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ABSTRACT. A new generation of radio telescopes is achieving unprecedented levels of sensitivity and
resolution, as well as increased agility and field of view, by employing high-performance digital signal-processing
hardware to phase and correlate signals from large numbers of antennas. The computational demands of these
imaging systems scale in proportion to BMN2, where B is the signal bandwidth, M is the number of independent
beams, andN is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of
PetaOps per second. To meet this challenge, we have developed a general-purpose correlator architecture using
standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable
Gate Array (FPGA) chips. These chips are programmed using open-source signal-processing libraries that we have
developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a
wide range of signal-processing systems, with correlators foremost among them, and facilitates upgrading to new
generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz
bandwidth, 4-bit, full-Stokes parameter application deployed on the Precision Array for Probing the Epoch of
Reionization.

1. INTRODUCTION

Radio interferometers, which operate by correlating the
signals from two or more antennas, have many advantages over
traditional single-dish telescopes, including greater scalability,
independent control of aperture size and collecting area, and
self-calibration. Since the first digital correlator built by
Weinreb (Weinreb 1961), the processing power of these systems
has been tracking the Moore’s Law growth of digital electronics.
The decreasing cost per performance of these systems has influ-
enced the design of many new radio antenna array telescopes.
Some next-generation array telescopes at meter, centimeter,
and millimeter wavelengths are the Low Frequency Array
(LOFAR), the Precision Array for Probing the Epoch of
Reionization (PAPER), the Murchison Widefield Array
(MWA), the LongWavelength Array (LWA), the Expanded Very

Large Array (EVLA), the Allen Telescope Array (ATA), the Kar-
ooArrayTelescope (MeerKAT), theAustralianSquareKilometer
Array Pathfinder (ASKAP), theAtacamaLargeMillimeter Array
(ALMA), and the Combined Array for Research Millimeter-
wave Astronomy (CARMA). This paper presents a novel ap-
proach to the intense digital signal-processing requirements of
these instruments that has many other applications to astronomy
signal processing.

While each generation of electronics has brought new com-
modity data processing solutions, the need for high-bandwidth
communication between processing nodes has historically led
to specialized system designs. This communication problem is
particularly germane for correlators, where the number of
connections between nodes scales with the square of the number
of antennas. Solutions to date have typically consisted of
specialized processing boards communicating over customback-
planes using nonstandard protocols. However, such solutions
have the disadvantage that each new generation of digital1 Affiliated with Karoo Array Telescope, Cape Town, South Africa.
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electronics requires expensive and time-consuming investments
of engineering time to re-solve the same connectivity problem.
Redesign is driven by the same Moore’s Law that makes digital
interferometry attractive, and is not unique to the interconnect
problem; processors such asApplication-Specific IntegratedCir-
cuits (ASICs) and Field Programmable Gate Arrays (FPGAs)
also require redesign, as do the boards bearing them, and the
signal-processing algorithms targeting their architectures.

Our research is aimed at reducing the time and cost of
correlator design and implementation. We do this, first, by
developing a packetized communication architecture relying
on industry-standard Ethernet switches and protocols to avoid
redesigning backplanes, connectors, and communication
protocols. Second, we develop flexible processing modules that
allow identical boards to be used for a multitude of different
processing tasks. These boards are applicable to general signal-
processing problems that go beyond correlators and even radio
science to include, e.g., ASIC design and simulation, genomics,
and research into parallel processor architectures. General-
purpose hardware reduces the number of boards that have to
be redesigned and tested with each new generation of electro-
nics. Third, we create parametrized signal-processing libraries
that can easily be recompiled and scaled for each generation of
processor. This allows signal-processing systems to quickly take
advantage of the capabilities of new hardware. Finally, we em-
ploy an extension of a Linux kernel to interface between CPUs
and FPGAs for the purposes of testing and control, presenting a
standard file interface for interacting with FPGA hardware.

This paper begins with a presentation of the new correlator
design architecture in § 2. The hardware to implement this
architecture follows in § 3, and the FPGA gateware used in
the hardware is summarized in § 4. Issues concerning system in-
tegration are given in § 5, and performance characterization of
subsystems are given in § 6. Results from our first deployments
of the packetized correlator are displayed in § 7. Our final section
summarizes our progress and points to a number of
directions we are pursuing for the next generation of scalable cor-
relators based on modular hardware, reuseable gateware, and
data packetization.

2. A SCALABLE, ASYNCHRONOUS, PACKETIZED
FX CORRELATOR ARCHITECTURE

Correlators integrate the pairwise correlation between
complex voltage samples from polarization channels of array an-
tenna receivers at a set of frequencies. Once instrumental effects
have been calibrated and removed, the resultant correlations
(called visibilities) represent the self-convolved electric field
across an aperture sampled at locations corresponding to separa-
tions between antennas. These visibilities can be used to recon-
struct an image of the sky by inverting the interferometric
measurement equation:

V ij;νðu; vÞ ¼
ZZ

gi;νg
�
j;νIνðℓ;mÞe�2πi½uℓþvmþwð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ℓ2�m2

p
�1Þ�

× dℓdm: (1)

Iν represents the sky brightness in angular coordinates ðℓ; mÞ, gν
represents the voltage gain of each antenna element, and ðu; v; wÞ
correspond to the separation in wavelengths of an antenna pair
relative to a pointing direction. For antennas with separate polar-
ization feeds, cross-correlation of polarizations yields compo-
nents of the four Stokes parameters that characterize polarized
radiation, here defined in terms of linear polarizations ð∥;⊥Þ
for all pairs of antennas A and B (Rybicki & Lightman 1979):

I ¼ A∥B�∥ þA⊥B�⊥ Q ¼ A∥B�∥ �A⊥B�⊥
U ¼ A∥B�⊥ þA⊥B�∥ V ¼ A∥B�⊥ �A⊥B�∥

(2)

I measures total intensity, V measures the degree of circular po-
larization, andQ andU measure the amplitude and orientation of
linear polarization.

The problem of computing pairwise correlation as a function
of frequency can be decomposed two mathematically equivalent
but architecturally distinct ways. The first architecture is known
as “XF” correlation because it first cross-correlates antennas
(the “X” operation) using a time-domain “lag” convolution,
and then computes the spectrum (the “F” operation) for each
resulting baseline using a discrete Fourier transform (DFT).
An alternate architecture takes advantage of the fact that con-
volution is equivalent to multiplication in Fourier domain. This
second architecture, called “FX” correlation, first computes the
spectrum for each individual antenna (the “F” operation), and
then multiplies pairwise all antennas for each spectral channel
(the “X” operation). An FX correlator has an advantage over XF
correlators in that the operation that scales as OðN2Þ with the
number of antennas, N , is a complex multiplication as opposed
to a full convolution in an XF correlator (D’Addario 2001;
Yen 1974).

Though there are mitigating factors (such as bit-growth for
representing the higher dynamic range of frequency-domain
data) that favor XF correlators for small numbers of antennas
(Thompson et al. 2001), FX correlators are more efficient for
larger arrays. Because scalability to large numbers of antennas
is one of the primary motivations of our correlator architecture,
we have chosen to develop FX architectures exclusively.

