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ABSTRACT

We present the numerical results from a three-dimensional (3D) nonlinear MHD simulation of wave activity in an
idealized active region in which individual, realistic loop density structure is included. The active region is modeled
by an initially force-free, dipole magnetic configurationwith gravitationally stratified density and contains a loopwith a
higher density than its surroundings. This study represents an extension to the model of Ofman& Thompson. As found
in their work, we see that fast wave propagation is distorted by the Alfvén speed profile and that the wave propagation
generates field line oscillations, which are rapidly damped.We find that the addition of a high-density loop significantly
changes the behavior inside that loop, specifically in that the loop can support trapped waves. We also find that the
impact of the fast wave impulsively excites both horizontal and vertical loop oscillations. From a parametric study of
the oscillations, we find that the amplitude of the oscillations decreases with increasing density contrast, whereas the
period and damping time increase. This is one of the key results presented here: that individual loop density structure
can influence the damping rate, and specifically that the damping time increases with increasing density contrast. All
these results were compared with an additional study performed on a straight coronal loop with similar parameters.
Through comparisonwith the straight loop, we find that the dampingmechanism in our curved loop iswave leakage due
to curvature. The work performed here highlights the importance of including individual loop density structure in the
modeling of active regions and illustrates the need for obtaining accurate densitymeasurements for coronal seismology.

Subject headinggs: MHD — Sun: corona — Sun: magnetic fields — Sun: oscillations — waves
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1. INTRODUCTION

Coronal loop oscillations associated with impulsive events
such as flares and coronal mass ejections (CMEs) have now been
observed numerous times with the TRACE satellite (Nakariakov
et al. 1999; Aschwanden et al. 1999, 2002; Wang & Solanki
2004) and recently by theHinode satellite (Ofman&Wang 2008).
One of the key results found in all these observations is that
in most cases the loop oscillations decay rapidly within a few
periods. Several proposed theories have been put forward to
explain this strong damping, including enhanced viscosity
(Nakariakov et al. 1999), wave leakage (Brady & Arber 2005;
Terradas et al. 2005a), phase mixing with enhanced resistiv-
ity (Ofman & Aschwanden 2002), and resonant absorption
(Ruderman & Roberts 2002). Comprehensive reviews of the
different damping mechanisms can be found in Roberts (2004)
and x 7.5 of Aschwanden (2004). Although a great deal of
analytical work has been done on these damping mechanisms,
their presence and the relative importance of each under realistic
coronal conditions is not yet clear. It is most likely that a detailed
and numerical treatment of a realistic coronal loop, together with
high-resolution and spectral observations, is required to gain fur-
ther understanding of the problem (Roberts 2000).

Active regions are magnetic structures in the solar corona and
are associated with areas of concentrated magnetic field and in-
creased temperature and density, and they are dynamic in nature.
However, the dynamics, heating, and stability of active regions
are not yet fully understood. The behavior of MHD waves and
transient perturbations within active regions depends on many
factors, such as the magnetic field strength, local magnetic to-

pology, temperature, and density structure. Thus, the propagat-
ing characteristics of the waves provide information on the local
fast magnetoacoustic speed, allowing one to infer the structure
of the corona and ultimately determine the three-dimensional
magnetic field. Recent observations of wave activity by the SOHO,
TRACE, andHinode satellites, coupledwithmeasurements of pho-
tospheric magnetograms and three-dimensional numerical models,
have improved our understanding of active regions. The detection
of these coronal waves and three-dimensional modeling provides
us with a new diagnostic tool for obtaining the parameters of the
corona: coronal seismology.
Coronal seismology was first suggested by Uchida (1970) and

later discussed by Roberts et al. (1984). Nakariakov & Ofman
(2001) demonstrated that the coronal loop oscillations can be used
to determine the magnetic field of an oscillating loop. Other stud-
ies include those of Wang et al. (2003a, 2003b), who investigated
slow-mode standing waves with SUMER, and Williams et al.
(2001, 2002), who reported on propagating fast waves with the
Solar Eclipse Corona Imaging System (SECIS). Reviews of cor-
onal seismology can be found in DeMoortel (2005), Nakariakov
& Verwichte (2005), and Banerjee et al. (2007). Low-amplitude
Alfvén waves were detected recently throughout the corona with
a ground-based coronagraph (Tomczyk et al. 2007). Recently,
coronal seismology was developed extensively in several studies
(Arregui et al. 2007; Ballai 2007; Erdélyi &Verth 2007; Gruszecki
et al. 2007; Ofman 2007; Selwa et al. 2007; Taroyan et al. 2007;
Van Doorsselaere et al. 2007; Verth et al. 2007;Wang et al. 2007;
Ofman & Wang 2008).
Here we focus on the behavior of MHD waves in active re-

gions, with potential applications to coronal seismology and the
study of oscillation damping. The first studies of 3DMHDmod-
els of wave activity in coronal active regions were performed by
Ofman&Thompson (2002), inwhich theymodeled the propagation
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of a fast magnetoacoustic wave within a 3D dipole magnetic con-
figuration. They found that the wave undergoes strong reflection
and refraction and that the general behavior was in agreement
with observations. Terradas&Ofman (2004) extended themodel
to incorporate a potential field extrapolation of a photosphericmag-
netogram. Again, they found that the main features of the simu-
lation matched those of the waves observed with TRACE. More
recently, Ofman (2005, 2007) demonstrated the potential of such
models: that the analysis of such three-dimensional wave prop-
agation can serve as a diagnostic of active region parameters.

The main limitation of these studies has been that the indi-
vidual loop density structure was not included. The inclusion of
such loops creates a density contrast between the loop and the am-
bient plasma, and this can support trapped MHDmodes (Roberts
et al. 1983), as well as phase mixing (Heyvaerts & Priest 1983)
and resonant absorption (Ionson 1978; Davila 1987; Hollweg
1987; Goossens et al. 1992; Steinolfson & Davila 1993; Ofman
et al. 1994, 1995; Ofman & Davila 1995; Goossens et al. 1995;
Ruderman & Roberts 2002), in the loops. This paper aims to con-
tribute to the understanding of wave activity in coronal active re-
gions by including an individual high-density loop in an idealized
active region. Note that there are considerable difficulties in the
interpretation and modeling of the oscillations due to mode cou-
pling in inhomogeneous MHD fluids and nonlinear effects. Thus,
to clearly demonstrate the effects of adding individual loop den-
sity structure to the model, the work here is presented as an exten-
sion to that of Ofman & Thompson (2002), which from now on
will be referred to as Paper I.

