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ABSTRACT

A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily
extensible for use with static and adaptive mesh refinement. It combines higher order Godunov methods with the
constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is
based on cell-centered volume averages for mass, momentum, and energy, and face-centered area averages for the
magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-
averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes,
(2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally split time advance, and
(3) the extension toMHD of two different dimensionally unsplit integration methods. Implementation of the algorithm
in both C and FORTRAN95 is detailed, including strategies for parallelization using domain decomposition. Results
from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are
given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The
source code is freely available for download on the web.

Subject headinggs: hydrodynamics — MHD — methods: numerical

Online material: color figures

1. INTRODUCTION

Numerical methods are essential for the study of a very wide
range of problems in astrophysical fluid dynamics. As such, the
development of more accurate and more capable algorithms,
along with a description of their implementation on modern par-
allel computer systems, is important for progress in the field. This
paper describes a new code for astrophysical magnetohydrody-
namics (MHD) called Athena, developed through a collaborative
effort between the authors.

There are many numerical algorithms available for solving the
equations of compressible MHD. One of the most successful is
based on operator splitting of the equations, with higher order
upwind methods used for the advection terms, centered differ-
encing for the remaining terms, and artificial viscosity for shock
capturing. This algorithm, as implemented in for example the
ZEUS code (Stone &Norman1992a,1992b; Clarke1996; Hayes
et al. 2006), has been used for many hundreds of applications in
astrophysics. The key advantage of the method is its simplicity,
making it easy to extend with more complex physics (for example,
Stone et al. 1992b; Turner & Stone 2001; De Villiers & Hawley
2003; Hayes & Norman 2003).

However, in the 15 years since the development of ZEUS, static
and adaptive mesh refinement (SMR and AMR, respectively) have
emerged as powerful techniques for resolving a large range in
length scales with grid-based methods. Berger & Colella (1989)
have shown that in order to prevent spurious reflections, it is im-
portant to enforce conservation at internal boundaries between

fine and coarse meshes. Thus, operator-split methods that do not
solve the dynamical equations in conservation form such as ZEUS
are unsuitable for use with SMR or AMR. This has been our pri-
mary motivation for the development of Athena.

The numerical algorithms in Athena are based on direction-
ally unsplit, higher order Godunov methods, which not only are
ideal for use with both SMR and AMR, but also are superior for
shock capturing and evolving the contact and rotational discon-
tinuities that are typical of astrophysical flows. Athena is neither
the first nor the onlyMHD code based on these methods which is
designed for use with AMR; others include RIEMANN (Balsara
2000), BATS-R-US (Powell et al. 1999; Gombosi et al. 2004),
AMRVAC (Tóth1996; Nool & Keppens 2002), Nirvana (Ziegler
2005), RAMSES (Fromang et al. 2006), PLUTO (Mignone et al.
2007), and AstroBEAR (Cunningham et al. 2007). While the
wealth of papers describing AMRMHD codes demonstrates the
interest in and importance of these numericalmethods, it also calls
into question the need for another paper describing yet another
code. However, it has been our experience that the precise details
of the algorithm can be important. The numerical methods in
Athena differ, sometimes in small ways, and sometimes in sub-
stantial ways, from those in other codes. Our goals in developing
Athena have been to write an accurate, easy-to-use, adaptable,
and maintainable code. Our hope is that the comprehensive de-
scription provided in this paper will be useful to anyone who
adopts, modifies, or builds on the code, as well as for others de-
veloping their own codes.

The development of Godunovmethods forMHD has required
substantial progress over the past decade. Most of the effort has
focused on two main areas: the multidimensional integration
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algorithm, and the method by which the divergence-free constraint
on the magnetic field is enforced. Different options have been
explored in different combinations, including unconstrained direc-
tionally split integrators (Dai &Woodward1994b), or directionally
split and unsplit integrators that use either a Hodge projection to
enforce the constraint (Zachary et al.1994; Ryu et al.1995; Balsara
1998; Crockett et al. 2005), a nonconservative formulation that
allows propagation and damping of errors in the constraint (Powell
1994; Falle et al. 1998; Powell et al. 1999; Dedner et al. 2002), or
some form of the constrained transport (CT) algorithm of Evans &
Hawley (1988) to enforce the constraint (Dai & Woodward 1998;
Ryu et al.1998; Balsara&Spicer1999; Tóth 2000, hereafter T2000;
Pen et al. 2003; Londrillo&DelZanna 2004; Ziegler 2004; Fromang
et al. 2006; Mignone et al. 2007; Cunningham et al. 2007). T2000
provides a systematic comparison of many of these techniques
using an extensive test suite.

While the algorithms in Athena build on this progress, they
also incorporate several innovations, including (1) the extension
of two different directionally unsplit integration algorithms to
MHD, including the corner transport upwind (CTU) method of
Colella (1990; hereafter the CTUþ CT algorithm), and a simpler
predictor-corrector method (see the Appendix in Falle 1991)
similar to the MUSCL-Hancock scheme described by van Leer
(2006; Toro1999; hereafter referred to as the VLþ CT algorithm),
(2) the method by which the Godunov fluxes are used to calcu-
late the electric fields needed by CT, and (3) the extension of the
dimensionally split spatial reconstruction scheme in the piecewise
parabolic method (PPM) of Colella & Woodward (1984, here-
after CW84) to multidimensional MHD. The mathematical foun-
dations of these ingredients for integration in two dimensions
(2D) is presented in detail in Gardiner & Stone (2005a, hereafter
GS05), and for three dimensions (3D) in Gardiner & Stone (2008,
hereafter GS08). The focus of this paper is on the implementation
rather than the mathematics of the methods.

The use of two distinct unsplit integration algorithms in Athena,
namely the CTUþ CT and the VLþ CT algorithms, allows us
to compare the advantages and disadvantages of both.We find the
CTUþ CT algorithm is generally less diffusive and more accu-
rate than VLþ CT. Thus, for simplicity sake, the description in
this paper will be based on the CTUþ CT algorithm. However,
for some applications the VLþ CT algorithm has definite advan-
tages. A complete description of the 3D VLþ CT algorithm im-
plemented in Athena, including the results of tests in comparison
to the CTUþ CT algorithm, is provided in a short companion
paper (Stone & Gardiner 2008, hereafter SG08).

The primary goal of this paper is to provide a comprehensive
description of Athena that will serve as a reference for others to
adopt, modify, and extend the code for their own research. Aswith
ZEUS, the source code is freely available from the Web, along
with documentation and an extensive set of test problems that are
useful for any method. The organization of this paper is as fol-
lows: Section 2 introduces the equations of motion solved by
Athena, while x 3 describes their finite-volume and finite-area
discretizations. Sections 4Y6 describe in detail the numerical
algorithms in one, two, and three spatial dimensions, respec-
tively, including details such as the reconstruction algorithm,
Riemann solvers used to compute upwind fluxes, and the unsplit
CTUþ CT integrator used in multiple dimensions. In x 7 the im-
plementation of the algorithms in both C and FORTRAN95 on
parallel computer systems is discussed. The results of a compre-
hensive test suite composed of problems in one dimension (1D),
2D, and 3D are given in x 8. Finally, we summarize and discuss
future extensions to the code in x 9.

2. BASIC EQUATIONS

Athena implements algorithms which solve the equations of
ideal MHD, which can be written in conservative form as

@�

@t
þ: = �vð Þ ¼ 0; ð1Þ

@�v

@t
þ: = �vv� BBþ P�ð Þ ¼ 0; ð2Þ

@E

@t
þ: = E þ P�ð Þv� B B = vð Þ½ � ¼ 0; ð3Þ

@B

@t
�: < v < Bð Þ ¼ 0; ð4Þ

where P� is a diagonal tensor with components P� ¼ P þ B2/2
(with P the gas pressure), E is the total energy density

E ¼ P

� � 1
þ 1

2
�v 2 þ B2

2
; ð5Þ

and B2 ¼ B = B. The other symbols have their usual meaning.
These equations are written in units such that the magnetic per-
meability � ¼ 1.
An equation of state appropriate to an ideal gas, P ¼ (� � 1)e

(where � is the ratio of specific heat and e is the internal energy
density), has been assumed in writing equation (5). For a baro-
tropic equation of state P ¼ P �ð Þ (for example, P ¼ C 2�, where
C is the isothermal sound speed), both equations (3) and (5) are
dropped from the system. Of course, in this case total energy is
not conserved. The algorithms implemented in Athena can solve
the equations of motion in four regimes: both hydrodynamics or
MHD with either an ideal-gas or barotropic equation of state. In
each regime the system of equations to be solved is different in
number and form; however, the same general numerical tech-
niques apply. Extension of the numerical methods to a more
complex, e.g., tabular, equation of state is possible.
It is useful to define vectors of the conserved and primitive

variables, U and W, respectively, with components in Cartesian
coordinates (for adiabatic MHD)

U ¼

�

Mx

My

Mz

E

Bx

By

Bz

2
66666666666664

3
77777777777775
; W ¼

�

vx

vy

vz

P

Bx

By

Bz

2
66666666666664

3
77777777777775
; ð6Þ

where M ¼ �v is the momentum density. The conservation
laws can now be written in a compact form (in Cartesian
coordinates),

@U

@t
þ @F

@x
þ @G

@y
þ @H

@z
¼ 0; ð7Þ
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where F, G, and H are vectors of fluxes in the x-, y-, and
z-directions, respectively, with components

F ¼

�vx

�v2x þ P þ B2=2� B2
x

�vxvy � BxBy

�vxvz � BxBz

E þ P�ð Þvx � B = vð ÞBx

0

Byvx � Bxvy

Bzvx � Bxvz

2
66666666666664

3
77777777777775
; ð8Þ

G ¼

�vy

�vyvx � ByBx

�v2y þ P þ B2=2� B2
y

�vyvz � ByBz

E þ P�ð Þvy � B = vð ÞBy

Bxvy � Byvx

0

Bzvy � Byvz

2
66666666666664

3
77777777777775
; ð9Þ

H ¼

�vz

�vzvx � BzBx

�vzvy � BzBy

�v 2z þ P þ B2=2� B2
z

E þ P�ð Þvz � B = vð ÞBz

Bxvz � Bzvx

Byvz � Bzvy

0

2
66666666666664

3
77777777777775
: ð10Þ

Extension to curvilinear coordinates requires addingmetric scale
factors to the definitions of the fluxes, or using a nonconserva-
tive formulation that treats grid curvature as source terms, or a
combination of these approaches.

For hydrodynamics, or for a barotropic equation of state (or
for both), the appropriate components of the vectors U, W, and
their fluxes are dropped.While the last three components of these
vectors represents the induction equation inCartesian coordinates,
the numerical algorithm actually used to evolve the magnetic field
is very different in comparison to that used for the other compo-
nents, as described in x 3.

3. DISCRETIZATION

Athena integrates the equations of motion on a regular, 3D
Cartesian grid. The continuous spatial coordinates (x; y; z) are
discretized into (Nx;Ny;Nz) cells within a finite domain of size
(Lx; Ly; Lz) in each direction, respectively. The cell denoted by
indices (i; j; k) is centered at position (xi; yj; zk). For simplicity,
we describe the algorithmwith the assumption that the sizes of the
grid cells in each direction, �x ¼ Lx/Nx, �y ¼ Ly/Ny, and �z ¼
Lz/Nz, respectively, are uniform throughout the domain; the nu-
merical methods are easily extended to nonuniform grids.

Time is discretized into N nonuniform steps between the
initial value t0 and the final stopping time tf . Following the usual
convention, we use a superscript to denote the time level, so

t nþ1 � t n ¼ �t n. Hereafter, we drop the superscript on �t with
the understanding that the time step may vary.

3.1. Mass, Momentum, and Energy: Finite Volumes

Discretizations based on the integral, rather than the differen-
tial, formof equations (1)Y(4) have numerous advantages for flows
that contain shocks and discontinuities (LeVeque 2002). Inte-
gration of equation (7) over the volume of a grid cell, and over a
discrete interval of time �t gives, after application of the diver-
gence theorem,

U nþ1
i; j;k ¼ U n

i; j;k�
�t

�x
F

nþ1=2
iþ1=2; j;k � F

nþ1=2
i�1=2; j;k

� �
� �t

�y
G

nþ1=2
i; jþ1=2;k � G

nþ1=2
i; j�1=2;k

� �

� �t

�z
H

nþ1=2
i; j;kþ1=2 �H

nþ1=2
i; j;k�1=2

� �
ð11Þ

where

U n
i; j;k ¼

1

�x�y�z

;

Z zkþ1=2

zk�1=2

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

U x; y; z; t nð Þdx dy dz; ð12Þ

is a vector of volume-averaged variables, while

F
nþ1=2
i�1=2; j;k ¼

1

�y�z�t

;

Z t nþ1

t n

Z zkþ1=2

zk�1=2

Z yjþ1=2

yj�1=2

F xi�1=2; y; z; t
� �

dy dz dt; ð13Þ

G
nþ1=2
i; j�1=2;k ¼

1

�x�z�t

;

Z t nþ1

t n

Z zkþ1=2

zk�1=2

Z xiþ1=2

xi�1=2

G x; yj�1=2; z; t
� �

dx dz dt; ð14Þ

H
nþ1=2
i; j;k�1=2 ¼

1

�x�y�t

;

Z t nþ1

t n

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

H x; y; zk�1=2; t
� �

dx dy dt; ð15Þ

are vectors of the time- and area-averaged fluxes.We use the con-
vention here, and throughout this paper, that half-integer sub-
scripts denote the edges of the computational cells, that is xi�1/2 is
the location of the interface between the cells centered at xi�1 and
xi. Thus, the fluxes are evaluated at (and are normal to) the faces
of each grid cell (see Fig. 1). Note the half-integer superscript on
the fluxes denote a time average, rather than representing the flux
evaluated at t nþ1/2.

As has been pointed out by many previous authors, equa-
tions (11)Y(15) are exact: to this point no approximation has been
made. A numerical algorithm for MHD within the finite-volume
approach requires accurate and stable approximations for the
time- and area-averaged fluxes defined by equations (13)Y(15).
In principle, one can approximate the fluxes to any order of
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accuracy, although in practice most algorithms are restricted to
second order. Avariety of authors are exploring the use of higher
than second-order accurate time and spatial integration (Londrillo
&Del Zanna 2000), especially in the context of WENO schemes
(Balsara & Shu 2000; Tchekhovskoy et al 2007). Higher order
schemes improve the accuracy primarily in smooth flow, not
in shocks or discontinuities, and are more difficult to combine
with AMR. Based on a set of 1D hydrodynamic test problems,
Greenough & Rider (2003) conclude that a second-order Godunov
scheme provides more accuracy per computational cost than a
fifth-order WENO scheme. Although it is clear that higher order
schemes will have advantages for some applications, in Athena
we shall restrict ourselves to second-order accuracy in both space
and time.

3.2. Magnetic Field: Finite Areas

The last three components of equations (11)Y(15) are the finite-
volume form of the induction equation, which could be used to
integrate the volume-averaged components of the magnetic field.
Instead, in Athena we use an integral form of the induction equa-
tion that is based on area rather than volume averages. In GS05,
we have argued that area averaging is the most natural represen-
tation of the integral form of the induction equation. This form
conserves the magnetic flux through each grid cell, and as a con-
sequence automatically preserves the divergence free constraint
on the field (Evans & Hawley 1988).

Integration of equation (4) over the three orthogonal faces of
the cell located at (i� 1/2; j; k), (i; j� 1/2; k), and (i; j; k � 1/2),
respectively, gives

Bnþ1
x; i�1=2; j;k ¼ Bn

x; i�1=2; j;k �
�t

�y
E nþ1=2
z;i�1=2; jþ1=2;k � E nþ1=2

z;i�1=2; j�1=2;k

� �

þ �t

�z
E nþ1=2
y;i�1=2; j;kþ1=2 � E nþ1=2

y;i�1=2; j;k�1=2

� �
; ð16Þ

Bnþ1
y;i; j�1=2;k ¼ Bn

y;i; j�1=2;k þ
�t

�x
E nþ1=2
z;iþ1=2; j�1=2;k � E nþ1=2

z;i�1=2; j�1=2;k

� �

� �t

�z
E nþ1=2
x; i; j�1=2;kþ1=2 � E nþ1=2

x; i; j�1=2;k�1=2

� �
; ð17Þ

Bnþ1
z;i; j;k�1=2 ¼ Bn

z;i; j;k�1=2 �
�t

�x
E nþ1=2
y;iþ1=2; j;k�1=2 � E nþ1=2

y;i�1=2; j;k�1=2

� �

þ �t

�y
E nþ1=2
x; i; jþ1=2;k�1=2 � E nþ1=2

x; i; j�1=2;k�1=2

� �
; ð18Þ

where

Bn
x; i�1=2; j;k ¼

1

�y�z

Z zkþ1=2

zk�1=2

Z yjþ1=2

yj�1=2

Bx xi�1=2; y; z; t
n

� �
dy dz;

ð19Þ

Bn
y;i; j�1=2;k ¼

1

�x�z

Z zkþ1=2

zk�1=2

Z xiþ1=2

xi�1=2

By x; yj�1=2; z; t
n

� �
dx dz;

ð20Þ

Bn
z;i; j;k�1=2 ¼

1

�x�y

Z yjþ1=2

yj�1=2

Z xiþ1=2

xi�1=2

Bz x; y; zk�1=2; t
n

� �
dx dy

ð21Þ

are the area-averaged components of the magnetic field centered
on each of these faces, and

E nþ1=2
x; i; j�1=2;k�1=2 ¼

1

�x�t

Z t nþ1

t n

Z xiþ1=2

xi�1=2

Ex x; yj�1=2; zk�1=2; t
� �

dx dt;

ð22Þ

E nþ1=2
y;i�1=2; j;k�1=2 ¼

1

�y�t

Z t nþ1

t n

Z yjþ1=2

yj�1=2

Ey xi�1=2; y; zk�1=2; t
� �

dy dt;

ð23Þ

E nþ1=2
z;i�1=2; j�1=2;k ¼

1

�z�t

Z t nþ1

t n

Z zkþ1=2

zk�1=2

E z xi�1=2; yj�1=2; z; t
� �

dz dt

ð24Þ

are the components of the electric field E ¼ �v < B (the electro-
motive force [EMF]) averaged along the appropriate line element.
Note this discretization requires a staggered grid; that is, the area-
averaged components of the magnetic field are located at the
faces (not the centers) of the cells. Figure 1 shows the relative
locations of the cell-centered volume-averaged variables (Ui; j;k),
the face-centered area-averaged components of the magnetic field
(Bx; i�1/2; j;k ;By;i; j�1/2;k ;Bz;i; j;k�1/2) the face-centered area-averaged
fluxes (Fi�1/2; j;k ;Gi; j�1/2;k ;Hi; j;k�1/2), and the edge-centered line-
averaged EMFs (Ex; i; j�1/2;k�1/2, etc.).
There are many advantages to using a discretization of the in-

duction equation based on area rather than volume averages (GS05).
The most important is that the finite-volume representation, i.e.,

Fig. 1.—Left: Centering of volume-averaged conserved variablesU and area-averaged components of magnetic fieldB on the grid.Right: Centering of time- and area-averaged
components of the fluxes of U, and the time- and line-averaged EMFs on the grid.
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the cell-volume average, of the divergence-free constraint, con-
structed using the time-advanced field

: = Bð Þnþ1
i; j;k¼

Bnþ1
x; iþ1=2; j;k � Bnþ1

x; i�1=2; j;k

�x

þ
Bnþ1
y;i; jþ1=2;k � Bnþ1

y;i; j�1=2;k

�y

þ
Bnþ1
z;i; j;kþ1=2 � Bnþ1

z;i; j;k�1=2

�z
; ð25Þ

is kept zero by the discrete form of the induction equation, equa-
tions (16)Y(18), provided of course it was zero at t n (Evans &
Hawley1988). Equivalently, the CTalgorithm conserves themag-
netic flux through each grid cell. Themost serious disadvantage of
using CT with face-centered fields is that it complicates the im-
plementation of the algorithm, and the interface to AMR drivers.

