’s data contents.

The RawImages database table stores metadata about raw
images, one record per raw-image file, where each raw-image

file corresponds to the data from one of the camera’s CCDs in an
exposure. While the 12 CCD camera images are archived (and
tracked in the Exposures database table), the raw-image files
associated with the filename column in the RawImages database
table are not archived, but serve as pipeline inputs from the
sandbox, for as long as they are needed, and then are eventually
removed from the file system to avoid duplicate storage.

The ProcImages database table stores metadata about proc-
essed images, one record per image file. There is a one-to-many
relationship between RawImages and ProcImages records be-
cause a given raw image can be processed multiple times, which
is useful when the software version (tracked in the SwVersions
database table) is upgraded or the software configuration
(tracked in the CdfVersions database table) needs to be changed.
Moreover, a given raw image can be processed by different
pipelines. The version column keeps track of the processing ep-
isode for a given combination of raw image (rid) and pipeline
(ppid). The vBest column is automatically set to one for the lat-
est version and zero for all previous versions, unless a previous
version has the column set to vBest ¼ 2, in which case it is
“locked” on that previous version. In addition, similar products
can be generated by different pipelines, and the pBest column
flags which of the pipelines’ products are to be archived.

The Catalogs database table stores metadata about the ex-
tracted source catalogs, one record per catalog file. There is
a one-to-many relationship between ProcImages and Catalogs
records because catalogs can be regenerated from a given proc-
essed image multiple times. Image processing takes much more
time than catalog generation, and the latter can be redone, if
necessary, without having to redo the former. The structure
of the Catalogs database table is analogous to that of the
ProcImages database table with regard to product versioning
and tracking.

The AncilFiles database table stores metadata about ancillary
files that are created during the pipeline image processing and
directly related to processed images (i.e., ancillary files besides
catalogs, which are a special kind of ancillary file registered in
the Catalogs database table). Ancillary files presently include
data masks and JPEG preview images, which are distinguished
by the ancilType column. The table is flexible in that new
ancilType settings can be defined for new classes of ancillary
files that may arise in the course of development. This database
table enforces the association between all ancillary files and
their respective processed images.

Calibration files are created by calibration pipelines and ap-
plied by image-processing pipelines. The CalFiles and Cal-
FileUsage database tables allow multiple versions of calibration
files to be tracked and associated with the resulting processed
images.

The ArchiveVersions database table is pivotal for managing
products in the data archive. For more on that and the archive-
related columns in the ProcImages, Catalogs, AncilFiles, Cal-
Files, and CalAncilFiles database tables, see § 10.1.

FIG. 3.—IPAC-PTF database-schema design for the data ingest (see § 7). The
database table name is given at the top of eachbox.The bold-font database column
listed after the table name in each box is the primary key of the table. The columns
listed in bold-italicized font are the alternate keys. The columns listed in regular
font are not-null columns, and in regular-italicized font are null columns (which
are columns in which null values possibly may be stored). “F.K.” stands for for-
eign key, and “1 1..*” stands for one record to many records, etc.

680 LAHER ET AL.

2014 PASP, 126:674–710

The Jobs database table is indexed by primary key jid. It con-
tains a number of foreign keys that index the associated pipeline
(ppid) and various data parameters (e.g., night, CCD, and filter of
interest). It contains time-stamp columns for when the pipeline

started and ended, as well as elapsed time, and it also contains
columns for pipeline exit code, status, andmachine number. Pos-
sible status values �1, 0, or 1 indicate the job is suspended, is
ready to be executed, or has been executed, respectively.

TABLE 4

OPERATIONS DATABASE TABLES OF THE PALOMAR TRANSIENT FACTORY

Table name Description

Nights . Nightly data-ingest status and other metadata (e.g., images-manifest filenames). Unique index: nid. Alternate key: nightdate.
Exposures Exposure status and other metadata (e.g., camera-image filenames). Unique index: expid. Alternate key: obsdate.
CCDs . CCD constants (e.g., sizes of raw and processed images, in pixels). Unique index: ccdid.
Fields . Observed PTF field positions and their assigned identification numbers (IDs). Unique index: fieldid. Alternate key: ptffield.
FieldCoverage Field positions and their fractional overlap onto SDSSa fields. Unique index: fcid. Alternate keys: ptffield and ccdid.
ImgTypes Image types taken by PTF camera (“object,” “bias,” “dark,” etc.). Unique index: itid.
Filters . Camera filters available. Currently R, g, and two different Hα filters are available. Unique index: fid.
FilterChecks Cross-reference table between filter-checker output indices and human-readable filter-check outcomes.
PIs . Principal-investigator contact information. Unique index: piid.
Projects . Project abstracts, keywords, and associated investigators. Unique index: prid.
Pipelines Pipeline definitions and pipeline-executive metadata (e.g., priority). Unique index: ppid.
RawImages Raw-image metadata (after splitting up FITS-multiextension camera images as needed). Unique index: rid.
ProcImages Processed-image metadata (e.g., image filenames). Unique index: pid. Alternate keys: rid, ppid, and version.
Catalogs Metadata about SExtractor and DAOPHOT catalogs extracted from processed images. Unique index: catid.
AncilFiles Ancillary-product associations with processed images. Unique index: aid. Alternate keys: pid and anciltype.
CalFiles . Calibration-product metadata (e.g., filenames, and date ranges of applicability). Unique index: cid.
CalFileUsage Associations between processed images (pid) and calibration products (cid).
CalAncilFiles Ancillary-calibration-product metadata. Unique index: caid. Alternate keys: cid and anciltype.
IrsaMeta Processed-image metadata required by IRSA (e.g., image-corner positions). Unique index: pid (foreign key).
QA . Quality-analysis information (e.g., image statistics). Unique index: pid (foreign key).
AbsPhotCal Absolute-photometric-calibration coefficients. Unique index: apcid. Alternate keys: nid, ccdid, and fid.
AbsPhotCalZpvm Zero-point-variability-map data. Primary keys: apcid, indexi, and indexj.
RelPhotCal Relative-photometric-calibration zero points. Unique index: rpcid. Alternate keys: ptffield, ccdid, fid, and version.
RelPhotCalFileLocks Utilizes row locking to manage file locking. Primary keys: ptffield, ccdid, and fid.
Ghosts . Metadata about ghosts in processed images. Unique index: gid. Alternate keys: pid, ccdid, fid, and (x, y).
Halos . Metadata about halos in processed images. Unique index: hid. Alternate keys: pid, ccdid, fid, and (x, y).
Tracks . Metadata about aircraft/satellite tracks in processed images. Unique index: tid. Alternate keys: pid, ccdid, fid, and num.
PSFs . Point spread functions (PSFs) in DAOPHOT format. Unique index: psfid. Alternate key: pid.
RefImages Reference-image metadata (e.g., filenames). Unique index: rfid. Alternate keys: ccdid, fid, ptffield, ppid, and version.
RefImageImages Associations between processed images (pid, ppid ¼ 5) and reference images (rfid, ppid ¼ 12).
RefImAncilFiles Ancillary-product associations with reference images. Unique index: rfaid.
RefImageCatalogs Metadata about SExtractor and DAOPHOT catalogs extracted from reference images. Unique index: rfcatid.
IrsaRefImMeta Reference-image metadata required by IRSA (e.g., image-corner positions). Unique index: rfid (foreign key).
IrsaRefImImagesMeta IRSA-required metadata for processed images that are co-added to make the reference images (see RefImageImages database table).
SDQA_Metricsb SDQA-metric definitions. Unique index: sdqa_metricid.
SDQA_Thresholds SDQA-threshold settings. Unique index: sdqa_thresholdid.
SDQA_Statuses SDQA-status definitions. Unique index: sdqa_statusid.
SDQA_Ratings SDQA-rating values for processed images. Unique index: sdqa_ratingid. Alternate keys: pid and sdqa_metricid.
SDQA_RefImRatings SDQA-rating values for reference images. Unique index: sdqa_refimratingid. Alternate keys: rfid and sdqa_metricid.
SDQA_CalFileRatings SDQA-rating values for calibration files. Unique index: sdqa_calfileratingid. Alternate keys: cid and sdqa_metricid.
SwVersions Software version information. Unique index: svid.
CdfVersions Configuration-data-file version information. Unique index: cvid.
ArchiveVersions Metadata about archive versions. Unique index: avid.
DeliveryTypes Archive delivery-type definitions. Unique index: dtid.
Deliveries Archive delivery-tracking information. Unique index: did.
Jobs . Pipeline-job tracking information. Unique index: jid.
ArchiveJobs Archive-job tracking information. Unique index: ajid.
JobArbitration Job-lock table.
IRSA . Temporary table for marshaling of metadata to be delivered to the IRSA archive.

a Sloan Digital Sky Survey (York et al. 2000)
b SDQA stands for science data quality analysis.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 681

2014 PASP, 126:674–710

The ArchiveJobs database table is indexed by primary key
ajid. Since product archiving is done on a nightly basis, the da-
tabase table has columns that store the date of the night of in-
terest (nightDate), and the associated night database index
(foreign key nid) for added convenience. It contains time-stamp
columns for when the archive job started and ended, as well as
for the elapsed time, and it also contains columns for the ar-
chive-job status and virtual-pipeline-operator exit code (see
§ 9.6). Possible status values �1, 0, or 1 indicate the job is
either in a long transaction (currently running or temporarily
suspended), is ready to be executed, or has been executed,
respectively.

All database tables that store information about files have a
column for storing the file’s checksum; this is useful for veri-
fying the data integrity of the file over time. There is also the
very useful status column for tracking whether the file is good
(status ¼ 1) or not (status ¼ 0); many pipeline database
queries for files require status > 0, and files with status ¼
0 are effectively removed from the processing. Note also that
the filename column in these tables is for storing the full path
and filename, in order to completely specify the file’s location in

file storage. Most of the database tables in the schema have their
first column data-typed as a database serial identification num-
ber, in order to enforce record-index uniqueness, and this is
called the primary key of the database table.

The database is backed up weekly, and generally at a con-
venient time, i.e., when the pipelines are not running. The pro-
cedure involves stopping all processes that have database
connections (e.g., the pipeline-executive jobbers) because it
is desirable to ensure the database is in a known state when
it is backed up. A script is run to query for database-validation
data. The database server is stopped, and the database file sys-
tem is snapshotted. This step takes just a few seconds, and the
database server and pipelines can be restarted immediately af-
terwards. This backup procedure is performed by the pipeline
operator. The database administrator is then responsible for
building a copy of the database from the snapshot and validating
it. The database copy is made available to expert users from a
different database server. It is sometimes expedient to test soft-
ware for schema and data content changes in the users’ database
prior to deployment in operations.

7. DATA INGEST

This section describes the data flow, processes, and software
involved in the nightly ingestion of PTF data at IPAC. The data-
ingest software has been specially developed in house for the
PTF project.

A major requirement is that the ingest process shall not mod-
ify either the camera-image filenames as received or the data
contained within the files. The reason for this is to ensure trace-
ability of the files back to the mountain top where they are
created. Moreover, there are opportunities to ameliorate the im-
age metadata in the early pipeline processing, if needed, and
experience has shown that, in fact, this must be done occasion-
ally. The ingest principal functions are to move the files into
archival disk storage and store information about them in a re-
lational database. There are other details, and these are de-
scribed in the subsections that follow.

7.1. High-Level Ingest Process

PTF camera-image files are first sent to a data center in San
Diego, CA from Mount Palomar via fast microwave link and
landline as an intermediate step, and then pushed to IPAC over
the Internet. The files are received throughout the night at IPAC
onto a dedicated data-transfer computer that sits in the IPAC
DMZ (see § 5). A mirrored 1 TB disk holds the /inbox partition
where the files are written upon receipt. This partition is ex-
ported via network file system (NFS) to both primary and
backup data-ingest machines, which are located behind the fire-
wall. The primary machine predominantly runs the data-ingest
processes. There is also a separate backup data-ingest computer
in case the primary machine malfunctions, and this machine is

FIG. 4.—IPAC-PTF database-schema design for the pipeline image process-
ing (see § 9). The figure nomenclature is explained in the caption of Fig. 3.

682 LAHER ET AL.

2014 PASP, 126:674–710

also utilized as a convenience for sporadically required manual
data ingestion.

A file containing a cumulative list of nightly image files,
along with their file sizes and Message-digest algorithm 5
(MD5) checksums, is also updated throughout the night and
pushed to IPAC after every update. This special type of file, each
one uniquely named for the corresponding night, is called the
“images manifest.” The images manifest has a well-defined fil-
ename with embedded observation date and fixed filename ex-
tension, suitable for parsing via computer script. An end-of-file
marker is written to the images manifest at the end of the night
after all image files have been acquired and transferred. This
signals the IPAC data-ingest software subsystem that an entire
night’s worth of data has been received, and the data-ingest pro-
cess is ready to be initiated for the night at hand. The contents of
each images manifest are essentially frozen after the end-of-
night marker has been written.

The basic data-ingest process involves copying all image
files to archival spinning disk and registering metadata about
the night and image files received in the database. A number
of steps are involved, and these steps foremost include verifying
that the image files are complete, uncorrupted, permanently
stored, and retrievable for image processing.

The data are received into disk subdirectories of the /inbox
partition, each named for the year, month, and day of the ob-
servations. The date and time stamps in the data are in GMT. A
cron job running on the data-ingest computer every 30 minutes
launches a Bourne shell script, called automate_stage_ingest,
that checks for both the existence of the images manifest of
the current night and that the end-of-night signal is contained
in the images manifest. A unique lock file is written to the
/tmp directory to ensure that only one night at a time is ingested.
It then initiates the high-level data-ingest process after these
conditions are met. This process runs under the root account
because file ownership must be changed from the data-transfer
account to the operations account under which the image-
processing pipelines are executed.

The high-level data-ingest process is another Bourne shell
script, called stage_PTF_raw_files, that performs the following
steps:

1. Checks that the number of files received matches the num-
ber of files listed in the images manifest. An alert is e-mailed to
operations personnel if this condition is not satisfied, and the
process is halted. The cron job will try again 30 minutes later
for the current night.

2. Copies the files into an observation-date-stamped subdir-
ectory under the /staging partition, which is owned by the op-
erations account and is an NFS mount point from the operations
file server.

3. Changes to the aforementioned data directory that houses
the nightly files to be ingested, and executes the low-level data-
ingest processes (see § 7.2). Bourne-shell script ingest_staged_
fits_files wraps the commands for these processes.

4. As a file backup, copies the files into an observation-date-
stamped subdirectory under the /nights partition, which is also
owned by the operations account, but is an NFS mount point
from the archive file server. This is done in parallel to the
low-level data-ingest process, so as not to hold it up.

5. Checks the MD5 checksums of the files stored in the ob-
servation-date-stamped subdirectory under the /nights partition.
Again, this rather time-consuming process is done in parallel to
the low-level data-ingest processes.

6. Removes the corresponding subdirectory under the /inbox
partition (and all files therein) upon successful data ingest.
This will inhibit the cron job from trying to ingest the same
night again.

As a final step, the aforementioned script ingest_staged_
fits_files executes a database command that preloads camera-
image-splitting pipelines for the current night into the Jobs
database table, one pipeline instance per camera-image file.
This pipeline is described in § 9.10.

All scripts generate log files that are written to the scripts and
ingest subdirectories in the PTF logs directory.

7.2. Low-Level Ingest Processes

There are three low-level data-ingest processes, which are
executed in the following order:

1. Ingest the camera-image files;
2. Check the file checksums; and
3. Ingest the images manifest.

These processes are described in detail in the following
paragraphs.

The Perl script called ingestCameraImages.pl works se-
quentially on all files in the current working directory (an
observation-date-stamped subdirectory under the /staging
partition). A given file first undergoes a number of checks. Files
that are not FITS files or less that 5 minutes old are skipped for
the time being. All files that are FITS files and older than 5 mi-
nutes are assumed to be PTF camera-image files and will be
ingested. The MD5 checksum is computed, and the file size
is checked. Files smaller than 205 Mbyte will be ingested,
but the status column will be set to zero and bit 20 ¼ 1 will
be set in the infobits column of the Exposures database table
(see Table 5) for records associated with files that are smaller
than expected, as this has revealed an upstream software prob-
lem in the past. Select keywords are read from the FITS header
(i.e., a large subset of the keywords listed in Tables 1 and 2). The
temperature-related FITS keywords are expected to be missing
immediately after a camera reboot, in which case the software
substitutes the value zero for these keywords, and bit 29 ¼ 512
is set in the infobits column of the Exposures database table.
Files with missing FILTER, FILTERID, or FILTERSL will have
both their values and their status set to zero in the Exposures
database table, along with bit 22 ¼ 4 set in the infobits column

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 683

2014 PASP, 126:674–710

of the Exposures database table. All science-image files are
checked for the unlikely state of an unopened telescope dome
(i.e., IMGTYP = “object” and DOMESTAT = “closed”), in
which case the associated status column is set to zero and
bit 21 ¼ 2 is set in the infobits column of the Exposures data-
base table. The file is then copied from the /staging partition to
the appropriate branch of the observation-date-based directory
tree in the camera-image-file archive. A record is inserted into
the Exposures database table for the ingested file, and, if nec-
essary and usually at a lower frequency, new records are inserted
into the following database tables: PIs, Projects, Nights, Filters,
ImgTypes, and Fields. For example, Table 6 lists the possible
PTF-image types that are ingested and registered in the Img-
Types database table. Finally, the ingested file is removed from
the current working directory, and the software moves on to in-
gest the next file. The process terminates after all FITS files
have been ingested.

