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ABSTRACT. One of the most promising methods of discovering nearby, low-mass planets in the habitable zones
of stars is the precision radial velocity technique. However, there are many challenges that must be overcome to
efficiently detect low-amplitude Doppler signals. This is both due to the required instrumental sensitivity and the
limited amount of observing time. In this article, we examine statistical and instrumental effects on precision radial
velocity detection of extrasolar planets, an approach by which we maximize the planet yield in a fixed amount of
observing time available on a given telescope. From this perspective, we show that G and K dwarfs observed at
400–600 nm are the best targets for surveys complete down to a given planet mass and out to a specified orbital
period. Overall we find that M dwarfs observed at 700–800 nm are the best targets for habitable-zone planets,
particularly when including the effects of systematic noise floors. Also, we give quantitative specifications of
the instrumental stability necessary to achieve the required velocity precision.

Online material: color figures

1. INTRODUCTION

Over 400 extrasolar planets have been discovered by surveys
using the precision radial velocity (PRV) method (Wright et al.
2011). The first discoveries of planets using the PRV method
were mainly massive planets in close-in orbits, known as hot
Jupiters, revealing a surprising diversity in planetary systems
(Mayor & Queloz 1995; Butler & Marcy 1996). More recently,
technical advances have resulted in discoveries of planets with
masses intermediate to terrestrial and gas giants, the “Super
Earths” (McArthur et al. 2004; Rivera et al. 2005; Udry et al.
2007; Howard et al. 2011; Pepe et al. 2011). Future instrumen-
tation promises the sensitivity needed to detect Earth analogs
around Sun-like stars, but there are substantial challenges that
must be overcome to attain this level of precision.

There are three kinds of limits to how well one can recover a
radial velocity signal from a target star. First, there are statis-
tical limits that come from the signal-to-noise ratio and the
depth, density, and shape of the spectral lines. These effects
may be further separated as having components that come
from the physical properties of the star, such as the stellar lu-
minosity and distance to the star, which affects the signal-to-
noise ratio of the spectrum; the chemical composition, which
sets the number and depth of spectral lines; and the rotation
rate, which affects the broadening of the spectral lines. Addi-

tionally, there are effects that come from observing, such as the
exposure time, telescope diameter, system throughput (sky to
detector), and detector noise, which affect the overall signal-
to-noise ratio; the resolution of the spectrometer and the sam-
pling of the line spread function, which affect the width and
clarity of the observed lines; and the decision of which wave-
length range to observe. This latter point is notable as instru-
ments are optimized to observe in a particular region of the
electromagnetic spectrum, and the line density and quality
can vary significantly between various types of stars in differ-
ent regions of their spectra. Furthermore, for ground-based
studies, there are regions where telluric absorption makes ob-
serving impossible.

Even if all the negative effects above are minimized, there is
still an important second class of problems which will hurt the
velocity precision: the inability to properly control and/or char-
acterize the changes in the instrumental profile of the spectrom-
eter from night to night. Guiding errors, such as a star moving
on a slit, can be a major component of this, as displacements in
the center of light lead to skews in the instrumental profile. Ad-
ditionally, small changes in the ambient pressure, temperature,
etc., lead to changes in the optical path, which are degenerate
with velocity shifts. This was realized as being a fundamental
limit of velocity precision over 45 years ago (Griffin 1967), and
successful attempts to mitigate this require control of the envi-
ronmental conditions and also active modeling of the fluctuating
instrumental profile.

Finally, even within the limit of a perfect instrument and in-
finite observing time, there are wavelength-dependent stellar ef-
fects that can mimic the signal of a planet orbiting a star, such as
starspots, stellar activity (jitter), and quasi-periodic oscillations
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of the stellar photosphere. These deleterious effects may be mit-
igated somewhat by clever observing strategies or modeling
(Dumusque et al. 2011a, 2011b), and the most successful pro-
grams are sometimes limited by this class of problems.

Many studies, notably Bouchy et al. (2001); Reiners et al.
(2010); and Wang & Ge (2011) have considered the best ways
to detect planets around stars. However, we take a somewhat
different approach, where our end goal is to optimize a radial
velocity survey for sensitivity and detection efficiency. Optimiz-
ing an observing plan to detect a planet around a particular star
has a different set of requirements than a plan that seeks to dis-
cover the maximum number of planets or a particular class of
planets. When considering how to optimize a survey, all the ef-
fects mentioned in the previous paragraphs must be considered
together with the expected velocity signals caused by planets.
Less-massive stars are dimmer, but have higher velocity signals
from similarly-sized planets. Additionally, there are more near-
by low-mass stars than high-mass stars, given the present-day
stellar mass function. In order to select targets for a survey, a
balance must be struck, which will depend critically on the
wavelengths of observation. As we will show, it will also de-
pend on the particular kind of survey under consideration.

In this work we will characterize the statistical limitations in
radial velocity observations under the consideration of finite ob-
serving time. We will consider the most productive way to
choose targets for a survey in order to maximize the recovery
of planets per unit of observing time.

We arrive at our conclusions by the following chain of rea-
soning: in § 2, we examine the precision achievable on different
types of stars at a fixed distance and with a fixed observing
time, assuming a perfect instrument. In § 3, we then relax
the assumption of a fixed observing time and discuss the time
necessary to detect different types of planets. We remove the
assumption of a fixed stellar distance by considering nearby
stars and the effects of the present-day mass function, and dis-
cuss the optimal way to select targets as a function of observing
wavelengths. In § 4, we discuss the effects of instrumental noise
floors, how they arise, and how they affect the results in the
previous sections.

2. EFFECTS OF STELLAR TYPE

Previous studies have sought to characterize the fundamental
radial-velocity quality of different stellar spectra, considering
the number density and depth of spectral lines. Additionally,
these studies have examined the fundamental limitations set
by the signal-to-noise ratio (S/N) of an observation (e.g., Bouchy
et al. [2001]). These effects are not completely separate; they
depend on the spectrum’s shape and its specific intensity, mod-
ulated by the effect of stellar size and distance. If velocity pre-
cision is the ultimate goal, this requires additional consideration
of at least one other thing: the observing wavelengths.