Of course, there are many possible discretizations of the
divergence-free constraint, and the CT algorithm based on face-
centered fields described above preserves only one of them
(eq. [25]). T2000 has described an extension to CTwhich preserves
the constraint formulated using several different discretizations
of the divergence operator based on cell-centered fields. It is dif-
ficult to assess, for a given integration algorithm,whether preserving
one discretization is more important than any other.We have argued
(GS05; GS08) that the discretization based on face-centered fields
is more consistent with the finite volume approach in that it con-
serves the magnetic flux within each individual grid cell, equiv-
alently it conserves the volume integral of the density of magnetic
monopoles at the level of grid cells. In addition, in GS08 (see also
x 8) we describe a simple test problem based on the advection of a
field loop that is sensitive to whether the discretization of the
divergence-free constraint that is preserved is consistent with the
numerical algorithm used to update the induction equation. If
not, growth of net magnetic flux will be observed.

InAthena, the primary description of themagnetic field is taken
to be the face-centered area averages equations (19)Y(21). How-
ever, cell-centered values for the field are needed to construct the
fluxes of momentum and energy (eqs. [8]Y[10]). Here, we adopt
the second-order accurate averages

Bx; i; j;k ¼ 1
2

Bx; iþ1=2; j;k þ Bx; i�1=2; j;k

� �
; ð26Þ

By;i; j;k ¼ 1
2

By;i; jþ1=2;k þ By;i; j�1=2;k

� �
; ð27Þ

Bz;i; j;k ¼ 1
2

Bz;i; j;kþ1=2 þ Bz;i; j;k�1=2

� �
: ð28Þ

Operationally, the face-centered fields are evolved using equa-
tions (16)Y(18), and at the end of each integration step the cell-
centered fields are computed using equations (26)Y(28). As shown
inGS05 (and discussed further in x 5.3), the relationship between
the face- and cell-centered components of the field given above
determines how their fluxes (the time- and line-averaged EMFs
in eqs. [22]Y[24] and last three components of the time- and area-
averaged fluxes in eqs. [13]Y[15], respectively) are computed
from one another.

4. ONE-DIMENSIONAL INTEGRATION ALGORITHM

It is useful (and standard) pedagogy to describe the algorithm
for integration of the equations of motion in 1D first, before in-
troducingmethods for multiple dimensions. However, forMHD,
this approach can be misleading. In 1D the divergence-free con-
straint reduces to the condition that the longitudinal component of

the magnetic field be constant, the CT algorithm is not needed,
and the discrete forms of the induction equation for the area- and
volume-averaged fields are identical. As a consequence, 1D al-
gorithms for MHD are a simple extension of those for hydro-
dynamics. Moreover, 1D test problems for MHD will not reveal
errors associated with the development of a nonsolenoidal field.
Any rigorous test suite for MHD must be based on multidi-
mensional problems.

Nonetheless, we begin a description of the algorithms in Athena
with the 1D, integrator as it allows us to introduce basic compo-
nents, such as Riemann solvers and methods for spatial recon-
struction, required in multiple dimensions. We emphasize that
the integrators for 2D and 3D MHD, described in detail in xx 5
and 6, respectively, are substantially different and more complex
than the 1D integrator introduced here.

In 1D, the equations of adiabatic MHD can be written in
Cartesian coordinates as

@q

@t
þ @f

@x
¼ 0; ð29Þ

where the vectors of conserved variables and their fluxes are

q ¼

�

Mx

My

Mz

E

By

Bz

2
666666666664

3
777777777775
; f ¼

�vx

�v 2x þ P þ B2=2� B2
x

�vxvy � BxBy

�vxvz � BxBz

E þ P�ð Þvx � B = vð ÞBx

Byvx � Bxvy

Bzvx � Bxvz

2
666666666664

3
777777777775
: ð30Þ

Note that these are identical to equations (6) and (8) with the
sixth component dropped.We introduce the notation that vectors
denoted by lower case letters are in one spatial dimension (and
therefore contain seven components for adiabatic MHD, rather
than eight for the same vectors written in full 3D). It is important
to remember that the components of the 1D vectors defined in
equation (30) will change depending on direction. For example,
in the y-direction for ideal MHD, the order of the three compo-
nents of the momentum are permuted (so the second, third, and
fourth components of ggg become My, Mz, and Mx, respectively),
and the sixth and seventh components of ggg become Bz and Bx,
respectively.

The finite-volume discretization of equation (29) proceeds as
described in x 3.1, giving

qnþ1
i ¼ qn

i �
�t

�x
f
nþ1=2
iþ1=2 � f

nþ1=2
i�1=2

� �
; ð31Þ

where

qn
i ¼ 1

�x

Z xiþ1=2

xi�1=2

q x; t nð Þdx ð32Þ

is a vector of volume-averaged variables, while

f
nþ1=2
i�1=2 ¼ 1

�t

Z t nþ1

t n
f xi�1=2; t
� �

dt ð33Þ

are the time-averaged fluxes at the interface located at xi�1/2.
In a Godunov method, the time-averaged fluxes (eq. [33]) are

computed using a Riemann solver (see Toro [1999] for an in-
troduction to the subject). Figure 2 illustrates the process (see
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also LeVeque 2002). Starting from the 1D volume averages
stored at cell centers qn

i , a spatial reconstruction scheme is used
to construct the conserved quantities to the left and right sides of
the interface, qL;i�1/2 and qR;i�1/2, respectively. For theCTUþ CT
integrator, the reconstruction is performed in the primitive varia-
bles and includes a time advance using characteristic variables,
with qL;i�1/2 and qR;i�1/2 computed from the resulting interpolants
(this step is described in detail in x 4.2). Because of the slope
limiters used to keep the interpolants nonoscillatory, the left and
right states qL;i�1/2 and qR;i�1/2 will not be equal, except in a
smooth flow. Thus, they define a Riemann problem, the solution
to which is the time evolution of the various waves and the in-
termediate states that connect them, that propagate away from
the interface. The solution to the Riemann problem, evaluated at
the location of the interface, can be used to construct the time-
averaged flux (details of the calculation of fluxes using Riemann
solvers is given in x 4.3).

4.1. Steps in the 1D Algorithm

The 1D algorithm outlined above can be summarized by the
following steps:

Step 1.—From qn
i , the volume averages at time level n, com-

pute the left and right states qL;i�1/2 and qR;i�1/2 at every interface
using one of the spatial reconstruction algorithms described below
in x 4.2.
Step 2.—Compute the time-averaged fluxes at every interface

f nþ1/2
i�1/2

¼ F (qL;i�1/2; qR;i�1/2;Bx; i�1/2) using one of the Riemann
solvers described in x 4.3. Note the face-centered longitudinal
component of the magnetic field is passed to the Riemann solver
as a parameter.
Step 3.—Update the cell-centered conserved variables and the

transverse components of the magnetic field using the finite-
volume difference equation in 1D (eq. [31]).
Step 4.—Increment the time, t nþ1 ¼ t n þ �t. Compute a new

time step that satisfies an estimate of the CFL stability condition
based on wavespeeds at cell centers,

�t ¼ C0�x=max vnþ1
x; i

��� ���þ Cnþ1
fx; i

� �
; ð34Þ

where C0 � 1 is the CFL number, C
nþ1
fx; i is the fast magnetosonic

speed in the x-direction, evaluated using the updated quantities,
and the maximum is taken over all grid cells. Note this is only an
estimate of the CFL stability condition, since the wavespeeds used
in the Riemann solver can be different from those computed from
the cell-centered values.
Step 5.—Repeat steps 1Y4 until the stopping criterion is reached,

i.e., t nþ1 � tf .

The entire 1D integration algorithm is summarized by the flow
chart shown in Figure 3.

4.2. MHD Interface States

The first step in the 1D algorithm is to compute the left and
right states qL;i�1/2 and qR;i�1/2 that define the Riemann problem
at the interface located at xi�1/2. (Note that in our notation the left
state qL;i�1/2 is actually on the right side of the cell center at xi�1,
while the right state qR;i�1/2 is on the left side of the cell center at
xi; see Fig. 2.) The reconstruction is inherently 1D and, therefore,
is based on the vector of conserved variables in 1D (eq. [30]).
This vector contains only the transverse components of the field;
in 1D these are cell-centered quantities. For reconstruction inmul-
tiple dimensions, the cell-centered averages of the face-centered
transverse components of the field (for example, eqs. [27] and
[28] for reconstruction in the x-direction) would be used.When the
longitudinal component of the field is needed, the area-averaged
value stored at the appropriate interface is adopted. The fact
that the longitudinal component of the field does not need to be
reconstructed from cell-centered values is a further advantage
of the CT algorithm based on staggered (face-centered) fields;
it avoids the problem of the longitudinal component being dis-
continuous at the interface due to slope-limited reconstruction
from cell centers.
When the CTUþ CT unsplit integrator is used in Athena, the

second- and third-order reconstruction algorithms described below
include both spatial interpolation with slope limiting in the char-
acteristic variables, and a characteristic evolution of the linearized
system in the primitive variables.We have found these steps help to
make the reconstruction less oscillatory. However, they also require
an eigenvalue decomposition of the linearized equations of motion

Fig. 2.—Left: Example of piecewise linear reconstruction of conserved variables within each cell to compute the left and right states that define a Riemann problem at the
cell interface. The slopes chosen within each cell are determined by limiters which depend on neighboring cell-center values (not shown) designed to prevent the introduction
of new extrema. Right: Schematic solution of an MHD Riemann problem in spacetime, consisting of six intermediate states bounded by the maximum and minimum
wavespeeds. The flux through the interface is the time integral of the solution along the vertical line x ¼ xi�1/2, in this case given by the quantities in state q

�
3. In MHD, some

characteristics can be degenerate, meaning that the number of intermediate states depends on the problem.
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in the primitive variables. Appendix A catalogs the eigenvalues
and left and right eigenvectors for adiabatic and isothermal hy-
drodynamics andMHD in the primitive variables needed for this
approach. For more complex physics (e.g., relativistic MHD)
this eigenvalue decomposition may be difficult. One advantage
of the VLþ CT integrator described in SG08 is that it does not
require a characteristic evolution in the reconstruction step. This
avoids the need for an eigenvalue decomposition in the primitive
variables, and therefore, this integrator may be a better choice for
more complex physics. The interface state algorithm used in the
VLþ CT algorithm is described more fully in SG08.

4.2.1. Piecewise Constant (First-Order) Reconstruction

The simplest possible reconstruction algorithm is to assume
the primitive variables are piecewise constant within each cell
(implying the conserved variables are also piecewise constant),
leading to the first-order method

qL;i�1=2 ¼ qi�1;

qR;i�1=2 ¼ qi: ð35Þ

First-order reconstruction is far too diffusive for applications;
however, it is useful for testing or in those circumstances when
extra diffusion is in fact desired.

4.2.2. Piecewise Linear (Second-Order) Reconstruction

A better approximation is to assume the primitive variables
vary linearly within each cell (meaning that the profile of the
conserved variables within a cell may be steeper than linear).
This approximation leads to the second-order reconstruction al-
gorithm used with the CTUþ CT unsplit integrator that is given
by the following steps:

Step 1.—Compute the eigenvalues and eigenvectors of the
linearized equations in the primitive variables using wi, the cell-
centered primitive variables in 1D (which differs fromW i defined
in equation (6) only in that it lacks the longitudinal component of
the magnetic field). Explicit expressions for these are given in
Appendix A.

Step 2.—Compute the left, right, and centered differences of
the primitive variables wi

�wL;i ¼ wi � wi�1;

�wR;i ¼ wiþ1 � wi;

�wC;i ¼ wiþ1 � wi�1ð Þ=2: ð36Þ

(Note that in these equations the subscripts L, R, and C refer to
locations relative to the cell center at xi.)
Step 3.—Project the left, right, and centered differences onto

the characteristic variables

�aL;i ¼ L wið Þ = �wL;i;

�aR;i ¼ L wið Þ = �wR;i;

�aC;i ¼ L wið Þ = �wC;i; ð37Þ

where L wið Þ is a matrix whose rows are the appropriate left
eigenvectors computed in Step 1.
Step 4.—Apply monotonicity constraints to the differences in

the characteristic variables, so that the characteristic reconstruc-
tion is total variation diminishing (TVD), e.g., see LeVeque (2002),

�am
i ¼ sgn �aC;i

� �
min 2 �aL;i

�� ��; 2 �aR;i
�� ��; �aC;i

�� ��� �
: ð38Þ

Step 5.—Project the monotonized difference in the charac-
teristic variables back onto the primitive variables

�wm
i ¼ �am

i = R wið Þ; ð39Þ

whereR(wi) is a matrix whose columns are the appropriate right
eigenvectors computed in Step 1.
Step 6.—Compute the left and right interface values using the

monotonized difference in the primitive variables

ŵL;iþ1=2 ¼ wi þ
1

2
�max kMi ; 0

� � �t

2�x

� �
�wm

i ; ð40Þ

ŵR;i�1=2 ¼ wi �
1

2
�min k0i ; 0

� � �t

2�x

� �
�wm

i ; ð41Þ

Fig. 3.—Flow chart for integration in 1D. The dashed box groups functions that are part of the 1D integrator (described in x 4.1)
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where kMi and k0i are the largest and smallest eigenvalues computed
in Step 1, respectively, at the appropriate cell center. Note that
these values are at different cell faces, with ŵL;iþ1/2 (ŵR;i�1/2)
located to the right ( left) of the cell center at xi.
Step 7.—Perform the characteristic tracing, that is subtract from

the integral performed in step 6 that part of each wave family that
does not reach the interface in �t/2, using (CW84; Colella1990),

wL;iþ1=2 ¼ ŵL;iþ1=2 þ
�t

2�x

X
k�>0

kMi � k�i
� �

L� = �wm
i

� 	
R�; ð42Þ

wR;i�1=2 ¼ ŵR;i�1=2 þ
�t

2�x

X
k�<0

k0i � k�i
� �

L� = �wm
i

� 	
R�; ð43Þ

where the sums are taken only over those waves that propagate
toward the interface (i.e., whose eigenvalue has the appropriate
sign), and L� and R� are the rows and columns of the left and
right eigenmatrices, respectively, corresponding to k�.
When using approximate Riemann solvers that average over

intermediate states ( like the HLL family of solvers), it is also
necessary to include a correction for waves which propagate away
from the interface in order to make the algorithm higher than first
order. This is because either the right-interface state (if the wave-
speed is positive) or the left-interface state (if the wave speed is
negative)will not include the halfYtime step predictor evolution in
the reconstruction and will thus be first order. Since the numerical
flux in the HLL solver is given by a weighted average of the flux
in the left interface state and the right interface state for such
waves, the flux itself will be first order. Specifically, an additional
term�wL;iþ1/2 and�wR;i�1/2 is added to each of the equations (42)
and (43), respectively, where these terms are

�wL;iþ1=2 ¼ � �t

2�x

X
k�<0

k�i � kMi
� �

L� = �wm
i

� 	
R�; ð44Þ

�wR;i�1=2 ¼ � �t

2�x

X
k�>0

k�i � k0i
� �

L� = �wm
i

� 	
R�: ð45Þ

We emphasize these terms are not added when the Roe or exact
solvers are used.
Step 8.—Finally, convert the left and right states in the primitive

to the conserved variables, qL;i�1/2 and qR;i�1/2.

4.2.3. Piecewise Parabolic (Third-Order) Reconstruction

Although the numerical algorithms in Athena are formally
only second-order accurate, we have found that using third-order
accurate spatial reconstruction can lower the amplitude of the
truncation error and increase the accuracy of the solution. Thus,
we have implemented the PPM interface state algorithm of CW84
in Athena. In x 8, we provide a quantitative comparison of both the
second-order (PLM) and third-order (PPM) reconstruction algo-
rithms for smooth and discontinuous solutions in 1D, 2D, and 3D.

The PPM reconstruction algorithm consists of the following
steps.

Steps 1Y5.—These steps are identical to the first five steps in
the second-order algorithm (see x 4.2.2).
Step 6.—Use parabolic interpolation to compute values at the

left and right side of each cell center

wL;i ¼ wi þ wi�1ð Þ=2� �wm
i þ �wm

i�1

� �
=6;

wR;i ¼ wiþ1 þ wið Þ=2� �wm
iþ1 þ �wm

i

� �
=6; ð46Þ

where in the above, the subscript L (R) refers to the left (right)
side of cell center at xi.
Step 7.—Apply further monotonicity constraints to ensure the

values on the left and right side of cell center lie between neigh-
boring cell-centered values (CW84, eq. [1.10]). These can be
written as a series of conditional statements:

if wR;i � wi

� �
wi � wL;i

� �
� 0; ð47Þ

then wL;i ¼ wi; ð48Þ
and wR;i ¼ wi; ð49Þ

if 6 wR;i � wL;i

� �
wi � wL;i þ wR;i

� �
=2

� �
> wR;i � wL;i

� �2
;

ð50Þ
then wL;i ¼ 3wi � 2wR;i; ð51Þ

if 6 wR;i � wL;i

� �
wi � wL;i þ wR;i

� �
=2

� �
< � wR;i � wL;i

� �2
ð52Þ

then wR;i ¼ 3wi � 2wL;i: ð53Þ

These conditions are applied independently to each component
of w.
Step 8.—Compute the coefficients for themonotonized parabolic

interpolation function,

�wm
i ¼ wR;i � wL;i;w6;i ¼ 6 wi � wL;i þ wR;i

� �
=2

� �
ð54Þ

Step 9.—Compute the left and right interface values using
monotonized parabolic interpolation (CW84, eq [1.12])

ŵL;iþ1=2 ¼ wR;i � kmax �t

2�x
�wm

i � 1� kmax 2�t

3�x


 �
w6;i

� �
;

ð55Þ

ŵR;i�1=2 ¼ wL;i þ kmin �t

2�x
�wm

i þ 1� kmin 2�t

3�x


 �
w6;i

� �
; ð56Þ

where kmax ¼ max(kMi ; 0) and kmin ¼ min(k0i ; 0), respectively,
and kMi and k0i are the largest and smallest eigenvalues computed in
Step 1, respectively. Note these values are at different cell faces, with
ŵL;iþ1/2 (ŵR;i�1/2) located to the right (left) of the cell center at xi.
Step 10.—Perform the characteristic tracing, that is subtract

from the integral performed in step 9 that part of each wave
family that does not reach the interface in �t/2 (CW84; Colella
1990), using

wL;iþ1=2 ¼ ŵL;iþ1=2 þ
X
k�>0

L� A �wm
i � w6;i

� �
þ Bw6;i

� �� 	
R�;

ð57Þ

wR;iþ1=2 ¼ ŵR;iþ1=2 þ
X
k�<0

L� C �wm
i þ w6;i

� �
þ Dw6;i

� �� 	
R�;

ð58Þ

where in the above

A ¼ �t

2�x
kM � k�
� �

B ¼ 1

3

�t

�x


 �2

kMkM � k�k�
� �

; ð59Þ

C ¼ �t

2�x
k0 � k�
� �

D ¼ 1

3

�t

�x


 �2

k0k0 � k�k�
� �

; ð60Þ
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where the sums are taken only over those waves that propagate
toward the interface (i.e., whose eigenvalue has the appropriate
sign), and L� and R� are the rows and columns of the left and
right eigenmatrices, respectively, corresponding to k�. Once
again,when using theHLL family of solvers, it is necessary to add
a correction for waves which propagate away from the interface
(aswas required in step 7 of the PLM integration). These terms are
identical to those in equations (44) and (45), which are correct to
second order. Again, we emphasize these terms are not added
when the Roe or exact solvers are used.
Step 11.—Finally, convert the left and right states in the prim-

itive to the conserved variables, qL;i�1/2 and qR;i�1/2.

An important ingredient of the reconstruction algorithm is the
slope limiters used in steps 4 and 7. It is well known that these
limiters clip extrema in the solutions. We have also implemented
the limiters described in Colella& Sekora (2007, hereafter CS07),
which are designed to prevent clipping of extrema. We find that
for some tests the CS07 limiters significantly improve the solution
compared to the original PPM limiters used above. For the test
results shown in x 8 we always indicate if the CS07 limiters are
used. The lesson, however, is that improving the convergence
rate of the reconstruction algorithm is not always the best way to
improve the overall accuracy of the solution.