The Perl script called checkIngestedCameraImages.pl recom-
putes the MD5 checksums of archived PTF camera-image files,
and, for each file, compares the checksum with that stored in the
database and in the images manifest. This script can be run any
time there is a want or need to check data-file integrity for a given
night. The associated Exposures database record is updated with
STATUS ¼ 0 in the rare event of checksum mismatch, and the
appropriate bit in the infobits column is set (see Table 5).

The Perl script called ingestImagesManifest.pl copies the im-
ages manifest to its appropriate archival-disk nightly subdirectory

and registers its location and filename in the Nights database ta-
ble, along with relevant metadata, such as MD5 checksum, file
size, status, and database-record-creation time stamp.

8. SCIENCE DATA QUALITY ANALYSIS

SDQA is an integral part of the design implemented for PTF,
which is outlined by Laher et al. (2009) in the context of a
different ground-based project under proposal. It is necessary
to provide some details about the IPAC-PTF SDQA subsystem
at this point, so that interactions between it and the pipelines can
be more fully understood.

Typically within hours after a night’s worth of camera images
have been ingested and the camera-image-splitting pipelines
have been executed (see § 9.10), the camera images are in-
spected visually for problems. The preview images generated
by the camera-image-splitting pipelines play a pivotal part in
speeding up this task. An in-house Web-based graphical user
interface (GUI) has been designed and implemented to provide
basic SDQA functionality (see Fig. 5), such as displaying pre-
views of raw and processed images, and dynamically generating
time-series graphs of SDQA quantities of interest. The source
code for the GUI and visual-display software tools have been
developed in Java, primarily for its platform-independent and
multithreading capabilities. The software queries the database
for its information. The Google Web Toolkit16 has been used
to compile the Java code into Javascript for relatively trouble-
free execution under popular Web browsers. The GUI has drill-
down capability to selectively obtain additional information.
The screen shot in Figure 5 shows the window that displays pre-
views of PTF camera images and associated metadata. The pre-
views load quickly and have sufficient detail to inspect the
nightly observations for problems and assess the data quality
(e.g., when investigating astrometric-calibration failures). In
the event of telescope sidereal-tracking problems, which are
spotted visually in the GUI (and occur infrequently), the asso-
ciated status column is set to zero and bit 24 ¼ 16 is set in the
infobits column of the Exposures database table (see Table 5).

A major function of our SDQA subsystem is to compute and
store in the database all the needed quantities for assessing data
quality. The goal is to boil down questions about the data into
relatively simple or canned database queries that span the pa-
rameter space of the data on different scales. Having a suitable
framework for this in place makes it possible to issue a variety
of manually requested and automatically generated reports.
During pipeline image processing, SDQA data are computed
for the images and astronomical sources extracted from the im-
ages and utilized to grade the images and sources. The reports
summarize the science data quality in various ways and provide
feedback to telescope, camera, facility, observation-scheduling,
and data-processing personnel.

TABLE 5

BITS ALLOCATED FOR FLAGGING DATA-INGEST CONDITIONS AND EXCEPTIONS
IN THE INFOBITS COLUMN OF THE EXPOSURES DATABASE TABLE

Bit Definition

0 File size too small
1 IMGTYP = “object” and DOMESTAT = “closed”
2 FILTER ¼ 0, FILTERID ¼ 0 and/or FILTERSL ¼ 0
4 Sidereal-tracking failure (manually set after image inspection)
6 Checksum mismatch: database vs. images manifest
7 Checksum mismatch: recomputed vs. images manifest
8 File-size mismatch: recomputed vs. images manifest
9 One or more noncrucial keywords missing

TABLE 6

PTF-IMAGE TYPES IN THE IMGTYPES DATABASE TABLE

itid IMGTYP

1 . object
2 . dark
3 . bias
4 . dome
5 . twilight
6 . focus
7 . pointing
8 . test 16 http://www.gwtproject.org.

684 LAHER ET AL.

2014 PASP, 126:674–710

Figure 6 shows our SDQA database-schema design for proc-
essed images. Note that the design is easily extended for other
pipeline products. The ProcImages database table is indexed by
pid and stores metadata about processed images, including the

sdqa_statusid, which is an integer that indexes the SDQA grade
assigned to an image. A processed image is associated with both
a raw image (rid) and a pipeline (ppid). As the pipeline software
is upgraded, new versions of a processed image for a given raw
image and pipeline will be generated, and, hence, a version col-
umn is included in the table to keep track of the versions. The
vBest column flags which version is best; there is only one best
version and it is usually the latest version.

SDQA metrics are diverse, predefined measures that charac-
terize image quality; e.g., image statistics, astrometric and pho-
tometric figures of merit and associated errors, and counts of
various things, like extracted sources. The SDQA_Metrics da-
tabase table stores the SDQA metrics defined for IPAC-PTF op-
erations, and these are listed in Tables 7 through 8. The
imageZeroPoint SDQA metric (metricId ¼ 48) is set to NaN
(not a number) in the database if either (1) the image did not
overlap an SDSS field; (2) there were an insufficient number
of Sloan Digital Sky Survey (SDSS) sources; or (3) the filter
used for the exposure was neither g nor R band (only these
two PTF bands are photometrically calibrated at this time).

SDQA thresholds can be defined for values associated with
SDQA metrics. The SDQA_Thresholds database table stores
the SDQA thresholds defined for IPAC-PTF operations and

FIG. 5.—Sample screen shot of the SDQA GUI developed for the IPAC-PTF system. See the electronic edition of the PASP for a color version of this figure.

FIG. 6.—IPAC-PTF SDQA database-schema design. The figure nomenclature
is explained in the caption of Fig. 3.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 685

2014 PASP, 126:674–710

TABLE 7

IPAC-PTF SDQA METRICS STORED IN THE SDQA_METRICS DATABASE TABLE

metricId metricName physicalUnits Definition

1 nGoodPix Counts Number of good pixels.
2 nDeadPix Counts Number of dead pixels.
3 nHotPix Counts Number of hot pixels.
4 nSpurPix Counts Number of spurious pixels.
5 nSatPix Counts Number of saturated pixels.
6 nObjPix Counts Number of source-object-coverage pixels.
7 nNanPix Counts Number of NaN (not a number) pixels.
8 nDirtPix Counts Number of pixels with filter dirt.
9 nStarPix Counts Number of star-coverage pixels.
10 nGalxPix Counts Number of galaxy-coverage pixels.
11 nObjSex Counts Number of source objects found by SExtractor.
12 fwhmSex Arcseconds SExtractor FWHM of the radial profile.
13 gMean D.N. Image global mean.
14 gMedian D.N. Image global median.
15 cMedian1 D.N. Image upper-left corner median.
16 cMedian2 D.N. Image upper-right corner median.
17 cMedian3 D.N. Image lower-right corner median.
18 cMedian4 D.N. Image lower-left corner median.
19 gMode D.N. Image global mode.
20 MmFlag Counts Image global mode.
21 gStdDev D.N. Image global standard deviation.
22 gMAbsDev D.N. Image mean absolute deviation.
23 gSkewns D.N. Image skewness.
24 gKurtos D.N. Image kurtosis.
25 gMinVal D.N. Image minimum value.
26 gMaxVal D.N. Image maximum value.
27 pTile1 D.N. Image 1 percentile.
28 pTile16 D.N. Image 16 percentile.
29 pTile84 D.N. Image 84 percentile.
30 pTile99 D.N. Image 99 percentile.
31 photCalFlag Flag Flag for whether image could be photometrically calibrated.
32 zeroPoint Magnitudes Magnitude zero point at an air mass of zero (see Appendix).
33 extinction Magnitudes Extinction.
34 airMass None Air mass.
35 photCalChi2 None Chi2 of photometric calibration.
36 photCalNDegFreedom Counts Number of SDSS matches in photometric calibration.
37 photCalRMSE Magnitudes R.M.S.E. of photometric calibration.
38 aveDeltaMag Magnitudes Average delta magnitude over SDSS sources in a given image.
40 nPhotSources Counts Number of sources used in photometry calibration.
41 astrrms1 Degrees SCAMP astrometry rms along axis 1 (ref., high signal-to-noise ratio [S/N]).
42 astrrms2 Degrees SCAMP astrometry rms along axis 2 (ref., high S/N).
43 2mass_astrrms1 Arcseconds 2Mass astrometry rms along axis 1.
44 2mass_astrrms2 Arcseconds 2Mass astrometry rms along axis 2.
45 2mass_astravg1 Arcseconds 2Mass astrometry match-distance average along axis 1.
46 2mass_astravg2 Arcseconds 2Mass astrometry match-distance average along axis 2.
47 n2massMatches Counts Number of 2MASS sources matched.
48 imageZeroPoint Magnitudes Magnitude zero point of image determined directly from SDSS sources (see Appendix).
49 imageColorTerm Magnitudes Color term from data-fit to SDSS sources in a given image (see Appendix).
50 2mass_astrrms1_11 Arcseconds 2MASS astrometry rms along axis 1 for subimage (1, 1).
51 2mass_astrrms2_11 Arcseconds 2MASS astrometry rms along axis 2 for subimage (1, 1).
52 2mass_astravg1_11 Arcseconds 2MASS astrometry match-distance average along axis 1 for subimage (1, 1).
53 2mass_astravg2_11 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (1, 1).
54 n2massMatches_11 Counts Number of 2MASS sources matched for subimage (1, 1).
55 2mass_astrrms1_12 Arcseconds 2MASS astrometry rms along axis 1 for subimage (1, 2).
56 2mass_astrrms2_12 Arcseconds 2MASS astrometry rms along axis 2 for subimage (1, 2).
57 2mass_astravg1_12 Arcseconds 2MASS astrometry match-distance average along axis 1 for subimage (1, 2).
58 2mass_astravg2_12 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (1, 2).
59 n2massMatches_12 Counts Number of 2MASS sources matched for subimage (1, 2).
60 2mass_astrrms1_13 Arcseconds 2MASS astrometry rms along axis 1 for subimage (1, 3).

NOTE.—For the SDQAmetrics associated with subimages, the size for subimages (1, j) and (3, j) is 768×1024 pixels, and the size for subimages (2, j) is 768×2048 pixels.

686 LAHER ET AL.

2014 PASP, 126:674–710

TABLE 8

IPAC-PTF SDQA METRICS STORED IN THE SDQA_METRICS DATABASE TABLE (CONTINUED FROM TABLE 7)

metricId metricName physicalUnits Definition

61 2mass_astrrms2_13 Arcseconds 2MASS astrometry rms along axis 2 for subimage (1, 3).
62 2mass_astravg1_13 Arcseconds 2MASS astrometry match-distance average along axis 1 for subimage (1, 3).
63 2mass_astravg2_13 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (1, 3).
64 n2massMatches_13 Counts Number of 2MASS sources matched for subimage (1, 3).
65 2mass_astrrms1_21 Arcseconds 2MASS astrometry rms along axis 1 for subimage (2, 1).
66 2mass_astrrms2_21 Arcseconds 2MASS astrometry rms along axis 2 for subimage (2, 1).
67 2mass_astravg1_21 Arcseconds 2MASS astrometry match-distance average along axis 1 for subimage (2, 1).
68 2mass_astravg2_21 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (2, 1).
69 n2massMatches_21 Counts Number of 2MASS sources matched for subimage (2, 1).
70 2mass_astrrms1_22 Arcseconds 2MASS astrometry rms along axis 1 for subimage (2, 2).
71 2mass_astrrms2_22 Arcseconds 2MASS astrometry rms along axis 2 for subimage (2, 2).
72 2mass_astravg1_22 Arcseconds 2MASS astrometry match-distance average along axis 1 for subimage (2, 2).
73 2mass_astravg2_22 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (2, 2).
74 n2massMatches_22 Counts Number of 2MASS sources matched for subimage (2, 2).
75 2mass_astrrms1_23 Arcseconds 2MASS astrometry rms along axis 1 for subimage (2, 3).
76 2mass_astrrms2_23 Arcseconds 2MASS astrometry rms along axis 2 for subimage (2, 3).
77 2mass_astravg1_23 Arcseconds 2MASS astrometry match-distance average along axis 1 for sub-image (2, 3).
78 2mass_astravg2_23 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (2, 3).
79 n2massMatches_23 Counts Number of 2MASS sources matched for subimage (2, 3).
80 2mass_astrrms1_31 Arcseconds 2MASS astrometry rms along axis 1 for subimage (3, 1).
81 2mass_astrrms2_31 Arcseconds 2MASS astrometry rms along axis 2 for subimage (3, 1).
82 2mass_astravg1_31 Arcseconds 2MASS astrometry match-distance average along axis 1 for subimage (3, 1).
83 2mass_astravg2_31 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (3, 1).
84 n2massMatches_31 Counts Number of 2MASS sources matched for subimage (3, 1).
85 2mass_astrrms1_32 Arcseconds 2MASS astrometry rms along axis 1 for subimage (3, 2).
86 2mass_astrrms2_32 Arcseconds 2MASS astrometry rms along axis 2 for subimage (3, 2).
87 2mass_astravg1_32 Arcseconds 2MASS astrometry match-distance average along axis 1 for subimage (3, 2).
88 2mass_astravg2_32 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (3, 2).
89 n2massMatches_32 Counts Number of 2MASS sources matched for subimage (3, 2).
90 2mass_astrrms1_33 Arcseconds 2MASS astrometry rms along axis 1 for subimage (3, 3).
91 2mass_astrrms2_33 Arcseconds 2MASS astrometry rms along axis 2 for subimage (3, 3).
92 2mass_astravg1_33 Arcseconds 2MASS astrometry match-distance average along axis 1 for subimage (3, 3).
93 2mass_astravg2_33 Arcseconds 2MASS astrometry match-distance average along axis 2 for subimage (3, 3).
94 n2massMatches_33 Counts Number of 2MASS sources matched for subimage (3, 3).
95 medianSkyMag Magnitudes ðs arcsec2Þ�1 Median sky magnitude.
96 limitMag Magnitudes ðs arcsec2Þ�1 Limiting magnitude (obsolete method).
97 medianFwhm Arcseconds Median FWHM.
98 medianElongation None Median elongation.
99 stdDevElongation None Standard deviation of elongation.
100 medianTheta Degrees Special median of THETAWIN_WORLD.
101 stdDevTheta Degrees Special standard deviation of THETAWIN_WORLD.
102 medianDeltaMag Magnitudes ðs arcsec2Þ�1 Median (MU_MAX −MAG_AUTO).
103 stdDevDeltaMag Magnitudes ðs arcsec2Þ�1 Std. dev of (MU_MAX − MAG_AUTO).
104 scampCatType None SCAMP-catalog type: 1=SDSS-DR7, 2=UCAC3, 3=USNO-B1
105 nScampLoadedStars None Number of stars loaded from SCAMP input catalog.
106 nScampDetectedStars None Number of stars detected by SCAMP.
107 imageZeroPointSigma Magnitudes Sigma of magnitude difference between SExtractor and SDSS sources.
108 limitMagAbsPhotCal Magnitudes ðs arcsec2Þ�1 Limiting magnitude (abs. phot. cal. zero point).
109 medianSkyMagAbsPhotCal Magnitudes ðs arcsec2Þ�1 Median sky magnitude based on abs. phot. cal. zero point.
110 flatJarqueBera Dimensionless Jarque-Bera test for abnormal data distribution of superflat image.
111 flatMean Dimensionless Mean of superflat image.
112 flatMedian Dimensionless Median of superflat image.
113 flatStdDev Dimensionless Standard deviation of superflat image.
114 flatSkew Dimensionless Skew of superflat image.
115 flatKurtosis Dimensionless Kurtosis of superflat image.
116 flatPercentile84.1 Dimensionless 84.1 percentile of superflat image.
117 flatPercentile15.9 Dimensionless 15.9 percentile of superflat image.
118 flatScale Dimensionless Scale (one half the difference between 84.1 and P15.9 percentiles) of superflat image.
119 flatNumNanPix Counts Number of NaNed pixels in superflat image.

NOTE.—For the SDQAmetrics associatedwith subimages, the size for subimages (1, j) and (3, j) is 768 × 1024 pixels, and the size for subimages (2, j) is 768 × 2048 pixels.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 687

2014 PASP, 126:674–710

can include lower and/or upper thresholds. Since thresholds can
change over time as the SDQA subsystem is tuned, the table has
version and vBest columns to keep track of the different and best
versions (like the ProcImages database table).

The SDQA_Ratings database table is associated with the
ProcImages database table in a one-to-many relationship
record-wise, and, for a given processed image, stores multiple
records of what we refer to as image “SDQA ratings,” which are
the values associated with SDQA metrics (referred to above).
An SDQA rating is basically the computed value of an SDQA
metric and its uncertainty. This design encourages the storing of
an uncertainty with its computed SDQA-rating value, although
this is not required. The flagValue column in a given record is
normally set to zero, but is reset to one when the associated
metricValue falls outside of the region allowed by the corre-
sponding threshold(s). A processed image, in general, has many
different SDQA ratings, as noted above, which are computed at
various pipeline stages; PTF processed images each have over
100 different SDQA ratings (see Tables 7 through 8). An
SDQA_Ratings record contains indexes to the relevant proc-
essed image, SDQA metric, and SDQA threshold, which are
foreign keys. The SDQA_Ratings database table potentially will
have a large number of records; bulk loading of these records
may reduce the impact of the SDQA subsystem on pipeline
throughput, although this has not been necessary for IPAC-
PTF pipelines.

