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ABSTRACT

The transparent Sun is modeled as a spherically symmetric and centrally condensed gravitational lens using recent
standard solar model (SSM) data. The Sun’sminimum focal length is computed to a refined accuracy of 23:5 � 0:1 AU,
just beyond the orbit of Uranus. The Sun creates a single image of a distant point source visible to observers inside this
minimum focal length and to observers sufficiently removed from the line connecting the source through the Sun’s
center. Regions of space are mapped where three images of a distant point source are created, along with their asso-
ciated magnifications. Solar caustics, critical curves, and Einstein rings are computed and discussed. Extremely high
gravitational lens magnifications exist for observers situated so that an angularly small, unlensed source appears near
a three-image caustic. Types of radiation that might undergo significant solar lens magnifications, as they can traverse
the core of the Sun, including neutrinos and gravitational radiation, are discussed.

Subject headinggs: gravitation — gravitational lensing — solar system: general — Sun: general
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1. INTRODUCTION

Our Sun is known to act as a gravitational lens. The angular
shift of the apparent position of a star located behind the Sun was
first observed during the solar eclipse of 1919 (Dyson et al. 1920),
in conformity with the predictions of general relativity (Einstein
1916). Years later, the lenslike action of distant stars was discussed
more generally (Chwolson 1924; Einstein 1936). The influence
of that discussion has caused the ring seen by the observer during
perfect alignment of the source, lens, and the observer to be called
the Einstein ring around a point lens. For a detailed historical re-
view, see, for example, Wambsganss (1998).

Parallel light rays incident with an impact parameter b on the
lens plane get deflected by an angle �. The deflection angle is in-
versely proportional to the impact parameter b according to the
formula first derived by Einstein (1916),

� ¼ 4GM (b)

R�bc2
; ð1Þ

where b is the dimensionless impact parameter of the passing
light ray,M (b) is the deflecting mass, G is the gravitational con-
stant, and c is the speed of light in vacuum. The quantities M�
and R� are the mass and radius of the Sun, respectively. Assum-
ing that the deflection angle is small, the minimum focal length
for the opaque Sun is approximated by

F ¼
R2
�c

2

4GM�
¼ 548:30 � 0:01 AU; ð2Þ

where F is the minimum focal length of the opaque Sun. The un-
certainty in F is based on statistical errors on R� and GM� (Cox
1999). Slight offsets of the lens or source from the optic axis will
break the Einstein ring into two bright images as seen by the
observer.

The possibility of using the transparent Sun as a gravitational
lenswas previously discussed by various authors (Lawrence 1971;
Clark 1972; Ohanian 1973; Cyranski & Lubkin 1974; Bontz &

Haugan 1981; Burke 1985; Nemiroff & Ftaclas 1997; Demkov
& Puchkov 2000; Escribano et al. 2001). Burke (1985) computed
the minimum focal length to be 25 AU by considering the max-
imum value of the deflection angle, as a function of the radius
of a cylindrical mass. Demkov & Puchkov (2000), on the other
hand, computed a minimum focal length of the transparent Sun
to be about 24 AU. Starting with the standard solar model as it
was known in 1989 (Bahcall 1989), they computed the gravita-
tional lens deflection angle as a function of impact parameter and
then approximated this with a Taylor series near the Sun’s center.

Throughout the present analysis, the more recent Bahcall et al.
(2005) standard solar model (SSM) data are used. A more com-
plete model of the gravitational lens characteristics of the trans-
parent Sun is computed, including a more accurate minimum
focal length (23:5 � 0:1 AU), regions of multiple images, and
the locations of caustics and critical curves.

The plan of the paper is as follows: x 2 explains the connection
between the power-law density profiles of the stars and the deflec-
tion angles produced due to their lens action. Section 3 outlines
two alternative approaches to obtain the minimal focal length of
the transparent Sun. The strength of a composite lens capable
of producing multiple images is given a thorough treatment in
x 4. The critical curves, caustics, magnification, and multiple im-
age zones are computed in x 5, and conclusions summarized in
x 6.

