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ABSTRACT

The effect of the induced Compton and Raman scattering on short, bright radio pulses is investigated. It is shown
that when a single pulse propagates through the scattering medium, the effective optical depth is determined by the
duration of the pulse but not by the scale of the medium. The induced scattering could hinder propagation of the radio
pulse only if close enough to the source a dense enough plasma is present. The induced scattering within the rel-
ativistically moving source places lower limits on the Lorentz factor of the source. The results are applied to the
recently discovered short extragalactic radio pulse.

Subject headinggs: plasmas — radiation mechanisms: nonthermal — scattering

1. INTRODUCTION

Induced scattering could significantly affect radiation from
sources with high brightness temperatures. The induced Compton
scattering may be relevant in pulsars (Wilson & Rees 1978;
Lyubarskii & Petrova 1996; Petrova 2004a, 2004b, 2008a, 2008b),
masers (Zel’dovich et al. 1972; Montes 1977), and radio-loud
active galactic nuclei (Sunyaev 1971; Coppi et al. 1993; Sincell &
Coppi 1996). The induced Raman scattering is considered as the
most plausible mechanism of eclipses in binary pulsars (Eichler
1991; Gedalin & Eichler 1993; Thompson et al. 1994; Luo &
Melrose 1995) and was also invoked to place constraints on the
models of pulsars (Lyutikov 1998; Luo & Melrose 2006) and
models of intraday variability in compact extragalactic sources
(Levinson & Blandford 1995).

Macquart (2007) used the induced Compton and Raman scat-
tering in order to place limits on the observability of the prompt
radio emission predicted (Usov & Katz 2000; Sagiv &Waxman
2002; Moortgat & Kuijpers 2005) to emanate from gamma-ray
bursts. The recent discovery of an enigmatic short extragalactic ra-
dio pulse (Lorimer et al. 2007) demonstrates that very high bright-
ness temperature transients do exist in nature. In this paper we
address the induced scattering of short bright radio pulses. First,
we study the inducedCompton andRaman scattering in the plasma
surrounding the source. The central point is that due to the non-
linear character of the process, the effective optical depth is deter-
mined not by the scale of the scattered medium but by the width
of the pulse provided that the pulse is short in the sense that the
duration of the pulse is less than the light travel time in the scat-
tered medium. For this reason, short enough pulses could prop-
agate through the interstellar medium, contrary to Macquart’s
claim. The induced scattering could hinder propagation of a high
brightness temperature pulse only close to the source if the den-
sity of the ambient plasma is large enough; here we find the cor-
responding observability conditions. We also address the induced
scattering within the relativistically moving source and show that
transparency of the source implies a lower limit on the Lorentz
factor of the source.We apply the general results to the short extra-
galactic radio pulse discovered by Lorimer et al. (2007).

2. INDUCED COMPTON SCATTERING

The kinetic equation for the induced Compton scattering in the
nonrelativistic plasma is written as (e.g., Wilson 1982)
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where n(�;6) is the photon occupation number of a beam in the
direction6, N is the electron number density, and e is the polari-
zation vector. The induced scattering rate is proportional to the
number of photons already available in the final state; therefore,
the scattering initially occurs within the primary emission beam
where the radiation density is high. However, when the primary
beam is narrow, as is anyway the case at large distance from the
source, the recoil factor 1�6 =61 makes the scattering within
the beam inefficient; then the scattering outside the beam domi-
nates, because according to equation (1), even weak isotropic
background radiation (created, e.g., by spontaneous scattering)
grows exponentially so that the energy of the scattered radiation
becomes eventually comparable with the energy density in the
primary beam.

In this and the next sections, we study the induced scattering
outside of the source; therefore, we can assume that the scatter-
ing angle is larger than the small angle subtended by the primary
radiation. In this case, the occupation number of the scattered
photons varies according to the equation
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where F ¼ c�2h
R
� 3n d6 is the local radio flux density of the

primary radiation and � is the scattering angle. The solution to
this equation is written as

n ¼ n0 exp �C; ð3Þ

where n0 is the background photon density, �C is the effective
optical depth determined by the integral along the scattered ray,
r ¼ r0 þ c6(t � t0), as
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The intensity of the scattered radiation increases exponentially
provided the photon spectrum of the primary beam, F /�, has a
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positive slope. Therefore, the induced scattering is themost efficient
just below the spectral maximum. If radiation with a decreasing
spectrum is detected, one can find the observability condition by
substituting the frequency derivative in equation (4) with F /� 2 at
the observed frequency, because the stimulated scattering rate thus
estimated is lower than that near the spectral maximum. As the
brightness temperature of the primary beam exceeds the bright-
ness temperature of the background radiation by many orders of
magnitude, the fraction of the scattered photons remains small
until �C reaches a few dozens. As a simple criterion for the ob-
servability of the primary radiation (the condition that the induced
scattering does not affect the primary radiation), one can use the
condition �C < 10.

