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ABSTRACT

The radial density profile of dark matter structures has been observed to have an almost universal behavior
in numerical simulations; however, the physical reason for this behavior remains unclear. It has previously been
shown that if the pseudo phase-space density, , is a beautifully simple power law in radius, with the “goldener/jd

values” and (i.e., the phase-space density is only dependent on the radial component of the velocitye p 3 d p r
dispersion), then one can analytically derive the radial variation of the mass profile, dispersion profile, etc. That
would imply, if correct, that we just have to explain why , and then we would understand everything3 �ar/j ∼ rr

about equilibrated DM structures. Here we use a set of simulated galaxies and clusters of galaxies to demonstrate
that there are no such golden values, but that each structure instead has its own set of values. Considering the
same structure at different redshifts shows no evolution of the phase-space parameters toward fixed points. There
is also no clear connection between the halo virialized mass and these parameters. This implies that we still do
not understand the origin of the profiles of dark matter structures.

Subject headings: dark matter — galaxies: halos — methods: data analysis — methods: numerical

1. INTRODUCTION

According to numerical simulations of dark matter (DM)
structures, the mass density profile, , changes from some-r(r)
thing with a fairly shallow profile in the central region, g {

(or maybe 0), to something steeper in thed ln r/d ln r ∼ �1
outer region, (or maybe steeper) (Navarro et al. 1996;g ∼ �3
Moore et al. 1998; Diemand et al. 2007; see also Reed et al.
2005; Stoehr 2006; Navarro et al. 2004; Graham et al. 2006;
Merritt et al. 2006; Ascasibar & Gottloeber 2008). For the
largest structures, such as galaxy clusters, there appears to be
fair agreement between numerical predictions and observations
concerning the central steepness (Pointecouteau et al. 2005;
Sand et al. 2004; Buote & Lewis 2004; Broadhurst et al. 2005;
Vikhlinin et al. 2006); however, for smaller structures, such as
galaxies or dwarf galaxies, observations tend to indicate central
cores (Salucci et al. 2003; Gilmore et al. 2007; Wilkinson et
al. 2004). Few purely theoretical attempts have been made to
understand the origin of this density profile (e.g., González-
Casado et al. 2007; Henriksen 2007), with varying level of
success.

A completely different approach is to search for simple phe-
nomenological relations in the numerical simulations, such as
finding straight lines in some parameter space. The idea is then
that such phenomenological relations may reduce the com-
plexity of the Jeans equation, which can then be solved
analytically.

One of the most successful attempts in this direction was
sparked by the discovery that the pseudo phase-space density
is approximately a power law in radius, (Taylor &3 �ar/j ∼ rr

Navarro 2001). The most simple analytical solutions to this
problem showed that the density slopes could vary in the range
from �1 to �3 (Hansen 2004a), in excellent agreement with
numerical results of Navarro et al. (1996). The analytical in-
vestigations were taken to a higher level in Austin et al. (2005),
who demonstrated that there is a characteristic value a p

when one considers isotropic structures. Shortly after,1.944
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Dehnen & McLaughlin (2005) used the results of numerical
simulations (Diemand et al. 2004a, 2004b) to show that the
“golden values” and indeed provides a verya p 1.944 e p 3
good fit, when one is using the radial velocity dispersion in
the pseudo phase-space density. Dehnen & McLaughlin (2005,
hereafter DM05) also solved the Jeans equation under this as-
sumption, and demonstrated explicitly that one can thus derive
analytically all relevant profiles for the DM structure. Many
other authors have considered similar pseudo phase-space den-
sities, e.g., Hansen et al. (2006), Knebe & Wießner (2006),
Stadel et al. (2008), Knollmann et al. (2008), Ascasibar &
Gottloeber (2008), Zait et al. (2008), Van Hese et al. (2008),
Navarro et al. (2008), and Lapi & Cavaliere (2008).

All this implies that if we can explain the origin of the very
simple connection, , then we have a complete un-3 �ar/j ∼ rr

derstanding of the DM structures. However, this carries the
implicit assumption that the three golden values are indeed the
same for all structures, namely that , and that thea p 1.944
relevant quantity to consider is the radial dispersion, withejd

and .d p r e p 3
Here we use the results of recent numerical simulations to

demonstrate that this is not the case, and that there is no simple
universal pseudo phase-space density for equilibrated DM
structures. Given our findings it therefore appears that few
theoretical approaches that successfully explain the origin of
the cosmological profiles, such as the Barcelona model (Man-
rique et al. 2003; González-Casado et al. 2007), remain.