We choose to examine the effects of spectrum and wave-
length range on velocity precision. We begin by using the latest

spectral models (Allard et al. 2011) based on the PHOENIX
code (Hauschildt et al. 1999) in the T eff range of 2600–
6200 K, ½Fe=H� ¼ 0, from 0.3 to 2.5 μm. For stars of T eff ¼
2600–3400 K, we choose models where log g ¼ 5:0; for
3600–5800 K we use log g ¼ 4:5, and for 6000–6200 K we
use log g ¼ 4:0. In order to simulate the effects of instrument
resolution, we convolve the models with a generic Gaussian in-
strumental profile equivalent to a resolution of λ=Δλ ¼ 75; 000
and a sampling of 3.0 pixels/resolution element. Next, we ro-
tationally broaden the spectra of stars with T eff > 3600 K to
match a disk-integrated v sin i ¼ 2:0 km=s. For cooler stars,
we use v sin i values taken fromReiners et al. (2010) (see Table 1
for the exact values). This can be considered the perfect obser-
vation, with the only degradation of spectral quality set by the
spectrometer resolution and rotational broadening. To consider
the effects of finite observing time, we then inject Poisson noise
at a level equivalent to 1 minute of observing time, and Gaussian
read noise at the level of 5 electrons=pixel spread over 10 pixels
in the cross dispersion direction.4 Note that fainter stars will
have a lower S/N, as will wavelength bands away from the peak
of the spectral energy distribution.

Determining a radial velocity is equivalent to trying to recov-
er the shift in a spectrum with respect to a reference spectrum,
according to Δλ=λ ¼ v=c. Algorithms to do this include cross-
correlation maximization, least-squares minimization, forward
modeling, and various simplex algorithms. For our simulated
observations, the degradation of the spectrum with noise will
introduce a spurious shift with respect to the convolved, non-
noisy spectrum, which we recover using an algorithm where
we fit the peak of the cross-correlation function with a polyno-
mial. We checked that this converges to zero velocity shift line-
arly as the S/N approaches infinity, as expected. This precision
is what would result from having a perfect reduction pipeline,
regardless of the specifics of the calibration method.

As a measure of our velocity precision, we repeat this simu-
lated observation 300 times, and take the standard deviation of
the radial velocities as a measure of the velocity precision,
(σv). In order to assess the best wavelengths of interest and target
spectral classes, we repeat this simulation for wavelength regions
of size 100 nm and stellar effective temperatures from 2600 to
6200 K at steps of 200 K, from 0.3 to 2.5 μm, with an assumed
distance to the star of 10 pc. The results are shown in Figure 1.

The main conclusion of this numerical experiment is that in
terms of best achievable radial velocity precision in a fixed
amount of observing time for a star at a fixed distance, there
is little advantage to moving redward of 600 nm, and the best
overall area to observe for a large range of spectral classes is the
region between about 400 and 600 nm. This result is based on
the convergence of a few physical effects. First, the spectral

4 For the typical (high) signal-to-noise levels in precision radial velocity ob-
servations, read noise does not contribute significantly to the error budget, a fact
that we verified here.
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energy distribution peaks in this wavelength range for stars in
the temperature range 4750–6000 K. This gives an advantage in
terms of S/N. Second, high spectral quality occurs at these
wavelengths, caused by deep atomic absorption features from
metals.5 While the cooler stars do share some of these features,
their spectral energy distributions peak at redder wavelengths.
This is evident in the contours moving rightward in the 2600–
4250 K, 600–800 nm area. Additionally, the overall decrease in
intensity of the stellar spectra at longer wavelengths leads to a
general decrease in precision from left to right. Furthermore, the
deep and rich molecular lines present in cooler stars partially
offset the fact that the stars are smaller and dimmer, leading
to bands of higher radial velocity precision from 1.4–1.6 μm
and 2.3–2.6 μm, but the absolute level is still well below the
precision from 400–600 nm. Any increase in the exposure time
will only change the absolute scaling of the velocity precision; it
will not affect the relative precision between different spectral
types and wavelength bands.

There are a number of caveats to this analysis. In the infrared
bandpass considered (longer than ∼650 nm), there are signifi-
cant absorption features by water and oxygen in the Earth’s
atmosphere, as well as OH emission lines, which make
ground-based studies more challenging or even impossible.

We have shaded the areas where infrared absorption is too high
for effective observing from the ground. For the other regions,
this simulation assumes that these features can be modeled and
subtracted effectively and have no effect on the velocity preci-
sion. At high resolution, it is possible to identify telluric features
and remove them, and recent results suggest that atmospheric
calibration can subtract these lines effectively (stable to 10 m=s
over 6 year timescales), and can even use these features as stable
wavelength references to 2 m=s over short timescales (Figueira
et al. 2010). A notable recent study that includes the effects of
imperfect telluric subtraction can be found in Wang & Ge
(2011). Even so, in our result, the photon errors are a few times
higher, and dominate the error budget, despite the assumption of
perfect sky subtraction.

Another important point, not obvious from the plot, is that the
high average rotation rate (∼9 km=s) of lateM-dwarfs imposes a
severe penalty on the velocity precision obtainable on these stars,
as the lines are significantly blended at these speeds. Repeating
this simulation with a fixed rotation rate of 2 km=s for these stars
leads to about a factor of 2 higher in precision for the same
amount of observing time. This is a major penalty, as a photon
limited observation takes four times as long to get twice the ve-
locity precision. Furthermore, the read noise is a proportionally
larger part of the total signal at these lower photon counts.

The fixed integration time can reasonably be considered too
severe a restriction, particularly for the cooler stars and at longer
wavelengths, since a similarly sized planet can cause a much

TABLE 1

SIMULATION PARAMETERS

Property Default value Unit

Stellar atmosphere models . . . . . . . PHOENIX BT-Settl 2009
[Fe/H] 0.0

log g

2600 K ≤ T eff ≤ 3400 K 5.0

3600 K < T eff ≤ 5800 K 4.5

5800 K < T eff 4.0

α-enhancement 0.0

Stellar isochrone models . . . . . . . . . BCAH (1998) 2 Gyr
Stellar rotation rate, v sin i . . . . . . .