Finally, we note that Terradas et al. (2006b) studied kinkmodes
of oscillation in a curved coronal loop using a linear, � ¼ 0 to-
roidal model with a power-law density profile. By considering
linearized perturbation about this equilibrium, Terradas et al.
found two types of fundamental kink modes with either (mainly)
horizontal or vertical polarizations. It was also noted that the os-
cillations were damped and that this was due to resonant ab-
sorption and wave leakage, with the former being the dominant
damping mechanism. In the work presented below, we approach
this problem with a much more realistic model by solving the
nonlinear resistive 3D MHD equations with finite �, and our
model contains nonlinear interactions, which are important in the
initial stages of the oscillations, as well as coupling to compres-
sional modes. In addition, Terradas et al. (2006b) considered a
density contrast of � ¼ 3, whereas in this paper we investigate
the effect of the density contrast over a range of values.

The outline of the paper is as follows. In x 2, we present de-
scriptions of the methodology and techniques used in the con-
struction of the simulations, including theMHD equations solved
and the initial and boundary conditions used. The inclusion of the
density structure of individual, realistic coronal loops is described
in x 3. The numerical results are presented in x 4 and the conclu-
sions are given in x 5. Finally, a straight loop study and analytical
work are included as appendices.

2. THREE-DIMENSIONAL MHD MODEL

We solve the normalized, three-dimensional, nonlinear, resis-
tive MHD equations including gravitational effects:
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where � is the mass density, v is the plasma velocity, B is the
magnetic induction (usually called the magnetic field), p is the
plasma pressure, ẑ is a unit vector in the direction perpendicular
to the photospheric plane in the locally cartesian coordinate sys-
tem, Fr ¼ V 2

0 L/GM� is the Froude number (G is the gravitational
constant, M� is the solar mass, R� is the solar radius, L is the
typical length scale in the system, and V0 is the typical speed in
the system), � ¼ 2c2s /�v

2
A is the ratio of the thermal to the mag-

netic pressure [cs is the sound speed, vA ¼ Bj j/(4��)1/2 is the
Alfvén speed, and � is the ratio of specific heats], S ¼ LV0/� is
the Lundquist number (� is the resistivity), T is the temperature,
Hin is the heat input due to coronal heating, and Hloss is the heat
loss due to conduction, radiation, etc. Viscosity is neglected in
the model presented here. Equations (1)Y(4) were also presented,
although in slightly different forms, in Ofman&Thompson (2002)
and Ofman (2005, 2007).

For simplicity, we have assumed an isothermal plasma (� ¼ 1).
Therefore, p ¼ � in normalized units and there is no need to solve
the energy equation; i.e., the � ¼ 1 condition implies that the con-
vective derivative of T is zero and thus the initially isothermal
medium remains unchanged. The isothermal assumption is con-
sistent with the observed global structure of active regions (Cirtain
et al. 2006). Furthermore, we assume the same values of the
parameters as in Paper I: i.e., B0 ¼ 85 G, T0 ¼ 106 K, n0 ¼
�0/mp ¼ 109 cm�3 (where mp is the proton mass), and L ¼
R�/10 ¼ 69; 550 km. Furthermore, cs ¼ 128:5 km s�1 (constant
in our isothermal model), and the velocities and times were nor-
malized by V0 ¼ 5853 km s�1 and �A ¼ 11:9 s (Alfvén time).

The equations are solved with amodified Lax-Wendroff scheme
with a fourth-order smoothing term. The divergence of the mag-
netic field is corrected with Powell’s method. Details of the nu-
merical code can be found in Paper I. The equations are solved in
a computational box of dimensions (xmin; xmax) ; ( ymin; ymax) ;
(zmin; zmax), where�xmin¼ xmax¼�ymin¼ ymax¼ 3:5L, zmin¼ L,
and zmax ¼ 4:5L. The resolution used in the simulations shown
here was 150 ; 300 ; 150.

2.1. Boundary and Initial Conditions

We take an idealized 3D potential dipole as the initial equilib-
rium magnetic field configuration for our active region (Fig. 1).
The equations for this dipole can be found in Paper I. At the base
of the corona (z ¼ zmin), we keep themagnetic field fixed, whereas
we use zero-order extrapolation for the velocity and density:

B(x; y; zmin; t) ¼ B(x; y; zmin; 0); ð5Þ
v(x; y; zmin; t) ¼ v(x; y; zmin þ�z; t); ð6Þ
�(x; y; zmin; t) ¼ �(x; y; zmin þ�z; t); ð7Þ

where�z is the grid separation in the z-direction. We use open
boundary conditions at the other five boundary planes. At xmin

and xmax, the boundary conditions are

B(xmin;max; y; z; t) ¼ B(xmin;max � �x; y; z; t); ð8Þ
v(xmin;max; y; z; t) ¼ v(xmin;max � �x; y; z; t); ð9Þ
�(xmin;max; y; z; t) ¼ �(xmin;max � �x; y; z; t); ð10Þ

3D MHD WAVE ACTIVITY IN ACTIVE REGIONS 1339



where�x is the grid separation in the x-direction. The plus sign
corresponds to xmin and the minus sign to xmax. We use similar
expressions for the variables at ymin;max and zmax.

The initial background density is given by solving the time-
independent momentum balance equation (eq. [2] with v ¼ 0).
When we recall that p ¼ � in our normalized units and that the
Lorentz force is zero because of our choice of a potential mag-
netic configuration, this gives the gravitationally stratified hydro-
static density, which in our coordinate system is

�(x; y; z; 0) ¼ �0 exp
1

H

1

R� þ z� zmin

� 1

R�

� �� �
; ð11Þ

where H ¼ 2/(� Fr) ¼ 2kBT0R�/10GM�mp is the normalized
scale height (kB is Boltzmann’s constant). Using the normaliza-
tion given above, R� ¼ 10 and H ¼ 8:7 ; 10�3, which corre-
sponds to a scale height of 60.5 Mm. Thus, our z-range extends
across approximately four scale heights.

The plasma �, which is the ratio of the magnetic pressure to
the gas pressure, is very low in our system. At the center of the
lower boundary, � ¼ 0:002, while at the top, � ¼ 0:08. Note that
in our isothermal model, the sound speed is constant and so � �
v�2
A . Thus, � varies throughout our computational box and has
larger values in the outer parts of the domain (since the magnetic
field strength is lower in these regions). Current estimates of the
plasma � are around 0.07 and 0.2 for the cool and hot corona,
respectively (Gary 2001).

To model the impact of a fast magnetoacoustic wave on the
active region, we impose the following velocity pulse at the x-z
boundary plane along y ¼ ymin:

Vy(x; ymin; z; t) ¼ AvA(x; ymin; z) for 0 � t � �t; ð12Þ

where the duration of the pulse is �t ¼ 10�A and A is the initial
amplitude of the pulse (A ¼ 0:25 in the following simulations).
After a short transit time (5�A) following the pulse, the bound-
ary condition on Vy becomes open to allow flow through the
boundary. This initial velocity leads to the formation of a fast
magnetoacoustic wave in the computational domain. The phase
speed of fast magnetoacoustic waves is given by

Vfast ¼
1

2
v2A þ c2s þ v2A þ c2s

� �2� 4v2Ac
2
s cos

2	
h i1=2� �� �1=2

;

ð13Þ

where 	 is the angle between the magnetic field and the propa-
gating wave. In the low-� plasma of our model, csTvA, and so
Vfast � vA. Thus, understanding the Alfvén speed profile is cru-
cial to understanding the propagation of the fast wave. The form
of Vfast(x; y; z) in several planes can be seen in Figure 2. Note that
equation (13) is derived for the modes of a homogeneous un-
bounded medium (e.g., Roberts 1981) and so is only an approx-
imation in the context of this paper.