In order to check this condition, one can substitute the undis-
turbed primary flux into equation (4). Let a radio pulse of dura-
tion�t propagate radially from the source; then the primary flux
can be presented in the form

F ¼ D

r

� �2

Fobs�
ct � r

c�t

� �
; ð5Þ

where D is the distance to the source, r is the distance from the
source to the scattering point, and the function�(x) describes the
shape of the pulse. Below,we adopt the simplest rectangular form,
�(x) ¼ 1 at 0 < x < 1 and�(x) ¼ 0 otherwise. Note that we can
ignore the transverse structure of the pulse, because the most
efficient is the backscattering so that the scattered ray interacts
only with the radiation emitted in the same direction.

Note also that even though equation (5) assumes that the pulse
structure is attributed to the intrinsic time variation of the source,
the same structure arises if pulsed radiation is generated by a
narrow beam sweeping across the observer. In this case, the ra-
diation field has a shape�((ct � r � r0’)/c�t), which is reduced
to equation (5) at ’ ¼ const. However, one should take into ac-
count that in this paper, we assume that the pulse is single in the
sense that the distance between pulses is larger than the scale of
the scattering medium. If this condition is not fulfilled, the scat-
tered ray could pass through a few pulses, and then the induced
scattering occurs as in the steady radiation field with the intensity
equal to the average intensity of the source. Therefore, the results
of this paper should be applied only to true single events like ra-
dio emission from gamma-ray bursts or giant pulses from pulsars,
which are rare enough to be considered as isolated phenomena.

Let a seed ray be launched from the point r0 at the time t0 ¼
cr0, just when the pulse reached this point. Because of induced
scattering of the photons from the pulse, the intensity of the ray
grows exponentially, while the ray remains within the zone il-
luminated by the pulse. Below, we assume that the pulse is nar-
row enough, c�tTr0. In order to find the amplification factor
of the seed ray, one should find the effective optical depth (eq. [4]),
which could be presented as
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is the integral along the ray. For the estimates, we take e = e1 ¼ 1.
Let the ray be directed at the angle �0 to the radial direction at the
initial point. Then the scattering angle, �, and the distance from

the source, r, at the time t could be found from the laws of sines
and cosines for the triangle in Figure 1,

c(t � t0)

sin (�0 � � )
¼ r0

sin �
; ð8Þ

r 2 ¼ r 20 þ c2(t � t0)
2 þ 2r0c(t � t0) cos �0: ð9Þ

Fig. 1.—Geometry of the scattering. The primary pulse propagates radially
from the point O. Just when it arrives at the point A (at the time t0), a seed ray is
launched at the angle �0. At the time t, the seed ray arrives at the point S where it
makes the angle � with the radial direction.
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Eliminating r and t, one can present the integral from equation
(7) as

Z ¼ r0
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where �min is determined from the condition that the function �
vanishes, r ¼ c(t ��t). This condition, together with equa-
tions (8) and (9), yields the equation for �min,
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If �0 < (2c�t /r0)
1=2, the scattered ray remains within the illumi-

nated area until infinity; therefore, �min ¼ 0 in this case. Finally,
one finds
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One sees that the amplification factor is the same for all the scat-
tered rays launched at not too small angles, �0 3(2c�t /r0)

1=2.
This is because decreasing of the scattering rate with decreasing
angle (due to the recoil factor 1� cos � in the scattering rate) is
compensated by increasing of the time the scattered ray spends
within the illuminated area. The rays launched at the angles �0P
(2c�t /r0)

1=2 spend within the illuminated area the time t � t0k
r0 /c; then the amplification factor decreases because of decreas-
ing of the primary radiation density with the distance. Of course,
if the amplification factor is large, it is the backscattered radiation
that takes the whole energy of the primary beam, because the
backward scattering is the fastest.