2600 K ≤ T eff < 2800 K . . . . . . . . . 9.0 km=s
2800 K ≤ T eff < 3200 K . . . . . . . . . 6.0 km=s
3200 K ≤ T eff < 3800 K . . . . . . . . . 3.0 km=s
3800 K ≤ T eff . . . . . . . . . . . . . . . . . . . . 2.0 km=s
Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 pc
Telescope area . . . . . . . . . . . . . . . . . . . . 1.28 m2

Observing time . . . . . . . . . . . . . . . . . . . 60 s
Spectrograph resolution . . . . . . . . . . 75000

Spectrograph sampling . . . . . . . . . . . 3.0 Pixels per resolution element
Throughput (sky to detector) . . . . . 10 %
Read noise . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrons
Cross-dispersion . . . . . . . . . . . . . . . . . . 10 Pixels

The above table gives the parameters in our simulation of velocity precision in Figure 1. It is
stated in the text when any of these parameters are changed.

5Coincidentally, this area happens to overlap the absorption lines of molecular
iodine, a commonly used wavelength calibration source, which helps to explain
the success of iodine cells in planet hunting.
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larger reflex velocity on a smaller star. Furthermore, the simu-
lation considered different types of stars at a fixed distance from
the Earth, which ignores the realities of the present day mass
function. These are both fair points, and we consider the latter
effect of detectability of planets in the next section.

3. MAXIMIZING RADIAL VELOCITY SURVEY
YIELDS

While it is clear that hotter stars at a fixed distance away are
more amenable to high velocity precision, the goal of most ra-
dial velocity surveys is not solely high precision, but planet de-
tection. Target selection is important. Therefore, there are two
major revisions to the above analysis. The first is that planets of
a given mass and orbital distance will cause a larger reflex ve-
locity in lower-mass stars. This means that less observing time
will be needed to detect that planet, making lower-mass stars
more attractive targets, as their relative faintness is somewhat
mitigated. Equally important is the distribution of stellar masses
as a function of distance from the Sun—i.e., the probability that
a star exists a certain distance from the Sun depends on how
massive it is. Closer stars make better targets because of the
higher incident flux, though less massive stars have lower
luminosities.

We first quantify the above statements. The reflex velocity on
a star caused by an orbiting planet is given by

v� ¼ 8:9 cm=s ×

�
Mpl

M⊕

��
M�
M⊙

��1
�

a

1AU

��1=2

; (1)

where Mpl is the mass of the planet, M� is the mass of the star,
and a is the orbital distance of the planet (we consider only cir-
cular orbits for simplicity. Also, Mpl should always be consid-
ered as Mpl sin i to take into account inclination).6

Secondly, we consider the amount of observing time per
night it takes to detect a hypothetical planet which causes a
given reflex velocity in its parent star. We consider a “detection”
to be equivalent to a measurement with velocity precision equal
to the reflex velocity of the star. A simpler way of saying this is
that in the limit of many observations evenly spaced out over the
planetary orbital phase, a single-point precision of 1 m=s is
sufficient to detect a planet causing a 1 m=s modulation of
its parent star’s velocity. We confirmed this using white-noise
simulations of planet-induced stellar RV variations detected
using both the Lomb-Scargle periodogram (Scargle 1982)
and a χ2 test to reject the null hypothesis of constant stellar RV.

We repeat the calculation of Figure 1 for 10 minutes’ worth
of observing time, for a star at 10 pc, from Figure 1. For the
more general case, we have a scaling:

t ¼ 600 s ×

�
v10 min;10 pc

v�ðMpl;M�; aplÞ
×

d

10 pc

�
2

; (2)

where v� is the reflex velocity of the star; a function of the planet
mass, stellar mass, and orbital distance, given in the previous
equation. This expression can be derived in two steps. First, re-
call that the velocity precision scales as the inverse of the S/N,
which is proportional to the square of the observation duration.
Of course, this scaling relation only applies in regimes where
read noise is negligible, but this is true in the cases under con-
sideration, where typical observing times are many minutes.
Second, the S/N is equal to the square root of the number of
photons, which scales as the inverse of the distance to the star
(

ffiffiffiffiffiffiffiffiffi
Nph

p ∝ d�1). Putting these two together gives the above ex-
pression, which is exact within our framework. This last result is
interesting in of itself, because it is the inverse of planets per
unit observing time, which we can evaluate as a function of
wavelength of observation and stellar type.

Equation (2) depends on the variables M�, Mpl, apl, which
determine v�; on Δλobs and T eff , the bandwidth of observation
and stellar effective temperature, which determine the velocity
precision in 10 minutes for a star at 10 pc; as well as the distance
to the star, d. To simplify things and remove one parameter, we
convert freely between stellar mass and effective temperature
using the BCAH 98 isochrones (Baraffe et al. 1998) at 2 Gyrs
(½Fe=H� ¼ 0), which are reasonably accurate for physical
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FIG. 1.—Doppler precision as a function of wavelength range and star tem-
perature for a fixed amount of observing time (60 s). The stellar spectra are de-
rived from rotationally-broadened main-sequence templates from 2600 to
6200 K, stepped in 200 K increments, and the wavelength range is stepped
in 100 nm increments. The contours indicate the velocity precision in m=s. From
the perspective of velocity precision, the best result is achieved in the range of
400–600 nm. The hashed regions correspond to wavelengths where the infrared
absorption is too high for ground-based observations to be effective. This simu-
lation assumes a 1:28 m2 telescope dish, a spectrograph with R ¼ 75; 000, and
sky-to-detector throughput of 10% (The full simulation parameters, including
stellar parameters, are given in Table 1). See the electronic edition of the PASP
for a color version of this figure.

6 This expression can be derived quickly from conservation of momentum
(M�v� ¼ Mplvpl) and Kepler’s second law (P 2 ∝ a3), then scaling to the reflex
velocity of Sun caused by the Earth, 8:9 cm=s.
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properties of low-mass stars. In this T eff range, stellar properties
are not very sensitive to evolution for the first few Gyrs on the
main sequence.