2. MINIMUM FOCAL LENGTH OF TRANSPARENT
STELLAR LENSES

Transparent stellar lenses were previously studied in the con-
text of gravitational radiation (Lawrence 1971; Ohanian 1973).
The lens action of a simple model of the transparent Sun to grav-
itational radiation was studied by Bontz & Haugan (1981), and
a uniform transparent lens was analyzed by Clark (1972). One
characteristic of a transparent lens is its minimum focal length,
defined as the minimum distance between the center of the lens
and the point on the optic axis where the deflected rays corre-
sponding to different impact parameters converge.

Main-sequence stars, like our Sun, are in a state of hydrostatic
equilibrium.When describable by a single hydrostatic state, their
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pressure and density are simply proportional to their radius raised
to a polytropic (power-law) index (Chandrasekhar 1958). It can be
shown generally that gravitational lens deflection angles fall off as
rnþ1 when the density falls as polytropically as rn (Burke 1985).
Outside of a certain radius, the density profile of Sun-like stars
is well characterized by a single polytropic index such that it falls
off nearly as 1/r2.

To elucidate the general problem of the solar focal length, an
instructive exercise could be to compare various idealized power
laws with the standard solar model data. Consider a star of mass
M� and radius R�. Let �(r) be the idealized density profile of the
star,

�(r) ¼ �0r
n; ð3Þ

where �0 is a constant, r is the radial distance from the center of
the star, and n is the power-law index. The value of �0 is deter-
mined by themass and radius of the star. The normalized projected
mass as a function of dimensionless impact parameter b, for power
laws corresponding to n ¼ �2, �1, and 0, can be computed an-
alytically by integrating equation (3) using a volume element of
a cylindrical coordinate system,

M (b)n¼�2=M� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
þ b tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b2
� 1

r
; ð4Þ

M (b)n¼�1=M� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
þ b2 sinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

b2
� 1

r
; ð5Þ

M (b)n¼0=M� ¼ 1� (1� b2)3=2; ð6Þ

where M (b) is the mass enclosed within a cylinder of radius b.
The corresponding expressions for the deflection angle and focal
length are

�(b)n ¼
4GM (b)n
c2R�b

; ð7Þ

D(b)n ¼
R�b

�(b)n
¼ R2

�b
2c2

4GM (b)n
; ð8Þ

where D(b)n is the focal length and �(b)n is the deflection angle
corresponding to a power-law index n and impact parameter b.
The functionM (b)n is given by equations (4), (5), and (6) for three
different values for n.
A convenient relationship connecting theminimum focal length

to an arbitrary index n can be established for very small impact pa-
rameters by taking the limit b! 0 of equation (7), usingL’Hôpital’s
rule. Introducing a constant g ¼ GM� /R

2
�, using the mass and ra-

dius of the Sun, a general expression for the limiting value of the
focal length corresponding to n > �2 may be obtained. Note that
4g/c2 corresponds to a length of �548 AU, the minimum focal
length of the opaque Sun. For very small impact parameters,

lim
b!0

D(b)n ¼ Dn ¼
c2

g

(1þ n)

2(3þ n)
; ð9Þ

where limD(b)b!0 is also the minimum focal length for only
n ¼ �1 and 0. For integer values of n > 1, limD(b)b!0 is no
longer the minimum focal length (see Fig. 1). The homogenous
sphere, with n ¼ 0, yields

Dn¼0 ¼ c2=6g ¼ 2

3
F; ð10Þ

whereDn¼0 and F are the minimum focal length of a transparent
uniform sphere and an opaque sphere of the same mass and ra-
dius, respectively. Equation (9) sets the minimum focal length of
a transparent uniform sphere, with radius and mass equal to the
radius andmass of the Sun, to be 365AU (Lawrence 1971; Clark
1972; Ohanian 1973). At n ¼ �1, equation (9) goes to zero, and
for n < �1, it becomes invalid.
We note that the Sun roughly follows the n ¼ �2 density pro-

file outside of �0.075 R� (see Fig. 2). However, from Figure 1,
the focal length profile of the Sunmimics that of a constant-density

Fig. 1.—The normalized focal length is plotted along the horizontal axis.
The dimensionless impact parameter is plotted along the vertical axis. The n ¼
0 curve corresponds to a constant-density sphere with a minimum focal length of
365 AU. The standard solar model data for the Sun set the minimum focal length
of the Sun at 23.5AU. The focal length for the Sun is computed numerically using
the SSM data. [See the electronic edition of the Journal for a color version of this
figure.]