4.3. Godunov Fluxes

The second step in the 1D algorithm is to compute time-
averaged fluxes using a Riemann solver. Exact Riemann solvers
for MHD (e.g., Ryu & Jones 1995) are generally too expensive
for practical computationswith current hardware.Moreover, since
the full solution to the Riemann problem over all spacetime is not
required, but only the time-integral of the solution along the line
x ¼ xi�1/2 (which gives the flux through the interface), approxi-
mate solvers which provide an accurate estimate of the flux are all
that is needed. In fact, it is not even necessary to use the same
solver to compute the flux at every interface in the grid. Instead,
simple solvers can be used in smooth regions, while more robust
(and expensive) solvers are adopted only when needed, for ex-
ample in highly nonlinear flowwhere simple solvers fail (such as
strong rarefactions). Since the latter generally occupy only a tiny
fraction of the total number of interfaces over the whole grid,
this strategy can be very cost effective.

Awide variety of approximate Riemann solvers for MHD are
possible, including nonlinear solvers such as the HLL flux (Harten
et al. 1983), the HLLD flux (Miyoshi & Kusano 2005), Toro’s
FORCE flux (Toro 1999), Roe’s linear solver (Roe 1981) ex-
tended toMHD (Cargo &Gallice1997), as well as MHD solvers
based on other approximations (e.g, Dai & Woodward 1994a,
1994b; Zachary et al.1994). A range of solvers is implemented in
Athena, including exact solvers in the simplest cases (isothermal
hydrodynamics). In the subsections below we describe some of
the most useful.

Finally, it is important to emphasize that Godunovmethods do
not require expensive solvers based on complex characteristic
decompositions. Simple solvers based on the local Lax-Friedrichs
(LLF) or HLL fluxes that are typically adopted in other methods
can also be used. Generally, the reason for adoptingmore complex
and expensive Riemann solvers is that they reduce dissipation, es-
pecially in the neighborhood of discontinuities in the intermediate
waves.

4.3.1. HLL Solvers

The simplest Riemann solver implemented in Athena uses the
HLL fluxes as described by Einfeldt et al. (1991), hereafter

termed the HLLE solver. The HLLE flux at the interface xi�1/2 is
defined as

FHLLE
i�1=2 ¼

bþf L;i�1=2 � b�fR;i�1=2

bþ � b�
þ bþb�

bþ � b�
qi � qi�1ð Þ;

ð61Þ

where f L;i�1/2 ¼ f (qL;i�1/2) and fR;i�1/2 ¼ f (qR;i�1/2) are the fluxes
evaluated using the left and right states of the conserved varia-
bles (using eq. [30]), and

bþ ¼ max max kM ; vx;R þ cR
� �

; 0
� 	

; ð62Þ

b� ¼ min min k0; vx;L � cL
� �

; 0
� 	

ð63Þ

where kM and k0 are the maximum and minimum eigenvalues of
Roe’s matrixA (see x 4.3.2 and Appendix B), vx;L and vx;R are the
velocity component normal to the interface in the left and right
states, respectively, and cL and cR are the maximum wavespeeds
(the fast magnetosonic speed in MHD, or the sound speed in hy-
drodynamics) computed from the left and right states. The HLLE
solver does not require a characteristic decomposition of the
MHD equations; the eigenvalues of Roe’s matrixA are given by
simple, explicit formulae (see Appendix B). Note that if both
kM < 0 and vx;R þ cR < 0 (or both k0 > 0 and vx;L � cL > 0),
the HLLE flux will be fR;i�1/2 (or f L;i�1/2), as expected.

The HLLE solver approximates the solution to the Riemann
problem using a single constant intermediate state computed from
a conservative average, bounded using an estimate for the maxi-
mum and minimum wavespeeds. Thus, for hydrodynamics it ne-
glects the contact wave, and forMHD it neglects the Alfvén, slow
magnetosonic, and contact waves. For this reason, the HLLE is
extremely diffusive for these waves (in fact, even if vx ¼ 0, con-
tact discontinuities are diffused with the method). Thus, in prac-
tice, the HLLE solver is of limited use for applications. However,
a distinct advantage of the HLLE solver is that the intermediate
state is positive-definite, that is the pressure and density in the in-
termediate state can never be negative. Thus, in 1D it can be used
to construct a positive-definite integration algorithm (Einfeldt
et al. 1991). This is in contrast to linearized solvers such as Roe’s
method, in which the Riemann solver itself can produce negative
densities and pressures for one or more of the intermediate states.
The HLLE flux is therefore an excellent alternative in the rare cir-
cumstance that a more accurate solver fails. In multiple dimen-
sions, however, use of the HLLE flux at higher than first order
does not necessarily guarantee the method is positive definite; this
depends on the details of the multidimensional integrator being
used.

For hydrodynamics, the HLL solver has been extended to in-
clude the contact wave, resulting in a solution consisting of two
constant intermediate states bounded by shocks and separated by
a contact discontinuity. The resulting method is termed the HLLC
solver. A basic description of themethod is given in x 10.4 of Toro
(1999) and is not be repeated here; although it is important to note
that in Athena we choose the wavespeeds following the sugges-
tion in Batten et al. (1997). This choice has the attractive property
that the pressure in the intermediate states computed from the
Rankine-Hugoniot relations across the left and right shocks is the
same. We find that for hydrodynamics, this implementation of
the HLLC solver produces results that are as, if not more, accurate
than Roe’s method (see below), but at much lower computational
cost. For 1Dproblems, it also is a positive definitemethod (although
again, this is not guaranteed in multiple dimensions). Thus, the
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HLLC solver is highly recommended for adiabatic hydrody-
namic simulations with Athena.

Recently,Miyoshi&Kusano (2005) have described an extension
of the HLL solver to MHD which includes the fast magnetosonic,
Alfvén, and contact waves. The resulting solver approximates the
solution of the Riemann problemwith four constant intermediate
states. It reduces exactly to the HLLC solver when the longitu-
dinal component of the magnetic field is zero and is a positive
definite method. The implementation of the solver is detailed in
Miyoshi & Kusano (2005) and is not be repeated here. Tests
using Athena indicate that this solver, termed HLLD, is typically
as accurate as theMHD extension of Roe’smethod, although it is
much faster. Thus, the HLLD solver is the best choice for many
MHD applications using Athena.

4.3.2. Roe’s Method

The HLL fluxes are based on an approximate solution to the
nonlinear equations of MHD. Instead, Riemann solvers can be
constructed from exact solutions to an approximate ( linearized)
form of the MHD equations, for example,

@q

@t
¼ A q̄ð Þ @q

@x
: ð64Þ

The matrix A(q̄) is the Jacobian @f /@q evaluated at some ap-
propriate, constant mean state q̄ (treating this matrix as constant
is what makes the system linear). Finding the exact solution to
linear hyperbolic systems is less difficult because only discon-
tinuities (no rarefactions) are allowed.

Of course, the challenge in developing linearized solvers is
finding the appropriate representation for A(q̄). Roe (1981) pro-
posed one particularly useful linearization, which has subsequently
been extended to adiabatic MHD by Cargo & Gallice (1997). In
this linearization, the Jacobian is evaluated using an average
state defined in the primitive variables w̄ ¼ ( �̄; v̄; P̄; B̄y; B̄z) as
follows:

�̄ ¼ ffiffiffiffiffi
�L

p ffiffiffiffiffi
�R

p
;

v̄ ¼ ffiffiffiffiffi
�L

p
vL þ

ffiffiffiffiffi
�R

p
vR

� �
=

ffiffiffiffiffi
�L

p þ ffiffiffiffiffi
�R

p� �
;

H̄ ¼ ffiffiffiffiffi
�L

p
HL þ

ffiffiffiffiffi
�R

p
HR

� �
=

ffiffiffiffiffi
�L

p þ ffiffiffiffiffi
�R

p� �
;

B̄y ¼
ffiffiffiffiffi
�R

p
By;L þ

ffiffiffiffiffi
�L

p
By;R

� �
=

ffiffiffiffiffi
�L

p þ ffiffiffiffiffi
�R

p� �
;

B̄z ¼
ffiffiffiffiffi
�R

p
Bz;L þ

ffiffiffiffiffi
�L

p
Bz;R

� �
=

ffiffiffiffiffi
�L

p þ ffiffiffiffiffi
�R

p� �
; ð65Þ

whereH ¼ (E þ P�)/� is the enthalpy (used to compute the pres-
sure), and the subscripts L and R denote the left and right states of
each variable at the interface (computed using one of the recon-
struction schemes described in x 4.2). Explicit forms for the ma-
trix A, and its eigenvalues and eigenvectors for isothermal and
adiabatic hydrodynamics and MHD are given in Appendix B.

Given the eigenvalues k� and left and right eigenmatrices
L(w̄) and R(w̄), respectively, where � ¼ 1;M denotes the M
characteristics in the solution, the Roe fluxes are simply

FRoe
i�1=2 ¼

1

2
f L;i�1=2 þ fR;i�1=2 þ

X
�

a� k�j jR�

 !
; ð66Þ

where as before f L;i�1/2 ¼ f (qL;i�1/2), fR;i�1/2 ¼ f (qR;i�1/2), and

a� ¼ L� = �qi�1=2; ð67Þ

�qi�1=2 ¼ qL;i�1=2 � qR;i�1=2; ð68Þ

and the L� andR� are the rows and columns of the left and right
eigenmatrices corresponding to k�.
The primary advantage of Roe’s method is that it includes all

of the characteristics in the problem and, therefore, is less dif-
fusive and more accurate than the HLLE solver for intermediate
waves such as contact discontinuities.Moreover, Roe (1981) showed
that it gives the flux exactly if the solution to the full nonlinear
Riemann problem contains only an isolated discontinuity. How-
ever, because it is based on a linearization of the MHD equa-
tions, for some values of the left and right states Roe’s method
will fail (Einfeldt et al. 1991); it will return negative densities
and/or pressures in one or more of the intermediate states. In
Athena, if this occurs we replace the calculation of the fluxes at
that interface with the HLLE solver (which is a positive-definite
method) or some other more accurate (e.g., an exact) solver.
Tests indicate this is only required very rarely.

5. TWO-DIMENSIONAL INTEGRATION ALGORITHM

Probably the most popular method for constructing a 2D in-
tegration algorithm from the 1Dmethod described in x 4 is based
on dimensional splitting (Strang 1968). Unfortunately, dimen-
sional splitting cannot be used forMHD if the equations are to be
solved in the conservative form. This is because during each 1D
update, only the transverse components of the magnetic field
evolve (e.g., from eq. [30] it is clear that Bx is nonevolutionary
during an update in the x-direction). However, the divergence-
free constraint can only be maintained if all three components of
the field evolve simultaneously. Thus, during the update in the
x-direction, Bx must evolve. The terms that describe this evolu-
tion cannot bewritten in conservative form, leading to, for example,
the: = B source term formulations of Powell (1994) and Powell
et al. (1999). However, there are significant advantages to main-
taining the conservative form (T2000); thus, in Athena we adopt
dimensionally unsplit integrators for MHD, either based on the
CTUþ CT method (described below), or the VLþ CT method
(SG08). The use of directionally unsplit integrators in multiple
dimensions is one of the most important components of theMHD
algorithms in Athena.
Even after adopting an unsplit integration algorithm, com-

bining it with the CT method to enforce the divergence-free con-
straint presents challenges. In particular, the method by which
the corner-centered, line-averaged EMFs are constructed from
the face-centered, area-averaged fluxes returned by the Riemann
solver is nontrivial. In GS05 we showed that simple arithmetic
averaging does not work for the unsplit integrators adopted here.
Instead, we developed several methods for constructing the EMFs
from the Godunov fluxes, the version actually used in Athena is
described in x 5.3. The resulting method reduces exactly to the 1D
algorithm described in x 4 for plane-parallel, grid-aligned flow,
and preserves the flux normal to the plane of the calculation.

5.1. Steps in the 2D Algorithm

The 2DCTUþ CT integration algorithm is based on themethod
of Colella (1990), and is described in detail in GS05; below we
provide an overview of the main steps.

Step 1.—Compute and store the left and right states at cell inter-
faces in both the x-direction (qL;i�1/2; j; qR;i�1/2; j) and the y-direction
(qL;i; j�1/2; qR;i; j�1/2) simultaneously, using any of the 1D spatial
reconstruction algorithms described in x 4.2, for all the interfaces
over the entire grid. Since the 1D reconstruction algorithms in
Athena include a characteristic tracing step, when applied in mul-
tiple dimensions the 1D reconstruction must include : = B
source terms as described in x 3.1 of GS05, and briefly in x 5.2.
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Note that the components of qL (and qR) are different on the
x- and y-interfaces.
Step 2.—Compute 1D fluxes of the conserved variables using

any one of the Riemann solvers described in x 4.3 at interfaces in
both the x- and y-directions simultaneously

f �i�1=2; j ¼ F qL;i�1=2; j; qR;i�1=2; j;Bx; i�1=2; j

� �
; ð69Þ

ggg�i; j�1=2 ¼ F qL;i; j�1=2; qR;i; j�1=2;By;i; j�1=2

� �
; ð70Þ

where the appropriate longitudinal component of the magnetic
field has been passed to the Riemann solver as a parameter.
Step 3.—Using the algorithm of GS05, described in x 5.3,

calculate the EMF at cell corners E�
z;i�1/2; j�1/2 from the appropriate

components of the face-centered fluxes returned by the Riemann
solver in step 2, and the z-component of a cell center reference
electric field E r;n

i; j; calculated using the initial data at time level n,
i.e., E r;n

z;i; j ¼ �(vnx; i; j B
n
y;i; j � vny;i; j B

n
x; i; j).

Step 4.—Evolve the left and right states at each interface by �t/2
using transverse flux gradients. For example, the mass density, mo-
mentum density, energy density, and Bz at the x-interface located
at xi�1/2 are advanced using

q
nþ1=2
L;i�1=2; j ¼ qL;i�1=2; j

þ �t

2�y
ggg�i�1; jþ1=2 � ggg�i�1; j�1=2

� �
þ �t

2
sx; i�1; j;

ð71Þ

q
nþ1=2
R;i�1=2; j ¼ qR;i�1=2; j þ

�t

2�y
ggg�i; jþ1=2 � ggg�i; j�1=2

� �
þ �t

2
sx; i; j:

ð72Þ

Since the components of 1D vectors on the x- and y-interfaces
differ, care must be taken to associate the components of the left
and right states with the appropriate components of the transverse
fluxes (for example, the components of qL;i�1/2; j with the com-
ponents of ggg�i�1; jþ1/2). The updates in equations (71) and (72) are
directionally split (only the transverse flux gradient is used) and
are based on the conservative form; therefore,: = B source terms
must be added to the momentum density, energy, and Bz. These
are represented by the source term vector sx, the last term in both
equations. For the left and right states on the x-interface, the source
term vector has components sx ¼ (0; sM; sE; 0; sBz ) where

sMx; i; j ¼ Bi; j Bx; iþ1=2; j � Bx; i�1=2; j

� �
=�x;

sEx; i; j ¼ Bzvzð Þi; j Bx; iþ1=2; j � Bx; i�1=2; j

� �
=�x;

sBz

x; i; j ¼ vz;i; j Bx; iþ1=2; j � Bx; i�1=2; j

� �
=�x: ð73Þ

Expressions similar to equations (71) and (72) are used to update
the y-interface states located at yj�1/2, i.e., qL;i; j�1/2 and qR;i; j�1/2,
for �t/2 using the flux gradient in the x-direction. Source terms
analogous to those in equation (73), but proportional to �By/�y,
also are necessary (see x 4.1.2 in GS05). The in-plane compo-
nents of the magnetic field are evolved using CT,

B
nþ1=2
x; i�1=2; j ¼ Bx; i�1=2; j �

�t

2�y
E�
z;i�1=2; jþ1=2 � E�

z;i�1=2; j�1=2

� �
;

ð74Þ

B
nþ1=2
y;i; j�1=2 ¼ By;i; j�1=2 þ

�t

2�x
E�
z;iþ1=2; j�1=2 � E�

z;i�1=2; j�1=2

� �
;

ð75Þ

using the EMFs computed in step 3.

Step 5.—Calculate a cell-centered reference electric field at
t nþ1/2, E r;nþ1/2

i; j; , which is needed as a reference state for the CT
algorithm in step 7. The cell-centered velocities at the halfYtime
step needed to compute E r;nþ1/2

i; j; come from a conservative finite-
volume update of the initial mass and momentum density, using
the fluxes f �i�1/2; j and ggg�i; j�1/2. The cell-centered components of
the magnetic field at the halfYtime step come from averaging the
face centered fields at the halfYtime step computed by equa-
tions (74) and (75) in step 4 to cell centers.
Step 6.—Compute new fluxes at cell interfaces using the cor-

rected left and right states from step 4 using one of the Riemann
solvers described in x 4.3, giving

f
nþ1=2
i�1=2; j ¼ F q

nþ1=2
L;i�1=2; j; q

nþ1=2
R;i�1=2; j;B

nþ1=2
x; i�1=2; j

� �
; ð76Þ

ggg
nþ1=2
i; j�1=2 ¼ F q

nþ1=2
L;i; j�1=2; q

nþ1=2
R;i; j�1=2;B

nþ1=2
y;i; j�1=2

� �
: ð77Þ

Note the appropriate face-centered fields updated to the halfY
time step computed in step 4 are passed as parameters to the
Riemann solver. If needed, the H-correction is used in this step to
eliminate the carbuncle instability (see Appendix C).
Step 7.—Apply the algorithm of x 5.3 to calculate the CTelec-

tric fields E nþ1/2
z;i�1/2; j�1/2

using the numerical fluxes from step 6
and the cell center reference electric field calculated in step 5.
Step 8.—Update the solution from time level n to nþ 1, using

the 2D version of the finite-volume difference discretization
(eq. [11]) for the mass density, momentum density, energy den-
sity, and Bz, and the CT formulae (eqs. [16] and [17]) for the in-
plane components of the field Bx and By.
Step 9.—Compute the cell-centered components of themagnetic

field from the updated face-centered values using equations (26)
and (27).
Step 10.—Increment the time, t nþ1 ¼ t n þ �t. Compute a new

time step that satisfies an estimate of the CFL stability condition
based on wavespeeds at cell centers

�t ¼ C0min
�x

vnþ1
x; i; j

��� ���þ Cnþ1
fx; i; j

;
�y

vnþ1
y;i; j

��� ���þ Cnþ1
fy;i; j

0
B@

1
CA; ð78Þ

where C0 � 1 is the CFL number, C
nþ1
fx; i; j and Cnþ1

fy;i; j are the fast
magnetosonic speeds in the x- and y-directions, respectively,
evaluated using the updated quantities, and the minimum is taken
over all grid cells. Note that this is only an estimate of the CFL
stability condition, since the wavespeeds used in the Riemann
solver can be different from those computed from the cell-centered
values.
Step 11.—Repeat steps 1Y10 until the stopping criterion is

reached, i.e., t nþ1 � tf

The entire 2D integration algorithm is summarized by the flow
chart shown in Figure 4.

5.2. MHD Interface States in 2D

In step 1 of the 2D algorithm discussed above, source terms
must be added to the left and right states in the primitive variables
that arise due to the characteristic tracing step in the reconstruc-
tion algorithms (see x 4.2). These terms are necessary for a proper
accounting of all the evolutionary terms that form the character-
istic tracing step in multidimensional MHD (see GS05 and GS08
for a complete discussion of the origin of these terms). Since the
reconstruction is performed in the primitive variables, the only
terms required are for the transverse components of the magnetic
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field (in contrast to step 4 in the 2D algorithm above, where the
directional splitting is performed on the equations in conservative
form, and therefore, source terms were needed forM, E, and Bz).
Thus, for the left state at the x-interface located at xi�1/2, the
change to the transverse fields due to the source term is

�By;L;i�1=2; j ¼
�t

2�x
vy;i�1; j Bx; i�1=2; j � Bx; i�3=2; j

� �
;

while for the left and right interface values at the y-interface
located at yj�1/2, the change to the transverse field due to the source
term is

�Bx;L;i; j�1=2 ¼
�t

2�y
vx; i; j�1 By;i; j�1=2 � By;i; j�3=2

� �
:

Similar expressions are needed for the right state values at each
interface (GS05). In both cases the terms are added to the prim-
itive variables after the reconstruction, and before converting
back to the conserved variables.