In principle, all that is needed now is a complete list of stars
of known spectral type and distance from the Sun (this gives
d and M� in the above expression), and the planet mass/orbital
distance distribution as a function of spectral type. Then we can
calculate the amount of time needed to detect a putative planet,
as a function of observing wavelength range. We can then order
the list in terms of observing time, which will show what wave-
length range and spectral type maximizes the number of planet
detections.

Unfortunately, the planet mass/orbital distance distribution
function is not known, and there is hardly a complete list of stars
in the galaxy with known distances and spectral types. Despite
this, we can construct a reasonably accurate stellar census using
the RECONS “100 nearest stars” sample,7 which is complete out
to ∼7 parsecs. We populate the first 7 parsecs of our sample from
RECONS. In extrapolating outwards, we assume a constant stel-
lar number density per unit volume and proceeding outward in
spherical shells, drawing from an estimate of the present day stel-
lar mass function (Reid et al. 2002). As a check of this method,
we found that this reasonably reproduces the number of stars of
each spectral type in the RECONS 10 pc sample,8 with the devi-
ation of our results at the few percent level, consistent with the
statistical variability of the stellar neighborhood.

We do not attempt to guess the planet mass/orbital distance
distribution as a function of spectral type; after all, discovering
this is one of the goals of planet surveys. However, we can apply
our analysis to cases where we can make reasonable assump-
tions. First, we consider surveys that are complete down to a
certain planetary mass and orbital period. Second, we focus
on searching for planets in stellar habitable zones.

3.1. Surveys Complete to Limits in Planet Mass
and Orbital Period

Since RV surveys detect stellar accelerations, for a given stel-
lar mass, the quantityMpla

�1=2 determines the necessary veloc-
ity precision. We can set this to a constant and then determine
the necessary time to reach this precision as a function of stellar
mass and distance:

t ¼ 600 s ×

�
v10 min;10 pc ×M�

ð8:9 cm=sÞðMpla
�1=2 ¼ constÞ ×

d

10 pc

�
2

: (3)

A plot of this result with the distance fixed at 10 pc and
Mpla

�1=2 ¼ 5 M⊕ AU�1=2 is shown in Figure 2. The higher
mass stars generally take less time in terms of planet detection,

and the region of 400–600 nm is still the best for a range of stars.
To include the effects of real stellar populations, we simulate per-
forming such a survey. We apply the results of Figure 2 to our
simulated sample of stars out to 20 pc. For each star, we calculate
the amount of observing time necessary to get a radial velocity
precision lower than the reflex velocity caused by the planet.

In order to maximize the survey yield, we order these times
in increasing order and select the stars until we exceed the
amount of observing time per night (9 hr, with 2 minutes of
acquisition per target). We plot this result in Figure 3 as a func-
tion of wavelength range and spectral type (for our conversions
from mass to spectral type, see the Table 2).

The results in Figure 3 show that the best place to observe is
around 400–500 nm, with the primary targets being F , G, and
K stars. Redward of 600 nm, early M dwarfs become the pri-
mary targets, but the number of stars that can be observed from
night to night is lower by a factor of 2–4. Repeating this exper-
iment for a distance out to 300 pc gives roughly the same results,
as nearby stars are the most efficient, though there is a slight bias
towards hotter stars in the visible wavelengths, because their
luminosities make them observable over a larger volume.

The results here do not consider the effects of stellar activity,
but it should be pointed out that F stars are known to be quite
jittery and do not make ideal targets. Regardless, they make up a
relatively small percentage of the total stars, so the results do not
change very much.

3.2. Habitable Zone Planet Surveys

Next, we consider the case of planets in the habitable zones
of their parent stars. Here we can avoid the question of planet

500 1000 1500 2000 2500
Wavelength(nm)

3000

4000

5000

6000

E
ffe

ct
iv

e 
T

em
pe

ra
tu

re
 (

K
)

   
60

  1
20

  3
00

  600

 1200

 6000

 6000

 6
00

0

 6000

 6000

 6000

 6
00

0

24000

24000

24000

FIG. 2.—The time (s) to detect (σv ¼ K) a planet with Mpla
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pl ¼

5 M⊕ð1 AUÞ�1=2, 10 parsecs away, for a range of observing wavelengths
and stellar effective temperatures. The hashed regions correspond to wavelengths
where the infrared absorption is too high for ground-based observations to be ef-
fective. This simulation assumes a 1:28 m2 telescope dish, a spectrograph with
R ¼ 75; 000, and sky-to-detector throughput of 10% (The full simulation para-
meters, including stellar parameters, are given in Table 1). See the electronic edi-
tion of the PASP for a color version of this figure.

7 For more information please see http://www.recons.org.
8The full RECONS 10 pc sample has not been released as of the submission of

this article, though they have released the number of stars of each spectral class
in the 10 pc sample.
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distribution as a function of orbital distance and spectral type.
For a star of a given T eff , we can calculate the inner and outer
habitable zone, where we define the habitable zone to be the
region where the equilibrium temperature of the planet is be-
tween 175 and 275 K (Kaltenegger & Sasselov 2011):

Teq ¼ T eff

� ð1�AÞR2�
4βa2ð1� e2Þ

�
1=4

; (4)

where we set the albedo, A ¼ 0:5, the eccentricity e ¼ 0, and
the planetary reradiation fraction β to 1 for non-tidally locked
planets and 0.5 for tidally locked planets (Peale 1977). We set
the radius to be a function of the effective temperature of the
star, and use values generated from the BCAH 98 isochrones
(Baraffe et al. 1998). (For main sequence stars in this T eff

range, the physical properties of the stars [mass, radius, etc.]
are not greatly affected by stellar evolution over a reasonably
long timescale, so we simply use the values from the 2 Gyr
isochrones.) With these assumptions in place, we can solve
for the two values of a, the inner and outer habitable zones.
We then calculate the reflex velocity of the stars caused by
these planets, given by

v� ¼ 8:9 cm=s ×

�
Mpl

M⊕

��
M�
M⊙

��1
�
aHZ

1AU

��1=2

; (5)

once again using the BCAH 98 isochrones to derive a consis-
tent mass estimate for the star from the effective temperatures,
and placing the planet at the edge of the inner HZ.