3. INDIVIDUAL LOOP DENSITY STRUCTURE

Dense loops with fine structure are commonly observed in the
corona in the EUV (e.g., in TRACE observations), and these struc-
tures persist for long periods of time (days). Hence, the inclusion
of individual loop density structure is a natural extension to the
modeling of active regions (as discussed in Terradas & Ofman
2004, with first results by McLaughlin & Ofman 2006). As
mentioned above, it is hoped that the inclusion of such 3D loops
will shed light on the relative importance of the different damping

Fig. 1.—Three-dimensional structure of the initial potential magnetic field that we use to simulate our active region. The intensity plot at z ¼ 0 of theBz component shows the
polarity of the field (dark indicates negative and bright indicates positive polarity). The field line that passes through the point (x; y; z) ¼ (0; 0; 3) is indicated in red. It is this field
line that is used to construct our overdense loop. Note that here we have simply colored and thickened the field line in order to indicate the overdense loop (Fig. 3 shows the actual
individual density stratification used in the model). [This figure is available as an mpeg animation showing the impact of the wave in the electronic edition of the Journal.]
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mechanisms and will also allow quantitative comparisons to be
made with observations of loop oscillations.

In past papers, models of curved coronal loops have used an-
alytical density profiles in the setup of their systems (e.g., two-
dimensional [2D] MHD models by Selwa et al. 2005b, 2006,
2007), which tend to be circular or elliptical loops (e.g., 2DMHD
models by Brady & Arber 2005, and linear models by Dı́az 2006;
Dı́az et al. 2006; Terradas et al. 2006b; Verwichte et al. 2006a,
2006b). Here we adopt a more general approach; we choose an
individual field line from our magnetic configuration and use it
as the axis for our loop. We then map the field line loop onto our
3D computational domain and increase the density in the loop in a
given radius centered at the field line (thus modifying the Alfvén
speed in that loop).

In this paper, we present a model with the inclusion of a single
high-density loop in order to clearly demonstrate how the results
change from those of Paper I. In this paper, we choose a field line
that passes through the point (x; y; z) ¼ (0; 0; 3) (see Fig. 3).
We use this field line as the axis of our loop and then choose its
radius and density enhancement relative to the background (strat-
ified) density as free parameters. Let us define this density en-
hancement as �(s) ¼ �i(s)/�0(s), where �i is the density inside the
loop, �0 is the density outside, and s is the coordinate along the
loop. For TRACE loops, the value of � is typically in the range
2Y10 (Aschwanden 2004). Initially, we will consider � ¼ 10,
independent of s.

McLaughlin & Ofman (2006) first looked at including high-
density loops in an active region model by increasing the density

along individual field lines. However, they concluded that the
results were affected by resolution and that the loop required a
finite thickness and adequate resolution across the loop (their
loops were in effect only one grid point thick). The model pre-
sented here addresses this issue by including a loop of finite
thickness.

However, we cannot simply choose any density profile for our
high-density loop. In order to have an equilibrium state at t ¼ 0
of the MHD equations for our high-density loop, we must sat-
isfy the time-independent momentum balance equation along
the loop,

�

2
:p sð Þþ � sð Þ

Fr

1

R� þ z sð Þ � zmin½ � 2
ẑ� :< B sð Þ½ �< B sð Þ ¼ 0;

ð14Þ

where s is the coordinate along the field line.
Since the plasma � is small in our system and the Lorentz

force is zero, we are nearly free to choose the density distribution
across the field lines but must still satisfy equation (14) along
each field line. By solving equation (14) along each field line in
our potential system (:< B ¼ 0), we obtain

�(s; �i) ¼ �i exp
1

H

1

R� þ z sð Þ � zmin

� 1

R�

� �� �
; ð15Þ

where �i is the density at the point s ¼ 0, which can be set at
z ¼ zmin (footpoint of the loop). Since equation (15) has the

Fig. 2.—Fast magnetoacoustic speed in four planes of our computational box: (a) Vfast(x; �3:5; z) (the x-z plane along which we launch our velocity perturbation);
(b) Vfast(x; 0; z) (the x-z plane through the center of the box, along y ¼ 0), in which the loop can clearly be seen; (c) Vfast(0; y; z) (the y-z plane through the center of the
box, along x ¼ 0), in which the loop cross section can be seen; and (d )Vfast(x; y; 3) (the x-y plane through the apex of our high-density loop). The loop presented here has a
density enhancement of � ¼ 10. In our model, csTvA, and so Vfast � vA.
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same form as equation (11), we find that the densities inside
and outside the loop have the same scale height. Thus, � is in-
dependent of s for our model. Hence, it makes sense to talk of
a density enhancement or density contrast for our loop and still
retain that the system is gravitationally stratified.

Note that in the loop presented here, we chose a discontinuous
jump between �i and �0 (for simplicity). In addition, the mag-
netic pressure holds the loop in place across the field lines with
very small adjustments; i.e., the system settles into equilibrium
before the wave is launched. The adjustments in the initial loop
radius are small because the plasma � isT1, and in fact we ne-
glect the thermal pressure gradients due to the loop density varia-
tion across the field lines (effectively setting �? ¼ 0 in the initial
state) so that we ignore the small-amplitude slow waves and sur-
face waves that may be produced by the loop density structure,
since we are predominantly interested in the (global) behavior of
the fast wave. Finally, we note that the current could be nonzero
in an observed nonYforce free loop structure. In that case, our
high-density loop would have a more complicated form than that
of equation (15), and onewould need to solve equation (14) with
the (:< B)< B term.

In the simulations presented below, we construct a loop of
radius 0.25 at the footpoints, with a total length of 7.0 (i.e.,
radiusTlength). In the active region, the radius of the loop slightly
increases with height due to field divergence (remaining circular).
We have chosen a computational domain of (x; y) 2 ½�3:5; 3:5�
and z 2 ½1; 4:5�, and consequently, our circular loop cross sec-
tion appears elliptical in the y-z plane figures (solely due to our
choice of axes). Aschwanden (2003) reports the average observed
loop length as 220 � 53 Mm (over a range of 74Y582 Mm) and
the average loop half-width as 4:4 � 1:4 Mm (over a range of
2.8Y8.4 Mm). We have chosen a loop length-to-radius ratio of
28:1, which is toward the lower limit of these observed values,
but we have made this choice so that the radius will be fully
resolved.