2.1. Scalability With Number of Antennas and
Bandwidth

The challenge of creating a scalable FX correlator is in
designing a scalable architecture for factoring the total
computation into manageable pieces and efficiently bringing
together data in each piece for computation. Traditionally,
the spectral decomposition (in F engines) has been scaled to
arbitrary bandwidths by using analog mixers and filters to
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divide the operating band of each antenna into the widest sub-
bands that can be processed digitally using existing technology.
Within correlation of a given subband, the complexities of com-
putation and of data distribution both scale linearly with band-
width and quadratically with the number of antennas. It is
imperative that the arrangement of cross-multiplication engines
(hereafter referred to as X engines) minimize data replication
and retransmission, even as X engines expand to encompass
many boards. Fortunately, each frequency channel of an FX cor-
relator is computationally independent, providing a natural
boundary for dividing computation among processing nodes.

Figure 1 illustrates a simplistic architecture for an FX corre-
lator that takes advantage of the computational independence of
channels to avoid unnecessary data transmission; the total X
computation has been factored into X engines that cross-
multiply all antenna pairs for a single frequency channel. This
architecture is overly simplistic, because an X engine’s perfor-
mance can be equated to an aggregate input bandwidth that it
can handle. For the sake of efficiency, an X-engine processor
should receive as many channels as it has capacity to process.
In this case, the number of X engines is given by

X� Engines ¼ ðAntenna BandwidthÞ × ðAntennasÞ
XEngine Processing Bandwidth

: (3)

Multiplexing channels into X engines makes cross-multiplica-
tion complexity independent of the number of channels. There
are three potential bottlenecks for scaling this architecture: the
complexity of interconnecting F engines and X engines, the
bandwidth into individual X engines, and the amount of
computation in an X engine relative to the size of a processing
chip, board, or system. Each of these bottlenecks warrants
further discussion.

The potential bottleneck of connecting N antenna-based F
engines to M channel-based X engines is highlighted by the
crossed lines in Figure 1. Historically, this bottleneck has been
addressed with custom backplanes and transmission protocols.
However, our group has taken the novel approach of using high-

performance, commercially available, 10 Gbit s�1 Ethernet
(10 GbE) switches to solve this problem. As will be discussed,
these switches currently have the bandwidth and switching
capacity to handle large correlators, and represent a negligible
fraction of the total cost of correlator hardware. Furthermore,
switching technology is driven by commercial applications
and by Moore’s Law, making it likely that future switches will
continue increasing in number of ports and bandwidth per port.

A second potential bottleneck concerns how data rates and
numbers of X engines scale with antenna bandwidth. It is
important that we consider various bandwidth cases, owing
to the variety of science applications driving large, next-
generation systems. For example, correlators for large arrays
of low-bandwidth antennas will need to multiplex data into
higher bandwidth processors, while arrays with larger band-
widths will face the opposite problem. In our architecture,
we make the reasonable assumption that the number of
frequency channels always exceeds the number of antennas.
This assumption ensures that the per-port bandwidth into an
X engine never exceeds what is transmitted per antenna. Multi-
ple channels may then be mapped into an X engine up to its
computational capacity (allowing efficient resource utilization
for low-bandwidth arrays), and additional X engines may be
added for high-bandwidth applications. Antenna bandwidths re-
quiring transmission above 10 Gbit s�1 can be accommodated
by connecting F engines to multiple 10 GbE ports. Frequency
channels are then assigned to each port, which connect separate
switches and subnetworks of X engines. In this way, bandwidths
may be scaled up to the transmission capability of an F
processor by increasing the number of subnets and not switch
complexity.

The third and final potential bottleneck concerns how the
sizes of individual X engines scale with the number of antennas.
Both large and small numbers of antennas pose scaling pro-
blems. The size of an X engine responsible for computing
all baseline cross-multiples with a fixed input data rate scales
as OðNÞ, while the number of X engines required to accommo-
date the expanding data bandwidth with increasing numbers of
antennas also scales asOðNÞ, accounting for theOðN2Þ scaling
of computing in a correlator. For sufficiently largeN , the size of
an X engine can exceed the size of any processing chip or board.
Our solution has been to develop an X engine whose pipelined
architecture allows it to be split across multiple processors with
simple point-to-point connectivity. This allows many processors
to be chained together from a switch port to meet the computa-
tional demands of an X engine. Scaling to small N is equally
challenging, because the aggregate correlator bandwidth de-
creases as OðNÞ, while computational complexity scales down
asOðN2Þ. As a result, we can find that the number of X engines
that fit onto a chip or board exceeds the rate at which data can be
received. The threshold where this problem is encountered can
be changed by designing processors with greater connectivity,
but once hardware is fixed, there is no other recourse but to

FIG. 1.—In a simplistic FX correlator, the signals from N antennas are first
decomposed intoM frequency channels (F operation) and then cross-multiplied
(X operation). Different channels are never cross-multiplied, making them nat-
ural units for X-engine processing. Thus, each X engine handles all baselines for
one frequency channel.

SCALABLE CORRELATOR ARCHITECTURE 1209

2008 PASP, 120:1207–1221



accept a certain inefficiency for low numbers of antennas. While
this is a fundamental limitation of our architecture, the cost of
small correlators is typically dominated by development (not
hardware), so a certain architectural inefficiency can be accom-
modated for the savings it affords in development time.

2.2. Globally Asynchronous Locally Synchronous Systems

Packetized data transmission simplifies the cross-connect
problem inherent to correlators, but this comes at the price
of global synchronicity. Packetized communication is funda-
mentally asynchronous: data can arrive scrambled, delayed,
or not at all. Locally synchronous X-engine processing must
therefore transition from being timing driven (with throughput
tied to an FPGA clock, for example) to being asynchronously
data driven. Though data buffers and control signals complicate
development, globally asynchronous–locally synchronous
(GALS) design facilitates system integration and leads to robust
design (Chapiro 1984; Plana et al. 2007). Processors run at
clock rates above the data rate, using local oscillators that
can drift with temperature. By allowing for nontransmission
of data, individual components can fail without causing global
failure—an important feature for large systems where compo-
nents may fail regularly during operation. GALS design also
insulates processing architectures from decisions regarding
sample rates and antenna bandwidths, allowing for greater
operational flexibility. Finally, individual processing elements
may be redesigned and upgraded in a GALS system without
affecting the overall architecture, facilitating early adoption
of new technology.

Data-driven processing on locally synchronous processors
like FPGAs requires controlling propagation through the pro-
cessing pipeline. However, routing control signals to every mul-
tiplier, accumulator, and logic element in a pipeline can lead to
excessive routing and gating demands. To avoid this, we have
implemented a window-based processing architecture for algo-
rithms where the results derived from one set of data samples are
computationally independent from the next. In this architecture,
processing elements are allowed to run freely at their native rate
without being enabled or disabled, but are only provided data
when an entire window of data has been buffered. These win-
dows of data are provided synchronously with the inherent win-
dow boundaries of the processing element, and an entire output
window is flagged as valid. Internally, a processor processes
both valid and invalid data—it is only the external buffering sys-
tem that keeps track of data validity. This technique is applicable
to many common operators such as cross-multipliers, DFTs,
and accumulators. Finite impulse response (FIR) filtering is
an operation notable for not being window based.