We repeat the calculation of the observing time necessary to
detect a 5 M⊕ planet in the center of the habitable zone of its
parent star, given by

t ¼ 600 s ×

�
v10 min;10 pc

v�ð5M⊕;M�; aHZÞ
×

d

10 pc

�
2

: (6)

This result gives a notion of habitable planets per unit ob-
serving time, even if it depends on the distance to the star. A plot
of this result for a fixed distance of 10 parsecs is shown in
Figure 4.
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be effective. This simulation assumes a 1:28 m2 telescope dish, a spectrograph
with R ¼ 75; 000, and sky-to-detector throughput of 10% (The full simulation
parameters, including stellar parameters, are given in Table 1). See the electronic
edition of the PASP for a color version of this figure.

TABLE 2

SPECTRAL CLASS CONVERSIONS

Spectral class Mass (M⊙)

Late M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.08–0.23
Early M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.23–0.51
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.51–0.79
G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.79–1.05
F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.05–1.6
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Here, the M-dwarfs easily make the most attractive targets,
as it takes much less observing time to recover a habitable zone
planets around them. Furthermore, this result ignored system-
atic noise floors, which will make some of the brighter stars
problematic as targets for habitable zone planets, as their reflex
velocities can be below the noise floor.

Again, for the simulated stellar neighborhood of 20 pc, we
calculate the observing time for each star necessary to detect a
habitable zone planet according to the results of Figure 4. We
assume the same 9 hr of observing time per night at 2 minute
acquisition time between targets, and plot the results in Figure 5.
Here there are dramatically different results compared to the
previous case. Because the habitable zone orbital distance de-
creases so rapidly for lower-mass stars, the corresponding radial
velocity signal is much larger for the same mass planet. This
advantage is so pronounced that late M dwarfs become the pri-
mary targets for surveys operating at essentially all wavelength
ranges except the bluest. The best wavelength to observe now
becomes 700–800 nm, but this is somewhat constant for the
range of 400–800 nm. Note that the absolute number of targets
is somewhat higher for the habitable zone survey. This is an
effect of the observing strategy; the observing time for each tar-
get is set by the required velocity precision, not the ultimate
velocity precision of the instrument. If one can detect a
habitable-zone planet at 5 m=s in 1 minute, getting twice the
velocity precision in four times the observing time is not worth
it, even if the spectrometer is able to reach the precision easily.
Figure 5 may give the impression that there is little point to
moving to the near-infrared, but this is somewhat an artifact
of the choice of a 5 M⊕ planet as the target and the fact that
systematic noise floors are not considered yet. For a lower mass
planets and more massive stars, the radial velocities of the stars
are so small that they would almost certainly be below the sys-
tematic noise floor of the instrument, meaning that the most
promising targets would be in the near infrared, where the stellar
radial velocities would be higher. See § 4.3 for further discus-
sion of these effects.

As previously mentioned, we did not consider the “contami-
nation” of stellar spectra by telluric lines in the Earth’s atmo-
sphere, effects which are wavelength-dependent. In the case
of the ideal survey complete to a mass-orbital distance limit,
telluric lines are not relevant, because observations will be tak-
ing place in the visible wavelengths at 400–600 nm, where the
atmosphere is mainly transparent. For the habitable-zone sur-
vey, they will certainly be present in many of the infrared re-
gions. However, many telluric lines are stable at the few m=s
level, which is often lower than the reflex velocities of the
low mass stars, the primary targets of the survey. This means
telluric lines could be used as broadband wavelength references.
Due to the potential ofM-dwarf infrared surveys, efforts toward
improving telluric referencing and calibration are highly impor-
tant (Blake & Shaw 2011).

Notably, we did not consider stellar jitter caused by oscilla-
tions, granulation, or activity such as spots. For the interested
reader, a thorough exploration of these subjects can be found in
Dumusque et al. (2011a, 2011b) in which these effects are ana-
lyzed in detail for solar-type stars, and observing strategies/
corrections to mitigate different kinds of jitter are explored.
Of these three effects, the last is considered the most trouble-
some in terms of planet detection, as the characteristic time-
scales of spot-related jitter are similar to planetary periods.
The simulations in this article deal primarily with statistical er-
rors and their dependence on observing wavelengths and stellar
effective temperatures; the effects of stellar jitter are categorical-
ly different, as they are real radial velocity signals with the po-
tential to confuse the actual planetary signal. Furthermore, the
spectral-type dependence of spot number, size, and shape are
not well constrained, making meaningful simulation of these
effects difficult within our framework. It is possible that spot
jitter would skew the results above; for example, if one spectral
type typically has spot distributions that are extremely stable
and similar to planetary signals, whereas another has spots that
are easily distinguishable from planetary signals, then the latter
would be preferable to the former. Of course, this would be
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FIG. 5.—The maximum number of observable stars each night, with the goal of achieving the velocity precision necessary for a detection of a 5 M⊕ habitable-zone
planet on each star. This is plotted as a function of observing wavelengths, assuming 9 hr of observing time per night and 2 minute acquisition time between targets. The
survey was simulated using the RECONS 7 pc sample and the present-day mass function (Reid et al. 2002), and extends to 20 pc (going out to 300 pc makes little
difference, as bright and nearby stars are the most time-efficient targets). See the electronic edition of the PASP for a color version of this figure.
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dependent on the ability of the data reduction and observing
strategy to distinguish spot jitter from true planetary signals,
whereas the results above show more fundamental limitations.
With this in mind, recent advances (Lanza et al. 2011; Aigrain
et al. 2012) have shown a promising ability to subtract out spot
jitter with the combination of high-precision photometry.
Perhaps most encouragingly, by modeling stellar effects,
Dumusque and collaborators were able to discover an Earth
mass planet around α Centauri B, a star with a “stellar noise”
level many times higher than the planetary signal (Dumusque
et al. 2012).

4. INSTRUMENTAL EFFECTS AND SYSTEMATIC
NOISE FLOORS

The most unrealistic assumption so far is the assumption of a
perfect instrument in our hypothetical survey, as all past, pres-
ent, and future instruments have a limiting precision. In practice,
this means that after a certain point, increasing the exposure
time does not lead to an increase in velocity precision.