5.3. Calculating the EMFs

As discussed in x 3, the CT update of the magnetic field re-
quires the line-averaged EMFs at cell corners, whereas the
Riemann solver returns area-averaged electric fields at cell faces.
For example, Figure 5 shows the relative positions of the fluxes
returned by the Riemann solver, and the EMFs needed by CT, for
the 2D grid cell with indices (i; j). In GS05, it was shown that the
relationship between the two is determined by the averaging for-
mulae used to convert between the face-centered area-averages

Fig. 4.—Flow chart for integration in 2D. The dashed box groups functions that are part of the 2D integrator (described in x 5.1). These steps are schematic, with many
details omitted. The flow chart for the 3D integrator is similar.

Fig. 5.—2D slice in the x-y plane showing the centering of the fluxes of
conserved variables in the x- and y-directions (F and G, respectively), and the
z-component of the EMF centered at the cell corner E z. The CTalgorithm used in
Athena requires cell-centered reference states for the EMF E r

z to compute the
gradients (�E /�x) and (�E/�y) which are located between the center of the cell
faces and the cell corner.
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of the magnetic field, and the cell-centered volume-averages. A
variety of different algorithms were explored, and the best com-
promise between accuracy and simplicity was found to be

E z;i�1=2; j�1=2 ¼
1

4
E z;i�1=2; j þ E z;i�1=2; jþ1 þ E z;i; j�1=2 þ E z;iþ1; j�1=2

� �

þ �y

8

@E z

@y


 �
i�1=2; j�1=4

� @E z

@y


 �
i�1=2; j�3=4

" #

þ �x

8

@E z

@x


 �
i�1=4; j�1=2

� @E z

@x


 �
i�3=4; j�1=2

" #
; ð79Þ

where the derivative of E z on each grid cell face is computed by
selecting the ‘‘upwind’’ direction according to the contact mode,
e.g.,

@E z

@y


 �
i�1=2

¼

@E z=@yð Þi�1; for vx; i�1=2 > 0;

@E z=@yð Þi; for vx; i�1=2 < 0;

1

2

@E z

@y


 �
i�1

þ @E z

@y


 �
i

� �
; otherwise;

8>>><
>>>:

ð80Þ

(where the subscript j has been suppressed) with an analogous
expression for the (@E z/@ x). The derivatives of the electric field
in equation (80) are computed using the face centered electric
fields (Godunov fluxes) and a cell center ‘‘reference’’ value E r

z;i; j,
e.g.,

@E z

@ y


 �
i; j�1=4

¼ 2
E r
z; i; j � E z; i; j�1=2

�y

 !
; ð81Þ

where the cell center reference electric field E r
z;i; j is computed at

the appropriate time level (either t n for step 3 of the 2D algorithm,
or t nþ1/2 for step 7). To help clarify the above, Figure 5 diagrams
the relative locations of the Godunov fluxes, corner-centered EMF,
cell-centered reference states, and the derivatives of the electric
field. Further details are provided in GS05 (and GS08 for the 3D
case).

Note for the 3D CTUþ CT algorithm, analogous expressions
to the above are required to convert the x- and y-components of
the electric field to the appropriate cell corners (see Fig. 1). These
expressions follow directly from equations (80) and (81) using a
cyclic permutation of the (x; y; z) and (i; j; k).

6. THREE-DIMENSIONAL INTEGRATION ALGORITHM

The extension of the dimensionally unsplit CTU integrator
due to Colella (1990) used in Athena from 2D to 3D is in fact
quite complex. In particular, stability with a CFL numberC0 � 1
requires 12 Riemann solves per cell per time step, and multiple
fractional time steps are required to correct the left and right
states with transverse flux gradients in a genuinely multidi-
mensional fashion. This extension of CTU to 3D has been de-
scribed by Saltzman (1994) for hydrodynamics.

In GS08 we explored the use of the twelve-solve CTUþ CT
algorithm for MHD, as well as a simpler variant that uses only
six solves per time step, but formally is only stable for CFL num-

bers C0 � 0:5. The tests presented in GS08 show that the six-
solve algorithm is as accurate as the twelve-solve method, and
requires about the same computational cost. However, the six-
solve algorithm is dramatically simpler to implement and, there-
fore, is the primary 3D integrator used in Athena.

The six-solve CTU þ CT 3D algorithm is designed in such
a way that for grid aligned flows it reduces exactly to the 2D
CTU þ CT algorithm described in x 5, or the 1D algorithm de-
scribed in x 4, depending on the symmetry of the problem. Perhaps
even more importantly, in GS08 we introduced a test problem to
demonstrate the 3D CTUþ CT algorithm preserves a discrete
representation of the divergence-free constraint that prevents anom-
alous growth of magnetic flux for problems with certain symme-
tries. The test involves advection of a cylindrical column of 2D
field loops in the x-y plane, with Bz ¼ 0, and a constant but fully
3D velocity field. In this case the z-component of the induction
equation reduces to

@Bz

@t
� vz

@Bx

@x
þ @By

@y


 �
¼ 0: ð82Þ

Clearly, the second term is proportional to : = B. Thus, if the
discrete form of the induction equation used to update the field
components in 3D is able to preserve Bz ¼ 0 exactly, then the
algorithm must preserve the appropriate discrete representation
of : = B ¼ 0. We present results of this field loop test in x 8.4 in
2D and x 8.6 in 3D.

6.1. Steps in the 3D Algorithm

The six-solve version of the dimensionally unsplit 3D CTUþ
CT algorithm can be described by the following steps (see GS08
for details). It may also be useful to compare and contrast the
steps in the 3D algorithm with those in the 2D method (x 5.1).
Step 1.—Compute and store the left and right states at cell in-

terfaces in the x-direction (qL;i�1/2; j;k ; qR;i�1/2; j;k ), the y-direction
(qL;i; j�1/2;k ; qR;i; j�1/2;k), and the z-direction (qL;i; j;k�1/2; qR;i; j;k�1/2)
simultaneously, using any of the 1D spatial reconstruction schemes
described in x 4.2, for all the interfaces over the entire grid. This
requires adding : = B source terms to the primitive variables, as
discussed in GS08 and x 6.2.
Step 2.—Compute 1D fluxes of the conserved variables using

any one of the Riemann solvers described in x 4.3 at interfaces in
all three dimensions,

f �i�1=2; j;k ¼ F qL;i�1=2; j;k ; qR;i�1=2; j;k ;Bx; i�1=2; j;k

� �
; ð83Þ

ggg�i; j�1=2;k ¼ F qL;i; j�1=2;k ; qR;i; j�1=2;k ;By;i; j�1=2;k

� �
; ð84Þ

h�i; j;k�1=2 ¼ F qL;i; j;k�1=2; qR;i; j;k�1=2;Bz;i; j;k�1=2

� �
; ð85Þ

using the appropriate longitudinal component of the magnetic
field passed as a parameter to the Riemann solver.
Step 3.—Apply the algorithm of x 5.3 to calculate the CT

electric fields at cell-corners, E�
x; i; j�1/2;k�1/2, E�

y;i�1/2; j;k�1/2, and
E�
z;i�1/2; j�1/2;k , from the appropriate components of the face-

centered fluxes returned by the Riemann solver in step 2 and a
cell center reference electric field calculated using the initial data
at time level n, i.e.,Er;n

i; j;k ¼ �(vni; j;k < B
n
i; j;k). (Note the algorithms

for computing the x- and y-components of the EMF are a straight-
forward extension of the algorithm to compute the z-component
described in x 5.3; see GS08.)

ATHENA: NEW ASTROPHYSICAL MHD CODE 149No. 1, 2008



Step 4.—Update the face-centered magnetic field by �t/2 using
the CT difference equations (16)Y(18), and the EMFs computed
in step 3.
Step 5.—Evolve the left and right states at each interface by �t/2

using transverse flux gradients. For example, the hydrodynamic
variables (mass, momentum and energy density) are advanced
using

q
nþ1=2
L;i�1=2; j;k ¼ qL;i�1=2; j;k �

�t

2�y
ggg�iþ1; jþ1=2;k � ggg�iþ1; j�1=2;k

� �

� �t

2�z
h�iþ1; j;kþ1=2 � h�iþ1; j;k�1=2

� �
þ �t

2
sx; i�1; j;k ;

ð86Þ

q
nþ1=2
R;i�1=2; j;k ¼ qR;i�1=2; j;k �

�t

2�y
ggg�i; jþ1=2;k � ggg�i; j�1=2;k

� �

� �t

2�z
h�i; j;kþ1=2 � h�i; j;k�1=2

� �
þ �t

2
sx; i; j;k :

ð87Þ

Once again, care must be taken to associate the components of
the vectors of interface states (e.g., qL;i�1/2; j;k) with the appro-
priate components of the transverse fluxes (e.g., ggg�i�i; j�1/2;k and
h�i�i; j;k�1/2). Moreover, since these updates are directionally split,
: = B source terms must be added. These are represented by the
source-term vector sx, the last term in both equations. For the left
and right states on the x-interface, the source term vector has
components sx ¼ (0; sM; sE; 0; 0), where

sMx; i; j;k ¼ Bi; j;k
@Bx

@x


 �
i; j;k

sEi; j;k ¼ � Byvy
� �

i; j;k
minmod

@Bz

@z
;� @Bx

@x


 �
i; j;k

� Bzvzð Þi; j;kminmod
@By

@ y
;� @Bx

@ x


 �
i; j;k

; ð88Þ

where the minmod function is defined as

minmod x; yð Þ¼
sgn xð Þmin xj j; yj jð Þ; if xy > 0;

0; otherwise:



ð89Þ

The use of theminmod operator to limit the source terms according
to the magnitude of the terms in the divergence of B is discussed in
GS08, it is needed because there are now two terms that arise from
transverse gradients, instead of only one as in 2D. The transverse
components of the magnetic field stored at each of the interfaces is
evolved using a combination of the EMFs computed in step 3, and
: = B source terms. For example, the right state value of the y- and
z-components of the magnetic field at the x-interface at xi�1/2 are
evolved using

By

� �nþ1=2

R;i�1=2; j;k
¼ By

� �
R;i�1=2; j;k

� �t

4�z
E�
x; i; jþ1=2;kþ1=2 � E�

x; i; jþ1=2;k�1=2

� �
� �t

4�z
E�
x; i; j�1=2;kþ1=2 � E�

x; i; j�1=2;k�1=2

� �
� �t

2
vy
� �

i; j;k
minmod

@Bz

@z
;� @Bx

@x


 �
i; j;k

;

ð90Þ

Bzð Þnþ1=2
R;i�1=2; j;k ¼ Bzð ÞR;i�1=2; j;k

þ �t

4�y
E�
x; i; jþ1=2;kþ1=2 � E�

x; i; j�1=2;kþ1=2

� �

þ �t

4�y
E�
x; i; jþ1=2;k�1=2 � E�

x; i; j�1=2;k�1=2

� �

� �t

2
vzð Þi; j;kminmod

@By

@y
;� @Bx

@x


 �
i; j;k

;

ð91Þ

with similar expressions for the left state values (but using quan-
tities at i� 1 on the right-hand side of the above equations as ap-
propriate). The origin of theseMHD source terms for the transverse
components of the magnetic field is discussed further in GS08.
The y- and z-interface states are advanced in an equivalent
manner by cyclic permutation of (x; y; z) and (i; j; k) in the above
expressions.
Step 6.—Calculate a cell-centered electric field at t nþ1/2 by

using the fluxes f �i�1/2; j;k , ggg
�
i; j�1/2;k , and h

�
i; j;k�1/2 to compute the

cell-centered velocities at the halfYtime step using a conserva-
tive finite volume update for the momentum and density, and by
averaging the face centered fields at the halfYtime step computed
in step 4. This is needed as a reference state for the CTalgorithm
in step 8.
Step 7.—Compute new fluxes at cell interfaces using the cor-

rected left and right states from step 5, and the interface magnetic
fields at t nþ1/2 computed in step 4, using one of the Riemann
solvers described in x 4.3,

f
nþ1=2
i�1=2; j;k ¼ F q

nþ1=2
L;i�1=2; j;k ; q

nþ1=2
R;i�1=2; j;k ;B

nþ1=2
x; i�1=2; j;k

� �
; ð92Þ

ggg
nþ1=2
i; j�1=2;k ¼ F q

nþ1=2
L;i; j�1=2;k ; q

nþ1=2
R;i; j�1=2;k ;B

nþ1=2
y;i; j�1=2;k

� �
; ð93Þ

h
nþ1=2
i; j;k�1=2 ¼ F q

nþ1=2
L;i; j;k�1=2; q

nþ1=2
R;i; j;k�1=2;B

nþ1=2
z;i; j;k�1=2

� �
; ð94Þ

using the appropriate longitudinal component of the magnetic
field passed as a parameter to the Riemann solver. If needed, the
H-correction is used in this step to eliminate the carbuncle in-
stability (see Appendix C).
Step 8.—Apply the algorithm of x 5.3 to calculate the CTelec-

tric fields E nþ1/2
x; i; j�1/2;k�1/2, E

nþ1/2
y;i�1/2; j;k�1/2, and E nþ1/2

z;i�1/2; j�1/2;k , using

the appropriate components of the numerical fluxes from step 7
and the cell center reference electric field calculated in step 6.
Step 9.—Update the solution from time level n to nþ 1 using

the conservative finite volume update (eq. [11]) for the hydrody-
namic variables (mass, momentum, and energy density) and the
CT formulae (eqs. [16]Y[18]) to update the area-averaged face-
centered components of the magnetic field.
Step 10.—Compute the cell-centered components of the mag-

netic field from the updated face-centered values using equa-
tions (26)Y(28).
Step 11.—Increment the time: t nþ1 ¼ t n þ �t. Compute a new

time step that satisfies an estimate of the CFL stability condition
based on wavespeeds at cell centers

�t ¼

C0min
�x

vnþ1
x; i; j;k

��� ���þ Cnþ1
fx; i; j;k

;
�y

vnþ1
y;i; j;k

��� ���þ Cnþ1
fy;i; j;k

;
�z

vnþ1
z;i; j;k

��� ���þ Cnþ1
fz;i; j;k

0
B@

1
CA;

ð95Þ
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where C0 � 1/2 is the CFL number, Cnþ1
fx; i; j;k , C

nþ1
fy;i; j;k , and C

nþ1
fz;i; j;k

are the fast magnetosonic speeds in the x-, y-, and z-directions, re-
spectively, evaluated using the updated quantities, and the min-
imum is taken over all grid cells. Note this this is only an estimate
of the CFL stability condition, since the wavespeeds used in the
Riemann solver can be different from those computed from the
cell-centered values.
Step 12.—Repeat steps 1Y11 until the stopping criterion is

reached, i.e., t nþ1 � tf .

The steps in the 3D integration algorithm are very similar to those
summarized by the flow chart in Figure 4 for the 2D algorithm.

6.2. MHD Interface States in 3D

As with the 2D integrator, source terms must be added to the
left and right states in the primitive variables calculated using
the 1D spatial reconstruction schemes described in x 4.2. Since
the reconstruction is in the primitive variables, only the transverse
components of themagnetic field require these terms. For the right
state at the x-interface located at xi�1/2, the change to the trans-
verse fields due to the source terms are

�By

� �
R;i�1=2; j;k

¼ � �t

2
vy
� �

i; j;k
minmod

@Bz

@z
;� @Bx

@x


 �
i; j;k

;

ð96Þ

�Bzð ÞR;i�1=2; j;k ¼ � �t

2
vzð Þi; j;k minmod

@By

@y
;� @Bx

@x


 �
i; j;k

:
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Similar expressions are needed for the left state values, while the
equations for the left and right state values at the y- and z-interfaces
follow from cyclic permutation of the (x; y; z). These terms are
added to the primitive variables after reconstruction, and before
converting back to the conserved variables.

7. IMPLEMENTATION

The implementation of the numerical algorithms described in
the previous sections into a functioning computer code can be
complex, and warrants at least some discussion. Athena was de-
veloped in C, but many applications scientists prefer to work
with FORTRAN. Hence, we have written two different versions
of Athena: the original C code, and another in FORTRAN95.
These two versions provide the community with implementations
of the Athena algorithm in the two most popular languages used
for scientific computing in astrophysics. The most important de-
sign criteria we have adopted for both versions are

1. modularity,
2. documentation,
3. strict adherence to ANSI standards,
4. and simple control of physics and runtime options.

We briefly discuss each of these below.
By far the most important design priority is modularity. Thus,

the Riemann solvers, 1D reconstruction algorithms, conversion
from conserved to primitive variables, boundary conditions, data
output, and the integrators themselves are all broken into indi-
vidual functions, with a common interface specific to each class.
This makes adding everything from a new Riemann solver to a
new data output format simply amatter of writing a new function
which conforms to the appropriate interface.Moreover, all problem-
specific code is contained in a single file, with functionality pro-

vided that makes it easy to add new boundary conditions or new
source terms in the equations.

Although writing documentation is never enjoyable, it is
critical if anyone other than the developer is to use the code. We
have found this to be true even among members of our own re-
search groups. The C version of Athena comes with an extensive
User’s Guidewhich describes installing, compiling, and running
the code, and a Programmer’s Guidewhich explains the grid, data
structures, and program control and flow. Both are included with
the source code in the download from theWeb. The FORTRAN95
version has its own User’s Guide. Ample comments are also
embedded within the source files.

By adhering to ANSI standards, we ensure Athena can be
compiled and run on anymachine with a C or FORTRAN95 com-
piler, as appropriate. To avoid reliance on external libraries, we do
not use special purpose output formats. The philosophy is that
data can always be converted into other format by postprocessing
software if needed, or bywriting a new user-defined output routine.
Athena is written to run either as a serial code on one CPU or in
parallel using domain decomposition through MPI calls. The only
external libraries needed byAthena are for parallelization withMPI
(using any version of the MPICH or OpenMPI libraries). As al-
gorithms become more complex, the use of external libraries for
I/O may become unavoidable. For example, the HDF5 library
has proved to be useful in organizing the complex data structures
associated with AMR grids.

The compile and runtime options in the C version of Athena
are documented in the User’s Guide. Physics and algorithm op-
tions are set at compile time using a configure script generated by
the autoconf toolkit. In the FORTRAN95 version, these options
are determined by selecting which modules to use. A PERL build
script buildathena is included to simplify the choice of problem
module, physics, and parallel or serial version. A separate user
guide is provided for the FORTRAN code. Both codes use a sim-
ple block-structured input file with runtime parameter values.
The FORTRAN95 version uses NAMELIST and the C version uses
a flexible format that emulates NAMELIST functionality. Although
there is nothing special about the specific way compiler and run
options are set in Athena, the key point is that simple and ex-
tensible mechanisms to control both are provided.

Two final important aspects of code implementation are the
single processor performance, and parallelization on distributed
memory clusters. Aggressive optimization requires mature and
static algorithms and often comes at the cost of clarity and adap-
tability in the code. Athena is intended to be a community code,
and we plan that Athena will continue to be developed and ex-
tended. Thus, optimization has been limited to the basic concepts
guided by the rules of data locality and vectorization. In the
C version, for example, to optimize cache use we define all var-
iables within a cell as a data structure and then create 3D arrays
of this structure. This ensures values for each variable associated
with a given cell are contiguous in memory. To promote vectori-
zation, as much computational work as is possible is done on 1D
pencils drawn from the grid (for example, the spatial reconstruc-
tion step). The FORTRAN95 version is designed to take advan-
tage of FORTRANarray syntaxwhere possible. One drawback of
dimensionally unsplit algorithms is that the left and right states
and fluxes must be computed and stored for every interface over
the entire 3D grid. This requires many 3D arrays, which increases
the memory footprint of the code and reduces cache performance.
However, unsplit algorithms are essential for MHD.