Substituting Z ¼ �t into equation (6), one can now estimate
the effective optical depth to the induced scattering; numerically,
one gets

�C ¼ 0:24
N6�tsFobs; Jy

� 2
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where �ts, Fobs; Jy and �GHz are measured in units shown in the
index, D ¼ 108D8 pc, N ¼ 106N6 cm

�3, and r0 ¼ 10�3r�3 pc.
One sees that the induced scattering is negligible in the interstellar
medium; however, it could become significant in a dense enough
environment close enough to the source. For example, a massive
star could be a progenitor of the gamma-ray burst; then the emis-
sion propagates through the relic stellar wind. In this case, the
plasma density falls off as

N6 ¼ 0:03
Ṁ�5

V3r
2
�3

; ð15Þ

where Ṁ ¼ 10�5Ṁ�5 M� yr�1 is the mass-loss rate and V ¼
103V3 km s�1 is the wind velocity. The condition �C < 10 places
the lower limit on the radius beyond which the radio pulse could
propagate,
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3. INDUCED RAMAN SCATTERING

The high-intensity radio beam could be scattered by emitting
Langmuir waves. The energy andmomentum conservation in this
three-wave process require that

�1 ¼ � þ �p; k1 ¼ kþ q; ð17Þ

where �p ¼ [e2N/(�me)]
1=2 is the plasma frequency and q is the

wavevector of the plasma wave. In the case �3 �p, one can ne-
glect the frequency shift of the scattered wave; then one finds

q� ¼ � !

c
(61 �6); ð18Þ

where the plus sign is associated with a plasmon emitted by the
photon k1 and the minus sign is associated with a plasmon emit-
ted by the photon k. Because of Landau damping, only plasmons
with large enough phase velocities could survive; this places a
limit on the scattering angle (Thompson et al. 1994). Namely,
choosing the allowable range of the plasmon wavevectors from
the condition that the Landau damping time exceeds the period
of the plasma wave, qkD < 0:27, where kD ¼ ½kBT /(4�e2N )�1=2
is the Debye length, one finds from equation (18) that the back-
scattering is possible only if � < �L ¼ 90N1=2

6 T�1=2
6 MHz. In the

case �3 �L, the maximum angle of scattering is

�max ¼ 2�L=�: ð19Þ

The kinetic equations for the occupation numbers of photons
and plasmons are written as (Thompson et al. 1994)
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where nq is the plasmon occupation number, � is the plasmon
amplitude damping rate, and vg ¼ 3qkD(kBT /me)

1=2 is the plas-
mon group velocity. The last is small in the nonrelativistic plasma;
therefore, one can neglect the spatial transfer of plasmons.

As in x 2 we assume that the primary radiation subtends the
angle smaller than the scattering angle from equation (19); then
the scattering occurs outside the primary beam, because the scat-
tering within the beam is suppressed by the factor 1�6 = 61.
As in x 2 we find the observability condition by demanding that
the amplification factor of a weak background radiation due to
the Raman scattering does not become exponentially large. One
should stress that the Raman scattering does not necessary hinder
propagation of the radiation even if the effective optical depth is
large, because the scattering angle fromequation (19)maybe small.
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Then the radiation beam just widens, and a special analysis is
necessary in order to figure out how much the parameters of the
emerged radiation are affected. An example of such an analysis
is given in x 5. Here we just find the effective optical depth to the
Raman scattering.

Assuming that the primary pulse has the form of equation (5)
and that the intensity of the scattering radiation is small as com-
pared with the primary radiation, one reduces the kinetic equa-
tions (20) and (21) to the form

@n

@t
þ c cos �

@n

@r
¼ S

r0

r

� �2

(1� cos � )(nq þ n�q)�
ct � r

c�t

� �
;

ð22Þ

@n�q

@t
¼ S (n� n�q)

r0

r

� �2
� �n�q

� 	
�

ct � r

c�t

� �
; ð23Þ
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The plasmon decay rate due to electron-ion collisions is � ¼
0:032N6T

�3=2
6 s�1; then
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We assume that before the pulse arrives, some weak background
radiation preexists in the medium; therefore, the boundary con-
ditions may be written as

njr¼ct ¼ n0; nqjr¼ct ¼ nq0: ð26Þ

The factor (r0 /r)
2 on the right-hand side of equations (22) and

(23) arises due to decreasing of the primary radiation flux (eq. [5])
with the distance. It was shown in x 2 that if the scattering angle
is not too small, �0 3 (2c�t /r0)1

=2, the scattered ray remains
within the illuminated area only during the time t � t0Tr0 /c;
then the factor (r0 /r)

2 may be substituted by unity. Taking into ac-
count that the maximal scattering angle is given by equation (19),
this condition is written as