Up to this point, we have assumed that we have a particular
instrumental configuration; a resolution 75,000 spectrometer
with 3 pixel sampling and a velocity precision limited by the
S/N and read noise (which is negligible for most cases). We first
consider our choices of resolving power and sampling, and how
they contribute to the velocity precision. Furthermore, we con-
sider the effects of instrumental instabilities and show how they
can lead to systematic noise floors. Finally, we assess the effects
of these noise floors on our hypothetical survey, and show how
they can substantially affect the optimal target selection.

4.1. Effects of Spectrometer Resolution and Sampling

The choice of resolving power of a spectrograph is impor-
tant, as more sharply resolved lines lead to higher Doppler pre-
cision. A simple analytic calculation for one line suggests that
the accuracy should scale as σv ∝ R�1, which was approxi-
mately reproduced in an early study (Hatzes & Cochran 1992).

We examine the effect of spectrometer resolution on velocity
precision at a fixed exposure time on a Sun-like (T eff ¼
5800 K, log g ¼ 4:5 and ½Fe=H� ¼ 0) star. We simulate 1000
measurements at resolving powers ranging from 10,000 to
150,000, in the wavelength range of 500–600 nm, and as before,
take the standard deviation of the velocity measurements as our
velocity precision. The results are shown in Figure 6.

Our results show that the best-fitting power law is σv ∝ R�1:2,
and that diminishing returns appear at about R ¼ 45; 000, where
the spectral lines are resolved. It should be mentioned that the
power in the proportionality is a function of the spectral quality
(for example, the line density), but we were unable to find much
deviation from the value of 1.2 in interesting spectral regions. We
were not able to find any region where the power was as high as
1.5. Additionally, although precision improves with higher

resolution, resolving powers above 100,000 yields little addi-
tional benefit, as essentially all the lines are resolved.

Satisfying the Nyquist sampling theorem requires that at
least 2 pixels cover each resolution element, but more pixels
may be used. Increasing the sampling turns out to have no effect
on velocity precision, assuming the exposure time stays con-
stant. The reason for this may be seen in that the number of
photons per pixel is reduced by a factor of N , where N is the
number of pixels per resolution element; and the number of
pixels in the data product is increased by the same factor. Since
the radial velocity precision is inversely proportional to the
S/N (∝N1=2) and to the square root of the bandwidth, these ef-
fects cancel out. We verified this (non) effect with numerical
simulations. We point out that in the limit of extreme (cm=s)
velocity precision, it is not safe to ignore pixel topology effects,
as the pixels may vary in efficiency over the center to the edge.
This can become a problem when the line-spread function is
minimally sampled.

Taken together, these two results show that our choice of res-
olution 75,000 and sampling of 3 pixels in our simulated instru-
ment was reasonable, and did not affect the recovery of radial
velocities adversely.

4.2. Effects of Incompletely Recovered Instrumental
Profiles

In general, the measured output from a spectrograph is
the intrinsic spectrum of the object convolved with the

FIG. 6.—The resulting velocity precision and S/N for an observation of a Sun-
like star with varying resolution (3.0 samples/resolution element). Note that the
units on the vertical axis are m=s for the blue curve (velocity precision), and
unitless for the red curve (S/N). The exposure time is held fixed, and the result-
ing S/N decreases as resolution increases, since fewer photons are incident per
pixel. Increasing the resolution always improves the velocity precision, but the
point of diminishing returns is reached at aboutR ¼ 45; 000, which corresponds
to the point at which almost all the spectral lines are fully resolved. See the
electronic edition of the PASP for a color version of this figure.
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instrumental profile (IP) or line spread function (LSF) of the
instrument:

mðλÞ ¼
Z ∞
�∞

sðλ0ÞIPðλ� λ0Þdλ0:

In this equation, mðλÞ is the measured spectrum, IPðλÞ is the
instrumental profile (which is normalized to unity by conser-
vation of flux), and sðλÞ is the “true” stellar spectrum. The
instrumental profile is fiducially a Gaussian with a full-
width-half-max equal to the resolution of the spectrograph.

A typical extraction of a radial velocity datapoint involves
consideration of the entire spectral region. First, the instrumen-
tal profile is extracted from a wavelength reference source, and
after the observation, this instrumental profile is deconvolved
from the stellar spectrum. In cases of simultaneous calibration
(as with an iodine cell), the full transmission spectrum is mod-
eled. Finally, the radial velocity datapoint is extracted from the
shift in the spectrum with respect to the wavelength solution.

Properly characterizing the IP of the spectrometer is a chal-
lenging task, but is essential to recovering radial velocities ac-
curately (Valenti et al. 1995), especially as all further steps
depend on its characterization. It is a function of the optical
path, and hence depends on environmental parameters like tem-
perature and pressure, as well as slit illumination and focus.
These parameters can change during and between observations,
and thus the IP must be recalculated for each observation; that
is, the IP varies with time. Furthermore, since optical elements
have wavelength-dependent properties, the IP is wavelength-
dependent. This means that in practice it is necessary to model
an IP varying with wavelength, rather than a constant one. It is
clear that any change in the IP that can be accounted for and

modeled is not relevant. However, any changes not accounted
for will be interpreted as radial velocity shifts—this is due to
having two different IPs; the physical instrument profile, and
the approximation that is deconvolved from the observation.

To model this, we convolve our model spectrum with a per-
turbed IP. While it is obviously not feasible to examine every
possible perturbation, we can derive useful rules of thumb from
characterizing simple cases. We begin by restricting ourselves to
a Gaussian LSF with equivalent resolution of 75,000 and 3.0
samples/resolution element as our ideal IP. We simulate the ef-
fects of LSF mismatch by convolving with a stellar spectrum
(T eff ¼ 5800 K, log g ¼ 4:5 ½Fe=H� ¼ 0) with the perturbed
spread function and trying to recover the velocity shift (which
should be zero) with respect to the spectrum convolved with the
ideal IP. As before, we repeat this many times and take the
standard deviation of our derived velocities as our velocity
precision.