We have 300 grid points in the y-direction (�3:5 � y � 3:5)
and 150 grid points in the z-direction (1 � z � 4:5). Hence, we
have approximately 20 grid points across the loop in the y- and
z-directions. We have less resolution across the structure in the
x-direction (150 grid points over the range ½�3:5; 3:5�), but this
is where we expect the least activity (due to symmetry).

4. NUMERICAL RESULTS

In this section, we present results of the 3DMHDmodel com-
putations of an active region subject to the initial and boundary
conditions described above. The results presented in this paper
are concerned with loop oscillations and wave damping, and how
these effects varywith density contrast, �. Away from the loop, the
behavior of the magnetic field, velocity, density and current is
similar to that in Paper I. Thus, a full description of the behavior
of these quantities is not given here, as all the results have pre-
viously been reported in that paper.We do, however, review some
of the key results concerning the wave propagation, as this will
greatly aid understanding of later sections.

4.1. Velocity Behavior

In Figure 4, we show the velocity evolution in the x-y plane
along z ¼ 2:75, i.e., a horizontal cut halfway through our box
(top), and in the y-z plane along x ¼ 0 (bottom), at three time
slices. The arrows show the direction of the flows, and the red
color scale indicates the magnitude of the variable in this plane.
The blue shading indicates the location of the higher density loop
(here � ¼ 10). There are three key points to note:

1. Consider the x-y plane (Fig. 4, top). The wave front is clearly
distorted by the nonuniform Alfvén speed in the active region.
Initially, the central part propagates faster than the outlying regions
due to the stronger magnetic field. The wave is reflected at the re-
gions of high Alfvén speed, and this occurs close to y ¼ 0 (recall
Fig. 2d ). The resultant wave consists of a reflected part (toward
the negative y-direction) and a small transmitted component. Thus,
the velocities in the y ¼ 0 plane are very small, and hence the os-
cillations that occur there are small (weak impulsive excitation).
2. Consider the y-z plane (Fig. 4, bottom). Again, the wave

front is distorted by the nonuniform Alfvén speed. From the
arrows, we can see that the wave is deflected by the curved field
toward the footpoints of the magnetic loops. Since the boundary
conditions require that the magnetic field be fixed at the lower
boundary, the waves are reflected near the footpoints. These re-
flected waves are present in the left-hand side of the active region,
since the footpoint reflection is directed toward the negative
y-direction. Thus, the high Alfvén speed in the center of the di-
pole (see Fig. 2c) acts as a barrier to the wave propagation.

Fig. 3.—Left: Field line selected from our equilibrium magnetic field configuration that passes through the point (x; y; z) ¼ (0; 0; 3). Right: Loop constructed along
this field line, with a length of 7.0, a chosen minor radius of 0.25, and a density enhancement of � relative to the background (stratified) density. [See the electronic edition
of the Journal for a color version of the right panel of this figure.]
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3. An important point to note for this paper is that when the
fast wave first reaches the loop [the blue shaded region with
apex located around (x; y; z) ¼ (0; 0; 3)], there is flow in both
the y-direction (Vy) and the z-direction (Vz). This behavior will
be seen later in the temporal evolution subsection.

Thus, one of the key results is that the fast wave that was ini-
tially propagating in the positive y-direction has been partially
reflected backward, to the sides and over the active region. It is
important to note that the Alfvén speed profile dominates the
propagation of the fast wave in the active region; specifically,
the wave is refracted away from regions of high Alfvén speed.
This refraction of fast wave propagation has been reported in
several systems (e.g., Nakariakov & Roberts 1995; McLaughlin
& Hood 2004, 2006) and was present in Paper I. In addition, it
may explain why only a small number of loops are seen to oscil-
late in TRACE observations (this is discussed in x 5).

4.2. Temporal Evolution

In Figure 5, we show the temporal evolution of the velocity
components, perturbedmagnetic field components, and perturbed
density at a point (x; y; z) ¼ (0; 0; 3), which is located inside and
near the apex of our high-density loop. The oscillations seen at
this point represent the response of these variables resulting from
the impact of the fast magnetoacoustic wave. We present a com-
parison of two systems: the red lines represent the temporal evo-
lution of quantities from a system with a high-density loop with
� ¼ 10, and the blue lines come from a system with � ¼ 1; i.e.,
the system studied in Paper I (no density contrast). Thus, this fig-
ure demonstrates how the quantities have changed due to the ad-
dition of high density to the magnetic loop.

Let us first consider Figure 5b. In the � ¼ 1 system (blue line),
the first peak inVy at t ¼ 384 is due to the impact of the fast wave
(there are corresponding variations in �By and �n). After this
time, the field line has been displaced and oscillates back and
forth about its original position (approximately once). Thus, the
second peak in Vy is due to the field line returning to its original

position. However, in the � ¼ 10 case (red line), we have differ-
ent behavior. The first peak in Vy occurs at a slightly later time
(t ¼ 392), and then several oscillations occur. These oscillations
are similar to those seen in the straight loop case (see Appendix A).
There is also increased activity in �n. In addition, we see that the
magnetic pulse associated with the impact of the fast wave passes
through (x; y; z) ¼ (0; 0; 3) at a later time (see Fig. 5c). This is
expected since theAlfvén speed in the loop is now reduced, and so
the fast wave travels at a reduced speed.

Here it is instructive to mention the work of Terradas et al.
(2005b, 2006a), in which the authors investigated the excitation
and damping of trapped and leaky modes in one-dimensional (1D)
and 2D coronal slabs and loops. It was found that the loop os-
cillated as a result of an initial disturbance and that, after a short
transient phase, the loop displayed trapped normal modes. This
transient phase, which is the initial response to the incoming per-
turbation followed by the excitation of leaky modes, was called
the impulsive leaky phase, after which the dynamics are domi-
nated by the (undamped) trapped mode, which is called the sta-
tionary phase (Appendix A demonstrates the different phases in
a straight cylinder). Thus, using this terminology, we see that in
Figure 5b, the impulsive leaky phase occurs between (approxi-
mately) t ¼ 370 and t ¼ 440; i.e., representing the initial response
of the loop (also see Fig. 6). This is followed by a series of damped
oscillations, which in our curved loop occurs in place of the sta-
tionary phase. However, one has to be cautious when comparing
linear � ¼ 0 theory (i.e., Terradas et al. 2006b) with nonlinear
3D MHD results. For example, in our model the initial damping
can occur because of nonlinear coupling between modes, as well
as coupling to the slow mode (similar to Selwa et al. 2007),
whereas these effects are not present in linear, � ¼ 0 theory.