A separate database-stored function called setSdqaStatus
(pid) is called to compute the SDQA grade of a processed image
after its SDQA ratings have been loaded into the database. The
function computes the percentage of SDQA ratings that are
flagged (flagV alue ¼ 1 in the SDQA_Ratings database table).
The possible pipeline-assigned SDQA status values are listed in
Table 9.

9. IMAGE-PROCESSING PIPELINES

9.1. Overview

The pipelines consist of Perl scripts and the modules or bi-
nary executables that they run. The modules are either custom

developed in house or freely downloadable astronomical-
software packages (e.g., SExtractor). There are product-
generation and calibration pipelines (see Table 10), which must
be executed in a particular order.

In normal operations, the pipelines are initiated via multi-
threaded job client software developed expressly for PTF at
IPAC. One job client is typically run on one pipeline machine
at any given time. The job clients interact with the database to
coordinate the pipeline jobs. The database maintains a queue of
jobs waiting to be processed. Each job is associated with a
particular pipeline and data set. Job clients that are not busy
periodically poll the database for more jobs, which responds
with the database identifications of jobs to process, along with
concise information about the jobs that is needed by the pipe-
lines. The job client then launches the called-for pipeline as
a separate processing thread and is typically blocked until
the thread completes. The database is updated with relevant
job information after the job finishes (e.g., pipeline start and
end times).

The pipelines nominally query the database for any addi-
tional metadata that are required to run the pipeline. The last
step of the pipeline includes updating the database with meta-
data about the processed-image product(s) and their ancillary
files (e.g., data masks). The pipelines make and sever database
connections as needed, and database communications to the
pipeline and to the job executive are independent.

The pipelines create numerous intermediate data files on the
pipeline machine’s local disk, which are handy to have for man-
ually rerunning pipeline steps, should the need arise. A fraction
of these files are copied to a sandbox disk (see § 5), which
serves to marshal together the products for a given night gener-
ated in parallel on different pipeline machines. It is expedient to
organize the products in the sandbox in subdirectories that make
them easy to find without having to query the database. The
following sample file path exemplifies the subdirectory scheme
that we have adopted:

/sbx1/2011/09/19/f2/c9/p5/v1.

TABLE 9

POSSIBLE SDQA STATUS VALUES

sdqa_statusid statusName SDQA ratings flagged (%) Definition

1 passedAuto <5 Image passed by automated SDQA.
2 marginallyPassedAuto ≥5 and <25 Image marginally passed by automated SDQA.
3 marginallyFailedAuto >75 Image marginally failed by automated SDQA.
4 failedAuto ≥90 Image failed by automated SDQA.
5 indeterminateAuto ≥25 and ≤75 Image is indeterminate by automated SDQA.
6 passedManual N/A Image passed by manual SDQA.
7 marginallyPassedManual N/A Image marginally passed by manual SDQA.
8 marginallyFailedManual N/A Image marginally failed by manual SDQA.
9 failedManual N/A Image failed by manual SDQA.
10 indeterminateManual N/A Image is indeterminate by manual SDQA.

688 LAHER ET AL.

2014 PASP, 126:674–710

After the sandbox logical name and the year, month, and
day, there is “f2/c9/p5/v1,” which stands for filter (fid ¼ 2),
CCD (ccdid ¼ 9), pipeline (ppid ¼ 5), and product version
(version ¼ 1). The directory tree for the archive is exactly
the same, except that the archive logical name replaces the sand-
box’s. The method employed for copying products from the
sandbox to the archive is described in § 10.1.

9.2. Computing Environment

The pipelines inherit the shell environment they run under,
which is overridden by settings particular to the PTF software
system (see Table 11). A modest number of environment var-
iables is required. The PATH environment variable must include
locations of PTF scripts and binary executables, Perl, Python,

TABLE 10

CONTENTS OF THE PIPELINES DATABASE TABLE

ppida Priorityb Blocking Perl script Description

1 10 1 superbias.pl Superbias calibration
2 20 1 domeflat.pl Dome flat calibration
3 30 1 preproc.pl Raw-image preprocessing
4 40 1 superflat.pl Superflat calibration
5 50 1 frameproc.pl Frame processing
6 70 1 TBD Mosaicking
7 500 1 splitCameraImages.pl Camera-image splitting
8 60 1 sourceAssociation.pl Source association
9 55 0 loadSources.pl Load sources into database
10 45 1 flattener.pl Flattener
11 41 1 twilightflat.pl Twilight flat
12 80 1 genRefImage.pl Reference image
13 52 1 genCatalog.pl Source-catalog generation

a Pipeline database index.
b The priority numbers are relative, and smaller numbers have higher priority.

TABLE 11

ENVIRONMENT VARIABLES REQUIRED BY THE PTF SOFTWARE SYSTEM

Variable Definition

PTF_ROOT . Root directory of PTF software system.
PTF_LOGS . Directory of log files (e.g., $PTF_ROOT/logs).
PTF_ARCHIVE . Archive directory (e.g., $PTF_ROOT/archive).
PTF_ARCHIVE_RAW_PARTITION Archive raw-data disk partition (e.g., raw).
PTF_ARCHIVE_PROC_PARTITION Archive processed-data disk partition (e.g., proc).
PTF_SBX . Current sandbox directory (e.g., $PTF_ROOT/sbx1).
PTF_SW . Top-level software directory (e.g., $PTF_ROOT/sw).
PTF_BIN . Binary-executables directory (e.g., $PTF_SW/ptf/bin).
PTF_LIB . Libraries directory (e.g., $PTF_SW/ptf/lib).
PTF_EXT . External-software directory (e.g., $PTF_ROOT/ext).
PTF_LOCAL . Machine local directory (e.g., /scr/ptf).
PTF_CDF . Configuration-data-file directory (e.g., /scr/cdf).
PTF_CAL . Calibration-file directory (e.g., /scr/cal).
PTF_IDL . Full path and filename of IDL program.
PTF_ASTRONOMYNETBIN . Astrometry.net binary-executable directory.
WRAPPER_UTILS . Perl-library directory (e.g., $PTF_SW/perlibs).
WRAPPER_VERBOSE . Pipeline verbosity flag (0 or 1).
DBTYPE . Database type.
DNAME . Database name.
DBSERVER . Database-server name.
SODB_ROLE . Database role.
TY2_PATH . Location of the Tycho-2 catalog.
PATH . Location(s) of binary executables (e.g., $PTF_BIN).
LD_LIBRARY_PATH . Location(s) of libraries (e.g., $PTF_LIB).
PERL_PATH . Location of Perl-interpreter command.
PERL5LIB . Location(s) of Perl-library modules.
PYTHONPATH . Location of Python-interpreter command.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 689

2014 PASP, 126:674–710

MATLAB, Astrometry.net, and Jessica Mink’s WCSTools.
The PTF_IDL environment variable gives the path and command
name of IPAC’s SciApps installation of IDL. Table 12 lists the
versions of third-party software utilized in IPAC-PTF pipelines.

9.3. Configuration Data Files

Configuration data files (CDFs) are text files that store con-
figuration data in the form of keyword=value pairs. They are
parameter files that control software behavior. On the order
of a hundred of these files are required for PTF processing.
In many cases, there are sets of 11 files for a given process
working on individual CCDs, thus allowing CCD-dependent
image processing. The CDFs for the superbias-calibration pipe-
line (see § 9.11), for example, store the outlier-rejection thresh-
old and the pixel coordinates of the floating-bias strip. Among
the files are SExtractor “config” and “param” files. The CDFs
are version-controlled in CVS, and the version numbers of the
CDFs as a complete set of files are tracked in the CdfVersions
database table, along with deployment dates and times, etc. For
fast access, the CDFs are stored locally on each pipeline ma-
chine’s scratch disk (as defined by environment variable
PTF_CDF; see § 9.2).

9.4. Pixel-Mask Images

Pixel masks are used to flag any badly behaved pixels on
the CCDs. The flagged pixels can be specially treated by the
image-processing pipelines, as appropriate. The pixel masks
for PTF data were constructed as described by van Eyken et al.
(2011). The algorithm is loosely based on the IRAF17 ccdmask

procedure (Tody 1986, 1993). The masks were created from im-
ages made by dividing a 70 s LED18 flat field by a 35 s LED flat
field. Three independent such divided frames were obtained for
each of the 11 functioning CCDs. Any pixels with outlier fluxes
beyond four standard deviations in at least two of the three
frames, or beyond three standard deviations in all three of
the frames were flagged as bad. This approach helps catch ex-
cessively variable pixels, in addition to highly nonlinear pixels,
while still rejecting cosmic-ray hits. The bad-pixel-detection
procedure was then repeated after boxcar smoothing of the orig-
inal image along the readout direction. This finds column seg-
ments where individual pixels are not statistically bad when
considered alone, but are statistically bad when taken together
as an aggregate. This process was iterated several times, with a
selection of smoothing bin sizes from 2 to 20 pixels. Pixels lying
in small gaps between bad pixels were then also iteratively
flagged, with the aim of completely blocking out large regions
of bad pixels while minimizing encroachment into good-pixel
regions.

9.5. Pipeline Executive

The pipeline executive is software that runs in parallel on the
pipeline machines as pipeline job clients. There is no pipeline-
executive server per se, as its function has been replaced by a
relational database. The pipeline executive expects pipeline jobs
to be inserted as records in the Jobs database table, which is an
integral part of the operations database schema (see § 6). Thus,
staging pipeline jobs for execution is as simple as inserting da-
tabase records and assuring that the records are in the required
state for acceptance by the pipeline executive. The Jobs data-
base table is queried for a job when a pipeline machine is not
currently running a job and its job client is seeking a new job.
The job farmed out to a machine will be next in the priority
ordering, which is specified in the Pipelines database table.
The current contents of this table are listed in Table 10. The
pipeline-priority numbers are relative and can be renumbered
as new pipelines are added or priority changes arise.

A Jobs database record is prepared for pipeline running by
nulling out the run-time columns and setting the status to zero.
Staged jobs that have not yet been executed can be suspended
by setting their status to �1 and then reactivated later by setting
their status back to zero.

The job-client software is written in Perl (ptfJobber.pl) and
has an internal table that associates each of the 11 PTF CCDs
with a different pipeline machine. It allows a pipeline machine
to either run only jobs for the associated CCD or jobs that are
CCD independent (e.g., the camera-image-splitting pipeline de-
scribed in § 9.10). It runs in an open loop, and wakes up every
5 s to check whether a job has completed and/or a new job can
be started.

TABLE 12

VERSIONS OF THIRD-PARTY SOFTWARE EXECUTED IN IPAC-PTF PIPELINES

Software Version

Astrometry.net . 0.43
CFITSIO . 3.35
Eye . 1.3.0
FFTW . 3.2.2
IDL . 8.1
MATLAB . 7.10.0.499
Montage . 3.2
Perl . 5.10.0
Python . 2.7.3
EPD . 7.3-2
SCAMP . 1.7.0
MissFITS . 2.4.0
SExtractor . 2.8.6
SWarp . 2.19.1
WCSTools . 3.8.7
DAOPHOT . 2004 Jan 15
ALLSTAR . 2001 Feb 7
SciApps . 08/29/2011

17 http://iraf.noao.edu/. 18 Light-emitting diode; see Law et al. (2009).

690 LAHER ET AL.

2014 PASP, 126:674–710

Each client maintains a list of launched pipelines that grows
indefinitely (until stopped and restarted, which, for example, is
done for the weekly database backup). Each launched pipeline
executes as a separate processing thread. The attributes of the
launched pipelines include their job database identifications
(jid), whether the job has completed, and whether the job is non-
blocking (blocking ¼ 0; see Table 10). If the job currently being
run by the client has a pipeline-blocking flag of one, then the
client will wait for the job to finish before requesting another
job. If, on the other hand, the job is nonblocking, then the client
will request another job and run it in parallel to the first job as
another processing thread. The client is currently limited to run-
ning only one nonblocking job in parallel to a blocking job, but
this can be increased by simply changing a parameter.

9.6. Virtual Pipeline Operator

Running pipelines and archiving the products, delivering
product metadata to IRSA, and other routine daily operations
are automated with a Perl script that we call the virtual pipeline
operator (VPO). In addition, the script monitors disk usage,
sends e-mail notifications and nightly summaries, and runs a
nightly process that generates all-sky depth-of-coverage images
(Aitoff projections in Galactic and equatorial coordinates).

The VPO can be run in open-loop mode for continuous op-
eration. The polling-time interval is currently set at 10 minutes.
The software can also be run in single-night mode for targeted
reprocessing. It does much of its work by querying the database
for information, and, in particular, the Jobs database table for
pipeline monitoring. It is basically a finite state machine that
sets internal flags to keep track of what has been done and what
needs to be done still for a given night’s worth of data. The flags
are also written to a state file, which is unique for a given night,

each time the state is updated. The software is easily extensible
by a Perl programmer when additional states and/or tasks are
needed. It resets to default initial-state values every 24 hr; cur-
rently this is set to occur at 10 A.M., which is around the time the
data-ingestion process completes for the previous night and its
pipeline processing can be started.

The VPO can also read the initial state from a hand-edited
input file (preferably by an expert pipeline operator). This is
advantageous when an error occurs and the VPO must be re-
started at some intermediate point. There are combinations of
states that are not allowed, and the software could be made more
robust by adding checks for invalid states.

9.7. Archival Filenames

Pipeline-product files are created with fixed, descriptive fil-
enames (e.g., “superflat.fits”), and then renamed to have unique
filenames near the end of the pipeline. The unique filenames are
of constant length and have 11 identifying fields arranged in a
standardized form. Table 13 defines the 11 fields and gives an
example filename. The filename fields are delimited by an un-
derscore character and are all lowercase, except for the first
field. If necessary, a filename field is padded with leading zeros
to keep the filename length constant. The filename contains
enough information to identify the file precisely.

The structure of the archive directory tree, in which the ar-
chived products are stored on disk, has already been described
in § 9.1.

9.8. Pipeline Multithreading

Parallel image-processing on each of our pipeline machines
is possible, given the machine architecture (see § 5), and this is

TABLE 13

STANDARDIZED FILE-NAMING SCHEME FOR PTF PRODUCTS

Filename field #a Definition

1 Always “PTF” (uppercase)
2 Concatenation of year (4 digits), month (2 digits), day (2 digits), and fractional day (4 digits)
3 One-character product formatb

4 One-character product categoryc

5 Four-character product typed

6 Prefix “t” for time followed by hours (2 digits), minutes (2 digits), and seconds (2 digits)
7 Prefix “u” for unique index followed by relevant database-table primary key
8 Prefix “f” for filter followed by 2-digit filter number (FILTERID)
9 Prefix “p” for PTF field followed by PTF field number (PTFFIELD)
10 Prefix “c” for CCD followed by two-digit CCD index (CCDID)
11 Filename extension (e.g., “fits” or “ctlg”)

a Sample filename: PTF_200903011372_i_p_scie_t031734_u008648839_f02_p000642_c10.fits.
b Choice of “i” for image or “c” for catalog.
c Choice of “p” for processed, “s” for super, or “e” for external.
d Choice of “scie” for science, “mask” for mask, “bias” for superbias, “banc” for superbias-ancillary file, “flat” for

superflat, “twfl” for twilight flat, “fmsk” for flat mask, “weig” for weight, “zpvm” for zero-point variability map, “zpve”
for zero-point-variability-map error, “sdss” for SDSS, “uca3” for UCAC3, “2mas” for 2MASS (Two-Micron All-Sky
Survey), or “usb1” for USNO-B1.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 691

2014 PASP, 126:674–710

enabled in our pipelines by the Perl threadsmodule. Some mod-
ules executed by our pipelines, such as SCAMP (Bertin 2006b)
and SExtractor (Bertin & Arnouts 1996), are also multithreaded
codes, and the maximum number of threads they run simulta-
neously must be limited when running multiple threads at the
Perl-script level.

Our pipelines currently run only a single instance of the as-
trometry-refinement code, SCAMP, at a time and in a configu-
ration that will cause it to automatically use as many threads as
there are cores in the machine (which is eight). The pipelines
run multithreaded SExtractor built to allow up to two threads
and let the Perl wrapper code control the multithreading at a
higher level.

The multithreading in the Perl pipeline scripts is nominally
configured to allow up to seven threads at a time, which we
found is optimal for nonthreaded parallel processes through
benchmark testing on our pipeline machines. Wherever in
our pipelines running a module in multithreaded mode is deter-
mined to be advantageous, a master thread is launched to over-
see the multithreaded processing for the module, and then are
launched multiple slave threads running separate instances of
the module on different images or input files in parallel. For
thread synchronization, a thread-join function is called to wait
for all threads to complete before moving on to the next step in
the pipeline. The exit code from each thread is checked for ab-
normal termination.

9.9. Stand-Alone Pipeline Execution

PTF pipelines can be easily executed outside of the pipeline
executive. Since the pipelines query a database for inputs, the
particular database used must be updated with pointers to the
input files on disk. Once the raw data for a given night have
been ingested, the database is updated automatically as the pipe-
lines are run in proper priority order (see Table 10).

The simplicity of the basic instructions for standalone pipe-
line execution are illustrated in the following example, in which
the superbias pipeline is executed:

cd /scr/work/dir
source $PTF_SW/ptf/ops/ops.env
setenv PTF_SBX /user/sbx1
setenv DBNAME user22
setenv DBSERVER dbsvr42
setenv PIPEID 1
setenv RID 34
$PTF_SW/ptf/src/pl/perl/superbias.pl.