2.3. Example Applications

Perhaps the best method for demonstrating the flexibility and
scalability of our correlator architecture is through example ap-

plications. To illustrate techniques for using hardware and ports
efficiently, we map processing into fictitious hardware that
corresponds roughly in capability to the Center for Astronomy
Signal Processing and Engineering Research (CASPER)2

hardware discussed in § 3.
Our first example (Fig. 2) illustrates an antenna signal band-

width sufficiently low so that data from 2 polarization channels
of 2 antennas can be transmitted over one 10 GbE connection.
Assuming that the number of antennas evenly divides the num-
ber of frequency channels, and that the processing bandwidth of
an X engine matches the data bandwidth of one antenna, there
will be the same number of X engines as F engines, and each X
engine will receive 1=N th of the total bandwidth, where N is
the number of antennas. F-engine transmission and X-engine
reception are combined on a single port to make use of the
bidirectionality of 10 GbE. This optimization halves the size
of the switch needed. Multiple X processors can be chained to-
gether from a single 10 GbE port using point-to-point connec-
tions. For cases where the number of antennas does not evenly
divide the number of frequency channels, one can adjust packet
transmission to drop remainder channels so that the band may
be equally divided among X engines.

A second example (Fig. 3) illustrates a case where the band-
width from a single F engine exceeds the transmission capacity
of a 10 GbE link. Here, data can be split by frequency channel
across two ports. Because different channels are never cross-
multiplied, each of these links goes to a separate subnet of
switched X engines. Thus, two smaller (and often less expensive
per port) switches may be substituted for one large one. Each X
engine still receives the same bandwidth as in the previous
example, although this now represents a smaller fraction of
the total bandwidth. Note that the same X processor used in
the first example functions here without modification. Only
the number of X engines and the transmission pattern has
changed.

A final example (Fig. 4) explores the case where the capacity
of an X processor and a 10 GbE link both exceed the data band-
width. In this case, multiple F engines can (but do not have to)
be chained together to minimize the number of switched
ports. As should be the case, only half as many X engines
(as compared to Fig. 2) are necessary for a given number of
antennas. X processors operate in the same configuration as
before, oblivious to changes in F engines.

These examples highlight the flexibility of the hardware and
gateware for targeting a number of applications. One shortcom-
ing they also illustrate is how the cabling between components
differs for different bandwidths. Therefore the different band-
width operations are not as easily reconfigured as might be
desired for varying science goals on a given telescope. Research
is ongoing to improve the rapid reconfigurability that is an

2 See http://casper.berkeley.edu.
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essential specification for the most general radio interferometer
array applications.

3. MODULAR, FPGA-BASED PROCESSING
HARDWARE

A flexible and scalable correlator architecture is of limited
use without equally dynamic processing hardware that can
support a variety of configurations. FPGAs provide a unique
combination of flexibility and performance that make them
well-suited for moderate-scale signal-processing applications
such as correlators and spectrometers (Parsons et al. 2006).
A primary goal of the CASPER group has been development
of multipurpose processing modules that can be of general
use to the astronomy signal-processing community, and beyond.
We seek to minimize the effort of redesigning and upgrading
hardware by modularizing processing hardware, by minimizing
the number of different modules in a system and by employing
industry-standard interconnection protocols.

Hardware modularity is the idea that boards should have con-
sistent interfaces in order to be connectable with an arbitrary
number of heterogeneous components to meet the computing
needs of an application (“computing by the yard”), and that up-
grading or revising a component does not change the way in
which components are combined in the system. Minimization
of hardware reproduction costs is often used to motivate the
design of specialized hardware for large-scale correlators.

However, the longer development times inherent in such solu-
tions and the necessity of targeting specific components from
the outset suggest that a modular solution, initiated nearer to
the deployment date, will employ newer technology that costs
less and uses less power per operation. The predicted economy
of mass-producing specially designed hardware must be tem-
pered by its expected devaluation by Moore’s Law over the
course of correlator development. This devaluation makes the
argument that hardware modularity can reduce the overall
system cost, even for large-scale systems, by reducing develop-
ment time.

In current correlator systems, we rely on two CASPER
FPGA-based processing boards; Internet break-out boards
(IBOBs) are generally used for implementing per-antenna F-
engine processing, and second-generation Berkeley Emulation
Engines (BEE2s) implement X-engine processing. Work is pro-
gressing on a new board, the Reconfigurable Open Architecture
for Computing Hardware (ROACH), which will provide a
single-board solution to both F and X processing. A summary
of CASPER hardware is available in Table 1.

IBOBs (Fig. 5) can interface to two analog-to-digital conver-
ter (ADC) boards, each capable of digitizing two streams at 1
Gsample s�1 or a single stream at 2 Gsamples s�1 using an At-
mel AT84AD001B dual 8-bit ADC chip. This data is processed
by a Xilinx XC2VP50 FPGA containing 232 18 × 18-bit multi-
pliers, two PowerPC CPU cores, and over 53,000 logic cells.
Two zero-bus turnaround (ZBT) static RAM (SRAM) chips pro-
vide 36 Mbits of extra buffering, and two 10 GbE-compatible

FIG. 2.—Data bandwidth per antenna is equal to the processing bandwidth of
an X processor in this example application. Transmitted data is routed through
an X processor to take advantage of bidirectionality of 10 GbE ports, thereby
halving the number of ports on the switch.

FIG. 3.—Data bandwidth per antenna can exceed what can be carried over
10 GbE. Here, the frequency band has been spread across ports by channel,
so that each half of transmission occurs on an isolated subnet. This is possible
because different channels are never cross-multiplied in an FX correlator.
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CX4 connectors provide a standard interface for connecting
to other boards, switches, and computers. A detailed discussion
of ADC signal fidelity is presented in § 6. We are developing
a second ADC board that allows four signal sampling
at 200 Msample s�1.

The BEE2 board shown in Figure 5 (Chang et al. 2005) was
originally designed for high-end reconfigurable computing ap-
plications such as ASIC design, but has been conscripted for
astronomy applications in a collaboration between the BWRC,3

the UC Berkeley Radio Astronomy Laboratory, and the UC
Berkeley SETI group. The 500 Gops s�1 of computational
power in the BEE2 is provided by 5 Xilinx XC2VP70
Virtex-II Pro FPGAs, each containing 328 multipliers, two
PowerPC CPU cores capable of running Linux, and over
74,000 configurable logic cells. Each FPGA connects to

4 GB of double-data-rate 2 type of off-FPGA synchronous dy-
namic random access memory (DDR2-SDRAM), and four
10 GbE-compatible CX4 connectors, and all FPGAs share a
100-Mbps Ethernet port. The size and connectivity of the
BEE2 board make it suitable for implementing X-engine pro-
cessing in our correlator architecture.