In the first case, we consider a Gaussian LSF with some skew
added. Skewness (γ̂3) is measure of asymmetry of the distribu-
tion, and is a property that can be straight forwardly calculated
for a particular instrumental profile. Physically, skewness in the
IP results when a source moves perpendicular to the slit
direction.9

Mathematically, the skewness of a function is given by:

γ̂3 ¼ E

��
X � μ

σ

�
3
�
: (7)
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FIG. 8.—The resulting velocity precision for observation of a Sun-like star
with R ¼ 75; 000 (3.0 samples/resolution element), and perturbation amplitude
varying from 10�4 to 10�1 of the peak amplitude of the LSF. For comparison,
the inset shows a Gaussian with a perturbation of 10%, equal to the maximum
value considered. It is clear that for sub m=s precision, it is important that the
perturbation amplitude of the distribution does not exceed 0.1%, a value weakly
dependent on the S/N. The flattening out of the curves occurs where the S/N
limits the velocity precision. See the electronic edition of the PASP for a color
version of this figure.
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FIG. 7.—The resulting velocity precision for observation of a Sun-like star
with R ¼ 75; 000 (3.0 samples/resolution element), and skewness varying from
10�1 to 10�4. For reference, the inset shows a Gaussian with skewness (not α) of
0.3, an order of magnitude higher than the maximum value considered (none of
the skew-normal distributions simulated have skews large enough to be visually
distinct from a normal distribution). The skewness sets a signal-to-noise floor
when it is greater than a part in 100, weakly dependent on signal to noise. The
flattening out of the curves occurs where the S/N limits the velocity precision.
See the electronic edition of the PASP for a color version of this figure.

9 A real example of this effect can be found in the Herschel (Pilbratt et al.
2010) observer’s manual, located at http://herschel.esac.esa.int/Docs/PACS/
html/ch04s07.html, particularly Figure 4.17.
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This equation is general and applies to any distribution. For
our purposes, we consider the skew-normal distribution with
parameter α, given by the function

fðxÞ ¼ 2ϕðxÞΦðαxÞ; (8)

where

ϕðxÞ ¼ 1ffiffiffiffiffiffi
2π

p e�x2=2; ΦðxÞ ¼
Z

x

�∞
ϕðtÞdt: (9)
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FIG. 9.—The maximum number of observable stars as a function of observing wavelengths, assuming 9 hr of observing time per night and 2 minute acquisition time
between targets. The survey was simulated using the RECONS 7 pc sample and the present-day mass function (Reid et al. 2002), and extends to 20 pc (going out to
300 pc makes little difference, as bright and nearby stars are the most time-efficient targets). These graphs assume a survey targeting habitable zone planets, with velocity
precisions limited to 0.5 (top), 1, 3, and 5 m=s. Furthermore, the region of 0.7–0.8 μm is the best area to observe overall. See the electronic edition of the PASP for a color
version of this figure.
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Note that the skew parameter α is not actually equal to the skew-
ness of the distribution, which is a complicated function of α:

αffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π
2

jγ̂3j23
jγ̂3j23 þ ðð4� πÞ=2Þ23

s
; (10)

where the skewness (γ̂3) is recovered by inverting the equation
above for α. Despite the rather opaque equation above, the use-
fulness of this parametrization is that it is, in a sense, a “simple”
way of adding skewness in a distribution, and for α ¼ 0 one
recovers the normal distribution, which is our fiducial way of
representing an instrumental profile.

It is apparent from Figure 7 how a velocity floor can arise
from an uncorrected skewed IP. For example, at a skewness
of 0.05, it will be impossible to do better than 5 m=s in preci-
sion, regardless of the S/N.

In the second case, we consider an IP with a small Gaussian
perturbation with varying amplitude. The choice of this form of
perturbation is due to the fact that a common, practical way to
represent an imperfect IP is through many small Gaussian func-
tions added together on top of the main Gaussian IP (Butler &
Marcy 1996; Endl et al. 2000; Kambe et al. 2002). The position
of the perturbation is set to vary normally with a standard devi-
ation equal to the standard deviation of the ideal IP (1). Also, the
width of the perturbation is fixed to be of a characteristic size of
one of the mini-Gaussians used to model the IP. We examine the
effects of the perturbation amplitude on the velocity precision
under the same conditions as the previous test.

The result of this simulation, in Figure 8, reinforces how little
tolerance there is in terms of characterizing the instrumental
profile. A perturbation as small as 3% IP peak is able to set
a velocity floor of 5 m=s, independent of the S/N.

4.3. Effects of Noise Floors on Survey Yields

The preceding section demonstrates the need of a stiff com-
bination of stabilizing the IP through temperature, pressure, and
illumination control and immediately capturing any changes
that occur. However, it is reasonable to assume that there will
be some velocity floor in every survey. We examined the effect
by putting arbitrary noise floors at different velocities. We re-
peated our simulated habitable-zone survey, but removed stars
from the target list if their predicted planetary signal was below
the noise floor (for the other survey, the very existence of noise
floors negates its completeness). This makes massive stars in-
accessible targets, and they are progressively replaced by the
next less massive stars as the noise floor increases, and observa-
tions go to the limiting precision. There are fewer targets per
night as well, though the decrease is not as severe as one would
think, as removing stars frees up available observing time for
other targets within the detection limits: G stars replace F stars,
K stars replace G stars, and so on.

We simulated this effects for noise floors of 0.5, 1, 3,
and 5 m=s. The results are shown in Figure 9, which demon-
strates that mid- and late-M dwarfs become better targets as
precision decreases, and that the number of stars observable
per night does not decrease substantially—after about 800 nm,
the amount of observable stars in a given night is set primarily
by the duty cycle. Additionally, the wavelength range of
700–800 nm is the best overall in terms of total number of
targets.