Fig. 2.—NormalizedM (r)/r, which is a measure of the deflection angle plot-
ted as a function of dimensionless impact parameter. The M (r)/r profile for the
Sun rises toward the idealized n ¼ �2 profile for small impact parameters be-
fore it starts falling off asymptotically. [See the electronic edition of the Journal
for a color version of this figure.]
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sphere within this impact radius, enclosing a mass of�0.10M�.
So, the value of the minimum focal length of the Sun can be
crudely approximated to be

F � c2

4g

(0:075)2

0:1
¼ 31 AU: ð11Þ

In contrast, in the following section, a more complex ray-tracing
method is employed to obtain a more accurate estimate of the
minimum focal length of the Sun.

3. SOLUTIONS OF THE LENS EQUATION

It is well known that only a point lens can generate two images
in the weak deflection limit (Schneider et al. 1992). However,
a composite lens can produce multiple images. The location of
images in the lens plane depends on the enclosed projected mass
within the impact radius. Burke’s odd number theorem (Burke
1981) states that a composite lens can produce only an odd num-
ber of images of the source, and the images always appear (dis-
appear) in pairs as the source moves inside (outside) of a caustic.

In the standard geometrical optics approximation, light rays
start out straight from a source and then change directions dis-
cretely at the deflector plane, subsequently reaching the observer.
To utilize geometric optics for a composite lens, onemust project
the three-dimensional mass of the deflector onto a plane perpen-
dicular to the optical axis connecting the source to the observer.
A plane wave approximation is assumed by considering source
radiation that has a wavelength kTRB, where RB is the radius
of curvature of the background spacetime.

It is also assumed that the sources are pointlike and there is no
contribution due to internally converging Ricci focusing by the
mass within a pencil of rays. In other words, the light bundle is
assumed to be infinitesimally thin and the deflection is purely
due to Weyl focusing by the projected mass lying within the im-
pact radius (Dyer 1977). The mass outside of the impact radius
does not contribute to the deflection, following Newton’s and
Birkhoff ’s theorem.

The geometry of Figure 3 satisfies the equation

b ¼ a�a; ð12Þ

if one assumes DLS � DS , for distant sources. Here � and � are
the angles subtended by the unlensed source and its image vis-
ible to the observer. The deflection angle�, same as equation (1),
can be recast in the form

a ¼ 4G

c2

Z
S

r d�dr�(r)
r

rj j2
; ð13Þ

where�(r) is the value of the projectedmass density at the point r
from the center of the lens, r is the impact parameter, and S the

surface area in a polar (r; �) coordinate system. The center of the
lens ismade to coincidewith the center of the preferred coordinate
system for simplicity and owing to the cylindrical symmetry.

The numerical solution of equation (12) yields the image loca-
tions. Herea is a function of r (radius) only, owing to the circular
symmetry. In general, it is a function of two parameters of a polar
coordinate system. In other words, the source and the image lo-
cations do not align on a straight line.

The solutions to the lens equation have a maximum of three
roots. Any vertical line in the �-� plane corresponds to a fixed
source location, the points of intersection of which are the cor-
responding image locations. Inspection of Figure 4 shows that
sources far from the optic axis are seen as a single image. The �-�
curves are conformal transformations for the mapping a ! b for
every observer location DL. Note that Figure 4 is based on an in-
verted map that is used to calculate the magnification.

At � ¼ 0 the two images are equally separated from the optic
axis. The assumed spherical symmetry of the lens will generate a
circular Einstein ring on the lens plane (see Fig. 5). The forma-
tion of a real Einstein ring requires that a source be placed exactly
along the line joining the observer through the center of the lens,
which, for realistic cases, only occurs for sources of finite size.
Nevertheless, an Einstein ring still has theoretical significance,
since it separates sets of images (Nemiroff 1993). For example,
as the sourcemoves behind the lens, no source imagewill ever be
seen to cross an Einstein ring.

It is important to make a distinction between what is meant by
focal length for an optical lens as opposed to a gravitational lens.
The focal length of an optical lens is the distance between the
center of the lens and the point at which paraxial light rays con-
verge or appear to diverge. The definition of the deflection angle is

b ¼ DL tan �; ð14Þ

Fig. 3.—Center of the lens L at a distance DL from the observer O and a dis-
tance DLS from the source S. Here � and � are the angles subtended by the un-
lensed source and its image visible to the observer.