The ROACH board is being developed in collaboration with
MeerKAT and NRAO4 and is scheduled for release in the third
quarter of 2008. It is intended as a replacement for both IBOB
and BEE2 boards. A single Xilinx Virtex-5 XC5VSX95T
FPGA containing 94,000 logic cells and 640 multiplier/
accumulators provides 400 Gops s�1 of processing power and

FIG. 4.—When the processing bandwidth of an X engine exceeds the antenna
bandwidth by at least a factor of 2, half as many X processors are needed for a
given number of antennas. X processors operate independently of data band-
width; the same design handles this and the previous two cases (Figs. 2 and
3). Only the number of X processors and the data transmission pattern have
changed. FIG. 5.—Our correlator architecture relies on modular FPGA-based proces-

sing hardware developed by our group to combine flexibility, upgradeability,
and performance. Illustrated above are (top) IBOB and ADC FPGA/digitizer
modules (bottom) The Berkeley Emulation Engine (BEE2) FPGA board

3 Berkeley Wireless Research Center is online at http://bwrc.eecs.berkeley
.edu.

4The National Radio Astronomy Observatory (NRAO) is owned and operated
by Associated Universities, Inc. with funding from the National Science
Foundation.
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is connected to a separate PowerPC 440EPx processor with a
1 GbE network connection. The board contains 4 GB of
DDR2 DRAM and two 36Mbit quad-data-rate (QDR) SRAMs,
four 10 GbE-compatible CX4 connectors, and two interfaces
that allow the use of the current ADC boards, or a new 3
Gsamples s�1 (6 Gsamples s�1 dual-board interleaved) ADC.
The scale, economy, and peripheral interfaces of this board will
make it appropriate for both F- and X-engine processing, and
will enable a single-board correlator architecture.

4. GATEWARE

Efficient, customizable signal-processing libraries are an-
other important component of a flexible and scalable correlator
architecture. Toward this goal, our group has designed a set of
open-source libraries5 for the Simulink/Xilinx System Genera-
tor FPGA programming language. These libraries abstract chip-
specific components to provide high-level interfaces targeting a
wide variety of devices. Signal-processing blocks in these
libraries are parametrized to scale up and down to arbitrary
sizes, and to have selectable bit widths, latencies, and scaling.
Though the design principles of parametrization and scalability
have added complexity to the initial design of these libraries, it
dramatically enhances their applicability and potential for long-
evity as hardware evolves. It also decreases testing time by
allowing developers to debug scale models of systems that de-
rive from the same parametrization code and are behaviorally
similar to larger systems. In this section, we present several
components of our libraries vital to the design of flexible
correlators.

4.1. A Digital Down-Converter

The rising speed of ADCs has enabled digitization to occur
increasingly early in the antenna receiver chain. We are thus
replacing analog electronics commonly known as intermediate
frequency processor (gain, band definition) and baseband mixer
(conversion to zero frequency and filtering). There are numer-
ous advantages to doing this. Digital mixing allows dynamically
selecting an operating frequency within the digitized band while
ensuring perfect sine-cosine phasing in the local oscillator (LO)
mixing frequency. Digitizing a wider bandwidth than will be
ultimately processed makes analog filtering less critical;
inexpensive filters with slow roll-offs can be used, and passband
rippling can be corrected. Finally, digital filtering allows
flexibility and control in selecting passband shapes and adjust-
ing fine delays. One can even split out several bands from the
same signal. The issue of quantization levels and other digital
artifacts needs to be carefully addressed.

Our library provides a digital down-conversion core with a
runtime-selectable mixing frequency. Using a discretely

sampled sine wave in an addressable lookup table, we can
approximate nearly any mixing frequency by rounding a wide
accumulation register (incremented every clock) to the nearest
address in the lookup table. Digital sine waves have an accuracy
dictated by the number of bits used to represent a value; a look-
up table need only have enough samples to achieve comparable
accuracy. The fact that the derivative of sinðxÞ reaches a
maximum magnitude of 1 allows the sampling interval of a sine
wave to be simply equated to the accuracy of a coefficient over
that time interval. As a result, a lookup table only need be
addressed with the same bit-width as the sample width to
implement an arbitrary mixing frequency.

Our library also contains a decimating FIR filter. Digital fil-
ters have advantages over analog filters by being reprogram-
mable and by providing exact, calculable passbands. This
filter is often used for suppressing the harmonics of the mixing
frequency and for steepening the roll-off of cheaper analog
filters, but it has also been relied upon for implementing IF sub-
band selection digitally. In practice, one must weigh the need for
performance and flexibility against the cost of FPGA resources
compared to analog filters. As an example, the response of the

FIG. 6.—This example response of the FIR filter in a digital down-converter,
illustrates the 16 tap low-pass design used in the correlator deployments pre-
sented later.

TABLE 1

PRICE AND POWER CONSUMPTION OF CASPER HARDWARE 1

Board Board Cost
Cost with
FPGAs Gops s�1

Power
(W)

IBOB . . . . . . . . . . . . . . . . . . $400 $2700 70 30
BEE2 . . . . . . . . . . . . . . . . . . $5000 $23500 500 150
ROACH . . . . . . . . . . . . . . . a $1000 $3200 400 50
ADC (1 Gs=s × 2) . . . . . $200 $200 N/A 2
ADC (3 Gs=s) . . . . . . . . a $1000 $1000 N/A 5

a Estimated from prototype versions.

5 Also available at http://casper.berkeley.edu.
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FIR filter used in various correlator designs is shown in Figure 6.
Because the exact shape of this filter can be calculated, it is
possible to remove passband ripple post-channelization because
of the large dynamic range available in the output of our fast
Fourier transform FFT core.

4.2. A Polyphase Filter Bank Front-End

The polyphase filter bank (PFB; Crochiere & Rabiner 1983;
Vaidyanathan 1990; Urry 2000) is an efficient implementation
of a bank of evenly spaced, decimating FIR filters. The PFB
algorithm decomposes these filters into a single polyphase con-
volution followed by a DFT. Because DFTs have been highly
optimized algorithmically, this results in an extremely efficient
implementation. Equivalently, the PFB may be regarded as an
improvement on the FFT that uses a front-end polyphase FIR
filter to improve the frequency response of each spectral channel
(Fig. 7). This improvement comes at the cost of buffering an
additional window of samples and adding a complex cross-
multiplication for each additional tap in the polyphase FIR. This
PFB implementation has seen widespread use in the astronomy
community in 21 cm hydrogen surveys (Heiles et al. 2004),
pulsar surveys (Demorest et al. 2004), antenna arrays (Bradley
et al. 2005), Very Long Baseline Interferometry, and other
applications.

Our core is parametrized to use selectable windowing func-
tions, allowing adjustment of the out-of-band rejection and
passband ripple/roll-off. Blackman & Tukey (1958) provide a
summary of the characteristics and trade-offs of various win-
dows. Each polyphase FIR tap, at the cost of increased buffering
and additional multipliers, increases filter steepness by adding
samples (in increments of the number of channels) to the time

window used in the PFB. For fixed-point implementations, a
practical upper limit to the number of PFB taps is set by the
number of bits used to represent filter coefficients; the sinc func-
tion’s 1=x tapering ceases to be representable when πT > π þ
2Bþ1 where T is the number of taps, and B is the coefficient bit
width. Finally, the width of a PFB channel is tunable by adjust-
ing the period of the sinc function, forcing adjacent bandpass
filters to overlap at a point other than the �3 dB point. Note
that this causes power to no longer be conserved in the Fourier
transform operation.