Although Athena requires manymore floating point operations
per cell than algorithms such as ZEUS (as much as 10 times more),
the primary bottleneck onmodern processors is generally accessing
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cache and interprocess communication for parallel problems.
Thus, the performance of Athena in comparison to ZEUS is not
decreased in proportion to the amount of work per cell in the two
codes. One of the most useful measures of performance is the
number of cells updated per CPU second. This depends on many
factors, including the algorithm, the size of the grid, and the
processor speed. Table 1 lists the performance of the C version
of Athena on a 2.2 GHz Opteron processor, compiled with gcc
using an optimization level of �O3 for various physics and algo-
rithm options and using a 3D 1283 grid. For comparison, a 3D ver-
sion of ZEUSwritten in FORTRAN77 by one of us (J. S.) and run
on the same processor gives 404 ; 103 cell updates per second for
adiabaticMHDona 1283 grid. Thus,while the algorithms inAthena
typically require 10 times the work of those in ZEUS, the code is
only 4 times slower when using the HLLD fluxes.

Parallelization is achieved in Athena using domain decom-
position withMPI calls to swap data in ghost cells at grid bound-
aries. The number of ghost cells required depends on the type of
physics used and the order of the reconstruction. For example,
MHDwith third-order reconstruction requires four ghost cells at
every boundary (more are required if the H-correction is used;
see Appendix C). By sequential exchange of boundary conditions
in the x-, y-, and z-directions, we avoid the need for extraMPI calls
to swap values across diagonal domains at the corners of the grid.
Two factors contribute to making Athena very efficient on dis-
tributed memory clusters. First, the unsplit direct Eulerian update
in Athena requires communication of ghost zones only once per
time step, greatly reducing the number of MPI calls compared to
split methods. Second, the ratio of computational work to data
communicated is large in Athena due to the complexity of the al-
gorithms. Figure 6 plots the efficiency of the C version of Athena,
defined as the speed per processor in a parallel calculation nor-
malized by the speed of a single processor calculation, on Red
Storm, a Cray XT-3 at Sandia National Laboratory. Even up to
20,000 processors the efficiency of Athena remains above 85%
and is nearly flat indicating essentially perfect weak scaling.

8. TESTS

Tests are an integral part of the code development process,
used not only to find bugs in the implementation, but also tomea-
sure the fidelity of themethod in comparison to other techniques.
In this section we present a selection of tests that we have found
useful in the development of Athena for both hydrodynamics
andMHD in 1D, 2D, and 3D. Amore comprehensive set of tests
is published on the Web. Many of the problems are drawn from
test suites of our own codes (Stone et al. 1992a) or from those
published by other authors (Woodward & Colella 1984, here-
after WC84; Ryu & Jones1995, hereafter RJ95; T2000; Liska &
Wendroff 2003, hereafter LW03). Although we begin by show-
ing 1D tests for hydrodynamics and MHD, our focus will be on
the multidimensional results that follow, since multidimensional
tests are so critical for MHD.

In only a few of the tests do we show the results from more
than one Riemann solver. In general, we find the most accurate
(and often nearly identical) results are obtained with either the
Roe and HLLC solvers in hydrodynamics, or the Roe and HLLD
solver in MHD. Thus, we use these solvers interchangeably. If
one solver fails on a particular test, it will be mentioned in the
discussion.

8.1. One-Dimensional Hydrodynamics

Linear wave convergence.—One of the simplest, yet most dis-
criminating tests is to follow the propagation of linear modes of
each wave family in a periodic domain to measure the amplitude
of both diffusion and dispersion errors. Exact eigenfunctions of

TABLE 1

Performance of Athena in 3D on a 2.2 GHz Opteron Processor

Physics Roe Solver HLLC Solver HLLD Solver

Isothermal hydro ................. 328 340 . . .

Adiabatic hydro .................. 224 242 . . .

Isothermal MHD................. 108 . . . 124

Adiabatic MHD .................. 85.9 . . . 97.6

Note.—Values are measured in thousands of cell updates per CPU second.

Fig. 6.—Weak scaling of the efficiency of Athena on a CrayXT-3, using grids
with either 323, or 643 cells per processor, and either one (SN) or two (VN) pro-
cessors per node. The quantity � measures the ratio of the number of cells com-
municated to the number updated per MPI process. The efficiency remains flat
well beyond 104 processors, indicating excellent weak scaling. [See the electronic
edition of the Supplement for a color version of this figure.]

Fig. 7.—Convergence in the norm of the L1 error vector for sound waves,
shear waves associated with each transverse component of velocity, and the en-
tropy (contact) wave after propagating a distance of one wavelength in 1D. Solutions
are computed using third-order spatial reconstruction, and either the Roe fluxes (solid
line) or HLLE fluxes (dotted line). The errors for solutions computed with the HLLC
fluxes are identical to solutions computed with the Roe fluxes.
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sound, contact, and shearwaves are initialized in a uniformmedium
with �0 ¼ 1, P0 ¼ 3/5, and � ¼ 5/3. The wave amplitude
A ¼ 10�6, and the wavelength is equal to the size of the domain
L ¼ 1. For soundwaves, the backgroundmedium is initially at rest.
( It is also useful to try a test in which vx;0 ¼ �cs, where c2s ¼
�P/� is the sound speed, so that the right-propagating sound
waves are standing waves.) For the contact and shear waves, the
backgroundmediumhas a constant velocity vx;0 ¼ 1. The solution
is then evolved for one crossing time, or until tf ¼ 1. Figure 7
shows the norm of the L1 error vector for each wave, defined as

�q ¼ 1

N

X
i

qi � q0i
�� ��; ð98Þ

where q0i is the initial solution, as a function of the numerical
resolution up to 1024 zones, using third-order reconstruction and
the HLLE, HLLC, or Roe fluxes. The errors for the HLLC and
Roe fluxes are nearly identical, and converge at second-order for
each wave family. The errors for the HLLE solver are slightly
larger, and converge at a slightly lower rate. By plotting profiles of
the waves, we find the errors are dominated primarily by diffusion
error; with 16 or more grid points per wavelength, the plots show
almost no dispersion in any of the waves. A number of very
sensitive tests of the coding can be designed. First, the L1 errors
should be identical (to every digit of accuracy) for left- and right-
propagating waves. Second, convergence should continue until
either the limits of round-off error are reached, or nonlinear steep-
ing becomes important (when L1 � A2). We have found that both
double precision, and very small initial amplitudes, are necessary
to see convergence out to 1024 cells. This suggests that round-off
error can dominate truncation error in very high resolution simula-
tions with higher order methods such as Athena.
Sod shocktube.—Long a standard test for hydrodynamic co-

des, the Sod shocktube consists of two constant states separated
by a discontinuity (a Riemann problem). Table 2 lists the values
in the left and right states for this test. Figure 8 shows the results
for the density, pressure, velocity, and P/� (which is proportional
to the specific internal energy density) at tf ¼ 0:25when run on a
grid of 100 cells in the domain�0:5 < x < 0:5 using third-order
reconstruction, the HLLC Riemann solver, and an adiabatic index
� ¼ 1:4. When configured for 1D hydrodynamics, Athena re-
duces to a direct Eulerian PPM code (e.g., x 4 of CW84); thus,
we expect the results should be similar to those published by, e.g.,
Greenough & Rider (2003). As is typical of a PPM code, Athena
resolves the shock front and contact discontinuity with only 2Y
3 zones. Although we show this test for posterity, in our opinion
the 1D Sod shocktube should no longer be considered a discrim-
inating test of algorithms.
Two interacting blast waves.—Introduced as a test by WC84,

this problem consists of an initially constant density �0 ¼ 1 in a
stationary medium in a domain of size Lx ¼ 1 with reflecting

boundary conditions and � ¼ 1:4. For x < 0:1, the initial pressure
is P ¼ 1000, for x > 0:9 P ¼ 100, while P ¼ 0:01 everywhere
else. The solution is evolved to an arbitrary time of tf ¼ 0:038, at
which point the shocks and rarefactions generated at the two dis-
continuities in the initial state have interacted multiple times in
the domain. The test is quite sensitive of the ability of themethod
to capture the interaction of shocks with contact discontinuities
and rarefactions. Figure 9 shows the solution computed with
Athena using 400 grid points, third-order reconstruction, the CS07
limiters, and the HLLC Riemann solver, with a reference solution
computed using 9600 grid points shown as a solid line. In ad-
dition, the solution can be compared to Figure 2h of WC84. Note
that the contact discontinuity near x ¼ 0:6 is quite smeared out in
the Athena solution, this seems to be a common property of direct
Eulerian methods (see Figs. 18 and 19 in Greenough & Rider
2003), the Lagrange-plus-remap version of PPM seems to capture
this feature more sharply (WC84, LW03).
Shu & Osher shocktube.—Introduced by Shu & Osher (1989),

this test measures the ability of a scheme to capture the interac-
tion of shocks with smooth flow. The initial conditions are a strong
shock, initially located at x ¼ �0:8, propagating into a back-
ground medium with a sinusoidally varying density in a domain
�1 � x � 1 with adiabatic index � ¼ 1:4. Table 2 lists the initial
conditions for this test. Figure 10 shows the result at t ¼ 0:47
computed with both 200 and 800 cells using third-order recon-
struction, the CS07 limiters, and the HLLC solver. Comparison
of this plot with, e.g., Figure 5 in Balsara & Shu (2000), shows
the Athena solution is similar to a third-order WENO scheme.
The use of the CS07 limiters significantly improves the solution

TABLE 2

Left and Right States for 1D Riemann Problems

Test �L vx;L vy;L vz;L PL By;L Bz;L �R vx;R vy;R vz;R PR By;R Bz;R

Sod ................................ 1.0 0 0 0 1.0 . . . . . . 0.125 0 0 0 0.1 . . . . . .

Shu-Osher...................... 3.857143 2.629369 0 0 10.3333 . . . . . . 1þ 0:2 sin (5�x) 0 0 0 1 . . . . . .

Einfeldt-1203................. 1.0 �2.0 0 0 0.4 . . . . . . 1.0 2.0 0 0 0.4 . . . . . .

Brio & Wu .................... 1.0 0 0 0 1.0 1.0 0 0.125 0 0 0 0.1 �1.0 0

Torrilhon........................ 1.0 0 0 0 1.0 1.0 0 0.2 0 0 0 0.2 cos (3) sin (3)

RJ2a............................... 1.08 1.2 0.01 0.5 0.95 3.6 2 1 0 0 0 1 4 2

RJ4d .............................. 1 0 0 0 1 0 0 0.3 0 0 1 0.2 1 0

Fig. 8.—Density, pressure, velocity, and specific internal energy [scaled by
(� � 1)] for the Sod shocktube test at t ¼ 0:25, computed with 100 grid points,
third-order spatial reconstruction, and the HLLC fluxes. The solid line is the
analytic solution.
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in comparison to the original PPM limiters, since with only
200 cells many of the extrema in the postshock gas are unresolved,
and are clipped with the PPM limiters. We conclude that low-
order ( less than fifth order) WENO schemes are not more accu-
rate than second-order Godunov methods like Athena for this
test. A more comprehensive comparison of Godunov and higher
orderWENO schemes is provided byGreenough&Rider (2003).
In particular, they conclude for problems involving shocks and
discontinuities that second-order Godunov schemes are more
accurate per fixed computational cost.
Einfeldt strong rarefaction tests.—Einfeldt et al. (1991) de-

scribed several test problems designed to reveal shortcomings of
various Riemann solvers for hydrodynamics. In particular, the
Roe solver will always fail on these tests, in the sense that it will
produce negative densities and pressures in the intermediate
states for the initial discontinuity in the first time step. For this
reason, when using the Roe solver in Athena, we test the inter-
mediate states, and if the density or pressure is negative, we re-
place the Roe flux with the HLLE flux for that interface only. As
an example, Figure 11 shows the results for the density, pressure,
velocity, and P/� (which is proportional to the specific internal

energy) for test 1-2-0-3 in Einfeldt et al. (1991) at t ¼ 0:1, com-
puted using 200 grid points, � ¼ 1:4, and second-order spatial
reconstruction (the initial left and right states for this test are
given in Table 2). The profiles of density and pressure are cap-
tured accurately.We find that the HLLE solver is only needed for
one interface in the first time step, thereafter the Roe solver re-
turns positive states. We have also run the 1-1-2-5 test in Einfeldt
et al. (1991); we find this test is less challenging.

8.2. One-Dimensional MHD

Linear wave convergence.—As in hydrodynamics, the con-
vergence of errors in the propagation of linear amplitude MHD
waves is a sensitive test. For MHDwaves, we use a uniform me-
dium with �0 ¼ 1, P0 ¼ 3/5, B ¼ (1;

ffiffiffi
2

p
; 1/2), and � ¼ 5/3 in a

domain of size L ¼ 1. These choices give well-separated wave

Fig. 10.—Density at t ¼ 0:47 in the Shu-Osher Riemann problem, computed
with 200 (squares) and 800 (solid line) grid points, third-order spatial reconstruc-
tion, and the HLLC fluxes.

Fig. 11.—Density, pressure, velocity, and specific internal energy [scaled by
(� � 1)] for the Einfeldt strong rarefaction test at t ¼ 0:1, computed with 200 grid
points, second-order spatial reconstruction, and the HLLC fluxes.

Fig. 12.—Convergence in the norm of the L1 error vector for fast, Alfvén,
slow, and contact waves after propagating a distance of one wavelength in 1D. Solu-
tions are computed using third-order spatial reconstruction, and either the Roe fluxes
(solid line), HLLD fluxes (dashed line), or HLLE fluxes (dotted line).

Fig. 9.—Density at t ¼ 0:038 in the two interacting blast wave test, computed
with 400 grid points, third-order spatial reconstruction, and the HLLCfluxes. The
solid line is a reference solution computed with 9600 grid points.
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speeds: Cf ¼ 2, CA;x ¼ 1, and Cs ¼ 1/2 for the fast, Alfvén, and
slow magnetosonic speeds, respectively. Exact eigenfunctions
for fast and slow magnetosonic, Alfvén, and contact waves for
this background state are given in GS05. These are used to initi-
alize each wave family with amplitude A ¼ 10�6 and exactly one
wavelength in the domain. Figure 12 shows the norm of the L1
error vector for each wave family as a function of the numerical
resolution up to 1024 zones, using third-order reconstruction and
the HLLE, HLLD, or Roe fluxes. The errors using the HLLD or
Roe fluxes are nearly identical, converge at second order, and are
slightly lower than the HLLE fluxes. As before, this problem can
be used as the basis for a number of very sensitive tests. For ex-
ample, standing waves in each family can be initialized by setting
vx;0 to the appropriate wave speed, the L1 error should be identical
for left and right propagating waves, and convergence should
continue until the limits of round-off error or wave-steepening
effects are reached.
Brio &Wu shocktube.—AnMHD analog to the Sod shocktube

was introduced byBrio&Wu (1988), and has now become a stan-
dard test forMHD codes. Table 2 gives the values of the primitive
variables in the left and right states. The longitudinal component
of the magnetic field is Bx ¼ 0:75 and is of course constant ev-
erywhere. The solution is computed with � ¼ 2. Figure 13 shows
results computed with second-order spatial reconstruction and the
Roe fluxes, on a grid of 800 zones at time tf ¼ 0:08. A reference
solution, computed using 104 grid points, is shown as a solid line.
Once again, shocks and contacts are captured in only 2Y3 zones.
Small oscillations are present in the velocity if third-order re-
construction is used, indicating our TVD limiters could be im-
proved. Recently, Torrilhon (2003) has performed a careful study
of the convergence of finite-volume schemes for MHD Riemann
problems similar (but not identical) to the Brio & Wu shocktube.

We have run the regular, nearly coplanar problem defined in x 4.2
of that paper. The left and right states for this test are given in
Table 2, in addition Bx ¼ 1. The results, computed using third-
order reconstruction and the Roe solver, are nearly identical to
those shown in Figure 7 of that paper, although the Athena so-
lutionwith 104 grid points is comparable to the solutionwith twice
as many points in that paper. At lower resolution (800 grid points)
the Athena solution shows the compound wave structure which
appears in dissipative MHD (similar to Fig. 6 of Torrilhon 2003).
As the numerical resolution is increased, the solution converges to
the exact solution for ideal MHD, which does not contain this
structure. The fact that Athena shows more rapid convergence to
the exact solution for idealMHD than the central scheme tested in
Torrilhon (2003) is indicative of lower numerical dissipation.
RJ95 shocktube 2a.—RJ95 introduced a large number of MHD

shocktube problems as tests of a 1D algorithm they developed.
Figure 14 shows the results for the problem shown in their Fig-
ure 2a, which we refer to as the RJ2a test. Table 2 lists the left and
right states for this test, in addition Bx ¼ 2. The results in Figure 14
are computed using third-order reconstruction and the Roe fluxes
on a grid of 512 cells. This test is of particular interest because
discontinuities in each MHDwave family are produced from the
initial conditions, that is both left- and right-propagating fast and
slowmagnetosonic shocks, left- and right-propagating rotational
discontinuities, and a contact discontinuity. The results in Fig-
ure 14 show that Athena captures each of these discontinuities
with 2Y 4 cells.
RJ95 shocktube 4d.—Asecond test introduced byRJ95 is shown

in their Figure 4d, hereafterwe refer to this problemas testRJ4d.The
left and right states are given in Table 2, with Bx ¼ 0:7. The solu-
tion at tf ¼ 0:16 is shown in Figure 15 computed with third-order
reconstruction and the HLLD fluxes. The problem is interesting

Fig. 13.—Density, pressure, velocity components, transverse component of the magnetic field, and specific internal energy [scaled by (� � 1)] for the Brio & Wu
shocktube problem at t ¼ 0:08, computedwith 400 grid points, second-order spatial reconstruction, and the Roe fluxes. The solid line is a reference solution computedwith
104 grid points.
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Fig. 15.—Density, pressure, total energy, all three components of velocity, transverse components and rotation angle � ¼ tan�1(Bz/By) of the magnetic field for the
MHD Riemann problem RJ4d at t ¼ 0:16, computed with 512 grid points, third-order spatial reconstruction, and the HLLD fluxes.

Fig. 14.—Density, pressure, total energy, all three components of velocity, transverse components, and rotation angle � ¼ tan�1(Bz/By) of the magnetic field for the
MHD Riemann problem RJ2a at t ¼ 0:2, computed with 512 grid points, third-order spatial reconstruction, and the Roe fluxes.



because it involves a switch-on slow rarefaction and a slow shock.
Although the HLLD solver does not include the slow wave ex-
plicitly, Figure 15 shows these features are all captured well in the
Athena solution using this solver.