N6r�3

T6�ts� 2
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In this case, equations (22) and (23) are easily solved. Namely,
transforming the variables

v ¼ Sct; u ¼ S(ct � r); ð28Þ

one comes to the set of equations
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with the boundary conditions at the pointu ¼ 0.As both coefficients
of the equations and the boundary conditions are independent

of v, the solution is also independent of v; therefore, one finally
gets a simple set of ordinary differential equations at the segment
0 < u < cS�t,

dn
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The boundary conditions are n(0) ¼ n0 and n�q(0) ¼ nq0.
Partial solutions to these equations have a form exp (su), where

s obeys the characteristic equation

s3 þ 2�s2 þ (� 2 � 3)s� 2� ¼ 0: ð32Þ

Simple solutions are found in the two limiting cases, namely, when
one can neglect the decay of plasmons,� ¼ 0, andwhen the decay
is strong, �3 1 (these limits correspond to the conditions that
the primary radiation flux is well above or well below the limit-
ing flux from eq. [25], respectively). In the limit � ¼ 0, the so-
lution to equations (31) is
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In the limit �31, the solution is
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The intensity of the scattered radiation grows until u ¼ umax ¼
S�t, so the effective optical depth to the Raman scattering may
be estimated as �R ¼ S�t in the case �T1 and �R ¼ S�t /� in
the opposite limit. Numerically, one gets
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As in the case of the induced Compton scattering, the condi-
tion for the Raman scattering to remain negligible may bewritten
as �R < 10. One can see again that the scattering in the interstel-
lar medium is negligible. Assuming that the emission is gener-
ated within the stellar wind of the progenitor star (see eq. [15]),
one obtains that the Raman scattering could be neglected if the
radio pulse was emitted at the distance
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from the source.
This result was obtained under condition (27), i.e., if the scat-

tering angle is not too small and the interaction of the scattered
raywith the primary pulse occurs at a scale small enough that one
can neglect the decreasing of the primary radiation flux with ra-
dius. Therefore, we neglected the factor (r0 /r)

2 on the right-hand
side of equations (22) and (23). In the opposite limit, the scattered
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ray remains within the illuminated zone for a long time; however,
due to decreasing of the radiation flux, only the region r � r0 � r0
contributes to the effective optical depth (cf. eq. [13] and discus-
sion after). As the solutions from equations (33) and (35) are
valid at r � r0 < r0, one can find the amplification factor by sub-
stituting into these solutions umax corresponding to the radius
r ¼ 2r0. It follows from the scattering geometry (see Fig. 1 and
eq. [9]) that umax ¼ Sr0�

2
0 /(4c). Substituting �0 with the maximal

scattering angle of equation (19), one gets finally the estimate for
the effective optical depth at the condition opposite to that of
equation (27),
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Note that within the range of applicability of this formula, it gives
the optical depth smaller than equation (37).

4. INDUCED SCATTERING WITHIN
A RELATIVISTIC SOURCE

If a high brightness temperature radio pulse is generated in a
relativistic source, one can restrict parameters of the source con-
sidering stimulated emission within it. Let a radio pulse come
from a relativistically hot plasmamovingwith the Lorentz factor�.
In the comoving frame, the radiation could be considered as iso-
tropic; then the kinetic equation for the induced Compton scatter-
ing could be written as (Melrose 1971)
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where f (� 0) is the electron distribution function normalized asR
f (� 0)d� 0 ¼ 1; the primed quantities are measured in the comov-

ing frame. The kernel g is approximated as (correcting a typo in
Melrose’s paper)

g(x) ¼
4x2; (2� 0)�2 � x � 1;
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The right-hand side of equation (40) is the induced scattering rate;
it should be compared with the rate of photon escape from the
source, c/l 0, where l 0 is the characteristic size of the emitting re-
gion. If the emitting plasma moves, as is typically the case,
radially from the origin, one should also take into account that
the plasma density decreases in the proper frame with the rate
c�/r. Then the condition that the induced scattering does not
affect the emerged radiation is written as
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In order to estimate the stimulated scattering rate, let us assume
that the particle distribution is Maxwellian,
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and that the radiation spectrum has a form
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where I(� 0 ) ¼ h� 03n(� 0 )/c2 is the radiation intensity, a > 2, and
b > 0. The frequency of the photon decreases in the course of
stimulated scattering in the isotropic medium; therefore, the right-
hand side of equation (40) is positive for � 0 < � 0