4.3. A Bandwidth-Agile Fast Fourier Transform

The computational core of our FFT library is an implementa-
tion of a radix-2 biplex pipelined FFT (Rabiner & Gold 1975)
capable of analyzing two independent, complex data streams
using a fraction of the FPGA resources of commercial designs
(Dick 2000). This architecture takes advantage of the streaming
nature of ADC samples by multiplexing the butterfly computa-
tions of each FFT stage into a single physical butterfly core.
When used to analyze two independent streams, every butterfly
in this biplex core outputs valid data every clock for 100%
utilization efficiency.

The need to analyze bandwidths higher than the native clock
rate of an FPGA led us to create a second core that combines
multiple biplex cores with additional butterfly cores to create an
FFT that is parametrized to handle 2P samples in parallel
(Parsons 2008). This FFT architecture uses only 25% more
buffering than the theoretical minimum and still achieves
100% butterfly utilization efficiency. This feat is achieved by
decomposing a 2N channel FFT into 2P parallel biplex FFTs
of length 2N�P , followed by a 2P channel parallel FFT core
using time-multiplexed twiddle-factor coefficients.

Finally, we have written modules for performing two real
FFTs with each half of a biplex FFT using Hermitian conjuga-
tion. Mirroring and conjugating the output spectra to reconsti-
tute the negative frequencies, this module effects a 4-in-1 real
biplex FFT that can then be substituted for the equivalent
number of biplex cores in a high-bandwidth FFT. Thus, our real
FFT module has the same bandwidth flexibility as our standard
complex FFT.

Dynamic range inside fixed-point FFTs requires careful con-
sideration. Tones are folded into half as many samples through
each FFT stage, causing magnitudes to grow by a factor of 2 for
narrow-band signals, and

ffiffiffi
2

p
for random noise. To avoid

overflow and spectrum corruption, our cores contain optional
downshifts at each stage. In an interference-heavy environment,
one must balance loss of signal-to-noise ratio (S/N) from
downshifting signal levels against loss of integration time
due to overflows. A good practice is to place time-domain input
into the most-significant bits of the FFT and downshift as often
as possible to avoid overflow and minimize rounding error in
each butterfly stage. However, it is also best to avoid using
the top two bits on input since the first two butterfly stages

FIG. 7.—Response of a frequency channel in an 8-tap polyphase filter bank
(solid line) using a Hamming window is compared to an equivalently sized Dis-
crete Fourier Transform (dashed line). This particular PFB, implemented for
2048 channels, is used in the correlator deployments presented in § 7.
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can be implemented using negation instead of complex multi-
plies, but the asymmetric range of two’s complement arithmetic
can allow this negation to overflow.

4.4. A Cross-Multiplication/Accumulation (X) Engine

Our FX correlator architecture employs X engines to com-
pute all antenna cross-multiples within a frequency channel, and
multiple frequencies are multiplexed into the core as dictated by
processor bandwidth; the complex visibility V ij (Equation [1])
is the average of the product of complex voltage samples from
antenna i and antenna jwith the convention that the voltage j >
i is conjugated prior to forming product. In collaboration with
Lynn Urry of UC Berkeley’s Radio Astronomy Lab we have
implemented a parametrized module (Fig. 8) for computing
and accumulating all visibilities for a specified number of an-
tennas (Urry et al. 2007). An X engine operates by receiving
Nant data blocks in series, each containing T acc data samples
from one frequency channel of one antenna. The first samples
of all blocks are cross-multiplied, and the NantðNant þ 1Þ=2 re-
sults are added to the results from the second samples, and so
on, until all T acc samples have been exhausted. Accumulation
prevents the data rate out of a cross-multiplier from exceeding
the input data rate. An X engine is divided into stages, each
responsible for pairing two different data blocks together: the
zeroth stage pairs adjacent blocks, the first stage pairs blocks
separated by one, and so on. As the final accumulated results
become available, they are loaded onto a shift register and out-
put from the X engine.

However, as a new window of Nant × T acc samples arrives,
some stages, behaving as described above, would compute in-
valid results using data from two different windows. To avoid
this, each stage switches between cross-multiplying separations
of S to separations of Nant � S, which happen to be valid pre-
cisely when separations of S would be invalid. As a result, there
need be only floorðNant=2þ 1Þ stages in an X engine. Every
T acc samples, each stage outputs a valid result, yielding Nant ×

floorðNant=2þ 1Þ total accumulations; for even values of Nant,
Nant=2 of the results from the last stage are redundant. All other
multiplier/accumulators are 100% utilized. Each stage also
computes all polarization cross-multiples (Equation [2]) using
parallel multipliers.

When one X engine no longer fits on a single FPGA, it may
be divided across chips at any stage boundary at the cost of a
moderate amount of bidirectional interconnect. The output shift
register need not be carried between chips; each FPGA can ac-
cumulate and store the results computed locally. In order for the
output shift register’s floorðNant=2þ 1Þ stages to clear before
the next accumulation is ready, an X engine requires a minimum
integration length of T acc > floorðNant=2þ 1Þ. In current hard-
ware, a practical upper limit on T acc is set by the 2 × 4 Mbit of
SRAM storage available on the IBOB. For 2048 channels with
4-bit samples, and double buffering for 2 antennas, 2 polariza-
tions, this limit is T acc ≤ 128. Longer integration requires an
accumulator capable of buffering an entire vector of visibility
data, and typically occurs in off-chip DRAM. The maximum
theoretical accumulation length in a correlator is determined
by the fringe rate of sources moving across the sky and is a
function of observing frequency, maximum antenna separation,
and (for correlators with internal fringe rotation) field of view
across the primary beam.

Cross-multiplication comes to dominate the total correlator
processing budget for large numbers of antennas. As a result,
care must be taken both to reduce the footprint of a complex
multiplier/accumulator and to make full and efficient use of
the resources on an FPGA processor. The number of bits used
to carry a signal should be minimized while retaining sufficient
dynamic range to distinguish signal from noise. We have chosen
to focus on 4-bit multipliers in current applications, and the sub-
jects of dynamic equalization and Van Vleck correction general-
ized to 4 bits are explored in § 6 for optimizing S/N in our
correlators. To make full use of FPGA resources, we construct
4-bit complex multipliers using distributed logic, dedicated
multiplier cores, and lookup tables implemented in
Block RAMs.

It is possible to perform the bulk of an N-bit complex multi-
ply in an M-bit multiplier core by sign-extending numbers to
2N bits and combining them into two M-bit, unsigned
numbers. Multiplying ðaþ biÞðcþ diÞ, these representations
are ð2M�2Nas þ bsÞ and ð2M�2Ncs þ dsÞ, where
ns ¼ 22N þ n. The bits corresponding to ac, adþ bc, and bd
may be selected from the product, provided that the sign-exten-
sion to 2N bits shifts aþ d beyond the bits occupied by ad. This
yields the constraint:

6N � 1 < M: (4)

In current Xilinx FPGAs, 18-bit real multipliers can efficiently
perform 3-bit complex multiplies, but fall short of 4 bits.