Fig. 4.—Curves relate unlensed source positions � and image locations � for
three different scenarios. The continuous curve represents the solutions of the
lens equation for a centrally condensed lens. The disjoint set of curves delineates
a point lens of the same mass, and the straight line corresponds to the absence of
a lens, where unlensed source positions and image positions coincide at all times.
The observer distance from the center of the lens is 50 AU. [See the electronic
edition of the Journal for a color version of this figure.]
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where b, DL, and � are the impact parameter, focal length, and
deflection angle, respectively.

The gravitational lens has a focal length for each impact pa-
rameter bounded by a minimum focal length. This is because the
deflection angle is not a linear function of impact parameter.
Paraxial light rays converge at different points along the optic
axis.

The existence of multiple images is a necessary condition for
a consistent definition of focal length. Past the minimum focal
length, the observed merger of two source images results in the
formation of an Einstein ring. Numerical simulations (discussed
more in theAppendix) involving different values of DL andBurke’s
odd number theorem will impose the following mathematical
condition, for the existence of multiple images (Schneider et al.
1992):

d�

d�
< 0: ð15Þ

The least value of DL that conforms to the above condition, the
minimum focal length, is found numerically to be 23.5 AU. This
implies that for values of DL less than 23.5 AU there are no
multiple images and hence no focal point. The perfect alignment
of the source, lens, and the observer at a distance less than 23.5AU
will not result in the formation of an Einstein ring.

4. STRENGTH OF A CENTRALLY PEAKED LENS

Not only does the Sun’s mass density decrease monotonically
with radius, but its mass density projected onto a lens plane also
decreases monotonically with radius. Surface density normalized
to the critical surface density needed to generate multiple images
is referred to as the dimensionless surface density (also called
convergence) � and is a measure of the strength of the lens
(Subramanian & Cowling 1986; Schneider et al. 1992),

�(r) ¼ �(r)

�cr

; ð16Þ

where

�cr ¼
c2

4�GDL

ð17Þ

is the critical density andDL is the distance between the lens and
the observer. If �(r) � 1 for some regions on the lens, then the
lens is termed ‘‘strong.’’ For instructive comparisons to our Sun,
a ‘‘constant density’’ sphere of radius R� with a volume density
equal to the average density of the Sun is used.
A ‘‘weak’’ lens is characterized by�(r)T1 and cannot produce

multiple images (Subramanian & Cowling 1986). The constant-
density sphere does not producemultiple images atDL ¼ 23:5AU.
This is illustrated in Figure 6, where curve b has a value of
�(r)T1 throughout the entire lens at 50.0 AU. Weak lenses are
weak only for observers sufficiently close—observers farther than
someminimal focal lengthwill see the same object as a strong lens
that creates multiple images. In the case of a constant-density
sphere of solar mass, this value for DL is �365 AU.
The validity of equation (15) implies that the transition of the

lens frombeingweak to strong should be traced by at least enough
points that the �-� curve is continuous at the minimum focal
length. Therefore, a ray-tracing algorithm is employed to estab-
lish and verify the existence of a minimum focal length more
precisely, with an error less than 1%, which is the combined error
of the data (Bahcall et al. 2005) and simulations.
Alternatively, the minimum focal length of the Sun can be ob-

tained by using the values of the mass enclosed and the impact
parameter corresponding to the value of �(r) ¼ 1. Using equa-
tion (2) and substituting the value 0.0135 M� and the radius
of the enclosed mass 0.024 R� one obtains a focal length of
�23.5 AU, which lies between the orbits of Uranus and Neptune.

5. CRITICAL CURVES, CAUSTICS,
AND MAGNIFICATION

The lens plane is defined as the plane perpendicular to the line
joining a point source and a fixed observer. According to the odd
number theorem for transparent gravitational lenses (Burke 1981),
the observer will see an odd number of images of the point source
nomatter what position the center of the lens occupies in the lens
plane. Areas might exist in the lens plane where the lens center
can be placed to create a specific odd number of images visible to
the observer (see Fig. 7). The boundaries between these areas are
called critical curves. For a spherically symmetric lens, the crit-
ical curve is a circle. Were a lens center to lie on a critical curve, a

Fig. 6.—Surface density � plotted on the vertical axis is a monotonically
decreasing function of radius. Curve a corresponds to the Sun for observer–lens
distance DL ¼ 50 AU, whereas curves b and c represent the homogeneous
density sphere atDL of 50 and 450 AU, respectively. The dimensionless surface
density parameter suggests that the transparent Sun is a strong lens at DL ¼
50 AU and a homogeneous sphere is a weak lens �T1 at the same DL. How-
ever, the very same homogeneous sphere is capable of producingmultiple images
at observer–lens distance (DL) greater than 365 AU. [See the electronic edition of
the Journal for a color version of this figure.]