2. GENERALIZED PSEUDO PHASE-SPACE DENSITY

In order to test whether a generalized phase-space density
exists, we consider the relation3

e �ar/j ∝ r . (1)d

3 As pointed out by Jin H. An, it would be very natural to perform an
investigation similar to the one presented here on a generalized phase-space
density of the form r/( ), where k1 and k2 are the parameters to be exploredk k1 2j jr t

(as done with D and e here).
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Fig. 1.—Optimized D and a values from the MC code plotted against each
other. The vertical and horizontal dashed lines indicate the golden values
suggested by Austin et al. (2005) and Dehnen & McLaughlin (2005). The
solid line is a linear fit to the results for the structures (circles), and isz p 0
given by . This indicates that the sug-a p (0.19 � 0.02)D � (1.94 � 0.02)
gested golden values are just a consequence of using in the phase-spacejr

density relation. The results for the galaxy-size WMAP1 structures at z p
(diamonds) and (triangles) are overplotted for comparison, and0.2 z p 0.5

shows a trend very similar to the case. No correlation between haloz p 0
mass (indicated by different symbol size) and the fitting parameters is detected.

Here we have defined the general velocity dispersion as (Han-
sen 2007; Schmidt 2008)

e e e/2( )j p j 1 � Db . (2)d r

Here is the usual velocity anisotropy pa-2 2b(r) p 1 � j /jtan rad

rameter, where and are the radial and tangential com-j jrad tan

ponent of the velocity dispersion, respectively. Thus, setting
corresponds to using the radial component of the DMD p 0

structure velocity dispersion in the phase-space density ex-
pression. Allowing , the phase-space density dependsD ( 0
on a velocity dispersion that can be any combination of jrad

and , e.g., corresponds to using , andj D p �2/3 j D ptan tot

corresponds to .1 jtan

Here we use the rather simple analytical pseudo phase-space
density; however, the actual six-dimensional phase-space den-
sity is different from this one and is not a power law in radius
according to simulations (Stadel et al. 2008).

3. NUMERICAL SIMULATIONS

To test if the values of D, a, and e are the same for all
structures, we used a set of intermediate- and high-resolution
simulated DM structures. These structures are all created using
the PKDGRAV tree code by Joachim Stadel and Thomas Quinn
(Stadel 2001). The high-resolution simulation Via Lactea in-
cludes one highly equilibrated structure of mass M phalo

, containing about 84 million particles (Die-121.77 # 10 M,

mand et al. 2007). This structure did not experience any major
mergers since , and all the quantities are extracted inz p 1
spherical bins. The rest of the structures are galaxy-size and
cluster-size DM halos based on either a WMAP 1 year or 3

year cosmology. The initial conditions for these structures are
generated with the GRAFIC2 package (Bertschinger 2001).
The starting redshifts are set to the time when the standardzi

deviation of the smallest density fluctuations resolved within
the simulation box reaches 0.2 (the smallest scale resolved
within the initial conditions is defined as twice the intraparticle
distance). All the halos were identified using a spherical ov-
erdensity algorithm (Macciò et al. 2007). The cluster-like halos
have been extracted from a 63.9 Mpc h�1 simulation containing
6003 particles, with a mass resolution of 7m p 8.98 # 10p

. The masses of the clusters used for this study are 2.1,�1M h,

1.8, and . The galaxy-size halos have been14 �11.6 # 10 M h,

obtained by resimulating halos found in the previous simulation
at high resolution. The simulated halos are in the mass range

and have a mass resolution of12 �10.9–2.5 # 10 M h m p, p

. That gives a minimum number of particles5 �14.16 # 10 M h,

per halo of about . The high-resolution cluster CHRW362.5 # 10
has 11 million particles within its virial radius and a mass of

.14 �1M p 1.81 # 10 M h,

From these numerical simulations we directly calculate all
the relevant quantities, such as r(r), , , and ,j (r) j (r) j (r)r v f

where the j’s are combined to obtain . These profiles canb(r)
then be compared to the pseudo phase-space density defined
in equation (1).

4. MONTE CARLO CODE

In order to test whether the suggested golden values of DM05
and Austin et al. (2005) do indeed exist, we wrote a Monte
Carlo (MC) code to optimize the parameters of the phase-space
density in equation (1), for each of the simulated DM structures.

The MC code is based on the temperature annealing principle
(Kirkpatrick et al. 1983; Hansen 2004b). We want to optimize
the parameter set , so that it makes the left and right-(D,a,e)
hand sides of equation (1) converge toward the expected power-
law relation. In order to do that we search the parameter space
and for each jump estimate the x2 value of the relation defined
by

2f (x ) � f (x )1 i 2 i2x p . (3)� [ ]df (x )i 2 i

Here corresponds to the data input from the simulations,x fi 1

and corresponds to the left and right-hand sides of the re-f2

lation, and is the error on . Since we are dealing withdf f2 2

simulations, we have no reasonable estimate of the error .df2

Therefore, we use . Choosing different kinds3df p 0.05 (r/j )2 r

of errors (e.g., , , , and ) with different mag-e 3 e �ar/j r/j r/j rD D r

nitudes (0.05, 0.07, and 0.10) has no significant systematic
effect on the final result. Since there is the possibility of local
minima in the x2 landscape, we have implemented the me-
tropolis choice in our code (Metropolis et al. 1953). All tech-
nical details of this code can be found in Schmidt (2008).