0. On integrating
one gets
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where �(x) is the Gamma function. One sees that the scattering
rate is maximal at � 0 � � 0

0 /(2�T )
2, the exact value depending on

a and b. Substituting � 0 ¼ � 0
0 /(2�T )

2 and � ¼ 1, one gets an es-
timate of the induced scattering rate,
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In order to check the observability condition (42), one should
substitute � 0

0 ¼ �obs /� into equation (47) for the induced scat-
tering rate and express I0 via the observed flux. If the source size
is small so that the proper light travel time, l 0/c, is less than the
proper expansion time, r/(c�), the source radiateswithin the angle
1/� and the luminosity may be expressed via the observed flux as
L ¼ (�/2)Fobs�obsD

2��4.On the other hand, the luminosity,which
is the relativistic invariant, could be calculated in the proper frame
as L ¼ 8�2l 02� 0

0 I0 (assuming the source is spherical in the co-
moving frame). This yields

I0 ¼
FobsD

2

16��3l 02
; l 0 <

r

�
: ð48Þ

In the opposite case l 0 > r /�, one can imagine a radially expand-
ing plasma radiating forward so that the local radiation flux is
F� ¼ 4W 0c�2, whereW 0 ¼ 4�I0�

0
0 /c is the radiation density in

the comoving frame. Then one can write

I0 ¼
FobsD

2

16��r 2
; l 0 >

r

�
: ð49Þ

Now the observability condition (42) is written as

3�TN
0FobsD

2

32��Tme� 2
obs

<
�l 0; l 0 < r=�;

r; l 0 > r=�:

�
ð50Þ

For any specific radiationmodel, one can check the observability
condition by substituting parameters of the emitting plasma in
equation (50).

For a rather general preliminary estimate, one can express the
plasma density in the source via the fraction 	 of the plasma en-
ergy radiated in the pulse. Only a small fraction of the plasma
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energy could typically be radiated in the radio band so that one
can expect 	T1; however, one cannot exclude a priori a larger 	
(and even 	 > 1 for a Poynting-dominated source). We see below
that this uncertainty is compensated by a veryweak dependence of
the result on 	. If the source is small, l 0 < r /�, the total radiated
energy is estimated as Erad ¼ �D2�obsFobs�tobs /�

2, whereas
the total plasma energy in the source is Epl ¼ 4�l 03N 0�Tmc

2�,
wherem ¼ me in the electron-positron plasma andm ¼ mp in the
electron-ion plasma. In the opposite limit, l 0 > r /�, one should
compare the plasma energy density, "pl ¼ 3mc3N 0�T�

2, with the
radiation energy density, "rad ¼ Fobs�obs(D/r) 2. Nowone canwrite

N 0 ¼ Fobs�obsD
2

mc2�T	

�t= 4l 03�3
� �

; l 0 < r=�;

1= 3cr 2�2
� �

; l 0 > r=�:

(
ð51Þ

Then the observability condition is written as

�TF
2
obsD

4

	� 2
Tmemc2�obs�

2
<

128�l 04�2=(3c�t); l 0 < r=�;

32�r 3; l 0 > r=�:

(
ð52Þ

The light travel time arguments imply that l 0 < c�t� if l 0 < r/�
and r < c�t�2 in the opposite limit. Taking this into account,
one finally finds that the observability condition implies a lower
limit on the Lorentz factor of the source,

� > 100
F
1=4
obs; JyD

1=2
8

	1=8�
1=4
T (m=me)

1=8(�ts)
3=8�

1=8
GHz

: ð53Þ

Note that as the radiation within the source is nearly isotropic,
the induced scattering is important only if it affects the spectrum
of the radiation. In the case of the induced Compton scattering in
the relativistically hot plasma, the photon frequency decreases
�4� 2

T times already in a single scattering; therefore, the observ-
ability condition for the induced Compton scattering is the condi-
tion that the source is just transparent with respect to this process.
The frequency change in the Raman scattering is small; therefore,
the corresponding observability condition is less restrictive.

5. IMPLICATIONS FOR THE OBSERVED
SHORT EXTRAGALACTIC PULSE

Let us apply the obtained general observability conditions to
the enigmatic radio pulse recently found by Lorimer et al. (2007)
in a pulsar survey at the frequency 1.4 GHz. The duration of the
pulse was �t � 5 ms, and the energy in the pulse Fobs�t ¼
0:15� 0:05 Jy s. The dispersionmeasure is an order of magnitude
larger than the expected contribution from the Milky Way, and
moreover, no galaxy was found at the position of the source. This
led Lorimer et al. to conclude that the source of the pulse is from
a cosmological distance; they give a very rough estimate D �
500Mpc. The origin of this pulse is obscure; Popov & Postnov
(2007) argue, on statistical grounds, that this event could be related
to a hyperflare from an extragalactic soft gamma-ray repeater.