The selected working directory serves the same purpose as
the pipeline machine’s local disk where all pipeline intermediate
data files are written. Stand-alone pipeline execution is therefore
useful for diagnosing problems. After sourcing the basic envi-
ronment file, generally the user will want to override the envi-
ronment variables that point to the user’s sandbox and database.

The user’s database is normally a copy of the operations data-
base. Environment variables RID, which is a representative raw-
image database identification (rid), and PIPEID, which is the
pipeline database ID (ppid), reference the input data and pipe-
line number to be executed, respectively. In this particular case,
the representative image is representative of all bias images
taken for a given night and CCD; in the case of the superflat
pipeline, the representative image is representative of all science
images (i.e., IMGTYP = “object”) for a given night, CCD, and
filter. Once the pipeline is set up using these commands, the
pipeline is executed with the last command listed above. In most
cases, the user will want to redirect the standard output and error
streams to a log file. The basic procedure is similar for all PTF
pipelines and can easily be scripted if a large number of pipeline
instances are involved.

9.10. Camera-Image-Splitting Pipeline

After the PTF data for a given night are ingested, the camera-
image-splitting pipelines, one pipeline instance per camera ex-
posure, are launched automatically by the high-level data-ingest
process (see § 7.1), or by the VPO (see § 9.6) in the case that the
data had to be manually ingested because of some abnormal
condition. The pipeline executive is set up to execute one in-
stance of this pipeline per machine at a time. Since there are
11 pipeline machines, 11 instances of the pipeline are run in
parallel. This particular pipeline is not particularly compute
or memory intensive, and so more of these pipeline instances
per machine could be run, and tests of up to four instances
per machine have been performed successfully.

The camera-image-splitting pipeline is wrapped in a Perl
script called splitCameraImages.pl. The input camera-image
file is copied from the archive to the pipeline machine’s scratch
disk. The checksum of the file is recomputed and compared to
the checksum stored in the database, and a mismatch, like any
other pipeline error, would result in a diagnostic message writ-
ten to the log file and pipeline termination with exit code
> ¼ 64. The filter associated with the camera-image file is ver-
ified by running check_filter.py, which uses median values of
various regions of image data and smoothing to look for patterns
in the data that have high amplitude for the g band but are weak
for the R band. A filter mismatch results in pipeline termination
with exit code¼65. Manual intervention is required in this case
to decide whether to alter the filter information in the database
(filter-changer malfunctions have occurred intermittently during
the project) or skip the filter checking for that pipeline. Experi-
ence has shown that this filter checking is not reliable when the
seeing is poor.

The module ptfSplitMultiFITS is executed on the camera-
image file to break it up into 12 single-extension FITS files.
The primary HDU, plus CCD-dependent keywords for the gain,
read noise, and dark current (GAIN, READNOI, andDARKCUR,
respectively) are copied to the headers of the split-up files. The

692 LAHER ET AL.

2014 PASP, 126:674–710

resulting single CCD-image FITS files are then processed sep-
arately (except for dead CCDID ¼ 3, which is skipped).

If the CCD images are science images (itid ¼ 1; see Table 6),
then they are processed to find first-iteration astrometric solu-
tions. Initial values of world-coordinate-system (WCS) key-
words are written to the CCD-image FITS headers.CRVAL1 and
CRVAL2, the coordinates of theWCS reference point on the sky,
are set to the right ascension and declination of the telescope
boresight, TELRA and TELDEC, respectively. CRPIX1 and
CRPIX2, the corresponding reference-point image coordinates
for a givenCCD, are set to the telescope-boresight pixel positions
that have been predetermined for each CCD-image reference
frame. Finally, the following fixed values for the pixel scale (at
the distortion center) and image rotation angle are set, as appro-
priate for the telescope and camera: CDELT1 ¼ �0:000281°,
CDELT2 ¼ 0:000281°, and CROTA2 ¼ 180°. Next, source
extraction is done with SExtractor (Bertin & Arnouts 1996;
Bertin 2006a; Holwerda 2005) to generate a source catalog
for the astrometry. The pipeline then runs Astrometry.net mod-
ules augment-xylist, backend, and new-wcs (Lang et al. 2010)
in succession with the objective of finding an astrometric
solution.

If an astrometric solution is found, then it is verified and re-
corded. Verification includes requiring the pixel scale to be
within �5% of the initial known value, the rotation angle to
be within 5° of the initial known value, and the absolute values
of CRPIX1 and CRPIX2 to be ≤10; 000 pixels. If these condi-
tions are not met, then bit 23 ¼ 8 is set in the infobits column of
the RawImages database table (see Table 14) to flag this condi-
tion. The astrometric solution is written both to the FITS header
of the CCD image and also to a text file in the archive containing
only the astrometric solution, in order to facilitate later genera-
tion by IRSA of source-catalog overlays onto JPEG preview
images of PTF data.

The CCD-image files are copied to the sandbox into a
hierarchical directory tree that differentiates the stored files
by observation year, month, day, filter identification, CCD iden-
tification, and pipeline database identification. A record is cre-
ated in the RawImages database table for each CCD-image file.
The record contains a number of useful foreign keys to other
database tables (expid, ccdid, nid, itid, piid) and comprises

columns for storing the location and name of the file, record-
creation date, image status, checksum, and infobits. The image
status can be either zero or one, and is normally zero only for the
dead CCD (CCDID ¼ 3). A bad astrometric solution, al-
though flagged in the infobits column of the RawImages data-
base table, will not result in status ¼ 0 for the image at this
point because the downstream frame-processing pipeline (see
§ 9.15) will make another attempt at finding a good solution.

The pipeline makes preview images in JPEG format using
IRSA’s Montage software, both for the camera 12-CCD-
composite image and individual CCD images. The preview im-
ages are subsequently used by the SDQA subsystem (see § 8).

9.11. Superbias-Calibration Pipeline

The purpose of the superbias calibration pipeline is to com-
pute the pixel-by-pixel electronic bias correction that is applied
to every PTF science image. These pipelines are launched after
the camera-image-splitting pipelines have completed for a given
night, one pipeline instance per CCD per night. This is done
either automatically by the VPO or manually by a human pipe-
line operator.

The superbias pipeline is wrapped in a Perl script called
superbias.pl. The database is queried for all bias images for
the night and CCD of interest. The ptfSuperbias module is then
executed, and this produces the superbias-image calibration file,
a file called “superbias.fits,” which is the common bias in the
image data for a given CCD and night. The file is renamed to an
archival filename, copied to the sandbox, and registered in the
CalFiles database table with caltype = “superbias.”

The method used to compute the superbias is described as
follows: The bias images are read into memory. The floating
bias of each image is computed and then subtracted from its
respective bias image. The CCD-appropriate pixel mask is used
to ignore dead or bad pixels. The software can be set up to com-
pute the floating bias from up to three different overscan re-
gions, but, in practice, only the long strip running down the
right-hand side of the image is utilized. The floating bias is
the average of the values in the overscan region after an aggres-
sive outlier-rejection step. The outliers are found by threshold-
ing the data at the median value �2:5 times the data dispersion,
which is given by half of the difference between the 84.1 per-
centile and the 15.9 percentile. The bias-minus-floating-bias
values are then processed by a similar outlier-rejection algo-
rithm on a pixel-by-pixel basis, and the surviving values are av-
eraged at each pixel location to yield the superbias image and
accompanying ancillary images, which are described in the next
paragraph.

Ancillary calibration products are also generated by the
ptfSuperbias module. These are packed into a file called “super-
bias_ancil_data.fits.” The ancillary FITS file is an image-data
cube (NAXIS ¼ 3) containing the superbias uncertainties in
the first data plane, the number of samples in the second data
plane, and the number of outliers rejected in the third data plane.

TABLE 14

BITS ALLOCATED FOR FLAGGING VARIOUS CONDITIONS AND

EXCEPTIONS IN THE INFOBITS COLUMN OF THE RAWIMAGES

DATABASE TABLE

Bit Definition

0 Dead CCD
1 Astrometry.net failed
2 Sidereal-tracking failurea

3 Bad astrometric solution
4 Transient noise in imagea

a Manually set after image inspection.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 693

2014 PASP, 126:674–710

All quantities are on a pixel-by-pixel basis. The file is renamed to
an archival filename, copied to the sandbox, and registered in the
AncilCalFiles database table with anciltype = “superbiasstats.”

9.12. Preprocessing Pipeline

The preprocessing pipeline prepares the science images
(IMGTYP = “object”) to be fed into the downstream superflat-
calibration and image-flattener pipelines. The preprocessing is
severalfold:

1. Subtract off the floating bias and superbias from each
pixel value;

2. Crop the science images to remove the bias overscan
regions;

3. Compute data-mask bit settings for saturated and “dirty”
pixels (bit 28 ¼ 256 and bit 211 ¼ 2048, respectively; see
Table 15; “dirty” pixels are defined below), and combine them
with the appropriate fixed, CCD-dependent pixel mask (see
§ 9.4) to create an initial data mask for every science image;

4. Recompute an improved value for the seeing; and
5. Augment the data-mask image for each science image with

the bit setting allocated for marking object detections (bit 21 ¼ 2;
see Table 15) taken from SExtractor object check images.

The preprocessing pipeline is wrapped in a Perl script called
preproc.pl. An instance of this pipeline runs on a per-night, per-
CCD, per-filter basis. The saturation level for the CCD at hand
is looked up at the beginning of the pipeline.

The preprocessing pipeline requires the following input cali-
bration files: a pixel mask and a superbias image. It will also
utilize a superflat image, if available. The calibration files are
retrieved via a call to database stored function getCalFiles,
which queries the CalFiles database table, and returns a hash
table of the latest calibration files available for the night,
CCD, and filter of interest. The function always returns fallback

calibration files for the superbias and superflat, which are zero-
value and unity-value images, respectively. The fallbacks are
pressed into service when the primary calibration files are
nonexistent.

The bit allocations for data-mask images are documented in
Table 15. Bit 21 ¼ 2 is allocated for pixels overlapping onto
detected astronomical objects. Bit 28 ¼ 256 is allocated for sat-
urated pixels. Bit 211 ¼ 2048 is allocated for dirty pixels, where
“dirty” is defined as 10 standard deviations below the image’s
local median value.

The pipeline first runs the ptfSciencePipeline module to per-
form bias corrections, image cropping, and computation of the
initial data masks. The floating bias is computed via the method
described above (see § 9.11). The pipeline runs multiple threads
of this process, where each thread processes a portion of the
input science images in parallel. The science images are cropped
to 2048 × 4096 pixels. The pipeline outputs are a set of bias-
corrected images and a set of bias-corrected and flattened im-
ages (useful if a flat happens to be available from a prior run).

Next, multithreaded runs of SExtractor are made on the
aforementioned latter set of images, one thread per image, in
order to generate source catalogs for the seeing calculation. Ob-
ject check images are also generated in the process. Bit 27 ¼
128 will be set in the infobits column of the ProcImages data-
base table (see Table 16) for ppid ¼ 3 records associated with
science images that contain no sources.

TABLE 15

BITS ALLOCATED FOR DATA MASKS

Bit Definition

0 Aircraft/satellite track
1 Object detected
2 High dark current
3 Reserved
4 Noisy
5 Ghost
6 CCD bleed
7 Radiation hit
8 Saturated
9 Dead/bad
10 NaN (not a number)
11 Dirt on optics
12 Halo
13 Reserved
14 Reserved
15 Reserved

TABLE 16

BITS ALLOCATED FOR FLAGGING VARIOUS CONDITIONS AND EXCEPTIONS IN

THE INFOBITS COLUMN OF THE PROCIMAGES DATABASE TABLE

Bit Definition

0 SCAMP failed
1 WCSa solution determined to be bad
2 mShrink module execution failed
3 mJPEG module execution failed
4 No output from ptfQA module (as SExtractor found no sources)
5 Seeing was found to be zero; reset it to 2.5″
6 ptfSeeing module had insufficient number of input sources
7 No sources found by SExtractor
8 Insufficient number of 2MASS sources in image for WCS

verification
9 Insufficient number of 2MASS matches for WCS verification
10 2MASS astrometric R.M.S.E.(s) exceeded threshold
11 SExtractor before SCAMP failed
12 pv2sip module failed
13 SCAMP ran normally, but had too few catalog stars
14 SCAMP ran normally, but had too few matches
15 Anomalous low-order WCS terms
16 Track-finder module failed
17 Anomalously high distortion in WCS solution
18 Astrometry.net was run
19 Error from sub runAstrometryDotNet
20 Time limit reached in sub runAstrometryDotNet

a World-coordinate system.

694 LAHER ET AL.

2014 PASP, 126:674–710

The ptfSEEING module is then executed in multithreaded
mode on different images in parallel. The seeing calculation re-
quires at least 25 sources with the following SExtractor attrib-
utes: FWHMIMAGE > 0, a minimum stellarity (CLASS_
STAR) of 0.8, and MAG_BEST flux between 5000 and
50,000 DN. Bit 26 ¼ 64 will be set in the infobits column of
the ProcImages database table (see Table 16) for ppid ¼ 3 re-
cords associated with science images that contain an insufficient
number of sources for the seeing calculation. The FWHM_
IMAGE values for the vetted sources are histogrammed in
0.1 pixel bins, and the seeing is taken as the mode of the distri-
bution, which is, in practice, the position of the peak bin.

The recomputed seeing is refined relative to the SEEING
keyword/value that is already present in the header of the
camera-image file (see Table 2) and is written to the output
FITS header with the keyword FWHMSEX, in units of arcsec-
onds. In addition to the selection based on SExtractor parame-
ters described above, the refinements include the benefits of the
pixel mask, bias-corrected input data, and proper accounting for
saturation.

Lastly, the ptfMaskCombine module is executed in multi-
threaded mode on different masks in parallel, in order to fold
the object detections from the SExtractor object check images
into the data masks.

The resulting science images are copied to the sandbox and
registered in the ProcImages database table with pipeline index
ppid ¼ 3 (see Table 10). The resulting data masks are copied to
the sandbox and registered in the AncilFiles database table with
anciltype = “dmask.” The science images and their respective
data masks are explicitly associated in the latter database table.

9.13. Superflat-Calibration Pipeline

A superflat is a calibration image that corrects for relative
pixel-to-pixel responsivity variations across a CCD. This is also
known as the nonuniformity correction. Images of different
fields observed throughout the night are stacked to build a high
signal-to-noise superflat. This process also allows the removal
of stars and cosmic rays via outlier rejection and helps average
out possible sky and instrumental variations at low spatial fre-
quencies across the input images.

The superflat-calibration pipeline produces a superflat from
all suitable science images for a given night, CCD, and filter,
after data reduction by the preprocessing pipeline. A minimum
of five PTF fields covered by the input images is required to
ensure field variegation and effective source removal in the pro-
cess of superflat generation. Also, a minimum of 10 input im-
ages is required, but typically 100–300 images are used to make
a superflat. Special logic avoids too many input images from
predominantly observed fields in a given night. The resulting
superflat is applied to the science images in the image-flattener
pipeline (see § 9.14).

The superflat pipeline is wrapped in a Perl script called
superflat.pl. The database is queried for the relevant preprocessed

science images, along with their data masks. The query excludes
exposures from the Orion observing program (van Eyken et al.
2011), in which the imaging was of the same sky location for
many successive exposures and the telescope dithering was in-
sufficient for making superflats with the data.

The normimage module is executed for each preprocessed
science image to create an interim image that is normalized
by its global median, which is computed after discarding pixel
values for which any data-mask bit is set. All normalized values
that are less than 0.01 are reset to unity, which minimizes the
introduction of artifacts into the superflat.

In order to fit the entire stack of images into available mem-
ory (as many as 422 science exposures have been taken in a
single night), the quadrantifyimage module is executed to break
each normalized image into four equally sized subimages. The
same module is separately executed for the data masks.

The createflat module processes, one quadrant at a time, all
of the subimages and their data masks to create associated stack-
statistics and calibration-mask subimages. A separate CDF for
each CCD provides input parameters for the process (although
CCD-dependent processing for superflats is not done at this
time, the capability exists). The parameters direct the code,
for each pixel location, to compute the median value of the
stacked subimage data values (as opposed to some other
trimmed average) and the trimmed standard deviation (σ) after
eliminating the lower 10% and the upper 10% of the data values
for a given pixel (and reinflating the result in accordance with a
trimmed Gaussian distribution to account for the data clipping).
Lastly, the module recomputes the median after rejecting out-
liers greater than �5σ from the initial median value, as well
as computing the corresponding uncertainty. The stack statistics
are written to a FITS data cube, where the first plane contains
the clipped medians and the second plane contains the uncer-
tainties. The bit definitions for calibration-mask images are
given in Table 17.

The tileimagequadrantsmodule pieces back together the four
quadrants of the stack-statistics and calibration-mask subimages
corresponding to each science image. Finally, the normimage
module is executed on the full-sized stack-statistics image to nor-
malize it by its global imagemean and reset any normalized value

TABLE 17

BITS ALLOCATED FOR THE SUPERFLAT CALIBRATION MASK

Bit Definition

1 One or more outliers rejected
2 One or more NaNs present in the input data
3 One or more data-mask-rejected data values
12 Too many outliers present
13 Too many NaNs present
14 No input data available

NOTE.—Bits not listed are reserved and, for bits 12 and 13,
the allowed fraction is currently set to 1.0, so these bits will
never be set.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 695

2014 PASP, 126:674–710

to unity that is less than 0.01 (in the manner described above).
The latter module ignores image data that are within 10 pixels of
all four image edges in computing the normalization factor.