In addition, we see significant changes in the behavior of Vz in
Figure 5a. In the � ¼ 1 system, the evolution of Vz is related to
the large-scale velocity flow in the active region: namely, a peak
at t ¼ 367 due to the fast wave being refracted upward away from
the active region, and then Vz < 0 behavior related to the fast
wave being deflected by the curved field toward the footpoints of

Fig. 4.—Top row: Velocity in the x-y plane at z ¼ 2:75 of the incoming wave at the (Alfvén) times (a) t ¼ 12:8, (b) t ¼ 33:5, and (c) t ¼ 51:0. The arrows show the
direction of the flows, and the (red) color scale indicates the magnitude of the variable. Bottom row: Velocity in the y-z plane at x ¼ 0 of the incoming wave at the same
(Alfvén) times: (d ) t ¼ 12:8, (e) t ¼ 33:5, and ( f ) t ¼ 51:0. The blue shading indicates the location of the higher density curved loop (here � ¼ 10). Thewave propagates
from the x-y plane into the 3D dipole. It is evident that the wave front is distorted by the nonuniform fast magnetoacoustic speed. [Both the top and bottom rows of this
figure are available as mpeg animations in the electronic edition of the Journal.]
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the magnetic loops (as seen in Fig. 4e). However, in the � ¼ 10
system, Vz(0; 0; 3) exhibits very different evolution: a decaying
oscillation that is related to the internal structure and trapped os-
cillations inside the high-density loop. Again, this evolution is
comparable to that seen in the straight cylindrical loop case (Ap-
pendix A). However, it is possible to see the link between the two
systems: in the � ¼ 1 loop, there is an initial Vz > 0 disturbance
(at t ¼ 367) and then subsequent Vz < 0 flow, whereas in the

� ¼ 10 loop, there is again the same initialVz > 0 disturbance (at
t ¼ 388; later because of the lower Alfvén speed), and this acts
as the impulsive excitation that leads to the observed oscillations
in Vz.
In both systems, the loop experiences impulses of comparable

magnitude in both Vy and Vz, and these impulses generate oscil-
lations in the field. Due to the symmetry along x ¼ 0 (note that
the equilibriummagnetic field and the initial perturbation are sym-
metric in the y-z plane along x ¼ 0), there is negligible magnitude
of Vx in both systems. Thus, the point (0; 0; 3) is a node of Vx,
and so we would expect the slow mode to be zero at this point.
Theoretical works on the behavior of the slow mode in coronal
loops can be found in Nakariakov et al. (2000) and Selwa et al.
(2005a, 2007), as well as references therein. Finally, the ampli-
tude of the oscillations is clearly reduced in the � ¼ 10 system. A
full parametric study of this variation in amplitude is discussed
in x 4.4.

4.3. Density Evolution

As can be seen in Figure 1, the field lines respond to the pro-
pagation of the fast wave and oscillations are induced. The mag-
netic field response to the impact of the wave can be seen as an
animation in the electronic edition of the Journal. These oscilla-
tions occur in the field lines and are sustained by the elastic na-
ture of themagnetic field (magnetic tension is the restoring force).
Correspondingly, the impact of the fast wave has caused oscilla-
tions in our loop, since the magnetic field is nearly frozen into the
plasma (the Lundquist number is much greater than unity).
Thus, we should be able to see these oscillations in density, and

this can be seen in Figure 7 (with � ¼ 10). Since the perturbations
are very small (as noted in x 4.1), the results are best seen as

Fig. 5.—Comparison of the time evolution of several quantities at the point (0; 0; 3) between two systems with � ¼ 1 (blue lines) and � ¼ 10 (red lines) in our curved
loop. The system with � ¼ 1 is equivalent to the system described in Paper I. (a) Vx (dotted lines;�0) and Vz (solid lines). (b) Vy. (c)�Bx (solid lines),�By (dotted lines;
�0), and �Bz (dashed lines; �0). (d ) �n.

Fig. 6.—Time evolution of Vy(0; 0; 3) in our curved loop with a density en-
hancement of � ¼ 10. The impulsive leaky phase occurs between (approximately)
t ¼ 370 and t ¼ 440, and this is followed by a series of damped oscillations. The
amplitudes V1 and V2 are used to calculate the damping time, � . Note that the final
trend is not the initial unperturbed state.
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Fig. 7.—Top row: Difference images of the density in the x-z plane ( y ¼ 0) at the (Alfvén) times (a) t ¼ 31:5, (b) t ¼ 33:5, and (c) t ¼ 35:5. Darker areas correspond to
decreases in density, and lighter areas correspond to increases in density. Bottom row: Difference images of the density in the y-z plane (x ¼ 0) at the same (Alfvén) times:
(d ) t ¼ 31:5, (e) t ¼ 33:5, and ( f ) t ¼ 35:5. Note that in order to see the results more clearly, we have changed the range in the y-z plane to focus on the area around the
high-density curved loop. In all panels, the white outline indicates the initial location of the high-density loop.

Fig. 8.—Curved loop. (a) V1 (upper set of asterisks) and V2 (lower set of asterisks; from Vy) as a function of �. The blue line represents the WKB wave propagation
analytical solution. The red line represents the reflection/transmission coefficient solution. Both solutions have been normalized to Vy(0; 0; 3) at � ¼ 4 for clear com-
parison. (b) Ratio of V1 to V2 as a function of �. (c) Period of the oscillation (in units of seconds) as a function of �. (d ) Damping time of the oscillation (in units of
seconds) as a function of �.



moving difference images (i.e., the previous image is subtracted
from the current image), where the darker areas correspond to a de-
crease in density and lighter areas correspond to an increase in
density. In the top row of Figure 7, we see the variation in the
density in the x-z plane, and it is clear that the density equilibrium
has been perturbed such that an oscillatory pattern appears. There
are two possible reasons for this variation: either the loop is ex-
panding and contracting in the vertical plane, or else we are see-
ing the projection effect of oscillations in the horizontal plane.
These two types of modes can be classified as vertical or hori-
zontal polarizations (according to the dominant component of
the velocity field) and have been looked at theoretically by Dı́az
et al. (2006) and Terradas et al. (2006b). In particular, Terradas
et al. found that these two types of polarization have a very sim-
ilar frequency. It is important to distinguish between the two types
as, for example, an oscillation in the vertical plane requires a
change in the length of the loop and thus has consequences in
coronal seismology.

We can distinguish whether we are seeing oscillations in the
vertical or horizontal plane by looking at the density in the x-z
plane. This can be seen in the bottom row of Figure 7. Note that
in order to see the results more clearly, we have changed the range
of the axes to focus on the area around the high-density loop. We
see that we have a superposition of both horizontal (dark next to
light) and vertical oscillations (dark above light, or vice versa).
Horizontal and vertical polarizations were recently seen in obser-
vations by Wang & Solanki (2004) and were looked at theoreti-
cally by Selwa et al. (2005b).

These oscillations are in agreement with the interpretation of
Figures 5a and 5b: i.e., that the apex of the loop is impacted by
the fast wave in both Vy and Vz. For example, in Figure 7c it
appears that the loop is oscillating in the vertical plane, but by
comparing with Figure 7e, we see that it is in fact oscillating in
both planes. Correspondingly, at this time the velocity at this point
is Vy > 0 and Vz < 0. Thus, whether the loop experiences a ver-
tical or horizontal oscillation is entirely determined by the velocity
vector at that point.