FIG. 8.—This X-engine schematic illustrates the pipelined flow of data that
allows it to be split across multiple FPGAs and boards. With continuous data
input, all multipliers (with the possible exception of the final stage for even va-
lues of Nant) are used with 100% efficiency.
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5. SYSTEM INTEGRATION

5.1. F-Engine Synchronization

Though we have touted GALS design principles for X-
engine processing, digitization and spectral processing within
F engines must be synchronized to a time interval much smaller
than a spectral window to avoid severe degradation of correla-
tion response (Fig. 9). This attenuation effect, resulting from the
changing degree of overlap of correlated signals within a spec-
tral window, can be caused by systematic signal delay between
antennas, as well as by source-dependent geometric delay; FX
correlators with insufficient channel resolution experience a nar-
rowing of the field of view related to channel bandwidth. This
effect has been well explored for FX correlators employing
DFTs (see Chapter 8 of Thompson et al. 2001), but Polyphase
Filter Banks show a different response owing to a weighting
function that extends well beyond the number of samples used
in a DFT. Given a standard form for PFB sample weighting of
sincð πt

Nτ s
ÞWð t

2TNτ s
Þ, where N is the number of output channels,

T is the number of PFB taps, τ s is the delay between time-
domain samples, andW is an arbitrary windowing function that
tapers to 0 at�1, the gain versus delayGðτÞ of a PFB-based FX
correlator is given by
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For the purpose of F-engine synchronization, we rely on a one-
pulse-per-second (1 PPS) signal with a fast edge-rate provided
synchronously to a bank of F processors running off identical
system clocks. This signal is sampled by the system clock on
each processor and provided alongside ADC data. A slower,
asynchronous “arm” signal is sent from a central node to each
F engine at the half-second phase to indicate that the next 1 PPS
signal should be used to generate the reset event that synchro-
nizes spectral windows and packet counters. This ensures that
samples from different antennas entering X engines together
were acquired within one or two system clocks of one another.
The degree of synchronization is determined by the difference in
path lengths of 1 PPS and the system clock from their generators
to each F engine. This path length can be determined from ce-
lestial source observations using self-calibration and, barring
temperature effects, will be constant for a correlator configura-
tion following power-up.

5.2. Asynchronous, Packetized “Corner Turner”

The choice of the accumulation length T acc in X engines de-
termines the natural size of UDP (user datagram protocol) pack-
ets in our packet-switched correlator architecture. For current
CASPER hardware where channel-ordering occurs in IBOB
SRAM, T acc is constrained by the available memory to an upper
limit of 128 samples for 2048-channel dual-polarization, 4-bit,
complex data, yielding a packet payload of 256 bytes. A header
containing 2 bytes of antenna index and 6 bytes of frequency/
time index is added to each packet to enable packet unscram-
bling on the receive side. The frequency/time index (hereafter
referred to as the master counter, or MCNT) is a counter that is
incremented every packet transmission. The lower bits count
frequencies within a spectrum, and the rest count time. Com-
bined with the antenna index, MCNT completely determines

FIG. 9.—Cross-correlation of noise decreases as a function of signal delay
between antenna inputs. PFBs operate on a wider window of data compared
to DFTs, and use nonflat sample weightings, yielding a different correlation re-
sponse vs. signal delay compared to the standard result presented in Thompson
et al. (2001). Graphed are the responses of PFBs with eight taps (solid line), four
taps (dashed line), two taps (dot-dashed line), and the response of a DFT (dotted
line).

FIG. 10.—Before transmission, each F-engine packet is tagged with an anten-
na number and master counter (MCNT) encoding time and frequency. Received
packets are filtered to the narrow range of MCNTs, and maximumMCNT slides
smoothly up as packets are received. A free-running X engine processes avail-
able windows when it is ready. This architecture allows data to be processed at a
lower data rate than the FPGA clock rate without requiring every element in the
pipeline to have an enable signal.
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the time, frequency, source, and destination of each packet;
MCNT maps uniquely to a destination IP address.

Packet reception (Fig. 10) is complicated by the realities of
packet scrambling, loss, and interference. A circular buffer
holding Nwin windows worth of X-engine data stores packet
data as they arrive. The lower bits of MCNT act as an address
for placing payloads into the correct window, and the antenna
index addresses the position within that window. When data ar-
rivesNwin=2windows ahead of a buffered window, that window
is flagged for readout, and is processed contiguously on the next
window boundary of the free-running X engine. Using packet
arrival to determine when a window is processed allows a data-
rate dependent time interval for all packets to arrive, but pushes
data through the buffer in the event of packet loss. On readout,
the buffer is zeroed to ensure that packet loss results in loss of
signal, rather than the introduction of noise. F engines can be
intentionally disconnected from transmission without compro-
mising the correlation of those remaining.

Packet interference occurs when a well-formed packet con-
tains an invalid MCNT as a result of switch latency, unsynchro-
nized F engines, or system misconfiguration. Such packets must
be prevented from entering the receive buffer, since they can
lead to data corruption; one would prefer that a misconfigured
F-engine antenna result in data loss for that antenna, rather than
data loss for the entire system. To ensure this behavior, incom-
ing packets face a sliding filter based on currently active
MCNTs. Packets are only accepted if their MCNT falls within
the range of what can currently be held in the circular buffer. As
higher MCNTs are received and accepted, old windows are
flagged for read out, freeing up buffer space for still higher
MCNTs. This system forces MCNTs to advance by small incre-
ments and prevents the large discontinuities indicative of packet
interference. In the eventuality that a receive buffer accidentally
locks onto an invalid MCNT from the outset, a time-out clause
causes the currently active MCNT to be abandoned for a new
one if no new data is accepted into the receive buffer.

A final complication comes when implementing a bidirec-
tional 10 GbE transmission architecture such as the one outlined
in Figure 2. Commercial switches do not support self-addressed
packet transmission; they assume that the transmitter (usually a
CPU) intercepts these packets and transfers them to the receive
buffer. On FPGAs, this requires an extra buffer for holding
“loopback,” and a multiplexer for inserting these packets into
the processing stream. A simple method for this insertion would
be to always insert loopback packets, if available, and otherwise
to insert packets from the 10 GbE interface. However, there is a
maximum interval over which packets with identical MCNTs
can be scrambled before the receive system rejects packets
for being outside of its buffer. This simple method has the un-
desirable effect of including switch latency in the time interval
over which packets are scrambled, causing unnecessary packet
loss. Our solution is to pull loopback packets only after packets
with the same MCNT arrive through the switch.

5.3. Monitor, Control, and Data Acquisition

The toolflow we have developed for CASPER hardware
provides convenient abstractions for interfacing to hardware
components such as ADCs, DRAM, and 10 GbE transceivers,
and allows specified registers and block RAMs (BRAMs) to
be automatically connected to CPU-accessible buses. On top
of this framework, we run Berkeley Operating system for Re-
Programmable Hardware (BORPH)–an extension of the Linux
operating system that provides kernel support for FPGA re-
sources (So & Brodersen 2006; So 2007). This system allows
FPGA configurations to be run in the same fashion as software
processes, and creates a virtual file system representing themem-
ories and registers defined on the FPGA. Every design compiled
with this toolflow comes equipped with this real-time interface
for low- tomoderate-bandwidth data I=O.By emulating standard
file-I=O interfaces, BORPH allows programmers to use standard
languages for writing control software. Themajority of themoni-
tor, control, and data acquisition routines in our correlators are
written in C and Python. For 8–16 antenna correlators, the band-
width through BORPH on a BEE2 board is sufficient to support
the output of visibility data with 5-10s integrations.