The pipeline’s chief product is a superflat called “superflat
.fits.” The file is renamed to an archival filename, copied to
the sandbox, and registered in the CalFiles database table with
caltype = “superflat.” A corresponding ancillary product is also
generated: the calibration mask, which is called “superflat_
cmask.fits.” The ancillary file is renamed to an archival file-
name, copied to the sandbox, and registered in the AncilCal
Files database table with anciltype = “cmask.”

A number of processing parameters are written to the FITS
header of the superflat. These include the number of input im-
ages, the outlier-rejection threshold, the superflat normalization
factor, and the threshold for unity reset.

Several SDQA ratings are computed for the superflat. These
include the following image-data statistics: average, median,
standard deviation, skewness, kurtosis, Jarque-Bera test,19

15.9 percentile, 84.1 percentile, scale (half the difference be-
tween the 84.1 and 15.9 percentiles), number of good pixels,
and number of NaN pixels. These values are written to the
SDQA_CalFileRatings database table. We have found the
Jarque-Bera test particularly useful in locating superflats that
infrequently contain point-source remnants due to insufficient
input data variegation.

9.14. Image-Flattener Pipeline

The image-flattener pipeline’s principal function is to apply
the nonuniformity or flat-field corrections to the science images.
Also, the pipeline runs a process to detect CCD bleeds and ra-
diation hits in the science images (see below), and then executes
the ptfPostProc module to update the data masks and compute
weight images for later source-catalog generation in the frame-
processing pipeline (see § 9.15). The pipeline is wrapped in a
Perl script called flattener.pl. An instance of this pipeline runs
on a per-night, per-CCD, per-filter basis. At the beginning of the
pipeline, the database is queried for the science images to pro-
cess, along with their data masks and relevant calibration image,
namely, the superflat associated with the night, CCD, and filter
of interest. The saturation level for the CCD is also retrieved.

In the rare case that the superflat does not exist, the database
function getCalFiles searches backward in time, up to 20 nights,
for the closest-in-time superflat substitute. In most cases, the
superflat made for the previous night is returned for the CCD
and filter of interest. Our experience has been that, generally, the
superflat changes slowly over time, hence the substitution does
not unduly compromise the data.

The ptfSciencePipeline module performs the image flatten-
ing. It reads in a list of science images and the superflat. It

then simply divides each science image by the superflat on a
pixel-by-pixel basis. Since the superflat was carefully con-
structed to contain no values very close to zero, the output im-
age is well behaved, although the processing includes logic to
set the image value to NaN in case it has been assigned the re-
presentation for infinity. The applied flat is associated with the
pipeline products via the CalFileUsage database table.

SExtractor is executed to detect CCD bleeds and radiation
hits in the science images, and the output check images contain
the detections. It is executed on separate science images via
seven parallel threads at a time. The saturation level is an im-
portant input to this process. The detection method is an artifi-
cial-neural-network (ANN) filter. A program called Eye was
used to specifically train the ANN on PTF data. Both SExtractor
and Eye are freely available.20

The ptfPostProc module is a pipeline process that, for each
science image: (1) updates its data mask and (2) creates a weight
image suitable for use in a subsequent SExtractor run for gen-
erating a source catalog. The module is executed in multi-
threaded mode on separate data masks. The superflat, along
with the pertinent check image from the aforementioned SEx-
tractor runs, are the other major inputs to this process for a given
data mask. The ptfPostProc data-mask update includes setting
bits to flag CCD bleeds and radiation hits (see Table 15), which
are taken to have occurred at pixel locations where check-image
values are ≥1. Since the check image does not differentiate be-
tween the two artifacts at this time, both bits are set in tandem.
The ptfPostProcweight-map creation starts with the superflat as
the initial weight map and then sets the weights to zero if certain
bits are set in the data mask at the same pixel location. Pixels
in the weight maps that are masked as dead/bad or NaN (see
Table 15) consequently will have zero weight values.

Similar to the preprocessing pipeline (see § 9.12), the result-
ing science images are copied to the sandbox and registered in
the ProcImages database table with pipeline index ppid ¼ 10
(see Table 10), and the resulting data masks are copied to
the sandbox and registered in the AncilFiles database table with
anciltype = “dmask.” The science images and their respective
data masks are explicitly associated in the latter database table.
The weight-map files, which are not archived (see § 10.1) but
used by the next pipeline (see § 9.15), are copied to the sandbox
but not registered in the AncilFiles database table.

9.15. Frame-Processing Pipeline

The frame-processing pipeline’s major functions are to per-
form astrometric and photometric calibration of the science im-
ages. In addition, aperture-photometry source catalogs are made
from the processed science images using SExtractor, and point-
spread function (PSF)-fit catalogs are made using DAOPHOT.
The processed science images, their data masks, source

19The Jarque-Bera test is a goodness-of-fit test of whether a sample skewness
and kurtosis are as expected from a normal distribution. 20 See http://www.astromatic.net for more details.

696 LAHER ET AL.

2014 PASP, 126:674–710

catalogs, and other information (such as related to SDQA; see
§ 8 for more details) are registered in the database to facilitate
data analysis and product archiving. Figure 7 shows the flow of
data and control through the pipeline.

The frame-processing pipeline is wrapped in a Perl script
called frameproc.pl. The pipeline begins by querying the data-
base for all flattened science images and associated data masks
for the night, CCD, and filter of interest. The files are copied
from the sandbox to the pipeline machine’s scratch disk for local
access. A record for each science image is created in the
ProcImages database table with pipeline index ppid ¼ 5 (see
Table 10), which will store important metadata about the proc-
essed images, such as a unique processed-image database iden-
tification (pid), disk location and filename, status, processing
version, which version is “best,” etc.

The refined seeing computed by the preprocessing pipeline is
read from the FITS header (see § 9.12). If its value is zero, then
it is reset to 2.5″, and this condition is flagged by setting bit 25 ¼
32 in the infobits column of the corresponding ProcImages da-
tabase record (see Table 16). The refined seeing is a required
input parameter for source-catalog generation by SExtractor.

The pipeline next executes SExtractor to generate source cat-
alogs, one per science image, in FITS “LDAC” format (Leiden
Data Analysis Center), which is the required format for input
to the SCAMP process described below (Bertin 2009). The
SExtractor-default convolution filter is applied. The nondefault
input configuration parameters are listed in Table 18.

The createtrackimage module is executed to detect satellite
and aircraft tracks in each science image. Tracks appear with a
frequency of a few to several times in a given night and the same

track often crosses multiple CCDs. The module looks for con-
tiguous blobs of pixels that are at or above the local image
median plus 1.5 times the local image-data dispersion, where
the dispersion is computed via the robust method of taking half
the difference between the 84.1 percentile and the 15.9 percen-
tile (which reduces to one standard deviation in the case of
Gaussian-distributed data). All thresholded pixels that comprise
the blobs are tested to ensure they neither are an image-edge
pixel nor have their data values equal to NaN or are generally
masked out (data-mask bit 21 ¼ 2 for source detections is
excepted). The track-detection properties of this module were
improved by using local statistics, instead of global, in the
image-data thresholding, and our method of computing local
statistics, which involves computing statistics on a coarse grid
and using bilinear interpolation between the grid points, in-
curred only a small processing-speed penalty. The createtrack-
image module utilizes a morphological classification algorithm
that relies on pixel-blob size and shape characteristics. The me-
dian and dispersion of the blob intensity data are computed, and
subsequent morphology testing is done only on pixels with in-
tensities that are within�3σ of the median. The blobs must con-
sist of a minimum of 1000 pixels to be track-tested. In order for
a blob to be classified as a track, at least one of the following
parametrically-tuned tests must be satisfied:

1. The blob length is greater than 900 pixels, or
2. The blob length is ≥300 pixels, and the blob half-width is

≤10 pixels, or
3. The blog length is greater than 150 pixels, and the blob

half-width is less than 2 pixels.

The blob length is found by least-squares fitting a line to the
positions of the blob pixels and then computing the maximum
extent of the line across the blob. The blob half-width is the
robust dispersion of the perpendicular distances between the
blob pixels and the fitted line. The data mask associated with
the processed image of interest is updated for each track found.
The pixels masked as tracks in the data mask are blob pixels that

FIG. 7.—Flowchart for the frame-processing pipeline.

TABLE 18

NONDEFAULT SEXTRACTOR PARAMETERS FOR FITS “LDAC”
CATALOG GENERATION

Parameter Setting

CATALOG_TYPE FITS_LDAC
DETECT_THRESH 4
ANALYSIS_THRESH 4
GAIN . 1.5
DEBLEND_MINCONT 0.01
PHOT_APERTURES 2.0, 3.0, 4.0, 6.0, 10.0
PHOT_PETROPARAMS 2.0, 1.5
PIXEL_SCALE . 1.01
BACK_SIZE . 32
BACKPHOTO_TYPE LOCAL
BACKPHOTO_THICK 12
WEIGHT_TYPE . MAP_WEIGHT

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 697

2014 PASP, 126:674–710

are located within the double-sided envelope defined by four blob
half-widths on either side of the track’s fitted line. Bit 20 ¼ 1 in
the data mask is allocated for flagging track pixels (see Table 15).
A record for each track is inserted into the Tracks database table;
the columns defined for this table are given in Table 19.

The astrometric solution for each science image is computed
by SCAMP (Bertin 2009). The star catalog specified as input
depends on whether the science image overlaps an SDSS field.
The overlap fractions are precomputed and stored in the Field-
Coverage database table. For the R and g filters, if the fraction
equals 1.0, the SDSS-DR721 catalog (Abazajian et al. 2009) is
selected; otherwise, the UCAC322 catalog (Zacharias et al. 2010)
is selected. If SCAMP fails to find an astrometric solution, then
it is rerun with the USNO-B123 catalog (Monet et al. 2003). For
the Hα filters, only the UCAC3 catalog is selected. Up to 5 mi-
nutes per science image is allowed for SCAMP execution. The
process is killed after the time limit is reached, and retry logic
allows up to three retries. Since a SCAMP catalog will be the
same for a given field, CCD, and filter, the catalogs are cached
on disk in a directory tree organized by catalog type and the
aforementioned parameters after they are received from the cat-
alog server. The catalog-file cache is therefore checked first be-
fore requesting a catalog from the server. Since SCAMP

represents distortion using PV coefficients,24 and some distor-
tion is always expected, the pipeline requires PV coefficients
to be present in the FITS-header file that SCAMP outputs as
a container for the astrometric solution. The pipeline also parses
SCAMP log output for the number of catalog sources loaded
and matched and requires more than 20 of these as one of
the criteria for an acceptable astrometric solution.

A SCAMP-companion program called MissFITS transfers
the astrometric solution to the FITS header of each science-
image file. Another process called hdrupdate removes the astro-
metric solution previously found by Astrometry.net from the
science-image FITS headers (see § 9.10).

A custom module called pv2sip converts the PV distortion
coefficients from SCAMP into the Simple Imaging Polynomial
(SIP) representation (Shupe et al. 2005). The original code was
developed in Python (Shupe et al. 2012) and later translated into
the C language by one of the authors (R. R. L.). This pipeline
step is needed because WCSTools and other off-the-shelf
astronomical software used by the pipeline require SIP distortion
coefficients for accurate conversion between image-pixel co-
ordinates and sky coordinates.

The astrometric solution is first sanity-checked and then later
verified. The sanity checks, which assure proper constraining
of the low-order WCS terms (CDELT1, CDELT2, CRPIX1,
CRPIX2, and CROTA2), are relatively simple tests that are done
as described in § 9.10. Regardless of whether the solution is
good or bad, the astrometric coefficients are loaded into the
IrsaMeta database table, which is indexed by processed-image
identification (pid) and contains the metadata that are required
by IRSA (see § 10 below). There is a one-to-one relationship
between records in this table and the ProcImages database table.
Images with solutions that fail the sanity checking will be
flagged with status ¼ 0 in the ProcImages database table,
and bit 215 ¼ 32; 768 will be set in the infobits column of
the ProcImages database table (see Table 16). The astrometric
verification involves matching the sources extracted from sci-
ence images with selected sources from the Two Micron All
Sky Survey (2MASS) catalog (Skrutskie et al. 2006). A match-
ing radius of 2″ is specified for this purpose. A minimum of
20 2MASS sources must be contained in the image, and the
rms error (R.M.S.E.) of the matches, along both image dimen-
sions, must be less than 1.5″. If any of these criteria are not sat-
isfied, then the appropriate bit will be set in the infobits column
of the ProcImages database table (see Table 16), and the image
will be flagged as having failed the astrometric verification.

If SCAMP fails to give an acceptable astrometric solution,
then Astrometry.net is executed. If this succeeds, then a custom
module called sip2pv is run to convert the SIP distortion

TABLE 19

COLUMNS IN THE TRACKS DATABASE TABLE

Column Definition

tid Unique index associated with the track (primary key)
pid Unique index of the processed image (foreign key)
expid Unique index of the exposure (foreign key)
ccdid Unique index of the CCD (foreign key)
fid Unique filter index (foreign key)
num Track number in image
pixels Number of pixels in track
xsize Track size in x-image dimension (pixels)
ysize Track size in y-image dimension (pixels)
maxd Maximum track half-width (pixels)
maxx Track x-pixel position associated with maxd
maxy Track y-pixel position associated with maxd
length Length of track (pixels)
median Median of track intensity data (DN)
scale Dispersion of track intensity data (DN)
a Zeroth-order linear-fit coefficient of track y vs. x (pixels)
b First-order linear-fit coefficient of track

y vs. x (dimensionless)
siga Uncertainty of zeroth-order linear-fit coefficient
sigb Uncertainty of first-order linear-fit coefficient
chi2 χ2 of linear fit
xstart Track starting coordinate in x-image dimension (pixels)
ystart Track starting coordinate in y-image dimension (pixels)
xend Track ending coordinate in x-image dimension (pixels)
yend Track ending coordinate in y-image dimension (pixels)

21 Sloan Digital Sky Survey, Data Release 7.
22 The Third U.S. Naval Observatory CCD Astrograph Catalog.
23 U. S. Naval Observatory B1 Catalog.

24The PV distortion coefficients implemented in SCAMP are best documented
by Shupe et al. (2012). ‘‘PV’’ is the name assigned by Shupe et al. (2012) for the
distortion polynomial that is generated by SCAMP, which creates FITS-header
keywords that begin with the suffix ‘‘PV’’.

698 LAHER ET AL.

2014 PASP, 126:674–710

coefficients into PV distortion coefficients, so that the correct
source positions are computed by SExtractor when making
the source catalogs.

The pipeline includes functionality for inferring the presence
of ghosts and halos in R- and g-band images. Ghosts are optical
features that are reflections of bright stars about the telescope’s
optical axis. A bright star imaged in one CCD or slightly outside
of the field of view can lead to the creation of a ghost image in
an opposite CCD with respect to the telescope boresight. An

example ghost is shown in Figure 8. Halos are optical features
that surround bright stars and are double reflections that end up
offset slightly from the bright star toward the optical axis. An
example halo is shown in Figure 9. The ghost positions vary
depending on the filter and also whether the image was acquired
before or after the aforementioned filter swap (see § 3). Locating
these features starts by querying the Tycho-2 catalog and sup-
plement for bright stars, with V mag brighter than 6.2 mag and
9.0 mag for g and R bands, respectively, before the filter swap,
and brighter than 7.2 mag for both bands after the filter swap.
Ghosts and halos are separately flagged in the data masks as-
sociated with processed images. Bit 25 ¼ 32 is reserved for
ghosts and bit 212 ¼ 4096 for halos in the data mask (see
Table 15). A circular area is flagged in the data mask to indicate
a ghost or halo. Although the ghost and halo sizes vary with
bright-star intensity and filter, only a maximally sized circle
for a given filter, which was determined empirically for cases
before and after the filter swap, is actually masked off. Accord-
ingly, the radius of the circle for a ghost is 170 pixels for the
R band (both before and after the filter swap), and, for the
g band, is 450 pixels before the filter swap and 380 pixels af-
terwards. Similarly, the radius of the circle for a g-band halo is
85 pixels before the filter swap and 100 pixels afterwards, and is
95 pixels before and 100 pixels afterwards for R-band halos.
Database records in the Ghosts and/or Halos database tables
are inserted for each ghost and/or halo found, respectively.

Ofek et al. (2012) give a description of the photometric cali-
bration, which is done on a per-night, per-CCD, per-filter basis.
The source code for the photometric calibration is written in
MATLAB, and the pipeline makes a system call to execute this
process. A minimum of 30 astrometrically calibrated science
images for the photometric calibration is a software-imposed
requirement to ensure adequate solution statistics (sometimes
fewer science images are taken in a given night, or an inade-
quate number could be astrometrically calibrated due to cloudy
conditions, etc.). Also, at least 1000 SDSS-matched stars ex-
tracted from the PTF-processed images for a given night,
CCD, and filter are required for the photometric-calibration pro-
cess to proceed. The resulting calibration data, consisting of fit
coefficients, their uncertainties, and a coarse grid of zero-point-
variability-map (ZPVM) values, are loaded into the AbsPhotCal
and AbsPhotCalZpvm database tables and are also written to the
pipeline-product image and source-catalog FITS headers. While
the source catalogs contain instrumental magnitudes, their FITS
headers contain enough information to compute the photometric
zero points for the sources, provided that the photometric cali-
bration could be completed successfully. In addition, as elabo-
rated in the next paragraph, we also compute the zero points of
individual sources (which vary from source to source because of
the ZPVM) and include them in the source catalogs as an addi-
tional column; these zero points already include the 2:5 logðδtÞ
contribution for normalizing the image data by the exposure
time, δt, in seconds, and so simply adding the instrumental

FIG. 8.—Example ghost in PTF exposure expid ¼ 203381. The image-
display gray-scale table is inverted, so that black indicates high brightness
and white indicates low brightness. The large ghost is located in the upper-left
portion of the 12-CCD composite image and is imaged onto two CCDs (ccdid ¼
4 and ccdid ¼ 5). It is caused by the bright star located in the lower-right portion.