Substituting the parameters of the pulse into equations (16),
one concludes that if the pulsewas generatedwithin a stellar wind,
the induced Compton scattering places the lower limit on the
emission radius r > 6 ; 1014(Ṁ�5 /V3)

1=4 cm. A stronger limit is
imposed by the Raman scattering; equation (38) yields

r > 5 ; 1015
Ṁ�5

V3

� �1=6
D

500 Mpc

� �2=3

cm: ð54Þ

One should note that according to equation (19), the angle of
the Raman scattering is small in this case, �max ¼ 0:024(V3 /
Ṁ�5)

1=6T�1=2
6 , so that the Raman scattering does not hinder prop-

agation of the pulse. However, scattering even by this small angle
implies the temporal smearing of the pulse above the observed
limit unless the pulse was initially collimated within the angle
# < 2:4 ; 10�4(�t /5 ms)1

=2. In the last case, the initial radiation
flux in the pulse should have been (#/� max)

2 ¼ 104�tT6(Ṁ�5 /
V3)

1=3 times larger than that estimated above under the no scattering
assumption; then the induced scattering would imply even stronger
constraints. Therefore, in any case the lower limit from equa-
tion (54) for the emission radius is robust provided that the pulse
was generated within the relic stellar wind of the progenitor star.
The observed pulse was definitely generated within relativ-

istic plasma. The induced Compton scattering within the source
places a limit on the Lorentz factor of the emitting plasma. Sub-
stituting the observed parameters of the pulse into equation (53),
one gets

� > 3800�
�1=4
T

�t

5 ms

� ��5=8
me

	m

� �1=8
D

500 Mpc

� �1=2

: ð55Þ

6. CONCLUSIONS

In this paper we have analyzed the effect of induced Compton
and Raman scattering on the propagation of a short bright radio
pulse. The work was motivated by predictions that such pulses
could accompany gamma-ray bursts (Usov & Katz 2000; Sagiv
&Waxman 2002;Moortgat &Kuijpers 2005) and by a recent dis-
covery of a single extragalactic radio pulse (Lorimer et al. 2007).
Macquart (2007) claimed that induced scattering in the interstellar
medium strongly limits the observability of high brightness tem-
perature transients. However, he ignored two fundamental prop-
erties of the process. First of all, the induced scattering occurs
only if the scattered ray remains within the zone illuminated by
the scattering radiation. In the case of a single short pulse, the
effective optical depth is determined by the duration of the pulse
but not by the scale of the scattering medium. Therefore, a short
enough pulse could propagate freely through the interstellar me-
dium. The second important property is that in the presence of a
powerful radiation beam, even aweak background radiation grows
exponentially via the induced scattering of the beam photons. If the
primary beam is narrow, the scattering outside the beam domi-
nates, because the scattering within the beam is suppressed by
the recoil factor 1�6 = 61 in the scattering rate. Outside the
source, the radiation subtends a small solid angle; therefore, the in-
duced scattering in the surrounding medium occurs outside the
beam. In this case, the effective optical depth depends not on the
brightness temperature and the angle subtended by the primary
radiation, which could not be found separately without model as-
sumptions, but only on the radiation flux, which is a directly
observable quantity. We demonstrated that the induced scattering
in the surrounding medium could hinder the escape of a bright
short pulse only if the source is embedded in a dense medium,
like the stellar wind.We estimated a limiting radius beyondwhich
the pulse could propagate.
One should stress that these estimates assume a single pulse. If

a sequence of pulses (e.g., pulsar emission) propagates in theme-
dium with the characteristic scale exceeding the distance between
the pulses, the induced scattering occurs as if the emission was
steady with the average radiation flux. On the other hand, our re-
sults could be applied to giant pulses from pulsars, which are rare
enough to be considered as isolated phenomena.
We have also analyzed induced scattering within the relativis-

tically moving source. Transparency of the source is determined
by the radiation intensity and by the amount of plasma within the
source. Introducing a fraction 	 of the plasma energy emitted in the
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pulse, we found a lower limit on the Lorentz factor of the source,
which turned out to be very weakly dependent on 	.

This work was supported by the German-Israeli Foundation
for Scientific Research and Development.
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