8.3. Two-Dimensional Hydrodynamics

Double Mach reflection.—Another classic test of hydrody-
namic algorithms introduced byWC84, this problem follows the
oblique reflection of a Mach 10 shock in air (� ¼ 1:4). The
interaction of the reflected and incident shocks produces a triple
point, and between the resulting contact discontinuity and the
reflected shock, a short jet is formed along the wall. The structure
of this jet is very sensitive to the numerical diffusion of contact
waves. This test requires a time-dependent boundary condition
be applied along the top edge to follow the propagation of the
incident shock; this is easily achieved in Athena using function
pointers. The problem is initialized following the description in
WC84. Figure 16 shows contour plots of the solution at t ¼ 0:2
computed with both second- and third-order reconstruction and
at two different numerical resolutions. The H-correction described
in Appendix C is used for all the calculations to reduce small-
amplitude noise in the postshock flow. The low-resolution
(260 ; 80) results (Fig. 16, first and third panels) show small but
distinct changes in the jet between the reconstruction algorithms.
The third-order reconstruction is slightly less diffusive. Compar-
ison of the results with those in WC84 (their Fig. 4) demonstrate
the differences between the Lagrange-plus-remap version of
PPM, and the direct Eulerian version implemented in Athena.
The results can also be compared with those from ZEUS shown
in Figures 15 and 16 of Stone & Norman (1992a).
LW03 implosion test.—LW03have provided an extensive com-

parison of a wide variety of hydrodynamic codes using 1D and
2D problems (including some of the 1D problems presented in
x 8.1). We have found the problem discussed in x 4.7 in LW03,
hereafter the implosion test, to be one of the most informative. It
consists of initial states identical to the Sod shocktube problem
separated by a discontinuity inclined at 45� in a 2D domain of
size (Lx; Ly)¼ (0:3; 0:3) with reflecting boundary conditions every-
where (a more precise description of the initial conditions and
grid is given in LW03). It produces a shock wave which initially
propagates into the bottom left corner, and a rarefaction which

Fig. 16.—Contours of the density at t ¼ 0:2 for the double Mach reflection
test.From top to bottom: Solutions are computedwith second-order spatial recon-
struction at low and high resolution, and third-order spatial reconstruction at low
and high resolution. Here, low resolution uses a grid of 260 ; 80 cells, and high
resolution uses a grid of 520 ; 160 cells. All solutions are computed with Roe
fluxes and the H-correction.

Fig. 17.—Contours of the density at t ¼ 0:045 (left) and t ¼ 2:5 (right) for the implosion test of Liska&Wendroff. In each case, 31 contours are shown using a stepsize
of 0.025, starting at a minimum value of 0.125 (at t ¼ 0:045) and 0.35 (at t ¼ 2:5). The solution is computed using third-order spatial reconstruction and the HLLC fluxes,
on a grid of 400 ; 400 cells.
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propagates in the opposite direction. Along the bottom and left-
side walls, the initial evolution is nearly identical to the double
Mach reflection test described above. The jets along each wall
produced in this interaction collide in the bottom left corner and
produce vortices which propagate outwards along the diagonal.
In themeantime, a succession of reflected shocks interact with the
vortices and contact discontinuity, driving the Richtmyer-Meshkov
instability, and complex shock reflections and rarefactions (ani-
mations of the evolution, available on the Athena Web page, are
useful for interpreting the evolution). Figure 17 shows contours
of the density at two times (the same two times shown in LW03)
for a solution computed using third-order reconstruction and the
HLLC fluxes. The key result of the test is the production of the
jet along the diagonal. Whether this is the correct dynamic was
left uncertain in the discussion in LW03; some codes produce it
and others do not. However, we have found the jet is reliant on
maintaining symmetry in the problem. In directionally split al-
gorithms, perfect symmetry is lost, and the collision of the jets in
the bottom left corner does not eject vortices along the diagonal.
In dimensionally unsplit algorithms such as the CTU method in
Athena, the jet is clearly formed. We conclude the jet is the cor-
rect result and that it is a sensitive test of symmetry. We consider
the preservation of symmetry a further advantage of the unsplit
integrators used in Athena; however, the primary motivation for
their use is the preservation of the divergence-free constraint in
MHD.
LW03 Rayleigh-Taylor instability test.—Another test intro-

duced by LW03 in their x 4.6 is the nonlinear evolution of a single
mode of the Rayleigh-Taylor instability. Two fluids, with den-
sities two and one, respectively, are initialized at rest in a domain
of size (Lx; Ly)¼ (1/3; 1) with constant vertical gravitational ac-
celeration g ¼ 0:1, and the heavier fluid on top of the light. The
pressure is computed so that the fluids are in hydrostatic equi-
librium, with the sound speed equal to one in the light fluid at the
interface, with � ¼ 1:4. The interface between the two is per-
turbed with a vertical velocity vy ¼ 0:01 sin(6�x). Running this
test requires adding gravitational source terms to the equations
of motion. In Athena, the source terms for a fixed gravitational
potential are added in such a way as to conserve total energy
exactly. This extension to the algorithms, along with the addition
of self-gravity in a way that conserves total momentum exactly,
is described in T. A. Gardiner & J. M. Stone (in preparation).
Without explicit viscosity, or surface tension at the interface,
there is no one correct solution to this problem to which all codes
should converge. Instead, the resulting structure of the interface
between the light and heavy fluids is sensitive to the numerical
diffusion of themethod, and to the numerical perturbations intro-
duced by the grid that seed secondary Kelvin-Helmholtz (KH)
instability. Figure 18 shows the results at time tf ¼ 8:5 computed
with Athena using third-order spatial reconstruction, the HLLC
fluxes, and a grid of 200 ; 400 cells. It can be compared directly
to the results of other codes shown in Figure 4.8 in LW03. The
Athena solution showsmore fine-scale structure thanmany other
methods, but less than the Lagrange-plus-remap PPM codes. This
may indicate greater diffusion of contacts in a direct Eulerian PPM
code like Athena, or it may also indicate the effect of a contact
steepener (which tends to seed more KH instability in multiple
dimensions) in the other codes.

8.4. Two-Dimensional MHD

Circularly polarized Alfvén waves.—Circularly polarizedAlfvén
waves are an exact nonlinear solution to the equations of MHD.
T2000 introduced the propagation of these waves as a sensitive test
of dispersion properties of MHDalgorithms. Although suchwaves

are subject to a parametric instability (Del Zanna et al. 2001), for
the parameters adopted by T2000 no instability should be pre-
sent. A complete description of this test, including the procedure
for initializing the solution at an oblique angle to the mesh, is
presented in GS05. This test has proved extremely useful for
developing Athena. Figure 19 shows profiles of the waves after
propagating five crossing times as a function of resolution, com-
puted using third-order reconstruction, the CS07 limiters, and
the Roe fluxes, for both traveling and standing waves. Dispersion
error is seen to be important only at the lowest resolution, diffu-
sion error generally dominates (this is also true for the linear wave
convergence tests described in xx 8.1 and 8.2). Even with only
eight grid points per wavelength, the wave profile is captured well
with an amplitude at least 0.8 of the original.With 16 ormore grid
points per wavelength, the amplitude is better than 0.95 the ori-
ginal in both cases. The CS07 limiter greatly improves the solu-
tion at low resolution, as it prevents the clipping of extrema in the
wave profile. Figure 20 shows the norm of the L1 error vector as a
function of resolution for traveling waves, after propagating one
wavelength, for both second- and third-order reconstruction. For
comparison, the errors on both a 1D and 2D grid are shown. In all
cases, second-order convergence is evident, with the 2D errors
larger by a factor of about two.
Advection of a field loop.—This test was introduced and dis-

cussed extensively inGS05; it consists of the advection of a circular
field loop by a constant velocity inclined to the grid in a periodic

Fig. 18.—Gray-scale image (left) and contours (right) of the density at t ¼ 8:5
in a single-mode hydrodynamic Rayleigh-Taylor instability in 2D. Only a single
contour is shown at � ¼ 1:5 in order to trace the contact discontinuity between the
heavy and light fluids. Colors in the image correspond to density values of 0.9
(darkergray) to 2.1 (lightergray). The solution is computed using third-order spa-
tial reconstruction and the HLLC fluxes on a grid of 200 ; 400 cells. [See the
electronic edition of the Supplement for a color version of this figure.]
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2D domain. For the CT algorithm, solving field advection prob-
lems is nontrivial. This test demonstrates the importance of con-
structing the line-averaged corner-centered EMFs used by CT
from the area-averaged face-centered electric fields returned by
the Riemann solver using the technique outlined in x 5.3 with the
CTU integrator. Along with the circularly polarized Alfvén wave
test described above, this test has been critical to the development
of the algorithms. Figure 21 shows the magnetic field lines and
contours of the out-of-plane component of the current density
J ¼ : < B after advection of the loop twice around the domain.
The current density is particularly sensitive to diffusion or oscilla-
tions in the field. The figure shows the CTUþ CT algorithm in
Athena preserves the shape of the field loop extremely well. We
have also checked that if this test is performed with a uniform
vz 6¼ 0, the code keeps Bz ¼ 0 to round-off error (provided it was
zero to begin with). As discussed at the beginning of x 6, this

confirms our formulation of CT preserves the appropriate dis-
cretization of the divergence-free constraint.
Orszag-Tang vortex.—A 2DMHD test which has now become

a standard is the evolution of the vortex of Orszag& Tang (1979).
There is some confusion in the literature as to the time at which
comparisons between solutions are made. The results shown here
are computed with constant initial densities and pressure, �0 ¼
25/(36�) andP0 ¼ 5/(12�), in a periodic domain of size (Lx; Ly)¼
(1; 1), with an initial velocity (vx; vy)¼ (�sin(2�y); sin(2�x)),
and a magnetic field computed from the vector potential Az ¼
(B0/4�) cos(4�x)þ (B0/2�) cos(2�y), with B0 ¼ 1/

ffiffiffiffiffiffi
4�

p
. Fig-

ure 22 shows contour plots of the density, pressure, magnetic pres-
sure, and specific kinetic energy density at time tf ¼ 1/2 computed
on a grid of 192 ; 192 cells, which can be compared directly to
the results in, e.g., T2000 at a time of tf ¼ �. Of particular note is
the symmetry in the solutions. Figure 23 shows horizontal slices
of the pressure at y ¼ 0:3125 and y ¼ 0:427 (shown by the hor-
izontal lines in the top right panel of Fig. 22), with the solution
on a 5122 grid shown as a solid line for reference. This test does
not seem to be extremely discriminating for MHD algorithms.
(We consider linear wave convergence [see x 8.6], circularly po-
larized Alfvén waves, and field loop advection to be more quanti-
tative MHD tests.) The most stringent comparison between meth-
ods is provided by the slices shown in Figure 23. Finally, Figure 24
plots contours of the density, magnetic pressure, specific kinetic
energy density, and total pressureP� for an isothermal version of the
Orszag-Tang vortex test. Comparison to results shown previ-
ously by Balsara (1998, see his Fig. 8) appear to show significant
differences.
MHD Rotor.—The test suite of Stone et al. (1992a) contained

tests based on the propagation of nonlinear amplitude shear Alfvén
waves in 1D generated by rotating disks in axisymmetry. Since
analytic solutions are available for this problem, it was possible
to provide quantitative measure of the errors in ZEUS. (We have
confirmed Athena reproduces these tests accurately, with sec-
ond-order convergence on the version of the test that uses con-
tinuous initial conditions.) Balsara & Spicer (1999) introduced a
2D version of this test consisting of a rotating disk located in the
plane of the computation, with an initial magnetic field perpen-
dicular to the rotation axis. Strong rotational discontinuities are
generated in the field due to the shear at the surface of the disk,
and shocks and rarefactions are produced by the radial expansion
of the disk due to unbalanced centrifugal forces. We use the ini-
tial conditions as described by T2000.We present results only for
the problem labeled ‘‘Rotor Test 1,’’ as it involves higher initial
velocities and is therefore more difficult. No smoothing is used at
the surface of the disk. Figure 25 shows contours of the density,

Fig. 19.—Profiles of the transverse component of the magnetic field ( labeled B2) for both traveling (left) and standing (right ) circularly polarized Alfvén waves, at a
time equal to fivewave periods, computed on a grid with 2N ; N cells, whereN ¼ 64 (solid line), 32 (dotted line), 16 (dashed line), 8 (dot-dashed line), and 4 (double-dot-
dashed line). Each solution is computed using third-order spatial reconstruction and the Roe fluxes.

Fig. 20.—Convergence of the norm of the L1 error vector for traveling circu-
larly polarized Alfvén waves, after propagating a distance equal to one wavelength,
using an isothermal equation of state. Points marked by squares denote second-
order spatial reconstruction, triangles denote third-order spatial reconstruction. The
solid lines are solutions computed in 1D, the dotted lines are solutions computed in
2D. The dashed line shows the norm of the L1 error vector for a 2D solution using
second-order spatial reconstruction computed with an adiabatic equation of state.
Also shown is a dashed line with slope �2 for comparison.
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Fig. 21.—Magnetic field lines (left) and contours of the z-component of the current density (right) at t ¼ 0 (top) and at t ¼ 2 after advection of the loop twice around the
grid (bottom). The solution is computed using second order spatial reconstruction with the Roe fluxes on a grid of 256 ; 128 cells.

Fig. 22.—Contours of selected variables at tf ¼ 1/2 in the adiabatic Orszag-Tang vortex test, computed using a grid of 192 ; 192 cells, third-order reconstruction, and
Roe fluxes. Thirty equally spaced contours between theminimumandmaximumare used for each plot. The horizontal lines in the panel showing pressure correspond to the
locations of the slices shown in Fig. 23.



pressure, Mach number, and magnetic pressure at tf ¼ 0:15 on a
grid of 400 ; 400 cells, computed using third-order reconstruction
and the Roe fluxes. Figure 26 plots slices of the y-component of
the magnetic field taken along y ¼ 0, and the x-component of the
magnetic field taken along x ¼ 0. Of note is the near-perfect sym-
metry maintained in the solutions, with no oscillations. In par-
ticular, contours of the Mach number remain concentric circles in
the rarefaction at the center all the way to the origin. Similarly, the
slices show constant field strength within the central rarefaction,
and sharp discontinuities.
Magnetic Rayleigh-Taylor instability.—To show the effect of

magnetic fields on the nonlinear evolution of the 2D RT insta-
bility and to demonstrate the use of AMRwith Athena, Figure 27
shows the results of a single mode RT instability computed with
five levels of refinement. A base grid of 8 ; 16 cells is used, giv-
ing an effective resolution on the finest grid of 256 ; 512. The
parameters for this calculation are not identical to those used for
the LW03 hydrodynamic RT test shown in Figure 16. In particular,
for the MHD test we use a domain of size (Lx; Ly)¼ (0:1; 0:2)
with g ¼ 0:1, an adiabatic index � ¼ 5/3, and densities in the
light and heavy fluids of �l ¼ 1 and �h ¼ 3, respectively. The

Fig. 23.—Horizontal slices of the pressure at tf ¼ 1/2 in the adiabatic Orszag-
Tang vortex test taken at y ¼ 0:3125 (top) and y ¼ 0:427 (bottom). Squares cor-
respond to the solution on a 192 ; 192 grid, while the solid line is for a 5122 grid.

Fig. 24.—Contours of selected variables at tf ¼ 1/2 in the isothermal Orszag-Tang vortex test, computed using a grid of 192 ; 192 cells, third-order reconstruction, and
Roe fluxes. Thirty equally spaced contours between the minimum and maximum are used for each plot.
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magnetic field is initially uniform and horizontal, with initial am-
plitude B0 compared to the critical value Bc ¼ Lg (�h � �l)½ �1/2 ¼
0:14, which suppresses instability of B0/Bc ¼ 0:05. The figure
shows the distribution of a passive contaminant advected with
the flow at a final time tf ¼ 3 in order to show mixing, as well as
the grid levels used in the AMR calculation. For reference, the
identical calculation but without the magnetic field is shown as
well. Note the suppression of secondary KH instabilities at the
interface in the MHD case. An extensive discussion of the non-
linear evolution of the magnetic RT instability is presented in
Stone&Gardiner (2007a, 2007b). The use of anAMRgrid is very
efficient for this problem, since the refinement is predominantly
required near the interface. The extension of Athena to AMR will
be described elsewhere.
Blast wave in a strongly magnetized medium.—In order to dem-

onstrate the propagation of strong MHD shocks in multiple di-
mensions, we show the results of an MHD blast wave problem.
Many authors have performed similar versions of this test, we
adopt the initial conditions used in Londrillo &Del Zanna (2000).
The results are shown at time tf ¼ 0:2 in Figure 28 using a domain

Fig. 25.—Contours of selected variables at tf ¼ 0:15 in the adiabatic rotor test, computed using a grid of 400 ; 400 cells, third-order reconstruction, and Roe fluxes.
Thirty equally spaced contours between theminimumandmaximumare used for each plot. The horizontal and vertical lines in the panel showingmagnetic pressure correspond
to the locations of the slices shown in Fig. 26.

Fig. 26.—Horizontal slice of By taken at y ¼ 0 (top), and vertical slice of Bx

taken at x ¼ 0 (bottom) at tf ¼ 0:15 in the rotor test. The solid line is the same
data as the squares.
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Fig. 27.—Left: Gray-scale image of the concentration of a passively-advected contaminant at late time in the magnetic Rayleigh-Taylor instability. Right: Grid blocks
used to resolve the interface usingAMR. The bottom row shows the same quantities, but for a calculation in which themagnetic field strength is zero (i.e., hydrodynamics).



of size (Lx; Ly)¼ (1; 3/2) with a grid of 200 ; 300 cells, third-
order reconstruction, and the HLLC (hydro) and HLLD (MHD)
fluxes. The top row shows contour plots from a hydrodynamic
version of this test, while the bottom row shows the MHD results
with an initial magnetic field inclined at 45� to the grid B ¼
(B0/

ffiffiffi
2

p
;B0/

ffiffiffi
2

p
), whereB0 ¼ 1. By using periodic boundary con-

ditions, the flow becomes more complex as the outgoing blast
wave reenters the grid on the opposite side, and interacts with the
contact discontinuity that bounds the evacuated bubble at the cen-
ter. Figure 29 shows the result at tf ¼ 1 for both the hydrodynamic
and MHD problem. Note the CTU integrator preserves perfect
symmetry (most noticeable in the fingers at the contact disconti-
nuity generated by the Richtmyer-Meshkov instability in the un-
magnetized problem). Also note the magnetic field suppresses the
R-M instability (Wheatley et al. 2005). Finally, Figure 30 plots
contours of the MHD blast problem using an isothermal equation
of state and bothB0 ¼ 1 (Fig. 30, top) and B0 ¼ 10 (Fig. 30, bot-
tom). The plasma � ¼ 2P/B2 ¼ 2 for B0 ¼ 1, and � ¼ 0:02 for
B0 ¼ 10 in the external medium initially. GS05 shows results for
adiabatic MHD with B0 ¼ 10. This problem demonstrates the
CTUþ CT algorithm is robust for low-� flows.

8.5. Three-Dimensional Hydrodynamics

Noh’s strong shock.—As a fully 3D hydrodynamical test, we
present results from the strong shock test described by Noh (1987).
This is a very difficult test. A uniform (�0 ¼ 1), cold (P ¼ 0) me-
dium converges in a spherically symmetric radial inflow vr ¼ �1
onto the origin. This generates a very strong (formally, M ¼ 1)
spherical shock wave which propagates away from the origin at
constant velocityVs ¼ 1/3. Because of the spherical convergence,
the preshock density increases everywhere in time according to
�(r; t)¼ �0(1þ t/r)2. However, the density immediately upstream
of the shock location is always 16; thus, the postshock gas is uni-
form with � ¼ 64 for � ¼ 5/3. A similar test is often run in planar
(1D) and cylindrical (2D) symmetry, however, when run with a
Cartesian grid the 3D test presented here is probably the most dif-
ficult. In practice, Athena cannot be run with pressure identically
zero; thus, initially we set P0 ¼ 10�6 everywhere. The problem
is run until tf ¼ 2 in a domain of size (Lx; Ly; Lz) ¼ (1; 1; 1)
computed only in the positive octant with 2003 cells. The inner
boundary condition in each dimension is reflecting. At the outer
boundary the density is evolved according to the analytic solution

Fig. 28.—Contours of selected variables at tf ¼ 0:2 in the adiabatic blast wave test, computed using a grid of 200 ; 300 cells, third-order reconstruction, and either
HLLC (hydrodynamics; top) or HLLD (MHDwith initial B0 ¼ 1; bottom) fluxes. Thirty equally spaced contours between the minimum and maximum are used for each
plot.
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for the preshock flow, the radial velocity is held fixed at vr ¼
�1, and the entropy is evolved identically to the density, i.e.,
P(RB; t)¼ P0(1þ t/RB)

2(1þ�), where RB is the spherical radius
of the boundary. Figure 31 shows contours of the density at
t ¼ tf computed using second-order reconstruction, the Roe
flux, and the H-correction (see Appendix C). Note the contours
are smooth and spherical, with virtually no noise in the post-
shock gas. Also shown is a scatter plot of �(r) versus r for every
eighth grid cell in the computation. The solution has the correct
density jump and shock speed. The small scatter behind the shock
demonstrates that with the H-correction, the shock remains sharp,
smooth, and spherically symmetric. Near the origin, the small
dip in the density is a signature of wall heating (Noh 1987).
These plots can be compared to Figure 4.7 in LW03, who ran
the same test but in 2D cylindrical symmetry. Only a few of the
algorithms tested by LW03 were able to run the test at all. The
3D results shown in Figure 31 are similar to the best result in
LW03 (for PPM). Without the H-correction, Athena still runs
this test but the shock develops strong perturbations along the
grid directions, similar to but somewhat stronger than those
evident in the results for the VH-1 code shown in LW03. Finally,
at low resolutions ( less than 503), this test can cause Athena to
crash when the Roe solver is used, even with the H-correction,
unless the CFL number is reduced.