FIG. 9.—Example halo in PTF processed image pid ¼ 9514402. Only a por-
tion of the CCD image is shown. The halo surrounding the bright star is ≈30 in
diameter.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 699

2014 PASP, 126:674–710

magnitudes to their respective zero points will result in cali-
brated magnitudes. The photometric-calibration process also
generates a FITS-file-image version of the ZPVM, which is ulti-
mately archived, and metadata about it is loaded into the CalFiles
database table with caltype = “zpvm.” This calibration file is as-
sociated with the relevant pipeline products in the CalFileUsage
database table. The minimum and maximum values in the ZPVM
image are loaded into the AbsPhotCal database table as additional
image-quality measures. There is also a corresponding output
FITS file containing an image of ZPVM standard deviations,
which is registered in the CalAncilFiles database table under
anciltype = “zpve” and associated with the ZPVM FITS file.

The calculation of the ZPVM contribution to the photometric
zero point by the pipeline itself for each catalog source is done
via bilinear interpolation of the ZPVM values in the aforemen-
tioned grid of coarse cells, which are queried from the AbsPhot-
CalZpvm database table. If any of the values is equal to NaN,
which occurs when not enough good matches between PTF-
catalog and SDSS-catalog sources are available, then the inter-
polation result is reset to zero. The ZPVM algorithm requires at
least 1000 matches in a 256 × 256 pixel cell per CCD and filter
for the entire night (Ofek et al. 2012), in order to calculate the
value for a cell. Because of the ZPVM, the zero point varies
from one source to the next. The zero point for each source
is written to the SExtractor source catalogs as an additional col-
umn, called ZEROPOINT.

For each astrometrically calibrated image, SExtractor is ex-
ecuted one last time to generate its final aperture-photometry
source catalog. The correct gain and saturation level is set
for the CCD of interest. Both detection and analysis thresholds
are set to 1:5σ. The input weight map is the superflat with zero
weight values where data-mask bits are set for dead, bad, or
NaN pixels, as described in § 9.14. The SEEING_FWHM option
is set to the seeing value computed in 9.14 for each image. A
background check image is also generated by SExtractor and
stored in the sandbox, in case it is needed as a diagnostic.
The nondefault input configuration parameters for SExtractor
are listed in Table 20.

Furthermore, for each astrometrically calibrated image,
we perform PSF-fit photometry using the DAOPHOT and

ALLSTAR software (Stetson 1987). These tools are normally
run interactively; however, we have automated the entire pro-
cess: from source detection to PSF-estimation and PSF-fit
photometry in a pipeline script named runpsffitsci.pl. Input pa-
rameters are the FWHM of the PSF (provided by SExtractor
upstream) and an optional photometric zero point. At the time
of writing, the input photometric zero point is based on an ab-
solute calibration using the SExtractor catalogs. This is not op-
timal, and we plan to recalibrate the PSF-fit extractions using
calibrations derived from PSF-fit photometry in the near future.
The DAOPHOT routines are executed in a single iteration with
no subsequent subtraction of PSF-fitted sources to uncover hid-
den (or missed) sources in a second pass. A spatially varying
PSF that is modeled to vary linearly over each image is gener-
ated. This is then used to perform PSF-fit photometry. Prior to
executing the DAOPHOT routines, the runpsffitsci.pl script dy-
namically adjusts some of the PSF-estimation and PSF-fit pa-
rameters, primarily those that have a strong dependence on
image quality—the PSF FWHM and image-pixel noise. The de-
fault input configuration parameters used for PSF-fit-catalog
generation are listed in Table 21. The parameters that are dy-
namically adjusted are RE, LO, HI, FW , PS, FI, and the A
i aperture radii (where i ¼ 1…6). In particular, the parameters
that depend on the input FWHM (FW) are the linear half-size
of the PSF stamp image, PS; the PSF-fitting radius, FI; and the
aperture radii Ai, all in units of pixels. These parameters are
adjusted according to:

PS ¼ minð19; intfmax½9; 6FW=2:355� þ 0:5gÞ;
FI ¼ minð7;max½3; FW �Þ;
Ai ¼ minð15; 1:5max½3; FW �Þ þ i� 1;

TABLE 20

NONDEFAULT SEXTRACTOR PARAMETERS FOR FINAL SOURCE-
CATALOG GENERATION

Parameter Setting

CATALOG_TYPE FITS_1.0
DEBLEND_NTHRESH 4
PHOT_APERTURES 2.0, 4.0, 5.0, 8.0, 10.0
PHOT_AUTOPARAMS 1.5, 2.5
PIXEL_SCALE . 1.01
BACKPHOTO_TYPE LOCAL
BACKPHOTO_THICK 35
WEIGHT_TYPE . MAP_WEIGHT

TABLE 21

DEFAULT INPUT PARAMETERS FOR SCIENCE-IMAGE PSF-FIT-
CATALOG GENERATION

daophotsci.opt photosci.opt

RE ¼ 15:0 . A1 ¼ 4:5
GA ¼ 1:5 . A2 ¼ 5:5
LO ¼ 10 . A3 ¼ 6:5

HI ¼ 10000:0 . A4 ¼ 7:5
PS ¼ 9 . A5 ¼ 8:5
TH ¼ 2:8 (30)a . A6 ¼ 9:5

VA ¼ 1 . IS ¼ 2:5
EX ¼ 5 . OS ¼ 20

WA ¼ 0 .
FW ¼ 2:5 .
FI ¼ 3:0 .
AN ¼ 1 .
LS ¼ 0:2 .
HS ¼ 1:0 .
LR ¼ �1 .
HR ¼ 1 .

a The TH value in parentheses is for the PSF-creation step.

700 LAHER ET AL.

2014 PASP, 126:674–710

where i ¼ 1…6, “min” and “max” denote the minimum and
maximum of the values in parentheses, respectively, and
“int” denotes the integer part of the quantity. The runpsffitsci.pl
script reformats the raw output from DAOPHOTand ALLSTAR
and assigns WCS information to each source. The output table
is later converted into FITS binary-table format for the archive.
The intermediate products, such as the raw PSF file, are written
to the sandbox.

After the photometric-calibration process has run and the
source catalogs have been created, the pipeline generates a file
called sources.sql, which contains an aggregation of all SEx-
tractor source catalogs for the night, CCD, and filter of interest.
The sources.sql file is suitable for use in bulk-loading source-
catalog records into the database. However, after extensive test-
ing, it has been determined that loading sources into the PTF
operations database is unacceptably slow, and, consequently,
this has been temporarily suspended until the PTF-operations
network and database hardware can be upgraded. Nevertheless,
the file still serves a secondary purpose, which is facilitating the
delivery of source information to IRSA, where it is ultimately
loaded into an archive relational database. The file contains
source information extracted from the final SExtractor source
catalogs, as well as a photometric zero point computed sepa-
rately for each source. In addition, for each source, a level-seven
hierarchical-triangular-mesh (HTM) index is computed, and its
SExtractor IMAFLAGS_ISO and FLAGS parameters are packed
together, for compact storage, into the upper and lower 2 bytes,
respectively, of a 4 byte integer.

A Python process is also run to generate a file with the same
data contents as the sources.sql file, but in HDF525 format. The
output from this process is called sources.hdf. The HDF5 files
can be read more efficiently by Python software and are used in
downstream Python pipelines for matching source objects and
performing relative photometric calibration.

At the end of this pipeline, the primary products, which are the
processed images, are copied to the sandbox and registered in the
ProcImages database table with the preassigned processed-
image database identifications (pid) and pipeline index ppid ¼
5 (see Table 10). There is a similar process for ancillary products
and catalogs. The ancillary products consist of data masks and
JPEG preview images; these are copied to the sandbox and reg-
istered in the AncilFiles database table with anciltype designa-
tions of “dmask” and “jpeg,” respectively. The catalogs
consist of SExtractor and DAOPHOT source catalogs stored
as FITS binary tables; these are copied to the sandbox and regis-
tered in theCatalogs database tablewith catType designations of
one and two, respectively. The primary products and their ancil-
lary products and catalogs are explicitly associated with each
other by the processed-image database identification, pid, in
the AncilFiles and Catalogs database tables. The sources.sql

and sources.hdf files created by the pipeline are copied to the
sandbox but not registered in the database. All of these products
are included in the subsequent archiving process (see § 10).

9.16. Catalog-Generation Pipeline

The catalog-generation pipeline is wrapped in a Perl script
called genCatalog.pl and has been assigned ppid ¼ 13 for its
pipeline database identification. It performs many, but not
all, of the same functions as the frame-processing pipeline (see
§ 9.15). Most notably, it omits the astrometric and photometric
calibrations, because this pipeline expects calibrated input im-
ages (which are initially produced by the frame-processing pipe-
line). The chief purpose of the catalog-generation pipeline is to
provide the capability of regenerating source catalogs directly
from the calibrated, processed, and archived images and their
data masks, for a given night, CCD, and filter. The source cata-
logs, if necessary, may be produced from different SExtractor
and DAOPHOT configurations than were previously employed
by the frame-processing pipeline. Also, for the PTF data taken
before 2013, only SExtractor catalogs were generated, as the
execution of DAOPHOT had not yet been implemented in
the frame-processing pipeline. The catalog-generation pipeline
is, therefore, intended to also generate the PSF-fit catalogs miss-
ing from the archive. Like the frame-processing pipeline, the
weight map used by SExtractor in this pipeline to create a source
catalog for an input image is generated by starting with a super-
flat for the weight map and then zeroing out pixels in the weight
map that are masked as dead/bad or NaN in the respective data
mask of that input image. The pipeline also has functionality for
adding and updating information in the FITS headers of the im-
ages and data masks. Thus, the products from this pipeline con-
stitute new versions of images, data masks, and source catalogs.
The pipeline copies its products to the sandbox and registers
them, as appropriate, in the ProcImages, AncilFiles, and Cata-
logs database tables with pipeline index ppid ¼ 13 (see Table 10).

Local copies of the calibration files associated with the input
images are made by the pipeline, and these are also copied to the
sandbox and associated with the pipeline products in the Cal-
Files and CalFileUsage database tables. This ensures that the
calibration files are also rearchived when the new products
are archived. The reason for this particular approach is techni-
cal: the calibration files sit in the directory tree close to the prod-
ucts and are lost when old versions of products are removed
from the archive by directory-tree pruning at a high level.

9.17. Reference-Image Pipeline

To help mitigate instrumental signatures and transient phe-
nomena in general at random locations in the individual images
(e.g., noisy hardware pixels with highly varying responsivity,
cosmic rays, and moving objects, such as asteroids and satellite/
aircraft streaks), we co-add the images with outlier rejection to25 http://www.hdfgroup.org/HDF5/whatishdf5.html.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 701

2014 PASP, 126:674–710

create cleaner and more “static” representations of the sky. Fur-
thermore, this co-addition improves the overall signal-to-noise
ratio relative to that achieved in the individual image exposures.

The reference-image pipeline creates co-adds of input im-
ages for the same CCD, filter, and PTF field (PTFFIELD). This
pipeline is wrapped in Perl script genRefImage.pl and is run on
an episodic basis as new observations are taken. It has been
assigned ppid ¼ 12 for its pipeline database identification.
Currently, reference images are generated only for the R and
g bands.

The candidate input images for the co-adds are selected for
the best values of seeing, color term, theoretical limiting mag-
nitude, and ZPVM (see description of absolute photometric cal-
ibration in § 9.15). A database-stored function is called to make
this selection for a given CCD, filter, and PTF field, and it re-
turns, among other things, the database identifications of can-
didate processed images that are potentially to be co-added. The
input-image selection criteria are listed as follows:

1. All input images must be astrometrically and photometri-
cally calibrated;

2. Exclude inputs with anomalously high-order distortion;
3. Minimum number of inputs = 5;
4. Maximum number of inputs = 50 (those with the faintest

theoretical limiting magnitudes are selected);
5. Have color-term values that lie between the first and 99th

percentiles;
6. Have ZPVM values between �0:15 mag;
7. Have seeing FWHM value <3:6″;
8. Have theoretical limiting magnitude >20 mag; and
9. Have at least 300 SExtractor-catalog sources.

The candidate inputs are sorted by limiting magnitude in de-
scending order. An input list is progressively incremented with
successive input images, and the resulting co-add limiting mag-
nitude (CLM) is computed after each increment. The objective
is to find the smallest set of inputs that comes as closely as pos-
sible to the faintest value of CLM from a predefined small set of
discrete values between 21.5 and 24.7 mag.

An illumination correction is applied to each selected input
image, in order to account for the ZPVM (see § 9.15). Catalogs
are generated with SExtractor and then fed to SCAMP all to-
gether, in order to find a new astrometric solution that is con-
sistent for all input images.

The co-adder is a Perl script called mkcoadd.pl. It makes use
of the Perl data language (PDL) for multithreading. The input
images and associated data masks are fed to the co-adder. The
input images are matched to a common zero point of 27 mag,
which is a reasonable value for a 60 s exposure. Thus all PTF
reference images have a common zero point of 27 mag. SWarp
is used to resample and undistort each input image onto a com-
mon fiducial grid based on the astrometric solution (Bertin et al.
2002). Saturated, dead/bad, and blank pixels are rejected. The
co-addition procedes via trimmed averaging, weighted by the

inverse seeing of each input frame. Ancillary products from
the co-adder include an uncertainty image and a depth-of-
coverage map.

The astrometric solution is verified against the 2MASS cata-
log (see § 9.15 for how this is done). The pipeline generates both
SExtractor and PSF-fit reference-image catalogs, which are then
formatted as FITS binary tables. The PSF-fit catalogs are made
using DAOPHOT. Ancillary products from PSF-fit catalog
generation include a raw PSF file, a DS9-region26 file for the
PSF-fit sources, and a set of PSF thumbnails arranged on a grid
for visualizing the PSF-variation across the reference image.
A number of SDQA ratings and useful metadata for IRSA-
archiving are computed for the reference image and loaded into
the SDQA_RefImRatings and IrsaRefImMeta database tables,
respectively.

At the end of this pipeline, the reference image and associ-
ated catalogs and ancillary files are copied to the sandbox. The
reference image is registered in the RefImages database table
with the preassigned reference-image database identification
(rfid) and pipeline index ppid ¼ 12 (see Table 10). The SEx-
tractor and DAOPHOT reference-image catalogs are registered
in the RefImCatalogs database table with catType designations
of one and two, respectively. The reference images and their
catalogs and ancillary files are explicitly associated with each
other by the processed-image database identification, rfid, in
the RefImCatalogs and RefImAncilFiles database tables. All
of these products are included in the subsequent archiving
process (see § 10). The RefImageImages database table keeps
track of the input images used to generate each reference
image.

9.18. Other Pipelines

Other nascent or mature PTF pipelines will be described in
later publications. These include pipelines for image differenc-
ing, relative photometry, forced photometry, source association,
asteroid detection, and large-survey-database loading.

9.19. Performance

As of 2013 August 5, a total of approximately 3:5 × 105 ex-
posures in 1578 nights have been acquired. About 75% of the
exposures are on the sky, covering ≈2 × 106 deg2. There are
also fair numbers of bias, dark, and twilight exposures (14.3%,
5.9%, and 4.8%, respectively). Table 22 lists selected pipeline
run-time robust statistics broken down by routinely executed
pipeline. Recall the ppid ¼ 7 pipeline is run on a per-exposure
basis, the ppid ¼ 1 pipeline is run on a per-night, per-CCD ba-
sis, and the remaining pipelines are run on a per-night, per-filter,
per-CCD basis, except for the ppid ¼ 12 reference-image pipe-
line, which is run on a per-filter, per-CCD, per-PTF-field basis.

26 http://ds9.si.edu/site/Home.html.

702 LAHER ET AL.

2014 PASP, 126:674–710

The run-time median and dispersion for all pipelines has
changed by less than 10% over the last couple of years or so,
with the exceptions of the ppid ¼ 5 pipeline, which has become
more than 30% slower because of recently added functionality,
such as PSF-fit-catalog generation, and the reference-image
pipeline, which only came online in the last year.

The performance of our satellite/aircraft track detection algo-
rithm (see § 9.15) has not yet been quantitatively scored in terms
of completeness versus. reliability; this will be the subject of a
future paper. The algorithm has been tuned to find all tracks at
the expense of generating some false tracks. Generally, the false
tracks will be associated with long, thin galaxies that mimic
tracks or very bright stars having extended CCD bleeds that
were not fully masked off in the processing. A large χ2 of
the track’s linear fit may indicate a track-proximate bright star
with a CCD bleed extending across the track. Multiple records
in the Tracks database table for the same track in a given image
can happen when the data thresholding results in unconnected
groups of contiguous pixels along that track.

9.20. Smart-Phone Command and Control

A succinct set of high-level scripted commands was devel-
oped to facilitate interrogation and control of the IPAC-PTF
software and data system (see Table 23). The commands gen-
erate useful short reports and optionally initiate pipeline and ar-
chive processes. The low data bandwidth and minimal keyboard
typing permitted by these commands makes them ideally suited
for execution in a terminal window of a smart phone via cellular
data network (a wireless Internet connection is nice, but not
required). Of course, the same commands also can be conve-
niently executed in a personal-computer terminal window.