4.4. Parametric Study of �

In x 4.2, it was noted that the amplitude and nature of the loop
oscillations changed when the density ratio was increased from
� ¼ 1 to � ¼ 10. This section examines the nature of that depen-
dence further. Here we focus our investigation on the wave be-
havior seen in Vy, as this component clearly shows the field line
oscillations. Figure 6 shows an enlarged version of Figure 5b for
the � ¼ 10 system. As mentioned above, and using the termi-
nology of Terradas et al. (2005b, 2006a), we see that the impul-
sive leaky phase occurs between (approximately) t ¼ 370 and
t ¼ 440, after which the loop displays damped oscillations: i.e.,
a secondary phase. Ignoring the impulsive leaky phase and con-
sidering the remaining part of the series, we use the amplitudes
V1 and V2, which occur at times t1 and t2, to calculate the period
of oscillation and the damping time, for several values of �. These
quantities can be seen in Figure 8. We also compare and contrast
our results with those for a straight cylinder with similar parame-
ters (see Appendix A, and compare with Fig. 9).

Fig. 9.—Straight loop. (a) V1 (asterisks) and V2 ( plus signs), from Vy, as functions of �. (b) Ratio of V1 to V2 as a function of �. (c) Period of the oscillation (in units of
seconds) as a function of �. The solid line represents the analytical solution of Edwin & Roberts (1983). (d) Damping time of the oscillation (in units of seconds) as a
function of �. The solid line represents the analytical solution of Hollweg & Yang (1988). [See the electronic edition of the Journal for a color version of this figure.]

McLAUGHLIN & OFMAN1346 Vol. 682



Figure 8a shows how the amplitudes of V1 and V2 vary for
different values of �. We can see that the amplitudes of both V1

andV2 decrease with increasing �. In addition, the behavior of V1

is in good agreement with that of the straight cylinder model
(Fig. 9a). However, the behavior of V2 shows a different depen-
dency on � from that of the straight cylinder model. We tried to
fit the data using two analytical functions:

1. a function proportional to ��1/4, which is the analytical
dependence predicted by a WKB wave propagation model, and

2. a function proportional to the reflection/transmission co-
efficient at the loop boundary; i.e., proportional to (1þ

ffiffiffi
�

p
)�1.

However, neither analytical solution fits the simulation data per-
fectly, as can be seen in Figure 8a. The derivation of these ana-
lytical expressions can be found in Appendix B.

In Figure 8b, we see that the ratio of V1 to V2 also changes
with �, confirming that V1 and V2 have different dependencies on
� (and that these dependencies are more complicated than simple
power laws). However, the magnitude and trend is different from
that of a straight cylinder. This is due to the different behavior of
V2 in both models: i.e., the magnitude of V2 is substantially lower
in the curvedmodel than in the straight cylinder, and so this affects
the ratio of V1 to V2 and thus will affect the damping time (see
below).

Figure 8c shows the period of oscillation at the point (0; 0; 3)
as a function of �. The period, P, is calculated from P ¼ t2 � t1.
The period of oscillation increases with �. This is in agreement
with the straight loop model. However, the period of oscillation
in the straight loop case is longer (1Y3 times; Fig. 9c).

We can fit the damped oscillations of Vy using the function

Vy(t) ¼ A0 sin t=P þ 
ð Þe�t=� ; ð16Þ

where A0 is a constant, � is the damping time, i.e., the time taken
for the oscillation to decrease in amplitude by e (the base of the
natural logarithm), and 
 is the phase difference. Thus, by using
the amplitudes and times at two points of an oscillation, i.e., V1

and V2 at t1 and t2, we can obtain � . Using this methodology, we
can calculate � ¼ P/ln(V1/V2). Figure 8d shows the damping
time of the excited oscillations as a function of �. This graph
provides one of the key results of this paper: we can see that
damping time increases with increasing �.

By comparing this result with Figure 9d, we can see that the
damping time is much shorter than that for the straight cylinder.
Hence, the damping rate is greater in the curved loop. In addition,
the dependence on � is reversed when comparing Figures 8d and
9d. This opposite behavior is addressed in x 5.

5. DISCUSSION AND CONCLUSIONS

We have presented for the first time the results from a 3D non-
linearMHD simulation of wave activity in active regions inwhich
individual loop density structure is included. We have studied the
behavior of a fast magnetoacoustic wave propagating within an
active region composed from a 3D dipole, gravitationally strati-
fied density and containing a loop with a higher density than its
surroundings.We found that the fast wave propagation is distorted
by the Alfvén speed profile and that the wave propagation gener-
ates (rapidly damped) loop oscillations.

We initially compared a system with a high-density loop of
density contrast � ¼ 10 and a system with � ¼ 1 (equivalent to
the system studied by Ofman & Thompson 2002). We found that
the addition of a high-density loop significantly changes the be-

havior in that region; namely, that there was now internal os-
cillatory motion inside the loop. This was not surprising, as
we would expect wave trapping to occur in a loop that is denser
than its surroundings (Roberts et al. 1983). In addition, we
found that the impact of the fast wave in both the Vy and Vz

components impulsively excited both horizontal and vertical
loop oscillations (Fig. 7). Subsequently, these oscillations were
rapidly damped.

We found that the direction of the oscillation (i.e., whether
vertical or horizontal) is determined by the velocity vector at that
point in time, since the velocity behavior drives the oscillations.
Thus, since the fast wave is distorted by the Alfvén speed in the
3D dipole, the wave impacts the loop in different places at differ-
ent times. Hence, it is unlikely that the oscillation generated along
the whole loop is the pure global kink mode.

We have restricted our work to studying an initial perturbation
that impacts the equilibriummagnetic field symmetrically; i.e., it
is symmetric in the y-z plane along x ¼ 0. If our initial pulse
were directed to form an angle with the dipole plane, we would
expect the resultant oscillations to again exhibit both vertical and
horizontal polarizations, but to also display swaying oscillations
(Dı́az et al. 2006).

We then performed a parametric study of the loop oscillations
over a range of �-values. We focused our attention on the oscil-
lations inVy at the point (x; y; z) ¼ (0; 0; 3), as this clearly dem-
onstrated the damped field line oscillations. We found that the
amplitude of the oscillations decreases as � is increased, and that
V1 and V2 display different dependencies on �. In addition, the
period and damping time increase with increasing �, where the
damping time was calculated using equation (16). This is one
of the key results of this paper: that the individual loop density
structure can influence the damping rate, and specifically that the
damping time increases with increasing density contrast. This is
not surprising, since the restoring force comes from magnetic
tension, and so for a given magnetic field, denser loops are re-
stored to equilibrium at a decreased rate due to increased inertia.
These conclusions are consistent with those drawn by Smith
et al. (1997), who found that for a 2D arcade the energy leakage
is lower for slabs with a higher density ratio. However, our trend
is not in agreement with Brady & Arber (2005), who found that
for fast waves driven at the footpoints of a curved 2D flux tube,
the decay time of the standing modes scales with the square root
of �.