8.6. Three-Dimensional MHD

Linear wave convergence.—We have argued that tests of MHD
codes must be multidimensional, yet the most quantitative tests
generally involve plane-wave (1D) solutions. Sensitive multi-
dimensional tests can be constructed by simply inclining the plane
wave to the grid at an arbitrary angle. Here, we measure the con-
vergence rate of Athena for eachMHDwave family in 3D by ini-

tializing a planewaves solution at an oblique angle to a grid of size
(Lx; Ly; Lz) ¼ (3; 3/2; 3/2), using the same initial conditions as in
the 1D test described in x 8.2 and a grid with resolution of 2N ;
N ;N cells, with N ¼ 4, 8, 16, 32, 64, and 128. The angle of the
wavevector is chosen so that it does not lie along the diagonal of a
grid cell; that is, there are no symmetries in the fluxes in any di-
rection. Details of the initialization of this problem in 3D, which
requires care to prevent grid noise along the wave front, are given
in GS08. Figure 32 shows the norm of the L1 error vector for each
wave family using both second- and third-order reconstruction
computedwith the HLLD solver, as a function of resolution along
Lx. For comparison, the errors for this same problem in 1D are
shown as a dashed line. Again, we see second-order convergence
in all wave families. The amplitude of the errors in the fast wave
are higher than the 1D case by about a factor of 2, but for all other
waves the errors are comparable. The fact that the errors in 3D are
not significantly larger than those in 1D reflects the fidelity of the
multidimensional CTUþ CT algorithm.
Circularly polarized Alfvén waves.—We initialize a 1D plane

wave solution corresponding to the parameter values given by
T2000 on a grid of size (Lx; Ly; Lz) ¼ (3; 3/2; 3/2), with the wave
front oblique to the grid, following the procedure given in GS08.
The technique for initializing the wave solution at an oblique
angle is similar to that used above for linear waves. Figure 33
plots profiles of the traveling wave at different resolutions using
third-order reconstruction, the CS07 limiters, and the HLLD
fluxes. Also shown are the norm of the L1 error vector computed
using both second- and third-order reconstruction. These results
can be compared directly to the 2D results shown in Figure 19.
Once again, the solution in 3D compares extremely favorably
with the 2D solution; for example, the L1 errors are nearly iden-
tical to the 2D errors for an adiabatic equation of state.

Fig. 29.—Contours of the density at tf ¼ 1 in the hydrodynamic (left) and MHD (right) adiabatic blast test. Fifty equally spaced contours between the minimum and
maximum are used for each plot.
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Fig. 30.—Contours of selected variables at tf ¼ 0:2 in the isothermal blast wave test, computed using a grid of 200 ; 300 cells, third-order reconstruction, and HLLD
fluxes. The top row corresponds to an initialB0 ¼ 1, while the bottom row uses an initialB0 ¼ 10. Thirty equally spaced contours between theminimum andmaximum are
used for each plot. Outgoing waves have already crossed and reentered the domain by t ¼ 0:2 in the strong field case, thus the contours in the ambient medium are due to
interaction of these waves rather than oscillations introduced by the algorithm.

Fig. 31.—Left: Contours of the density in the spherical hydrodynamical Noh strong shock test at t ¼ 2. Thirty-one equally spaced contours between � ¼ 4 and 64 are
shown. Right: Scatter plot of the density versus spherical radius at t ¼ 2.



Advection of a field loop.—On a 3D grid, we have found there
are two challenging versions of this test that can be attempted.
The first is the 3D analog of the test described in x 8.4, that is a
cylindrically symmetric field loop with Bz ¼ 0, but with a con-
stant advection velocity along the grid diagonal so that v z 6¼ 0.
As discussed in x 6, the numerical algorithm should maintain
Bz ¼ 0, which can only be achieved if the code maintains the
balance between the two nonzero terms in the z-component of
the induction equation, that is v z(@Bx /@ xþ @By /@ y)¼ 0. In turn,
for constant vz, this requires the code to maintain the divergence-
free constraint properly. Since the 3D CTUþ CT algorithm in
Athena has been designed to reduce exactly to the 2D version for
problems with symmetry in z, we obtain the identical results for
the profile of the field loop in an x-y slice in this test as shown in
Figure 21. Moreover, we confirm that Athena maintains Bz ¼ 0 to
round off. A second sensitive test is to incline the field loop at an
oblique angle to the grid and advect it with a velocity along a per-
pendicular diagonal (see GS08 for details). The resulting current
density after advecting the loop twice around the grid for both
second- and third-order reconstruction is shown in Figure 34
for a grid of size (Lx; Ly; Lz) ¼ (1; 1; 1) with 1283 grid points,
and the HLLD fluxes. In this case, the component of the field
along the axis of the cylinder should remain zero. Although it is
not possible to enforce this constraint to round-off error (as was
the case when the axis of the field loop is parallel to a grid di-
rection), nonetheless we find that this component is zero to trun-
cation error (see GS08).
MHD shocktube inclined to the grid.—To demonstrate the abil-

ity of the 3D algorithm to capture shocks and discontinuities that
propagate at an oblique angle to the mesh, we have repeated the
RJ2a test described in x 8.2 on a 3D grid of size (Lx; Ly; Lz) ¼
(3/2; 1/64; 1/64), with the initial discontinuity oblique to the grid,
using a mesh of 768 ; 8 ; 8 grid points. This gives an effective

resolution along the direction of shock propagationwhich is equiv-
alent to the 1D test. Initializing the discontinuity so as to avoid
introducing waves transverse to the interface requires care; for
more detail see GS08. The results, at a time of tf ¼ 1 for the
HLLD fluxes and second-order reconstruction, are shown in
Figure 35. Note that in 3D, each of the shocks, contact, and ro-
tational discontinuities have been captured; there is excellent
agreement between the profiles shown in Figure 35 and the equiv-
alent 1D profiles shown in Figure 14.
Blast wave in a strongly magnetized medium.—As a final 3D

test, we follow the growth of a strong, spherical blast wave in a
strongly magnetized medium. The initial conditions are identical
to those given in x 8.4, the only difference being that we run the
problem on a 3D grid of size (Lx; Ly; Lz) ¼ (1; 1:5; 1), with 200 ;
300 ; 200 grid points. Figure 36 shows slices of the density and

Fig. 32.—Convergence in the norm of the L1 error vector for fast, Alfvén,
slow, and contact waves after propagating a distance of one wavelength at an
oblique angle across a 3D grid of size 2N ; N ; N . Solutions are computed using
the HLLD fluxes, and either second-order (solid line) or third-order (dashed line)
spatial reconstruction. The dotted line shows the errors for second-order spatial
reconstruction in 1D for reference.

Fig. 33.—Top: Profiles of the transverse component of the magnetic field for
traveling circularly polarized Alfvén waves, at a time equal to five wave periods,
computed on a grid with 2N ; N ; N cells, whereN ¼ 64 (solid line), 32 (dotted
line), 16 (dashed line), and 8 (dot-dashed line). Each solution is computed using
third-order spatial reconstruction and the HLLD fluxes. Bottom: Convergence of
the norm of the L1 error vector for traveling circularly polarized Alfvén waves,
after propagating a distance equal to onewavelength, for second-order (solid line)
and third-order (dashed line) spatial reconstruction.
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magnetic pressure taken at t ¼ 0:2 computed using the HLLD
solver and third-order reconstruction. The primary difference in
the solution compared to 2D is that the size of the bubble grows
more slowly in 3D, due to the increased adiabatic cooling in 3D
diverging flow. The contours are all symmetric and smooth, with
no visible asymmetries introduced by the grid.

9. SUMMARY

We have described Athena, a new code for astrophysicalMHD.
The code implements algorithms based on higher order Godunov
methods, with a finite-volume discretization to evolve volume av-
erages of the mass, momentum, and total energy density, and a

Fig. 34.—Current density in an inclined field loop being advected along the diagonal of a 3D grid at tf ¼ 2 (after twice around the grid). Left: Solution for second-order
reconstruction. Right: Same as left, but for third order. [See the electronic edition of the Supplement for a color version of this figure.]

Fig. 35.—Slice through a 3D grid of selected variables for the RJ2a shocktube initialized with the interface oblique to the grid at t ¼ 0:2. This is a fully 3D version of
the 1D test shown in Fig. 14.
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CT algorithm (finite-area) discretization to evolve area averages
of the face-centered components of the magnetic field. This com-
bination conserves the total mass, momentum, energy, and mag-
netic flux through the grid exactly. Such conservative algorithms
are an essential ingredient of AMR methods.

The mathematical foundation of the 2D and 3D algorithms
in Athena are described more fully in GS05 and GS08. In this
paper, we have focused on the detailed implementation of the
methods into a functioning computer code. Step-by-step descrip-
tions are provided of the multidimensional integrator for MHD
in 2D and 3D (based on the CTU algorithm of Colella1990), the
1D reconstruction algorithms (based on an extension of the
PPM algorithm of CW84 to multidimensional MHD), and a
variety of 1D Riemann solvers used to compute upwind fluxes.
We have emphasized the importance of using dimensionally
unsplit integrators for MHD, the advantages of using the stag-
gered grid formulation of CT (which requires techniques for
constructing edge-averaged, corner-centered EMFs from area-
averaged face-centered electric fields returned by the Riemann
solver), and the need to test MHD codes with multidimensional
problems in order to reveal errors associated with the divergence-
free constraint.

An extensive series of test problems in 1D, 2D, and 3D for
both hydrodynamics and MHD have been presented. These tests,
and others published on the Web, should be useful to others de-
veloping and testing codes for astrophysicalMHD.The tests show
Athena is second-order accurate in space and time for smooth so-
lutions in all MHD wave families, even in multiple dimensions.
We have shown that an advantage of directionally unsplit meth-
ods is that they preserve symmetries inherent in the flow. The
2D CTUþ CT method described here reduces identically to the
1D algorithm for plane-parallel grid-aligned flows. Similarly,
the 3D CTUþ CT method reduces exactly to either the 2D or
1D methods for plane-parallel, grid-aligned flows, according to
the appropriate symmetry. We have exploited such symmetries to
design a sensitive test of the appropriate stencil for maintaining
the divergence-free constraint. A planar field loop, advected in a
fully 3D velocity field, must remain planar. Since the evolution
of the component of the field normal to the plane of the loop is
governed by a term proportional to : = B, the loop will only

remain planar if the divergence-free constraint is satisfied exactly
on the appropriate stencil.

In addition to the CTUþ CT integrator described in this pa-
per, an unsplit integrator based on the method described by Falle
(1991) and similar to theMUSCL-Hancock scheme described by
van Leer (2006) has been implemented in Athena. The details of
this VLþ CT method, including tests in 3D and comparisons to
the CTUþ CT method described here, are given in SG08.

The primary motivation for developing Athena has been the
need to adopt static and adaptive mesh refinement (SMR and
AMR) to resolve flows over a wide range of length scales in var-
ious astrophysical applications of interest in our research groups
(such as magnetized accretion flows and gravitational collapse
and fragmentation in dense phases of the ISM). In x 8.4 we have
shown the results of tests of AMR calculations of the Rayleigh-
Taylor instability with Athena. Both SMR and AMR add con-
siderable complexity to the algorithms, requiring special care to
conserve mass, momentum, energy, and magnetic flux at fine/
coarse grid boundaries. The implementation of SMR and AMR
with the CTUþ CT integrator in Athena will be given in a future
communication.

Other extensions to Athena include adding gravitational source
terms for both a static gravitational potential and self-gravity
(T. A. Gardiner & J. M. Stone, in preparation), the shearing box
(Gardiner & Stone 2005b), anisotropic heat conduction (Parrish
& Stone 2005, 2007), and transfer of ionizing radiation (Krumholz
et al. 2007). Many more are either underway (curvilinear coordi-
nates, relativistic MHD, full transport radiation MHD) or planned
for the future.

Athena has moved beyond the developmental phase and is
now being used for a variety of applications, including studies of
theMRI in the shearing box (Gardiner & Stone 2005b), colliding
winds in close binaries (Lemaster et al. 2007), decay of hydro-
dynamical turbulence in the shearing box (Shen et al. 2006), the
magnetic Rayleigh-Taylor instability (Stone & Gardiner 2007a,
2007b), shock interactions with magnetized clouds (Shin et al.
2008), and the decay of supersonic turbulence in magnetized mo-
lecular clouds (Lemaster & Stone 2008).

The Athena code has been made publicly available and can be
downloaded from theWeb, along with extensive documentation.
Additional test problems beyond those presented here are also
described on theWeb.We are confident that Athena will become
the workhorse for our own applications; it is hoped that the de-
scription of the algorithms provided in this paper, along with
the public version of the code provided on theWeb, will be use-
ful to others for solving many problems in astrophysical fluid
dynamics.

We have benefited from discussions with many people during
the development of Athena; in particular we would like to ac-
knowledge Phil Colella, Charles Gammie, Mark Krumholz,
Nicole Lemaster, Eve Ostriker, and Ian Parrish for their input.
Development of the Athena code was initially supported by the
NSF ITR program. J. S. thanks the Royal Society for financial sup-
port through the Wolfson Research Merit scheme during 2002Y
2003. Additional support was provided by the DOE through
DE-FG52-06NA26217. Simulations were performed on the
Teragrid cluster at NCSA, the IBMBlue Gene at Princeton Uni-
versity and on computational facilities supported by NSF grant
AST 02-16105.

Fig. 36.—Contours of selected variables at tf ¼ 0:2 in a 2D slice in the x-y
plane at z ¼ 0 (through the center of the grid) in the 3D adiabatic blast wave test,
computed using a grid of 200 ; 300 ; 200 cells, third-order reconstruction, and
the HLLD fluxes. Thirty equally spaced contours between the minimum and max-
imum are used for each plot.
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APPENDIX A

EIGENSYSTEMS IN THE PRIMITIVE VARIABLES

This appendix gives explicit forms for the eigenvalues and eigenvectors of the matrix A resulting from linearizing the dynamical
equations as W ;t ¼ A(W )W ; x, where W is a vector composed of the primitive variables in 1D. These eigensystems are needed to
convert between the primitive and the characteristic variables in the reconstruction algorithms described in x 4.2.

A1. ADIABATIC HYDRODYNAMICS

For adiabatic hydrodynamics, W ¼ (�; v x; v y; v z;P), and the matrix A is

A ¼

vx � 0 0 0

0 vx 0 0 1=�

0 0 vx 0 0

0 0 0 vx 0

0 �a2 0 0 vx

2
6666664

3
7777775
; ðA1Þ

where a2 ¼ �P/� (a is the adiabatic sound speed). The five eigenvalues of this matrix in ascending order are

k ¼ vx � a; vx; vx; vx; vx þ að Þ: ðA2Þ

The corresponding right eigenvectors are the columns of the matrix

R ¼

1 1 0 0 1

�a=� 0 0 0 a=�

0 0 1 0 0

0 0 0 1 0

a2 0 0 0 a2

2
6666664

3
7777775
; ðA3Þ

while the left eigenvectors are the rows of the matrix

L ¼

0 ��= 2að Þ 0 0 1= 2a2ð Þ
1 0 0 0 �1=a2

0 0 1 0 0

0 0 0 1 0

0 �= 2að Þ 0 0 1= 2a2ð Þ

2
6666664

3
7777775
: ðA4Þ

A2. ISOTHERMAL HYDRODYNAMICS

For isothermal hydrodynamics, W ¼ (�; vx; vy; vz), and the matrix A is

A ¼

vx � 0 0

C 2=� vx 0 0

0 0 vx 0

0 0 0 vx

2
6664

3
7775; ðA5Þ

where C is the isothermal sound speed. The four eigenvalues of this matrix in ascending order are

k ¼ vx � C; vx; vx; vx þ Cð Þ: ðA6Þ

The corresponding right eigenvectors are the columns of the matrix given in equation (A3), with the second column and fifth row
dropped. The left eigenvectors are the rows of the matrix

L ¼

1=2 ��= 2Cð Þ 0 0

0 0 1 0

0 0 0 1

1=2 �= 2Cð Þ 0 0

2
6664

3
7775: ðA7Þ
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A3. ADIABATIC MAGNETOHYDRODYNAMICS

For adiabatic MHD, W ¼ (�; vx; vy; vz;P; by; bz), where b ¼ B/
ffiffiffiffiffiffi
4�

p
, and the matrix A is

A ¼

vx � 0 0 0 0 0

0 vx 0 0 1=� by=� bz=�

0 0 vx 0 0 �bx=� 0

0 0 0 vx 0 0 �bx=�

0 �a2 0 0 vx 0 0

0 by �bx 0 0 vx 0

0 bz 0 �bx 0 0 vx

2
666666666664

3
777777777775
: ðA8Þ

where a2 ¼ �P/�. The seven eigenvalues of this matrix in ascending order are

k ¼ vx � Cf ; vx � CAx; vx � Cs; vx; vx þ Cs; vx þ CAx; vx þ Cf

� �
; ðA9Þ

where the fast and slow magnetosonic wave speeds are given by

C 2
f ; s ¼

1

2
a2 þ C 2

A

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ C 2

A

� �2�4a2C 2
Ax

q� �
ðA10Þ

(with Cf Cs½ � given by the + [�] sign). The Alfvén speeds are given by

C 2
A ¼ b2x þ b2y þ b2z

� �
=�; C 2

Ax ¼ b2x=�: ðA11Þ

The corresponding right eigenvectors are the columns of the matrix

R ¼

��f 0 ��s 1 ��s 0 ��f

�CF 0 �Css 0 Css 0 CF

Qs�y ��z �Qf �y 0 Qf �y �z �Qs�y

Qs�z �y �Qf �z 0 Qf �z ��y �Qs�z

�a2�f 0 �a2�s 0 �a2�s 0 �a2�f

As�y ��zS
ffiffiffi
�

p �Af �y 0 �Af �y ��zS
ffiffiffi
�

p
As�y

As�z �yS
ffiffiffi
�

p �Af �z 0 �Af �z �yS
ffiffiffi
�

p
As�z

2
666666666664

3
777777777775
; ðA12Þ

where S ¼ sgn(bx), and

CF ¼ Cf �f ; Css ¼ Cs�s; ðA13Þ

Qf ¼ Cf �f S; Qs ¼ Cs�sS; ðA14Þ

Af ¼ a�f

ffiffiffi
�

p
; As ¼ a�s

ffiffiffi
�

p
; ðA15Þ

�2
f ¼

a2� C 2
s

C 2
f � C 2

s

; �2
s ¼

C 2
f � a2

C 2
f � C 2

s

; ðA16Þ

�y ¼
byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2y þ b2z

q ; �z ¼
bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2y þ b2z

q : ðA17Þ

In the degenerate case in whichCA ¼ CAx ¼ a, so Cf ¼ Cs, then equation (A16) becomes �f ¼ 1 and �s ¼ 0. The left eigenvectors are
the rows of the matrix

L ¼

0 �Nf CF Nf Qs�y Nf Qs�z Nf �f =� Nf As�y=� Nf As�z=�

0 0 ��z=2 �y=2 0 ��zS= 2
ffiffiffi
�

p� �
�yS= 2

ffiffiffi
�

p� �
0 �NsCss �NsQf �y �NsQf �z Ns�s=� �NsAf �y=� �NsAf �z=�

1 0 0 0 �1=a2 0 0

0 NsCss NsQf �y NsQf �z Ns�s=� �NsAf �y=� �NsAf �z=�

0 0 �z=2 ��y=2 0 ��zS= 2
ffiffiffi
�

p� �
�yS= 2

ffiffiffi
�

p� �
0 Nf CF �Nf Qs�y �Nf Qs�z Nf �f =� Nf As�y=� Nf As�z=�

2
666666666664

3
777777777775
; ðA18Þ
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where

Nf ¼ Ns ¼
1

2a2
ðA19Þ

are normalization factors for the eigenvectors corresponding to the fast and slow magnetosonic waves, respectively.