Fig. 5.—Radius of Einstein rings as function of observer–lens distance DL

along the optic axis. Curve a corresponds to the Sun, and curve b corresponds to
a homogenous lens with a radius and mean density equal to that of the Sun. The
angle subtended at the limb of the Sun in both cases converges to �1.7500 [See
the electronic edition of the Journal for a color version of this figure.]
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formally infinite magnification of a point source would be seen
by the observer.

The source plane is defined as a plane perpendicular to the line
extending from a fixed observer through the lens center. In
analogy with the lens plane, areas might exist in the source plane
where a point source can be placed so the (fixed) lens creates a
specific odd number of images visible to the (fixed) observer. The
boundaries between these areas of the source plane are called
caustics. For spherical lenses, the caustics are also circles.Were a
point source to lie on a caustic, a formally infinite magnification
would be seen by the observer. For a given lens, the � versus �
curve may show points of diverging slope. These points corre-
spond to infinite magnification and hence yield the angular radii
of the corresponding caustic (�) and critical (�) circles.

Let us now consider specifically our Sun. The � versus � curve
is shown in Figure 4. At 30 AU, just outside the minimum focal
length of 23.5 AU, the radius of the caustic is found to be 0:10�E,
where �E ¼ 3:6500, the angular Einstein ring radius. In terms
of the dimensions of the Sun, the radius of the Einstein ring is
0.10 R� and the caustic is 0.01 R�. Similarly, the radius of the
critical curve is found to be 0:50�E or�0.06 R�. Table 1 summa-
rizes the relative radii of Einstein ring, caustic, and critical curve
for different observer locations. The quantity �� is the angular
measure of the Sun’s radius for the corresponding DL.

The apparent relative motion of an angularly small source be-
hind the solar lens will result in a light curve with sharp spikes
when the source crosses a caustic. The magnification at a given
location can be obtained from the �-� curve corresponding to that
location,

� ¼ �

�

d�

d�
: ð18Þ

Light curves corresponding to different point-source trajectories
are shown in Figure 8.

The straight line motion of the source behind a weakly acting
lens will result in a light curve that peaks at the minimum dis-
tance the source appears from the lens. This minimum angular
distance is called the impact parameter, n, for the source. The dis-
tance separating the projected source on the lens plane and the
center of the lens scales as �, and the corresponding distance for
the single image scales as � for small � and �. For large distances
of the source from the center of the lens, the image nearly co-
incides with the source. But, as this distance decreases, the image
and the source locations on the lens plane diverge as seen by the
observer. For a strong lens, unlensed source positions inside a
circular caustic create three images of the source visible to the
observer. Regardless of the number of observed source images,
a finite size source will undergo a finite total magnification.

The transparent Sun is a local wave zone for radiation emitted
by distant sources (Isaacson 1968; Thorne 1989). Therefore, the
weak field limit is applicable and geometric optics can be used to
calculate image locations (Isaacson 1968). Large magnifications
allow us a more sensitive look for neutrino flux from nearby stars,
as well as gravitational radiation.

The multiple images that are created in pairs when the source
straddles the caustic will always lie within the Einstein radius.
Therefore, they can be separated only by a distance less than or
equal to the Einstein radius

RE ¼ 4GM (b)DL

c2

� �1=2
; ð19Þ

where DL is the distance of the observer from the lens plane.
These two images (in the lens plane) must combine to produce an
interference pattern with a fringe widthw�kDL /RE at the detector

Fig. 7.—Points inside the above surface of revolution represent the volume
where an observer sees multiple images. The angular distances are normalized
to the units of Einstein ring radii corresponding to a given DL along the hori-
zontal axis. [See the electronic edition of the Journal for a color version of this
figure.]