5. CONCLUSION/DISCUSSION

We have investigated the design requirements and perfor-
mance expectations for radial velocity surveys, deriving the best
wavelength bands and targets for different survey goals. For sur-
veys targeting completeness out to a particular planetary mass-
orbital distance product, the best targets are F ,G, andK dwarfs
observed at wavelengths spanning 400–600 nm. For surveys of
habitable-zone planets, the best targets are late M dwarfs in the
wavelength range of 700–800 nm, though the number of possi-
ble targets stays flat from 400–800 nm. Of the two survey
methods, those searching for habitable-zone planets are more
productive, as the larger expected radial-velocity signals lead
to more targets, and hence more detections. These results are
based on the consideration of a number of input parameters
within the framework of maximizing planet detections in a fixed
amount of observing time per night. In particular, we considered
how the spectral quality, stellar flux, photon noise, stellar and
planetary mass, and stellar mass distribution in the galaxy play
against each other to produce different ideal targets.

For surveys that are complete to a constantMpla
�1=2, bright-

ness of targets is paramount: The best targets are hotter stars and
the visible wavelengths where these stars’ spectral energy dis-
tributions peak, coincident with where the density of absorption
lines is highest. The target selection result holds even when con-
sidering the present-day stellar mass function. Generally, the ob-
serving strategy consistent with this analysis is to target as many
bright, non-jittery stars as possible out to a limiting magnitude
(or volume), then move to lower masses.

In the case of habitable zone planet surveys, our results dem-
onstrate the potential of infrared surveys of M dwarfs. For an
observing program that has relatively modest velocity precision,
it is possible to have a survey of M dwarfs that is complete
within the limits of the habitable zone. Note that this requires
a different sort of observing strategy than one in which each
observation is taken to the noise floor of the velocity precision.
This would make sense for F , G, and K stars, as the reflex ve-
locities for habitable-zone candidates are very low. However, for
M-dwarfs, this is inefficient, as habitable-zone velocity preci-
sions are higher than systematic instrumental limitations. Since
the velocity precision scales approximately as the square of the
observing time, getting excessive precision will dominate the
nightly time budget. This directly penalizes the number of target
stars in the limit of complete phase coverage. A better choice is
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to observe only until the target precision is reached, and then
move on to the next target.

We demonstrated how instrumental imperfections can lead
to systematic noise floors, gave quantitative prescriptions for
the level of stability needed in a restricted number of cases,
and explored how these effects would change the scope of
a habitable-zone planet survey. Significantly, the number of
potential targets is highly dependent on the noise floor for
shorter wavelengths, but is basically unchanged for longer
wavelengths. The main change is that the target stars become

later and later, demonstrating the high potential of infrared
surveys.

The authors would like to thank (in alphabetical order) Prof.
Lynne Hillenbrand (CIT), for providing guidance and expertise;
Dr. Sasha Hinkley and Sebastian Pineda (CIT), for helpful cri-
tique and discussion; and Dr. Peter Plavchan (IPAC), for de-
tailed comments and perspective on early drafts of the paper.
We especially thank the anonymous referee, whose suggestions
improved the paper substantially.

REFERENCES

Aigrain, S., Pont, F., & Zucker, S. 2012, MNRAS, 419, 3147
Allard, F., Homeier, D., & Freytag, B. 2011, in ASP Conf. Ser. 448,

16th Cambridge Workshop on Cool Stars, Stellar Systems, and the
Sun, ed. C. Johns-Krull, M. K. Browning, & A. A. West (San
Francisco: ASP), 91

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A,
337, 403

Blake, C. H., & Shaw, M. M. 2011, PASP, 123, 1302
Bouchy, F., Pepe, F., & Queloz, D. 2001, A&A, 374, 733
Butler, R. P., & Marcy, G. W. 1996, ApJ, 464, L153
Dumusque, X., Pepe, F., Lovis, C., et al. 2012, Nature, 491, 207
Dumusque, X., Santos, N. C., Udry, S., Lovis, C., & Bonfils, X. 2011a,

A&A, 527, A82
Dumusque, X., Udry, S., Lovis, C., Santos, N. C., & Monteiro,

M. J. P. F. G. 2011b, A&A, 525, A140
Endl, M., Kürster, M., & Els, S. 2000, A&A, 362, 585
Figueira, P., Pepe, F., Lovis, C., & Mayor, M. 2010, A&A, 515, A106
Griffin, R. F. 1967, ApJ, 148, 465
Hatzes, A. P., & Cochran, W. D. 1992, in European Southern Obser-

vatory Conference and Workshop Proceedings 40, European South-
ern Observatory Conference and Workshop Proceedings, ed. M.-H.,
Ulrich 275

Hauschildt, P. H., Allard, F., & Baron, E. 1999, ApJ, 512, 377
Howard, A. W., Johnson, J. A., Marcy, G. W., et al. 2011, ApJ, 726,

73
Kaltenegger, L., & Sasselov, D. 2011, ApJ, 736, L25
Kambe, E., Sato, B., Takeda, Y., et al. 2002, PASJ, 54, 865
Lanza, A. F., Boisse, I., Bouchy, F., Bonomo, A. S., & Moutou, C.

2011, A&A, 533, A44
Mayor, M., & Queloz, D. 1995, Nature, 378, 355
McArthur, B. E., Endl, M., Cochran, W. D., et al. 2004, ApJ, 614, L81
Peale, S. J. 1977, in IAU Colloq. 28, Planetary Satellites, ed. J. A.

Burns (Ithaca: AAS), 87–111
Pepe, F., Lovis, C., Ségransan, D., et al. 2011, A&A, 534, A58
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A,

518, L1
Reid, I. N., Gizis, J. E., & Hawley, S. L. 2002, AJ, 124, 2721
Reiners, A., Bean, J. L., Huber, K. F., et al. 2010, ApJ, 710, 432
Rivera, E. J., Lissauer, J. J., Butler, R. P., et al. 2005, ApJ, 634, 625
Scargle, J. D. 1982, ApJ, 263, 835
Udry, S., Bonfils, X., Delfosse, X., et al. 2007, A&A, 469, L43
Valenti, J. A., Butler, R. P., & Marcy, G. W. 1995, PASP, 107, 966
Wang, J., & Ge, J. 2011, ArXiv e-prints, http://arxiv.org/abs/1107.4720
Wright, J. T., Fakhouri, O., Marcy, G. W., et al. 2011, PASP, 123, 412

OPTIMIZING DOPPLER SURVEYS 251

2013 PASP, 125:240–251



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