For correlators with more antennas or shorter integration
times, the bandwidth of the CPU/FPGA interface is incapable
of maintaining the full correlator output. This limitation is being
overcome by transmitting the final correlator output using a
small amount of the extra bandwidth on the 10 GbE ports al-
ready attached to each X engine. After accumulation in DRAM,
correlator output is multiplexed onto the 10 GbE interface and
transmitted to one or more data acquisition (DA) systems at-
tached to the central 10 GbE switch. These systems collect
and store the final correlator output. With a capable DA system,
the added bandwidth through this output pathway can be used to
attain millisecond integration times, opening up opportunities
for exploring transient events and increasing time resolution
for removing interference-dominated data.

The capabilities of correlators made possible by our research
are placing new challenges on DA systems (Wright 2005).
There is a severe (factor of 100) mismatch between the data
rates in the online correlator hardware and those supported
by the offline processing. Members of our team are currently
pursuing research on how this can be resolved both for corre-
lators and for generic signal-processing systems using commer-
cially available compute clusters. For correlators, our group is
currently exploring how to implement calibration and imaging
in real-time to reduce the burden of expert data reduction on the
end user, and to make best use of both telescope and human
resources.

6. CHARACTERIZATION

6.1. ADC Crosstalk

Crosstalk is an undesirable but prevalent characteristic of
analog systems wherein a signal is coupled at a low-level into
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other pathways. This can pose a major threat to sensitivity in
systems that integrate noise-dominated data to reveal low-level
correlation. For CASPER hardware, we have examined cross-
talk levels between signal inputs sharing an ADC chip, and be-
tween different ADC boards on the same IBOB. Figure 11
illustrates a one-hour integration of uncorrelated noise of var-
ious bandwidths input to the “Pocket Correlator” system (see
§ 7). Between inputs of the same ADC board, a coupling coef-
ficient of ∼0:0016 indicates crosstalk at approximately�28 dB.
This coupling is a factor of 5 higher than the �35 dB isolation
advertised by the Atmel ADC chip, and is most likely the result
of board geometry and shared power supplies. Crosstalk be-
tween inputs on different ADCs also peaks at the �28 dB level,
but shows more frequency-dependent structure.

Crosstalk may be characterized and removed, provided that
its timescale for variation is much longer than the calibration
interval. Figure 12 demonstrates that for integration intervals
ranging from 7.15 seconds to approximately 1 day (the limit
of our testing), crosstalk amplitudes and phases vary around
stable values in a lab test that, when subtracted, yield noise that
integrates down with time. Even though crosstalk is encoun-
tered at the �28 dB level, its stability allows suppression to
at least �62 dB. This stability has allowed crosstalk to be re-
moved post-correlation, and we have until recently deferred
adding phase switching. Developments along this line are pro-
ceeding by introducing an invertible mixer (controlled via a
Walsh counter on an IBOB) early in the analog signal path,
and removing this inversion after digitization. Phase switching
must be coupled with data blanking near boundaries when the
inversion state is uncertain. Blanking will be most easily imple-
mented by intentionally dropping packets of data from F-engine
transmission, and by providing a count of results accumulated in
each integration for normalization purposes.

6.2. XAUI Fidelity and Switch Throughput

CASPER boards are currently configured to transmit X (ten)
Attachment Unit Interface (XAUI) protocol over CX4 ports as a
point-to-point communication protocol and as the physical layer
of 10 GbE transmission. Because the Virtex-II FPGAs used in
current CASPER hardware do not fully support XAUI transmis-
sion standards,6 current devices can have suboptimal perfor-
mance for certain cable lengths. We expect the new ROACH
board, which employs Virtex-5 FPGAs, to have better perfor-
mance in this regard. For cable lengths supported in current
hardware, we tested XAUI transmission fidelity using matched
linear feedback shift registers (LFSRs) on transmit and receive.
Error detection was verified using programmable bit-flips fol-
lowing transmitting LFSRs. Over a period of 16 hours, 573 Tb
of data were transmitted and received on each of 8 XAUI links.
During this time, no errors were detected, resulting in an esti-
mated bit-error rate of 2:2 · 10�16 Hz. We also tested the cap-
ability of two Fujitsu switches (the XG700 and the XG2000) for
performing the full cross-connect packet switching required in
our FX correlator architecture. By tuning the sample rate inside
F engines of an 8-antenna (4-IBOB) packetized correlator, we
controlled the transmission rate per switch port over a range of
5.96 to 8:94 Gb s�1. In 10-minute tests, packet loss was zero for
both switches in all but the 8:94 Gb s�1 case. Packet loss in this
final case was traced to intermittent XAUI failure as a result of
imperfect compliance with the XAUI standard, as described pre-
viously. Overheating of FPGA chips in the field has also been
reported as a source of intermittent operation.

FIG. 11.—Uncorrelated noise sources with similar bandpass shapes were in-
put to two channels of one ADC board (solid black line) and a third noise source
with a narrower passband was input to a second ADC board (dashed black line)
in the “Pocket Correlator” system. Crosstalk levels between signal inputs on the
same ADC board (light gray line) and between ADC boards sharing an IBOB
(dark gray line) peak at �28 dB.

FIG. 12.—Measurements of the standard deviation vs. integration time of the
correlation between independent noise sources into the same ADC board show
that crosstalk exhibits stability over a period of 1 day for all frequency channels.
Although phase switching may still be desirable, this stability allows crosstalk to
be calibrated and removed after correlation.

6 See the RocketIO Tranceiver User Guide 2004 (UG024 V2.5) in the Xilinx
user guide and Virtex-II Pro and Virtex-II Pro X Platform FPGAs 2005: Func-
tional Description (DS083-2 V4.5), Xilinx data sheet, both at http://www.xilinx
.com.
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6.3. Equalization and 4-Bit Requantization

Correlator processing resources can be reduced by limiting
the bit-width of frequency-domain antenna data before cross-
multiplication. However, digital quantization requires careful
setting of signal levels for optimum S/N and subsequent calibra-
tion to a linear power scale (Thompson et al. 2001; Jenet &
Anderson 1998). Correlators using 4 bits represent an improve-
ment over their 1 and 2 bit predecessors, but there are still quan-
tization issues to consider. The total power of a 4-bit quantizer
has a nonlinear response with respect to input level as shown in
Figure 13. In currently deployed correlators, we perform equal-
ization (per channel scaling) to control the rms channel values
before requantizing from 18 bits to 4 bits. This operation satu-
rates RFI and flattens the passband to reduce dynamic range and
to hold the passband in the linear regime of the 4-bit quantiza-
tion power curve. Equalization is implemented as a scalar multi-
plication on the output of each PFB using 18-bit coefficients
from a dynamically updateable memory. These coefficients
allow for automatic gain control to maintain quantization
fidelity through changing system temperatures.