In addition, all these results were compared to a similar study
performed on a straight coronal loop (Appendix A). It was found
that the fast wave impulsively excites oscillations in the over-
dense cylinder, but that not all the oscillation is fully trapped.
Looking at Vy(0; 0; 3:5) inside our cylinder, we observe the ini-
tial passage of the pulse, followed by a transient phase (impul-
sive leaky phase), followed by the establishment of a trapped
mode (stationary phase). The oscillation in the transient phase
consists of nontrapped modes and normal modes, and the damp-
ing mechanism is wave leakage (i.e., leakage of the modes that
are not normal modes). This leakage rate is determined by the
density contrast. From Figure 9d, we see that the damping time
decreases with increasing density contrast. This is in some agree-
ment with the resonant absorption models of Ionson (1978),
Hollweg & Yang (1988), and Ruderman & Roberts (2002; see
eq. [17] below), although, as mentioned, the damping mecha-
nism here is not due to resonant absorption, as we do not have
thin layers at the cylinder boundary.

The damping time due to resonant absorption (e.g., Hollweg
& Yang 1988; Goossens et al. 2002; Ruderman & Roberts 2002;
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Aschwanden et al. 2003 and references therein) was derived by
Ionson (1978) and Hollweg & Yang (1988) as

�decay /
�i þ �e
�i � �e

P j �decay /
(� þ 1)3=2

� � 1
; ð17Þ

where �decay is the damping time, � i is the internal density, �e is
the external density, P is the period, and � ¼ �i/�e. This behav-
ior can be seen as an overplot in Figure 9d. This damping time
has been tested numerically by Steinolfson & Davila (1993). In
addition, Poedts & Kerner (1991) and Arregui et al. (2005) found
that the damping rate is independent of the magnetic diffusivity
(although this is only true for resonant absorption).

Comparing the two systems (i.e., Figs. 8d and 9d ), we find
that the damping time is much longer in the straight loop system
than in the curved. Thus, there must be additional effects that in-
crease the damping rate in our curved loop. The increased damp-
ing rate is from the extra effect of wave leakage due to curvature
in our system; i.e., we have used the straight loop study, which
was set up with similar parameters, to rule out other possible
dampingmechanisms of viscosity and phasemixing.Wave leak-
age due to curvature has been studied extensively in the context
of coronal loop oscillations (Smith et al. 1997; Van Doorsselaere
et al. 2004;Murawski et al. 2005; Selwa et al. 2005b, 2006; Brady
et al. 2006; Dı́az et al. 2006; Dı́az 2006; Verwichte et al. 2006a,
2006b; Terradas et al. 2006b).

It is also interesting to note that under damping due to curva-
ture, the damping time increases as � increases, whereas in the
straight cylinder model, the damping time decreaseswith � (from
damping due to leakage of nontrapped modes). Thus, the two
damping mechanisms exhibit opposite dependencies on �. How-
ever, the damping rate from wave leakage due to curvature is
significantly greater (for the models and parameters we have
presented here). In addition, from equation (17) we see that the
damping time due to resonant absorption also decreases with �.
Thus, it is interesting to note that damping due to resonant ab-
sorption exhibits the opposite dependency on � compared to wave
leakage due to curvature.

We have also performed further investigations with a longer
overdense loop: i.e., higher above the high Alfvén speed region.
In this study, we choose a field line that passes through the point
(x; y; z) ¼ (0; 0; 4). As before, we found that the field lines re-
spond to the propagation of the fast wave and oscillations are
induced (both horizontal and vertical polarizations). This study
was conducted because it was thought that using a longer loop
would produce a larger amplitude loop displacement compared
to the loop studied above. However, even though the amplitudes
of the oscillations are somewhat larger than those considered in
the shorter loop studies, the behavior is very similar to that of
Figure 7: i.e., the density oscillations are predominately inside
the (original) loop structure. We conclude that this is because
there is insufficient impulsive velocity in the x-z plane to signifi-
cantly displace the loop (in the model presented here).

The work performed in this paper has highlighted the impor-
tance of including individual loop density structure in the mod-
eling of active regions and has illustrated the need for obtaining
accurate density measurements for coronal seismology. Future
work will involve extending this technique to include more com-
plicated loop structures, such as a nonuniform density across the
loop, and the inclusion of multiple loops (recent work in this area
includes Ofman 2005; Luna et al. 2006; Gruszecki et al. 2006;
Selwa et al. 2006; Arregui et al. 2008). In addition, we will ex-
tend our curved coronal loop model to include a thin boundary
layer, whereby its internal density blends into the external en-
vironment. This will allow us to fully investigate the additional
damping due to resonant absorption, but will require a signifi-
cant increase in numerical resolution in order to fully resolve the
boundary layers.
Finally, the work here aims to contribute to one of the unan-

swered questions of coronal seismology: why are only a small
number of loops seen to oscillate in TRACE observations? Our
contribution here is twofold; first, the strongmagnetic field in the
active region reflects and refracts the impulsive wave away from
the active region, and the resultant velocities inside the active
region are several orders of magnitude less than the initial distur-
bance (as seen here and originally seen in Ofman & Thompson
2002); i.e., the loops inside the active region are in effect shielded
from the impulsive fast wave by the high Alfvén speed region that
they exist in. Secondly, we have shown here that the inclusion of a
high-density loop in the surrounding magnetized plasma can sup-
port localized trapped MHD modes and that the damping time of
these waves depends on the density contrast. We have found that
loops with a higher density contrast have a longer damping time,
but correspondingly have a much smaller amplitude. Thus, it is
possible that some high-density loops in the corona are oscillating,
but with amplitudes below that which can be seen with the resolu-
tion of TRACE.
Observations of wave activity in active regions combined with

three-dimensional theoretical modeling can be used as a wave di-
agnostic for coronal parameters. It is hoped that thework performed
here has contributed to suchmodels. However, our observations are
currently confined to line-of-sight imaging. The new STEREO
spacecraft will provide stereoscopic information on the solar
corona, and the resulting reconstruction will give us three-
dimensional information on the loop structure. Also, high tem-
poral and spatial resolution spectral images from the Hinode
EIS instrument will provide additional insight. These new ob-
servations will allow new comparisons to be made between the
data and theory andwill further the development of our diagnostic
tool for coronal active region parameters.

James McLaughlin wishes to thank Chris Brady, Alan Hood,
Mag Selwa, and Jaume Terradas for helpful discussions. This work
has been supported by theNASASECTheory program andNASA
grant NNG06GI55G. Part of the computations reported in this
work were performed on NASAAmes Columbia supercomputers.