One of us (R. R. L.), with the help of IPACer Rick Ebert, set
up a virtual private network (VPN) on his iPhone to allow secure
connections directly to IPAC machines. He also purchased se-
cure-shell program “Prompt, v. 1.1.1” from the Apple Apps
Store, which was developed by Panic, Inc. and has since been
upgraded, and then installed the app on his iPhone. VPN and
“Prompt” are all the software needed to execute the PTF pipe-
line and archive processes on the iPhone. This set up even en-
ables the execution of low-level commands and arbitrary
database queries, albeit with more keyboard typing.

All of the commands listed in Table 23, except for ptfc, gen-
erate brief reports by default. Some of the commands accept an
optional date or list of dates, which is useful for specifying night
(s) other than the default current night. Also, some of the com-
mands accept an optional flag, to be set in order for the com-
mand to take some action beyond simply producing a report;
specifying either no flag or zero for the flag’s value will cause
the command to take no further action, and specifying a flag
value of one will cause the command to perform the action at-
tributed to the command. The ptfc command is normally run in
the background, by either appending an ampersand character to
the command or executing it under the “screen” command.

TABLE 22

SELECTED PIPELINE RUN-TIME STATISTICS (UPDATED ON 2013
AUGUST 5)

ppida No. of samples Median (s) Dispersionb (s)

7 339,671 200.4 84.4
1 14,586 85.0 30.2
3 14,840 2201.4 1226.0
4 14,839 1416.5 815.0
10 14,827 4724.1 2424.0
5 14,781 9387.1 6065.0
12 27,890 271.3 70.0

NOTE.—The statistics are pipeline runs on a per-CCD, per-filter,
per-night basis, except for the ppid ¼ 12 pipeline, which is on a
per-CCD, per-filter, per-field basis.

TABLE 23

HIGH-LEVEL COMMANDS FOR INTERROGATION AND CONTROL OF THE IPAC-PTF SOFTWARE AND DATA SYSTEM

Command Definition

ptfh . Prints summary of available commands.
ptfi . Checks whether current night has been ingested.
ptfj . Checks status of disks, pipelines, and archiver.
ptfe . Prints list of failed pipelines.
ptfs [YYYY-MM-DD]a[flag (0 or 1)]b Launches image-splitting pipelines for given night.
ptff [YYYY-MM-DD] [flag (0 or 1)] Ignores filter checking and relaunches relevant image-splitting pipelines for given night.
ptfp [YYYY-MM-DD] [flag (0 or 1)] Launches image-processing pipelines for given night.
ptfr [YYYY-MM-DD] [flag (0 or 1)] Launches catalog-generation pipelines for given night.
ptfm [YYYY-MM-DD] [flag (0 or 1)] Launches source-matching pipelines for given night.
ptfq . Prints list of nights ready for archiving.
ptfk [YYYY-MM-DD] [flag (0 or 1)] Makes archive soft link for given night.
ptfa [list of YYYY-MM-DD] Schedules processing nights to be archived and generates optional archiver command.
ptfc . Script to manually execute archiver command generated by ptfa.
ptfd [YYYY-MM-DD] . Prints delivery/archive information for given night.

a The square brackets indicate command options; current date is assumed if no date is specified.
b The optional flag set to 1 is required for the command to take action beyond simple report generation.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 703

2014 PASP, 126:674–710

10. DATA ARCHIVE AND DISTRIBUTION

PTF camera images and processed products are permanently
archived (Mi et al. 2013). As was mentioned earlier, the PTF
data archive is curated by IRSA. This section describes the pro-
cesses involved in the ongoing construction of the PTF archive,
and, in addition, the user Web interface provided by IRSA for
downloading PTF products.

10.1. Product Archiver

The product archiver is software written in Perl, called pro-
ductArchiver.pl, that transfers the latest version of the products
from the sandbox to the archive and updates the database with
the product archival locations. With the exception of the pipe-
line log files, all-sky-depth-of-coverage images (Aitoff projec-
tions), and nightly aggregated source catalogs (sources.sql
files), only the processed-image-product files that are registered
in the ProcImages, Catalogs, AncilFiles, CalFiles, and Cal-
AncilFiles database tables are stored permanently in the PTF
archive. These include processed images, data masks, source
catalogs (FITS binary tables), and JPEG preview images. The
calibration files associated with the processed images are also
archived. The camera-image files, processed products, and da-
tabase metadata are delivered to IRSA on a nightly basis. The
reference images and associated catalogs and ancillary files are
archived with a separate script, with corresponding metadata de-
livered to IRSA on an episodic basis.

Before the product archiver is executed, a soft link for the
night of interest is created to point to the designated archive disk
partition. The capacity of the partitions is nominally 8 TB each.
The soft links are a convenient means of managing the data
stored in the partitions. As new product versions are created
and migrated to new partitions, the old partitions, when they
are no longer needed, are cleaned out and recycled.

Because both the frame-processing pipeline (ppid ¼ 5) and
catalog-generation pipeline (ppid ¼ 13) produce similar sets of
products, but only one set of products for a given night is de-
sirable for archiving, it is necessary to indicate which set to ar-
chive. Generally, this is the most recently generated set. The
flagging is done by executing a database-stored function called
setBestProductsForNight, which determines the latest set of
products and designates it as the one to be archived. It then sets
database column pBest in the ProcImages database table to one
for all best-version records corresponding to the selected pipe-
line and zero for all best-version records corresponding to the
other. Here, one means archive the pipeline products, and zero
means do not archive.

The product archiver inserts a record into the ArchiveVer-
sions database table, which includes a time stamp for when
the archiving started for a particular night, and gets back a
unique database identification for the archiving session, named
avid. The product records for the night of interest in the afore-
mentioned database tables are updated to change archiveStatus

from 0 to �1, in order to indicate the records are part of a long
transaction (i.e., the archiving process for a night’s worth of
products). After each product has been copied to archival disk
storage and its MD5 checksum verified, the associated database
record is updated with avid and the new file location, and the
archiveStatus is changed from �1 to 1 to indicate that the prod-
uct has been successfully archived.

10.2. Metadata Delivery

Database metadata for each night, or for the latest episode
of reference-image generation, are queried from the operations
database and written to data files for loading into an IRSA
relational database. The data files are formatted according to
IRSA’s specification and then transmitted to IRSA by copying
them to a data directory called the “IRSA inbox,” which is
cross-mounted between PTF and IRSA. The inbox is monitored
by a data-ingestion process that is running on an IRSA machine.
Separate metadata deliveries are made for camera images, proc-
essed images and associated source catalogs, and reference im-
age and associated source catalogs. Source-catalog data for
processed images are read from the aggregated sources.sql files,
rather than queried from the database (since we are not loading
source catalogs into the operations database at this time). The
creation of the metadata sets is facilitated by database stored
functions that marshal the data from various database tables into
the IRSA database table, which can be conveniently dumped
into a data file.

10.3. Archive Executive

The archive executive is software that runs in an open loop
on the ingest backup machine. It sequentially launches instances
of the VPO (see § 9.6) for each night to be archived. The archive
executive expects archive jobs to be inserted as records in the
ArchiveJobs database table (see § 6). Staging archive jobs for
execution, therefore, is effected by inserting associated Archi-
veJobs database records and assuring that the records are in the
required state for acceptance by the executive. The database ta-
ble is queried for an archive job when the designated archive
machine is not currently running an archive job and its archive
executive is seeking a new job. The archive job with the latest
night date has the highest priority and is executed first. Only one
archive job at a time is permitted.

An ArchiveJobs database record is prepared for staging an
archive job by setting its status column to zero. The archive
job that is currently executing will have its status set to �1, in-
dicating that it is in a long transaction. The started column in the
record will also be updated with a time stamp for when the ar-
chive job began. Staged archive jobs that have not yet been ex-
ecuted can be manually suspended by setting their status to �1.
When the archive job has completed, its status is set to 1, its
ended column is updated with a time stamp for when the archive

704 LAHER ET AL.

2014 PASP, 126:674–710

job finished, and the elapsed column is updated with the elapsed
time between starting and ending the archive job.

10.4. Archive Products

At the time of writing, ≈3 million processed CCD images
from 1671 nights have been archived. The total number of
PTF source observations stored in catalogs is estimated to be
more than 40 billion. PTF collaboration members can access
the processed products from a Web interface provided by IRSA
(see § 10.5).

The archive contains unprocessed camera images, processed
images, accompanying data masks, source catalogs extracted
from the processed images, reference images, reference-image
catalogs, calibration files, and pipeline log files. PTF pipelines
generate numerous intermediate product files, but only these fi-
nal products are stored in the PTF archive. Table 24 provides a
complete list of the products that exist in the PTF archive. The
archive’s holdings include SExtractor and DAOPHOT source
catalogs in FITS binary-table files. There are also plans to ingest
the catalogs into an IRSA relational database.

10.5. User Web Interface

The PTF-archive Web interface is very similar to the one
IRSA provides for other projects,27 which was in fact built from
the same code base. The architecture and key technologies used
by modern IRSAWeb interfaces have been described by Levine
et al. (2009) in the context of the Spitzer Heritage Archive.

The PTF archive can be easily searched by sky position, field
number, or solar system object/orbit. A batch-mode search func-
tion is also available, in which a table of positions must be up-
loaded. The search results include a list of all PTF data taken
over time that match the search criteria. Metadata about the
search results, such as when the observations were made, is re-
turned in a multicolumn table in the Web browser. The table

currently has more than a dozen different columns. The search
results can be filtered in specific ranges of the metadata using
the available Web-interface tools.

The Web interface has extensive FITS-image viewing capa-
bilities. When a row in the metadata table is selected, the cor-
responding processed image is displayed.

The desired data can be selected using check boxes. There is
also a check box to select all data in the search results. The se-
lected data are packaged in the background, and data download-
ing normally commences automatically. As an option, the user
can elect instead to be e-mailed the URL for downloading at
some later convenient time.

11. LESSONS LEARNED

The development and operations of the IPAC-PTF image
processing and data archiving has required one to two software
engineers to design custom source code, a part-time pipeline
operator to utilize the software to generate and archive the data
products on a daily basis, a part-time hardware engineer to set
up the machines and manage the storage disks, a part-time da-
tabase administrator to provide database consulting and backup
services, and four to six scientists to recommend processing ap-
proaches and analyze the data products. The team breakdown in
terms of career experience is roughly 70% seasoned senior and
30% promising junior engineers and scientists. The small team
allows extreme agility in exploring data-processing options and
setting up new processes. Weekly meetings and information
sharing via a variety of database-centric systems (e.g., wiki, op-
erations-database replicate, software-change tracking) have
been key managerial tools of a smoothly running project. Tele-
conferences are not nearly as effective as face-to-face meetings
for projects of this kind. Software documentation has been kept
minimal to avoid taxing scarce resources. Separate channels for
providing products to “power users” closer to the center of the
organization versus regular consumers of the products have en-
hanced productivity and improved product quality on a faster
timescale. The necessity of having engineers actually run the

TABLE 24

PRODUCTS IN THE PTF ARCHIVE

Product Notes

Camera Images Direct from Mount Palomar; multiextension FITS, per-exposure files.
Processed Images Astrometrically and photometrically calibrated, per-CCD FITS images.
Data Masks FITS images with per-pixel bit flags for special data conditions (see Table 15).
Source Catalogs Both SExtractor and DAOPHOT catalog types in per-CCD FITS binary tables.
Aggregated Catalogs Nightly aggregated per-CCD SExtractor catalogs, in both SQL and HDF5 formats.
Reference Images Co-additions of 5+ processed images for each available field, CCD, and filter.
Ref.-Im. Catalogs Both SExtractor and DAOPHOT catalog types in FITS binary-table format.
Ref.-Im. Ancillary Files Uncertainty, PSF, and depth-of-coverage maps; DS9-region file for DAOPHOT catalog.
Calibration Files Superbias, superflat, and ZPVM FITS images for each available night, CCD, and filter.
Sky-Coverage Files Aitoff FITS images showing per-filter nightly and total observation coverage.
Pipeline Log Files Useful for monitoring software behavior and tracking down missing products.

27 For example, see http://irsa.ipac.caltech.edu/applications/wise.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 705

2014 PASP, 126:674–710

software they write on a daily basis has significantly narrowed
the gap between engineering and operational cultures within
the team. While discipline is needed in making good use of
the software version-control and change-tracking systems, and
in releasing upgraded software to operations, a CCB (change-
control board) has not been needed thus far. This kind of orga-
nization may not work well in all settings, but it has worked
very well for us. Also, as data flow seven days a week, it is good
to have someone on the team who is willing to work outside
normal business hours, such as doing urgent weekend builds
and monitoring the image processing.

The PTF system is complex, and weeding out problems with
a small team and very limited resources has been a challenge. To
the extent possible, we have followed best practices with an
astronomy perspective (Shopbell 2008). Several specific lessons
learned are described in the following paragraphs.

Inspecting the data for issues could absorb a tremendous
amount of time; still, this time is very well spent, and it is im-
portant to make the process as efficient as possible to maximize
the benefits from this inspection. A balanced approach that ex-
amines the data products more or less evenly, with perhaps
slightly more emphasis on the higher-level data products has
been a good strategy. Analyzing the products and writing sci-
ence papers for professional journal publication is probably the
best way to bring data issues to light; in fact, this method has
unearthed subtle flaws in the processed products that would
have otherwise gone unnoticed and suggests that a narrow part-
nership between those writing science papers and those devel-
oping the software is an essential ingredient for success in any
data-processing project.

We found it advantageous to wrap all pipeline-software da-
tabase queries in stored functions and put them all in a single
source-code file. This makes it a much less daunting task to
later review the database functionality and figure out the nec-
essary optimizations. The single source-code file also facili-
tates viewing the database functionality as a coherent unit at
a point in time. Past versions of this file, which obviously have
evolved over time, can be easily checked out from the CVS
repository.

Pipeline configuration and execution must be kept simple, in
order for those who are not computer scientists to be able to run
pipelines themselves outside of the pipeline-executive appara-
tus. Having several sandbox disks available for storing pipeline
products is invaluable because the pipelines can be run on many
cases to test various aspects of the pipelines and the data. Equip-
ping pipeline users with a means of configuring the database
and sandbox disk for each pipeline instance allows greater
flexibility.

Isolating products on disk and in the database according to
their processing version is very important, a lesson learned
from the Spitzer project. Our database schema and stored
functions are set up to automatically create product records
with new version numbers, and these version numbers are

incorporated into disk subdirectory names for uniqueness. Oc-
casionally, a pipeline for a given CCD will fail for various rea-
sons, and it is necessary to rerun the pipeline just for that CCD.
This is possible with our pipeline and database design. Having
multiple product versions in the sandbox can be extremely use-
ful, provided they are clearly identified, in separate, but nearby,
data directories, and database queryable. This, of course, re-
quires the capability of querying the database for the best-
version products before pulling the trigger to archive a night’s
worth of products. It is also very useful to be able to locate the
products in a directory tree without having to query a database
for the location.

The little details of incorporating the right data in the right
places really do matter. Writing more diagnostics rather than
less to a pipeline log file provides information for easier soft-
ware debugging. The diagnostics should include time stamps
and elapsed times to run the various processes, as well as
CDF listings and module command-line arguments. The afore-
mentioned product versioning is crucial to the data manage-
ment, and so is having the software and CDF version
numbers written to both the product’s database record and its
FITS header, which aids not only debugging, but also data anal-
ysis. It is not fully appreciated how useful these things are un-
less one actually performs these tasks.

Being able to communicate with the image-processing and
archiving system remotely results in great cost savings because
it lessens the need to have reserve personnel to take over when
the pipeline operator is away from the office. Ideally, the soft-
ware that interfaces to the system will be able to deliver reports
and execute commands with a low-bandwidth connection. Text-
based interfaces rather than GUIs simply function better under a
wider range of conditions and situations. Our setup includes
these features, and even works for cases where direct Internet
is unavailable, but cellular communications allow access (see
§ 9.20). We have demonstrated its effectiveness when used from
the home office and from remote locations, such as observatory
mountaintops.

Another lesson learned is that problems occur no matter how
fault tolerant the system (e.g., power outages). Rainy-day sce-
narios must be developed that prescribe specific courses of ac-
tion for manual intervention when automated processing is
interrupted. Sometimes the cause of a problem is never found,
in which case work-arounds to deal with the effects must be
implemented as part of the automated system (e.g., rerunning
pipelines that randomly fail with a “signal 13” error). Some-
times the problem goes away mysteriously, obviating the need
for a fix or work-around. Other problems have known causes,
but cannot be dealt with owing to lack of resources; e.g., an
inexpensive router that drops packets or network limitations
of the institutional infrastructure. The latter example led to pe-
riodically slow and unpredictable network data-transfer rates,
which is one of the reasons we stopped loading source-catalog
records into the operations database.

706 LAHER ET AL.

2014 PASP, 126:674–710

Here is a summary of takeaway lessons and recommenda-
tions for similar large telescope projects:

1. Pipeline software development is an ongoing process that
continues for years beyond telescope first light.

2. A development team in frequent face-to-face contact is
highly recommended.

3. The engineering and operations teams should work closely
together and be incentivized to “take ownership” of the system.

4. A closely-coupled relational database is essential for com-
plex processing and data management.

5. Pay special attention to how asynchronous camera-
exposure metadata are combined with camera images, in order
to assure that the correct metadata is assigned to each image.