TABLE 1

Radii of Critical Curves and Caustics

DL

(AU) �E /�� �caus /�E �crit /�E �caus /�� �crit /��

23.0............................. 0 0 0 0 0

25.0............................. 5.62 ; 10�2 3.68 ; 10�2 0.481 2.07 ; 10�3 2.70 ; 10�2

27.0............................. 8.24 ; 10�2 6.14 ; 10�2 0.518 5.06 ; 10�3 4.28 ; 10�2

30.0............................. 11.3 ; 10�2 10.0 ; 10�2 0.519 11.3 ; 10�3 5.87 ; 10�2

Fig. 8.—Top light curve is that of a point source, moving behind the lens with
an impact parameter n expressed as an angular measure of 0:025�E. As the dis-
tance separating the source and the lens increases, a pair of images disappears.
The vertical axis is the magnification in logarithmic scale, and the horizontal
axis represents the distance scale normalized to angular size of the Einstein ring
�E. [See the electronic edition of the Journal for a color version of this figure.]
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(Nakamura 1998), where k is the wavelength of the lensed radia-
tion. The magnification � � RE /w is appreciable only if 4GM (b)/
kc2 31. Therefore, the images cannot be resolved if the wave-
length of the radiation is of the order of the Schwarzschild radius
of the lens. Near the minimum focal length, diffraction effects
impose even stricter constraints on k. However, the individual
gravitational wave trajectories, magnifications, and phases can
be calculated using ray optics.

High-energy neutrinos, by definition, have energies greater than
100 GeV (Gaisser et al. 1995). The Sun admits neutrinos, unim-
peded by electron scattering, only for energies up to 300 GeV
(Escribano et al. 2001). The mass distribution and chemical
composition (75% hydrogen and 25% helium) of the Sun sets an
upper limit on the allowed neutrino energy spectrum. Diffraction
has no effect on neutrinos, as the de Broglie wavelength of the
300 GeV neutrino is much smaller (�10�15 m) than the gravita-
tional radius of the lens.

6. DISCUSSION

The effects of plasma and core rotation in the interior of the
Sun, thought to be small, were ignored during this analysis. The

minimum focal length, the critical curve, and caustics were com-
puted numerically. Themagnification of point sources for typical
source separations was analyzed. The code can be modified to
simulate galaxies and dark matter halos with an assumed density
profile as input parameters.
To date, four spacecraft have traveled past the minimum trans-

parent focal length of our Sun, just beyond the orbit of Uranus.
Launching a spacecraft to this distance with sufficiently sensitive
gravitational wave or neutrino detectors remains a dream, how-
ever. In a different paper, the possibility of detecting strong grav-
itational radiation and a wide range of neutrino energy spectrum
will be examined in some detail. With the advancement of mod-
ern technology and the improvement in the resolution power of
detectors, such an endeavor could shed new light on sources emit-
ting neutrinos, high-energy gravitational waves, or hitherto hypo-
thetical particles that are predictions of at least some theories.

We thank the anonymous referee for useful suggestions, espe-
cially pointing out equation (9) and some of its consequences that
have helped improve the paper.

APPENDIX A

The image locations for a given impact parameter are found by solving equation (12). By allowing for a range of both positive and
negative values for the deflection angle � for all positive values of source position �, and interpolating within bounds, one obtains the
image locations �. Therefore, this can be termed as a controlled ray-tracing algorithm,

� ¼ b

DL

; ðA1Þ

where b, and DL are the impact parameter and fixed observer distance from the lens’ center. The resulting curve is shown in Figure 4.
For point sources the magnification can be computed directly from the curves using equation (18). Magnifications for extended
sources can be computed by approximating the source as a point or inverse ray shooting or, occasionally, using Stokes’ theorem.

For a circularly symmetric lens, the deflection depends only on the impact parameter. In that case, a new angular measure n can be
defined as in Figure 9, the perpendicular distance from the source on the lens plane. The observer can choose a coordinate system with

Fig. 9.—Dashed line: Trajectory of the source (S) behind the lens, making an impact parameter n. Image (I ) and source always lie along a straight line for a spherical
symmetric lens. Therefore, the angular distance of the source from the center of the lens along the source trajectory, as seen by the observer at any given time, is
(�2 � n2 )1=2.
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her y-coordinate and origin made to coincide with n through the center of the lens. Now at different source positions, as seen by the ob-
server, the source will subtend an angular measure

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � n2

p
ðA2Þ

from the x axis, where � � n.
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