APPENDIX A

STRAIGHT CYLINDER STUDY

In this appendix, we investigate the dependence of the amplitude and nature of oscillations in a straight cylinder on �. We consider a
unidirectional magnetic field [B ¼ B0(0; 0; 1) in our nondimensionalized units, where B0 is a constant] and define our loop as a cy-
linder of radius 0.5 and length 7.0, with density enhancement �; i.e., the density outside the cylinder is �0 ¼ 0:1 everywhere, and inside
there is a discontinuous jump to �i ¼ �/10. This can be seen on the left-hand side of Figure 10. Equations (1)Y(4) are solved in a com-
putational box of dimensions (xmin; xmax) ; ( ymin; ymax) ; (zmin; zmax), where �xmin ¼ xmax ¼ �ymin ¼ ymax ¼ 1:5L, zmin ¼ 0, and
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zmax ¼ 7L. The resolution used in the simulations shown here was 140 ; 140 ; 98. We want to compare this straight loop with the
numerical simulations of our curved loop, and so we choose B0 ¼ 22 G, where this choice sets V1(0; 0; 3)jcurved ¼ V1(0; 0; 3:5)jstraight
for � ¼ 10. This gives a typical speed of V0 ¼ 1515:1 km s�1 and an Alfvén time of �A ¼ 45:9 s. We use the boundary conditions as
described in x 2.1. We set � ¼ 0:01 (Priest 1982) and ignore gravitational effects. We drive a wave pulse of the form given in equation
(12) into our computational domain.

We find that the loop is impulsively excited by the fast wave. On the right-hand side of Figure 10, we see the temporal evolution of
Vy(0; 0; 3:5); i.e., the center of our box andmidpoint of our loop. The temporal evolution consists of three stages. The first 100 s show
the passage of the initial pulse. This is followed by a second stage ( lasting until t � 1500 s), which is called the transient phase (or
impulsive leaky phase), and thirdly, after t � 1500 s, we see the establishment of a single trapped mode (called the stationary state).
The transient phase consists of the normal mode plus nontrapped modes, and these transient modes are damped due to wave leakage.
The leakage rate in the transient phase is determined by the density contrast.

In the stationary state, the trappedmode has amuch smaller damping rate due to (small) numerical dissipation, but this damping rate
is approximately an order of magnitude less than the leakage rate in the transient phase. This numerical damping is constant through-
out the simulation, but the damping rate changes between the transient phase and stationary state. Hence, numerical damping cannot
explain the damping in both phases, but dividing the oscillation into a transient and stationary phase provides a natural explanation for
the change in the damping rate.

Similar behavior was observed by Terradas et al. (2006b), in which several phases were found when studying how initial distur-
bances induce kink-mode oscillations in 1D and 2D line-tied cylindrical loops: two initial extrema followed by short-period oscilla-
tions that are quickly attenuated (transient phase), leading to the establishment of a long-period oscillation (stationary state). The
transient stagewas also seen in numerical work by Steinolfson&Davila (1993). However, our paper is the first work thatmodels 3DMHD
nonlinear loop oscillations with the excitation described in x 2.1, and so the work of Terradas et al. (2006b) cannot be directly compared to
our mode excitation mechanism. Steinolfson & Davila (1993) also solves linear MHD equations, and in that work only normal modes are
excited in a driven problem. Hence, the results of both papers are excellent guides for the nature of the transient phase, but cannot be
directly applied to our model.

As in x 4, we consider the amplitudes V1 and V2 and calculate V1/V2, the period of oscillation, and the damping time as functions of
�. The results can be seen in Figure 9. In Figure 9a, we see that the velocity amplitude decreases with increasing �. From Figure 9b, we
see that the ratio of V1 to V2 is not constant and increases approximately linearly with �. In Figure 9c, we see that the period increases with
increasing �, and that the agreement with the analytical work of Edwin &Roberts (1983) is very good. In Figure 9d, we see that the damp-
ing time decreases with increasing density contrast. This is in some agreement with equation (17), which is from the resonant absorption
models of Ionson (1978), Hollweg & Yang (1988), and Ruderman & Roberts (2002), although, as mentioned above, the damping mech-
anism here is not due to resonant absorption, as we do not have thin layers at the cylinder boundary. These trends are the key results from
this appendix. The results from this appendix are used in x 4.4, which compares this straight loop model with the curved loop model.

APPENDIX B

ANALYTICAL WORK

The WKB (Wentzel-Kramers-Brillouin) approximation was derived for the Schrödinger equation in 1926 for slowly varying am-
plitude and phase of the wave. Here we use this approach to discuss the reflection/transmission coefficient utilized in x 4.4. Under the
WKB approximation, the energy flux of the Alfvén wave is (1/2)� �v 2 VA ¼ constant. Substituting in normalized units, VA ¼ B/�1/2,
and assuming that B is constant over the distance the wave travels gives

�1=2 �v 2 ¼ constant j �v � ��1=4:

Fig. 10.—Left: Our cylindrical loop of length 7.0, radius 0.5, and density enhancement � relative to the (constant) background density, embedded in the unidirectional
magnetic field Bz. Right: Time evolution of Vy(0; 0; 3:5) in the � ¼ 2 straight loop. The phase before (approximately) t ¼ 100 s is the response to the incoming
perturbation. The transient phase (or impulsive leaky phase) occurs until t � 1500 s, and the remaining part of the series represents the signature of the normal mode being
established (stationary state). We use the amplitudes V1 and V2 to calculate a damping time. [See the electronic edition of the Journal for a color version of this figure.]
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The reflection/transmission coefficient at the loop boundary is calculated as follows. Consider a 1D wave impacting on a boundary
( located at x ¼ 0) such that it is partially reflected and partially transmitted. Let the waves be of the form �e i(k x�!t), and let R be the
reflection coefficient and T be the transmission coefficient. Here ! is the frequency of the wave and k0 and ki are the wavevectors in the
mediums on either side of the boundary, where the subscript ‘‘0’’ denotes ‘‘outside’’ and the subscript ‘‘i’’ denotes ‘‘inside.’’ Let the
region in which the wave starts and is reflected back into have density �0 and the region into which the wave is transmitted have
density �i. Thus, continuity at the boundary dictates that

e i k0 x�!tð Þ þ Rei �k0 x�!tð Þ ¼ Tei ki x�!tð Þ;

such that at x ¼ 0; 1þ R ¼ T : ðB1Þ

Matching derivatives at the boundary gives

ik0e
i k0 x�!tð Þ � ik0Re

i �k0 x�!tð Þ ¼ ikiTe
i ki x�!tð Þ;

such that at x ¼ 0; 1� R ¼ T
ki

k0
: ðB2Þ

Now assume that !/k0 ¼ v0 ¼ ���1/2
0 , where � is a constant of proportionality, and assume a similar expression inside the boundary.

This implies that ki/k0 ¼ (�i/�0)1/2. Hence, adding equations (B1) and (B2) gives

T ¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffi
�i=�0

p ¼ 2

1þ
ffiffiffi
�

p ; where � ¼ �i
�0

:
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