6. Low-bandwidth control of pipeline job execution is useful
from locations remote to the data center.

7. Be prepared to work around problems of unknown cause.
8. There will be a robust demand from astronomers for both

aperture-photometry and PSF-fit calibrated source catalogs, as
well as reference images and associated catalogs, light-curve
products, and forced-photometry products.

9. Scientists studying the data products are an effective
science-driven means of finding problems with the data and
processing.

10. The data network is a potential bottleneck and should be
engineered very carefully, both from the mountain and within
the data center.

12. CONCLUSIONS

This paper presents considerable detail on PTF image proc-
essing, source-catalog generation, and data archiving at IPAC.
The system is fully automated and requires minimal human sup-
port in operations, since much of the work is done by software
called the “virtual pipeline operator.” This project has been a tre-
mendous success in terms of the number of published science
papers (80 and counting). There are almost 1500 field and filter
combinations (mostlyR band) in which more than 50 exposures
have been taken, which typically occurred twice per night. This
has allowed unprecedented studies of transient phenomena from
asteroids to supernovae. More than three million processed CCD

images from 1671 nights have been archived at IRSA, alongwith
extracted source catalogs, andwe have leveraged IRSA’s existing
software to provide a powerful Web interface for the PTF collab-
oration to retrieve the products. Our archived set of reference (co-
added) images and catalogs numbers over 40 thousand field/
CCD/filter combinations and is growing as more images that
meet the selection criteria are acquired. We believe the many de-
sign features of our PTF-data processing and archival system can
be used to support future complex time-domain surveys and proj-
ects. The system design is still evolving, and periodic upgrades
are improving its overall performance.

E. O. O. is incumbent of the Arye Dissentshik career devel-
opment chair and is gratefully supported by grants from the Is-
raeli Ministry of Science, the Israeli Centers of Research
Excellence (I-CORE) Program of the Planning and Budgeting
Committee, and the Israel Science Foundation (grant No. 1829/
12). We wish to thank Dave Shupe, Trey Roby, Loi Ly, Winston
Yang, Rick Ebert, Rich Hoban, Hector Wong, and Jack Lampley
for valuable contributions to the project. PTF is a scientific col-
laboration between the California Institute of Technology, Co-
lumbia University, Las Cumbres Observatory, the Lawrence
Berkeley National Laboratory, the National Energy Research
Scientific Computing Center, the University of Oxford, and
the Weizmann Institute of Science. This work made use of Mon-
tage, funded by the NASA’s Earth Science Technology Office,
Computation Technologies Project, under Cooperative Agree-
ment Number NCC5-626 between NASA and the California In-
stitute of Technology. Montage is maintained by the NASA/
IPAC Infrared Science Archive. This project makes use of data
from the Sloan Digital Sky Survey, managed by the Astrophys-
ical Research Consortium for the Participating Institutions and
funded by the Alfred P. Sloan Foundation, the Participating In-
stitutions, the National Science Foundation, the US Department
of Energy, NASA, the Japanese Monbukagakusho, the Max
Planck Society, and the Higher Education Council for England.
This research has made use of the VizieR catalog access tool,
Centre de Données (CDS), Strasbourg, France. Our pipelines
use many free software packages from other institutions and
past projects (see Table 12), for which we are indebted.

APPENDIX.

SIMPLE PHOTOMETRIC CALIBRATION

PTF pipeline processing executes two different methods of
absolute photometric calibration. We implemented a simple
method early in the development, which is documented below.
It is relevant because its results are still being written to the
FITS headers of PTF processed images. Later, we implemented
a more sophisticated method of photometric calibration, which
is described in detail by Ofek et al. (2012) and whose results
are also included in the FITS headers. For both methods,
the SDSS-DR7 astronomical-source catalog (Abazajian et al.

2009) is used as the calibration standard. The simple method
is implemented for the R and g camera filters only, and there
are no plans to extend it to other filters. The zero point derived
from the former method, which is executed for each CCD and
filter on the associated data taken in a given night, provides a
useful sanity check on the same from the latter method, which
are complicated by small variations in the zero point from one
image position to another.

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 707

2014 PASP, 126:674–710

A1. DATA MODEL AND METHOD

Our simple method is a multistep process that finds a robust
photometric calibration for astronomical sources from fields
overlapping SDSS fields. For a given image, we assume there
areN source data points indexed i ¼ 0;…; N � 1 and, for each
data point i, the calibrated SDSS magnitudeMSDSS

i and the PTF
instrumental (uncalibrated) magnitude MPTF

i for the same filter
are known. We also make use of the color difference gi � Ri

from the SDSS catalog. The data model is

MSDSS
i �MPTF

i ¼ ZP þ bðgi �RiÞ: (A1)

The model parameters are the photometric-calibration zero
point ZP and the color-term coefficient b. The latter term on
the right-hand side of equation (A1) represents the magnitude
difference due to the difference in spectral response between
like PTF and SDSS filters.

Radiation hits, optical ghosts and halos, and other data arti-
facts can have an adverse effect on the data-fitting results of
conventional least-squared-error minimization. To introduce a
robust measure, a Lorentzian probability distribution function
is assumed for the error distribution of the matched astronomi-
cal sources:

f ∝ 1

1þ ð1=2Þz2 ; (A2)

where

z ¼ yi � yðgi �RijZP; bÞ
σi

: (A3)

In the numerator of equation (A3), yi represents the left-hand
side of equation (A1), while yðgi �RijZP; bÞ represents the
right-hand side of the same. In its denominator, σi is the stan-
dard deviation of yi.

Using straightforward maximum-likelihood-estimation anal-
ysis, the cost function to be minimized by varying ZP and b
reduces to

Λ ¼
XN�1

i¼0

log

�
1þ 1

2
z2
�
: (A4)

Equation (A4) has the advantage of decreasing the weight for
outliers in the tails of the data distribution, whereas the
Gaussian-based approach will give more weight to these points,
thus skewing the result.

A2. IMPLEMENTATION DETAILS

Astronomical sources are extracted from PTF processed im-
ages using SExtractor. We elected to use a fixed aperture of
8 pixels (8.08″) in diameter in the aperture-photometry calcula-
tions that yield the PTF instrumental magnitudes, which are
derived from SExtractor’s FLUX_APER values. The PTF sour-
ces used in the simple photometric calibration are selected on
criteria involving the following SExtractor parameters:
FLAGS ¼ 0, CLASSSTAR ≥ 0:85, and FLUX_MAX is
greater than or equal to 4 times FLUX_THRESHOLD. The
selected PTF sources, therefore, are unflagged, high signal-
to-noise stars. These stars are matched to sources in the SDSS-
DR7 catalog with a matching radius of 2″, and a minimum
of 10 matches are required, in order to execute the simple

TABLE 25

FITS KEYWORDS ASSOCIATED WITH OUR SIMPLE PHOTOMETRIC CALIBRATION

FITS keyword Definition

PHTCALEX Flag set to 1 if simple photometric calibration was executed without error. The flag is set to zero if either there was an execution error or
it was not executed.

PHTCALFL Flag for whether the image is from what was deemed a “photometric night,” where 0 ¼ no and 1 ¼ yes (see subsection A2 for more
details).

PCALRMSE Rms error from data fitting with equation (A5), in physical units of magnitude.
IMAGEZPT Image zero point, in physical units of magnitude, either computed with equation (A5) or taken directly from the data fitting with

equation (A1), depending on whether the image overlaps an SDSS field. The keyword’s value is set to NaN if PHTCALEX ¼ 0.
COLORTRM Color-term coefficient b, in dimensionless physical units, from equation (A1). This keyword will not be present in the FITS header unless

the image overlaps an SDSS field.
ZPTSIGMA Robust dispersion of MSDSS

i �MPTF
i after data fitting with equation (A1), in physical units of magnitude. This keyword will not be present

in the FITS header unless the image overlaps an SDSS field.
IZPORIG String set to “SDSS” if the image overlaps an SDSS field and IMAGEZPT is from equation (A1) or set to “CALTRANS” if the image does

not overlap an SDSS field and IMAGEZPT is from equation (A5) or set to “NotApplicable” if PHTCALEX ¼ 0.
ZPRULE String set to “DIRECT” if the image overlaps an SDSS field and IMAGEZPT is from equation (A1) or set to “COMPUTE” if the image

does not overlap an SDSS field and IMAGEZPT is from equation (A5) or set to “NotApplicable” if PHTCALEX ¼ 0.
MAGZPT Zero point at an air mass of zero, in physical units of magnitude. Set to NaN if PHTCALEX ¼ 0. Note that the keyword’s comment

may state it is the zero point at an air mass of 1, which is regrettably incorrect.
EXTINCT Extinction coefficient, in physical units of magnitude. Set to NaN if PHTCALEX ¼ 0.

708 LAHER ET AL.

2014 PASP, 126:674–710

photometric calibration. The flux densities of the stars and
associated uncertainties are normalized by their image expo-
sure times.

Two steps are taken to perform the data fitting based on
the data model described in subsection A1. First, a simple lin-
ear regression with Gaussian errors is performed as an initial
input for the robust regression. The Lorentzian error regression
analysis is then performed using a Nelder-Mead downhill
simplex algorithm with these initial values for the zero point
and color-term coefficient. This algorithm has proven to be
quite robust, with a 5%–10 % failure rate when the precision
is set to the machine epsilon. This rate drops to nearly zero
when the precision is set to a factor of 10 times the machine
epsilon.

Only for images overlapping SDSS fields is the method of
subsection A1 performed. Regardless of SDSS-field overlap,
the images will each have a unique air mass value A. The
photometric-calibration results are thus treated as a function
of air mass, and by employing a linear data model, a zero point
at an air mass of zero and an air-mass extinction coefficient are
then computed nightly for each CCD and filter (data acquisi-
tion for both g and R filters in the same night is possible).
These quantities are obtained by a similar linear-regression
method, where the data fitting is done with the following
first-order polynomial function of air mass ZP ðAÞ, where
the zero point at an air mass of zero is the zeroth-order fit co-
efficient ZPA¼0 and the extinction coefficient is the first-order
coefficient β:

ZP ðAÞ ¼ ZPA¼0 � βA: (A5)

This equation is used to obtain the zero point for images that
do not overlap SDSS fields. For the images that do, the zero
point from subsection A1 is used directly. The data model is
formulated so that the extinction coefficient will normally be a
value greater than zero.

The software also makes a determination on whether the
night is “photometric” for a given CCD and filter. The basic
ad hoc criterion for this specification is that the extinction co-
efficient must be a value in the 0.0–0.5 range. Additionally, we
require a Pearson’s r-correlation above 0.75.

To apply the zero point for converting from SExtractor in-
strumental magnitude to calibrated magnitude, the following
equation is used:

MPTF
Cal ¼ MPTF

SEx þ ZP þ 2:5 log10ðT expÞ; (A6)

where T exposure is the exposure time of the associated image, in
seconds. If the color difference gi �Ri for a source is known,
then the color term can also be included in the application of the
simple photometric calibration; otherwise, it is ignored.

Table 25 lists the FITS keywords associated with our simple
photometric calibration, which are written to the headers of the
image files.

A3. PERFORMANCE

The simple method yields a photometric calibration of rea-
sonable accuracy. Of the R-band nights that could be cali-
brated, where typically more than 50 CCD images that
overlap SDSS fields were acquired, half of the nights had a
zero-point standard deviation of less than 0.044 mag across
all magnitudes and CCDs, and 70% of them had a standard
deviation of less than 0.105 mag. The mode of the distribution
of nightly zero-point standard deviations is 0.034 mag. On the
other hand, 22% of the nights had a standard deviation >1 mag.
This range is larger than the 0.02–0.04 mag accuracy reported by
Ofek et al. (2012) for our more sophisticated method. Yet, under
favorable conditions, simple photometric calibration works re-
markably well.

From a sample of approximately 1.66 million data points, we
can evaluate the statistics of the free parameters in equa-
tion (A5). The average ZPA¼0 is 23.320 mag, with a standard
deviation of 0.3144 mag. The average β is 0.1650 mag per unit
air mass, with a standard deviation of 0.3019 mag.

The coefficient b has been found empirically to fall into a
relatively small range of values. Table 26 gives statistics of the
color-term coefficient broken down by CCD and filter.

TABLE 26

STATISTICS OF THE RESULTING COLOR-TERM COEFFICIENTS COMPUTED

FROM THE SIMPLE PHOTOMETRIC CALIBRATION (SEE EQ. [A1]),
BROKEN DOWN BY CCD AND FILTER

CCDID Filter N (counts)
Average

(dimensionless)
Std. Dev.

(dimensionless)

0 g 23,172 0.1786 0.0962
R 125,604 0.1457 0.0817

1 g 23,247 0.1134 0.1002
R 126,034 0.1482 0.0758

2 g 23,265 0.1290 0.0919
R 125,991 0.1416 0.0692

4 g 23,066 0.1158 0.0904
R 125,205 0.1335 0.1069

5 g 23,140 0.1812 0.0852
R 125,376 0.1283 0.1311

6 g 23,044 0.1103 0.0925
R 125,453 0.1500 0.0613

7 g 23,073 0.1027 0.1089
R 125,613 0.1424 0.0775

8 g 23,092 0.1018 0.0986
R 126,013 0.1345 0.0795

9 g 23,243 0.1129 0.0958
R 125,318 0.1097 0.1466

10 g 23,052 0.0993 0.0933
R 124,806 0.1406 0.0913

11 g 22,775 0.1775 0.0927
R 124,275 0.1415 0.0743

IPAC IMAGE PROCESSING AND DATA ARCHIVING FOR PTF 709

2014 PASP, 126:674–710

REFERENCES

Abazajian, K. N., et al. 2009, ApJS, 182, 543
Arcavi, I., et al. 2010, ApJ, 721, 777
Bertin, E. 2006a, SExtractor User’s Manual, Version 2.5, (Institut d’As-
trophysique & Observatoire de Paris)

———. 2006b, in ASP Conf. Ser. 351, Astronomical Data Analysis
and Software Systems (ADASS) XV, ed. C. Gabriel, et al. (San
Francisco: ASP), 112

———. 2009, SCAMP User’s Guide, Version 1.6, (Institut d’Astro-
physique de Paris)

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bertin, E., Mellier, Y., Radovich, M., Missonnier, G., Didelon, P., &
Morin, B. 2002, in ASP Conf. Ser. 281, Astronomical Data Analysis
and Software Systems XI, ed. D. A. Bohlender, D. Durand, & T. H.
Handley (San Francisco: ASP), 228

Grillmair, C. J., et al. 2010, in ASP Conf. Ser. 434, Astronomical Data
Analysis and Software Systems XIX, ed. Y. Mizumoto (San Fran-
cisco: ASP), 28

Holwerda, B. W. 2005, Source Extractor for Dummies (5th ed; Balti-
more: STSCi)

Laher, R. R., Levine, D., Mannings, V., McGehee, P., Rho, J., Shaw,
R. A., & Kantor, J. 2009, in ASP Conf. Ser. 411, Astronomical
Data Analysis and Software Systems (ADASS) XVIII, ed. D.
Bohlender, D. Durand, & P. Dowler (San Francisco: ASP),
106

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010,
AJ, 139, 1782

Law, N. M., et al. 2009, PASP, 121, 1395
———. 2010, Proc. SPIE 7735, 77353 M
Levine, D., et al. 2009, in ASP Conf. Ser. 411, Astronomical
Data Analysis and Software Systems (ADASS) XVIII, ed. D.

Bohlender, D. Durand, & P. Dowler (San Francisco: ASP),
29

Mi, W., et al. 2013, in Databases in Networked Information Systems,
ed. A. Madaan, S. Kikuchi, & S. Bhalla (Berlin Heidelberg:
Springer), 67

Monet, D. G., et al. 2003, AJ, 125, 984
Nugent, P. E., et al. 2011, Nature, 480, 344
Ofek, E. O., et al. 2012, PASP, 124, 62
Rahmer, G., Smith, R., Velur, V., Hale, D., Law, N., Bui, K., Petrie, H.,

& Dekany, R. 2008, Proc. SPIE, 7014, 70144 Y
Rau, A., et al. 2009, PASP, 121, 1334
Sesar, B., et al. 2012, ApJ, 755, 134
Shopbell, P. L. 2008, in ASP Conf. Ser. 394, Astronomical Data Anal-

ysis and Software Systems (ADASS) XVII, ed. R. W. Argyle, P. S.
Bunclark, & J. R. Lewis (San Francisco: ASP), 738

Shupe, D. L., Laher, R. R., Storrie-Lombardi, L., Surace, J., Grillmair,
C., Levitan, D., & Sesar, B. 2012, Proc. SPIE, 8451, 84511 M

Shupe, D. L., Moshir, M., Makovoz, D., & Narron, R. 2005, in ASP
Conf. Ser. 347, Astronomical Data Analysis and Software Systems
(ADASS) XIV, ed. P. L. Shopbell, M. C. Britton, & R. Ebert (San
Francisco: ASP), 491

Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Stetson, P. B. 1987, PASP, 99, 191
Tody, D. 1986, Proc. SPIE, 627, 733
———. 1993, in ASP Conf. Ser. 52, Astronomical Data Analysis and

Software Systems II, ed. R. J. Hanisch, R. J. V. Brissenden, & J.
Barnes (San Francisco: ASP), 173

van Eyken, et al. 2011, AJ, 142, 60
York, D. G., et al. 2000, AJ, 120, 1579
Zacharias, N., et al. 2010, AJ, 139, 2184

710 LAHER ET AL.

2014 PASP, 126:674–710

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