7. DEPLOYMENTS AND RESULTS

7.1. A Pocket Correlator

The “Pocket Correlator” (Fig. 14) is a single IBOB system
that includes F and X engines on a single-board for correlating
and accumulating 4 input signals. Each input is sampled at 4
times the FPGA clock rate (which runs up to 250 MHz), and
a down-converter extracts half of the digitized band. This sub-
band is decomposed into 2048 channels by an 8-tap PFB, equal-

ized, and requantized to 4 bits. With all input signals on one
chip, X processing can be implemented directly as multipliers
and vector accumulators, rather than as X engines. Limited buf-
fer space on the IBOB permits only 1024 channels (selectable
from within the 2048) to be accumulated. Output occurs either
via serial connection (with a minimum integration time of 5 sec-
onds) or via 100-Mbit UDP transmission (with a minimum in-
tegration time in the millisecond range). This system can act as a
2-antenna, full-Stokes correlator, or as a 4-antenna single
polarization correlator.

The Pocket Correlator is valuable as a simple, stand-alone
instrument, and for board verification in larger packetized sys-
tems. It is being applied as a stand-alone instrument in PAPER,
the ATA, and the University of North Carolina Pisgah
Astronomical Research Institute (UNC PARI) observatory. A 4-
antenna, single-polarization deployment of the PAPER experi-
ment in Western Australia in 2007 used the Pocket Correlator to
collect the data used to produce a 150 MHz all-sky map illu-
strated in Figure 15. In addition to demonstrating the feasibility
of post-correlation crosstalk removal, this map (specifically, the
imperfectly removed sidelobes of sources) illustrates a problem
that will require real-time imaging to solve for large numbers of
antennas.

7.2. An 8-Antenna, 2-Stokes, Synchronous Correlator

This first generation multiboard correlator demonstrated the
functionality of signal-processing algorithms and CASPER
hardware, but preceded the current packetized architecture—
it operated synchronously. This version of the correlator was
most heavily limited by X-engine resources, all of which were

FIG. 13.—Illustrated above is the relative gain through a 4-bit, 15-level
quantizer as a function of input signal level (log base 2). Plotted are gain curves
for the cross-correlation of two Gaussian noise sources with correlation levels of
100% (solid line), 80% (dot-dashed line), 40% (dotted line), and 20% (dashed
line).

FIG. 14.—This IBOB design serves a dual purpose as a stand-alone “Pocket
Correlator” and an F processor in a 16-antenna packetized correlator deploy-
ment. Note the parallel output pathways for each function.
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implemented on a single FPGA to simplify interconnection. The
total number of complex multipliers in the X engines of an Nant

antenna array is Ncmac ¼ floorðNant=2þ 1Þ ×Nant ×Npol; the
limited number of multipliers on a BEE2 FPGA only allowed
for supporting half the polarization cross-multiples. This system
was an important demonstration of the basic capabilities of our
hardware and software and provided a starting point for evol-
ving a more sophisticated system. Deployments of this system
at the NRAO site in Green Bank as part of the PAPER experi-
ment, and briefly at the Hat Creek Radio Observatory for the
Allen Telescope Array, are being superseded by the packetized
correlator presented in the next section.

7.3. A 16-Antenna, Full-Stokes, Packetized Correlator

This packetized FX correlator is a realization of the architec-
ture outlined in Figure 2, with F processing for 2 antennas im-
plemented on each IBOB, and matching X processors
implemented on each corner FPGA of two BEE2s. Each F pro-
cessor is identical to a Pocket Correlator (Fig. 14), but branches
data from the equalization module to a matrix transposer in
IBOB SRAM to form frequency-based packets. Packet data
for each antenna are multiplexed through a point-to-point XAUI
connection to a BEE2-based X processor, and then relayed in
10 GbE format to the switch. The number of channels in this
system is limited to 2048 by memory in IBOB SRAM for trans-
posing the 128 spectra needed to meet bandwidth restrictions
between X engines and DRAM-based vector accumulators.

The X processor in this packetized correlator implements the
transmit and receive architecture illustrated in Figure 16 for two
X engines sharing the same 10 GbE link. Each X engine’s data
processing rate is determined by packets arriving in its own re-
ceive buffer and results are accumulated in separate DRAM dual
inline memory modules (DIMMs). The accumulated output of
each X processor is read out of DRAM at a low bandwidth and
transmitted via 10 GbE packets to a CPU-based server where all
visibility data is collected and written to disk in Miriad format

(Sault et al. 1995) using interfaces from the Astronomical Inter-
ferometry in Python (AIPY) package.7

The clocks for the BEE2 FPGAs are asynchronous 200-MHz
oscillators, and IBOBs run synchronously at any rate lower than
this. Packet transmission is statically addressed so that all each
X engine processes every 16th channel. We use eight ports of a
Fujitsu XG700 switch to route data. This system is scalable to
32 antennas before two X engines no longer fit on a single
FPGA. For larger systems, the number of BEE2s will scale
as the square of the number of antennas, and the number of
IBOBs will scale linearly. A 32-antenna, 200-MHz correlator
on 16 IBOBs and four BEE2s is now working in the lab,
and a 16-antenna version using eight IBOBs and two BEE2s
has been deployed to the NRAO site in Green Bank with the
PAPER experiment.

8. CONCLUSION

By decreasing the time and engineering costs of building and
upgrading correlators, we aim to reduce the total cost of corre-
lators for a wide range of scales. Small- and medium-scale cor-
relators with total cost dominated by development clearly stand
to benefit from our research. It is less clear if the cost of large-
scale correlators can be reduced by the general-purpose hardware
used in our architecture. Thoughminimization of replication cost
favors the development of specialized parts, there are two factors
that can make a generic, modular solution cost less.

The first factor to consider is time to deployment. Even if the
monetary cost of development is negligible in the budget of a

FIG. 15.—This all-sky image, made using a 75-MHz band centered at
150 MHz with the “Pocket Correlator” as part of the PAPER experiment in
Western Australia, achieves an impressive 10,000:1 peak signal-to-noise ratio
using 1 day of data.

FIG. 16.—BEE2-based X processor in a packetized correlator transmits data
from an F engine over 10 GbE and stores self-addressed packets in a “loopback”
buffer. These streams are merged on the receive side, and packets are distributed
to two X engines. Accumulation occurs in DRAM buffers, and the results are
packetized and output over the same 10 GbE link. A data aquisition system con-
nects to the same switch as the X engines.

7 See http://pypi.python.org/pypi/aipy.
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large correlator, the cost of development time can be significant.
If a custom solution takes several years to go from design to
implementation, the hardware that is deployed will be out of
date. Moore’s Law suggests that when a custom solution taking
3 years to develop is deployed, there will exist processors 4
times more powerful, or 4 times less expensive for the equiva-
lent system. The cost of a generic, modular system has to be
tempered by the expected savings of committing to hardware
closer to the ultimate deployment date.

The second factor is the cost of upgrade. Many facilities
(including the ATA) are beginning to appreciate the advantages
of designing arrays with wider bandwidths and larger numbers
of antennas than can be handled by current technology.
Correlators may then be implemented inexpensively on scales
suited to current processors, and upgraded as more powerful
processors become available. Modular solutions facilitate this
methodology.
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