5. RESULTS

Combining the simulated DM structures with the MC code,
we are able to estimate the parameters that optimizes the phase-
space density relation for each structure. If there should be a
general phase-space density relation, each structure should have
the same optimized parameters. We see in Figure 1 that this is
not the case. In Figure 1 we have indicated the suggested golden
values as horizontal and vertical dashed lines.
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Fig. 2.—Same as Fig. 1, but for D and e with a linear fit given by e p
.(0.97 � 0.37)D � (3.15 � 0.29)

TABLE 1
Results for Different Phase-Space Densities Using the

Relations in Equations (4) and (5)

D Phase-Space Density a e

1 . . . . . . . . . . 1 2 2 e/2r/ (j � j )2 f v 2.13 � 0.03 4.12 � 0.47
0* . . . . . . . . . er/jr 1.94 � 0.02 3.15 � 0.29
�1 . . . . . . . . 12 e/2r/ [2j � (j2f � j2v)]2r 1.75 � 0.03 2.18 � 0.47
�2/3 . . . . . . 1 e/2r/ [ (j2r � j2f � j2v)]3 1.81 � 0.02 2.50 � 0.38

Notes.—The phase-space densities are extracted from eq. (2) using the
corresponding D values. The case marked with an asterisk (*) is the one
used in Hansen (2004a), Austin et al. (2005), and Dehnen & McLaughlin
(2005).

Fig. 3.—Same as Fig. 1, but for a and e with a linear fit given by e p
.(6.39 � 1.44)a � (�9.14 � 2.65)

The obtained (roughly) linear relations in Figures 1 and 2
are

a p (0.19 � 0.02)D � (1.94 � 0.02), (4)

e p (0.97 � 0.37)D � (3.15 � 0.29). (5)

This shows that a generalized phase-space density relation does
not exist. Thus, our results suggest that the hunt for a physical
explanation of the (often assumed universal) power-law ap-
pearance of is probably a dead end. It seems that this3r/j
expression is nothing more than a possible fitting function with
the nice property of having the same physical units as the phase-
space density.

If we force (like DM05), we get from equations (4)D p 0
and (5) that and . These val-a p 1.94 � 0.02 e p 3.15 � 0.29
ues are in excellent agreement with the results from DM05. If
we use other values of D, i.e., phase-space densities with com-
binations of the different velocity dispersion components, we
get the parameter values listed in Table 1.

Knowing that the parameters that optimizes the phase-space
density relation in equation (1) for simulated structures at red-
shift are related, it would be interesting to see whetherz p 0
such relations are also present at higher redshifts. We use

snapshots for the WMAP1 galaxy-size structures (clustersz 1 0
are not significantly relaxed at high redshifts). Running the MC
code with these DM halos gave results very similar those for
the structures. In general, we did not find any indicationz p 0
of a redshift dependence for the optimized values, showing that
there is no special attractor for the values of D, a, and e. The
results at (triangles and diamonds) are plotted togetherz 1 0
with the results in Figures 1–3. The linear relationsz p 0
obtained between the optimized parameters are not significantly
affected by redshift, and therefore our calculations suggest that
equations (4) and (5) are valid for all redshifts.

Furthermore, we find no significant correlation between the
virial mass of the simulated structures and the a, e, and D
values (see Figs. 1–3).

6. CONCLUSIONS

Using a set of numerically simulated galaxy and cluster-sized
DM structures and analyzing them with a Monte Carlo code,
we show that no generalized pseudo phase-space density re-
lation seems to exist in general. We have thus shown that the
previously suggested relation does not hold univer-3 �ar/j ∼ r
sally. The redshift and mass independence of our results show
that there is no special attractor for the parameters describing
the generalized phase-space density.

Instead, we happen to identify a set of seemingly linear
relations between the parameters D, a, and e (describing the
generalized pseudo phase-space density from eq. [1]), which
we have parameterized in equations (4) and (5).

Thus, given our findings that is nothing but a nice fitting3r/j
formulae and not a physical attractor, we are still far from truly
understanding the density profile of DM structures.
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the Rechenzentrum in Garching. The Dark Cosmology Centre
is funded by the Danish National Research Foundation.
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