A4. ISOTHERMAL MAGNETOHYDRODYNAMICS

For isothermal MHD, W ¼ (�; vx; vy; vz; by; bz), where b ¼ B/
ffiffiffiffiffiffi
4�

p
, and the matrix A is

A ¼

vx � 0 0 0 0

C 2=� vx 0 0 by=� bz=�

0 0 vx 0 �bx=� 0

0 0 0 vx 0 �bx=�

0 by �bx 0 vx 0

0 bz 0 �bx 0 vx

2
666666664

3
777777775
: ðA20Þ

The six eigenvalues of this matrix in ascending order are

k ¼ vx� Cf ; vx� CAx; vx� Cs; vxþ Cs; vxþ CAx; vxþ Cf

� �
; ðA21Þ

where the fast and slowmagnetosonic wave speeds are given by equation (A10) (with a replaced by the isothermal sound speedC here
and throughout), and the Alfvén speeds are given by equation (A11). The corresponding right eigenvectors are the columns of the
matrix given in equation (A10), with the fifth row and fourth column dropped. The left eigenvectors are the rows of the matrix

L ¼

Nf �f C
2=� �Nf CF Nf Qs�y Nf Qs�z Nf As�y=� Nf As�z=�

0 0 ��z=2 �y=2 ��z S= 2
ffiffiffi
�

p� �
�y S= 2

ffiffiffi
�

p� �
Ns�sC

2=� �NsCss �NsQf �y �NsQf �z �NsAf �y=� �NsAf �z=�

Ns�sC
2=� NsCss NsQf �y NsQf �z �NsAf �y=� �NsAf �z=�

0 0 �z=2 ��y=2 ��z S= 2
ffiffiffi
�

p� �
�y S= 2

ffiffiffi
�

p� �
Nf �f C

2=� Nf CF �Nf Qs�y �Nf Qs�z Nf As�y=� Nf As�z=�

2
666666664

3
777777775
; ðA22Þ

where

Nf ¼ Ns ¼
1

2C 2
ðA23Þ

are normalization factors for the eigenvectors corresponding to the fast and slow magnetosonic waves, respectively.

APPENDIX B

EIGENSYSTEMS IN THE CONSERVED VARIABLES

This appendix gives explicit forms for the eigenvalues and eigenvectors of the matrix A resulting from linearizing the dynamical
equations as U;t ¼ AU; x, where U is a vector composed of the conserved variables. These eigensystems are needed to construct the
fluxes of the conserved quantities using Roe’s method (see x 4.3.2).

B1. ADIABATIC HYDRODYNAMICS

For adiabatic hydrodynamics, U ¼ (�; �vx; �vy; �vz;E ), and the matrix A is

A ¼

0 1 0 0 0

�v2x þ � 0v2=2 � � � 3ð Þvx �� 0vy �� 0vz � 0

�vxvy vy vx 0 0

�vxvz vz 0 vx 0

�vxH þ � 0vxv
2=2 �� 0v2x þ H �� 0vxvy �� 0vxvz �vx

2
6666664

3
7777775
; ðB1Þ
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where the enthalpy H ¼ (E þ P)/�, v 2 ¼ v = v, and � 0 ¼ (� � 1). The five eigenvalues of this matrix in ascending order are

k ¼ vx � a; vx; vx; vx; vx þ að Þ; ðB2Þ

where a2 ¼ (� � 1)(H � v2/2)¼ �P/� (a is the adiabatic sound speed). The corresponding right eigenvectors are the columns of the
matrix

R ¼

1 0 0 1 1

vx � a 0 0 vx vx þ a

vy 1 0 vy vy

vz 0 1 vz vz

H � vx a vy vz v 2=2 H þ vx a

2
6666664

3
7777775
: ðB3Þ

The left eigenvectors are the rows of the matrix

L ¼

Na � 0v 2=2þ vxað Þ �Na � 0vx þ að Þ �Na�
0vy �Na�

0vz Na�
0

�vy 0 1 0 0

�vz 0 0 1 0

1� Na�
0v2 � 0vx=a

2 � 0vy=a
2 � 0vz=a

2 �� 0=a2

Na � 0v 2=2� vxað Þ �Na � 0vx � að Þ �Na�
0vy �Na�

0vz Na�
0

2
6666664

3
7777775
; ðB4Þ

where Na ¼ 1/(2a2). These are identical to those given by Roe (1981), except the second and third eigenvectors (corresponding to the
transport of shear motion) have been rescaled to avoid singularities.

B2. ISOTHERMAL HYDRODYNAMICS

For isothermal hydrodynamics, U ¼ (�; �vx; �vy; �vz), and the matrix A is

A ¼

0 1 0 0

�v2x þ C 2 2vx 0 0

�vxvy vy vx 0

�vxvz vz 0 vx

2
6664

3
7775; ðB5Þ

where C is the isothermal sound speed. The four eigenvalues of this matrix in ascending order are

k ¼ vx � C; vx; vx; vx þ Cð Þ: ðB6Þ

The corresponding right eigenvectors are the columns of the matrix given in equation (B3), with the fifth row and fourth column
dropped and a replaced by C throughout. The left eigenvectors are the rows of the matrix

L ¼

1þ vx=Cð Þ=2 �1= 2Cð Þ 0 0

�vy 0 1 0

�vz 0 0 1

1� vx=Cð Þ=2 1= 2Cð Þ 0 0

2
6664

3
7775: ðB7Þ

B3. ADIABATIC MAGNETOHYDRODYNAMICS

For adiabatic MHD, U ¼ (�; �vx; �vy; �vz;E; by; bz), where b ¼ B/
ffiffiffiffiffiffi
4�

p
, and the matrix A is

A ¼

0 1 0 0 0 0 0

�v 2x þ � 0v2=2� X 0 � � � 3ð Þvx �� 0vy �� 0vz � 0 �byY
0 �bzY

0

�vxvy vy vx 0 0 �bx 0

�vxvz vz 0 vx 0 0 �bx

A51 A52 A53 A54 �vx A56 A57

bxvy � byvx
� �

=� by=� �bx=� 0 0 vx 0

bxvz � bzvxð Þ=� bz=� 0 �bx=� 0 0 vx

2
666666666664

3
777777777775
; ðB8Þ
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where v 2 ¼ v = v, and

A51 ¼ �vxH þ � 0vxv
2=2þ bx bxvx þ byvy þ bzvz

� �
=�� vx X

0; ðB9Þ

A52 ¼ �� 0v2x þ H � b2x=�; ðB10Þ

A53 ¼ �� 0vxvy � bxby=�; ðB11Þ

A54 ¼ �� 0vxvz � bxbz=�; ðB12Þ

A56 ¼ � bxvy þ byvxY
0� �
; ðB13Þ

A57 ¼ � bxvz þ bzvxY
0ð Þ; ðB14Þ

X ¼ by;L � by;R
� �2 þ bz;L � bz;R

� �2h i
= 2

ffiffiffiffiffi
�L

p þ ffiffiffiffiffi
�R

p� �� 	
; ðB15Þ

Y ¼ �L þ �R
2�

: ðB16Þ

In these equations � 0 ¼ (� � 1), X 0 ¼ (� � 2)X , Y 0 ¼ (� � 2)Y , and H ¼ (E þ P þ b2/2)/�. The factors X and Y are introduced by
the averaging scheme defined by equation (56); thus, the matrixA and its eigenvectors depend explicitly on our choice of the Roe av-
eraging scheme. The seven eigenvalues of this matrix in ascending order are

k ¼ vx � Cf ; vx � CAx; vx � Cs; vxvx þ Cs; vx þ CAx; vx þ Cf

� �
; ðB17Þ

where the fast and slow magnetosonic wave speeds are given by

C 2
f ; s ¼

1

2
ã2 þ C̃2

A

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ã2 þ C̃ 2

A

� �2�4ã2C 2
Ax

q� �
ðB18Þ

(with Cf Cs½ � given by the + [�] sign), and

ã2 ¼ � 0 H � v2=2� b2=�
� �

� X 0; ðB19Þ

C̃ 2
A ¼ C 2

Ax þ b�2? =�; C 2
Ax ¼ b2

x =�; b�2? ¼ � 0 � Y 0ð Þ b2
y þ b2

z

� �
: ðB20Þ

The corresponding right eigenvectors are the columns of the matrix

R ¼

�f 0 �s 1 �s 0 �f

Vxf � CF 0 Vxs � Css vx Vxs þ Css 0 Vxf þ CF

Vyf þ Qs�
�
y ��z Vys � Qf �

�
y vy Vys þ Qf �

�
y �z Vyf � Qs�

�
y

Vzf þ Qs�
�
z �y Vzs � Qf �

�
z vz Vzs þ Qf �

�
z ��y Vzf � Qs�

�
z

R51 R52 R53 R54 R55 R56 R57

As�
�
y=� ��z S=

ffiffiffi
�

p �Af �
�
y=� 0 �Af �

�
y=� ��z S=

ffiffiffi
�

p
As�

�
y=�

As�
�
z =� �y S=

ffiffiffi
�

p �Af �
�
z =� 0 �Af �

�
z =� �y S=

ffiffiffi
�

p
As�

�
z =�

2
666666666664

3
777777777775
; ðB21Þ

where the CF;ss;Qf ;s;Af ;s; �f ;s; and �y; z are given by equations (A13)Y(A17) (with a replaced by ã), Vif ;s ¼ vi�f ;s(i ¼ x; y; z), and

R51 ¼ �f H 0 � vxCf

� �
þ Qs vy�

�
y þ vz�

�
z

� �
þ Asb

�
?�

�2
? =�; ðB22Þ

R52 ¼ � vy�z � vz�y

� �
¼ �R56; ðB23Þ

R53 ¼ �s H
0 � vxCsð Þ � Qf vy�

�
y þ vz�

�
z

� �
� Af b

�
?�

�2
? =�; ðB24Þ

R54 ¼ v2=2þ X 0=� 0 ðB25Þ

R55 ¼ �s H
0 þ vxCsð Þþ Qf vy�

�
y þ vz�

�
z

� �
� Af b

�
?�

�2
? =�; ðB26Þ

R57 ¼ �f H 0 þ vxCf

� �
� Qs vy�

�
y þ vz�

�
z

� �
þ Asb

�
?�

�2
? =�; ðB27Þ
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where H 0 ¼ H � b2/�. In these equations

��
y ¼ by= b�?

�� ��; ��
z ¼ bz= b�?

�� ��; ��2
? ¼ ��2

y þ ��2
z : ðB28Þ

The left eigenvectors are the rows of the matrix

L ¼

L11 �V̄xf � ĈF �V̄yf þ Q̂sQ
�
y �V̄zf þ Q̂sQ

�
z �̄f ÂsQ

�
y � �̄f by ÂsQ

�
z � �̄f bz

L21 0 ��z=2 �y=2 0 ��z S
ffiffiffi
�

p
=2 �y S

ffiffiffi
�

p
=2

L31 �V̄xs � Ĉss �V̄ys � Q̂f Q
�
y �V̄zs � Q̂f Q

�
z �̄s �Âf Q

�
y � �̄sby �Âf Q

�
z � �̄sbz

L41 2v̄x 2v̄y 2v̄z �� 0=a2 2b̄y 2b̄z

L51 �V̄xs þ Ĉss �V̄ys þ Q̂f Q
�
y �V̄zs þ Q̂f Q

�
z �̄s �Âf Q

�
y � �̄sby �Âf Q

�
z � �̄sbz

L61 0 �z=2 ��y=2 0 ��z S
ffiffiffi
�

p
=2 �y S

ffiffiffi
�

p
=2

L71 �V̄xf þ ĈF �V̄yf � Q̂sQ
�
y �V̄zf � Q̂sQ

�
z �̄f ÂsQ

�
y � �̄f by ÂsQ

�
z � �̄f bz

2
6666666666664

3
7777777777775
; ðB29Þ

where a symbol over the quantity q denotes normalization via q̄ ¼ � 0q/(2a2) or q̂ ¼ q/(2a2). In addition,

Q�
y ¼ ��

y=�
�2
? ; Q�

z ¼ ��
z =�

�2
? ; ðB30Þ

and

L11 ¼ �̄f v 2� H 0� �
þ ĈF Cf þ vx

� �
� Q̂s vyQ

�
y þ vzQ

�
z

� �
� Âs b?j j=�; ðB31Þ

L21 ¼ vy�z � vz�y

� �
=2 ¼ �L61; ðB32Þ

L31 ¼ �̄s v2 � H 0� �
þ Ĉss Cs þ vxð Þþ Q̂f vyQ

�
y þ vzQ

�
z

� �
þ Âf b?j j=�; ðB33Þ

L41 ¼ 1� v̄2 þ 2 X̂ 0; ðB34Þ

L51 ¼ �̄s v2 � H 0� �
þ Ĉss Cs � vxð Þ� Q̂f vyQ

�
y þ vzQ

�
z

� �
þ Âf b?j j=�; ðB35Þ

L71 ¼ �̄f v2 � H 0� �
þ ĈF Cf � vx

� �
þ Q̂s vyQ

�
y þ vzQ

�
z

� �
� Âs b?j j=�: ðB36Þ

B4. ISOTHERMAL MAGNETOHYDRODYNAMICS

For isothermal MHD, U ¼ (�; �vx; �vy; �vz; by; bz), where b ¼ B/
ffiffiffiffiffiffi
4�

p
, and the matrix A is

A ¼

0 1 0 0 0 0

�v2x þ C 2 þ X 2vx 0 0 byY bzY

�vxvy vy vx 0 �bx 0

�vxvz vz 0 vx 0 �bx

bxvy � byvx
� �

=� by=� �bx=� 0 vx 0

bxvz � bzvxð Þ=� bz=� 0 �bx=� 0 vx

2
666666664

3
777777775
; ðB37Þ

where C is the isothermal sound speed, and X and Y are given by equations (B15) and (B16). The six eigenvalues of this matrix in
ascending order are

k ¼ vx � Cf ; vx � CAx; vx � Cs; vx þ Cs; vx þ CAx; vx þ Cf

� �
; ðB38Þ

where the fast and slow magnetosonic wave speeds are given by

C 2
f ; s ¼

1

2
C̃ 2 þ C̃ 2

A

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̃ 2 þ C̃ 2

A

� �2�4C̃ 2C 2
Ax

q� �
ðB39Þ

(with Cf Cs½ � given by the + [�] sign), where C̃ 2 ¼ C 2 þ X , and the Alfvén speeds are

C̃ 2
A ¼ C 2

Ax þ b�2? =�; C 2
Ax ¼ b2x=�; b�2? ¼ Y b2y þ b2z

� �
: ðB40Þ

ATHENA: NEW ASTROPHYSICAL MHD CODE 175No. 1, 2008



The corresponding right eigenvectors are the columns of thematrix given by equation (B21), with the fifth row and fourth column dropped
and a replaced by C̃ in the definitions given in equations (A15) and (A16). The left eigenvectors are the rows of the matrix

L ¼

L11 �ĈF Q̂sQ
�
y Q̂sQ

�
z ÂsQ

�
y ÂsQ

�
z

vy�z � vz�y

� �
=2 0 ��z=2 �y=2 ��z S

ffiffiffi
�

p
=2 �y S

ffiffiffi
�

p
=2

L31 �C̄ss �Q̄f Q
�
y �Q̄f Q

�
z �Āf Q

�
y �Āf Q

�
z

L41 C̄ss Q̄f Q
�
y Q̄f Q

�
z �Āf Q

�
y �Āf Q

�
z

� vy�z � vz�y

� �
=2 0 �z=2 ��y=2 ��z S

ffiffiffi
�

p
=2 �y S

ffiffiffi
�

p
=2

L61 ĈF �Q̂sQ
�
y �Q̂sQ

�
z ÂsQ

�
y ÂsQ

�
z

2
66666666664

3
77777777775
; ðB41Þ

where CF; ss;Qf ; s, and Af ; s are given by equations (A13)Y(A15) (with a replaced by C ), �y; z are given by equation (A17), Q�
y; z are

given by equation (B30), and

L11 ¼ ĈF Cf þ vx
� �

� Q̂s vyQ
�
y þ vzQ

�
z

� �
� Âs b

�
?

�� ��=�; ðB42Þ

L31 ¼ C̄ss Cs þ vxð Þþ Q̄f vyQ
�
y þ vzQ

�
z

� �
þ Āf b

�
?

�� ��=�; ðB43Þ

L41 ¼ C̄ss Cs � vxð Þ� Q̄f vyQ
�
y þ vzQ

�
z

� �
þ Āf b

�
?

�� ��=�; ðB44Þ

L61 ¼ ĈF Cf � vx
� �

þ Q̂s vyQ
�
y þ vzQ

�
z

� �
� Âs b

�
?

�� ��=�: ðB45Þ

In these equations, a symbol over the quantity q denotes normalization via q̄ ¼ q/(C 2½1þ �2
f �) and q̂ ¼ q/(C 2 1þ �2

s

� 	
).

APPENDIX C

THE H-CORRECTION: FIXING THE CARBUNCLE PROBLEM

For strong, planar shocks in multiple dimensions propagating along a grid direction, higher order Godunov methods can be subject to a
numerical instability (Quirk 1994) that grows into large amplitude perturbations of the shock front at the grid scale. This ‘‘carbuncle’’
instability can easily be demonstratedwith a simple 2D test; a uniform highMach number flow in the +x-direction is initialized everywhere
in the domain, with inflow boundary conditions on the right boundary, and reflecting everywhere else. If zone-to-zone perturbations in the
density with small amplitude (��/� ¼ 10�4) are added, the reflected shock will develop the carbuncle instability as it propagates to the left
across the grid. Radiative cooling in the postshock gas can amplify the effect (Sutherland et al. 2003).

The source of the instability is the use of 1D Riemann solvers to compute fluxes in a multidimensional flow.When a planar shock is
grid aligned, there is too little dissipation added to the fluxes in directions perpendicular to the shock front. Thus, small-amplitude
perturbations in the transverse direction grow, rather than being damped. The solution is to identify grid-aligned shocks and add extra
dissipation to the transverse fluxes (e.g., Sutherland et al. 2003). In Athena, we use one form of theH-correction technique described
in Sanders et al. (1998) to identify shocks and to add the appropriate dissipation.

TheH-correction ismost easily describedwhen used in combinationwith the Roe fluxes. Consider the calculation of the flux at the inter-
face located at (i� 1/2; j) in 2D.When theH-correction is used the absolute value of the eigenvalues |k�| in the Roe flux formula (eq. [66])
are replaced with k̄�

�� ��, where for each component �

k̄�
�� ��¼ max k�j j; 	̄i�1=2; j

� �
: ðC1Þ

Note the max is taken over each |k�| independently in a pairwise fashion with 	̄i�1/2; j, rather than over all �-eigenvalues at once. Here,
	̄i�1/2; j comes from a 2D average using a five-point stencil in the shape of the letter H, that is

	̄i�1=2; j ¼ max 	i�1; jþ1=2; 	i�1; j�1=2; 	i�1=2; j; 	i; jþ1=2; 	i; j�1=2

� �
; ðC2Þ

where 	i�1/2; j ¼ 1
2
(ui; j þ Cf ;i; j)� (ui�1; j � Cf ;i�1; j)
�� ��, ui; j is the component of the velocity normal to the interface, and Cf ;i; j is the fast

magnetosonic speed (for MHD) in the direction normal to the interface. This correction is only added to the final multidimensional
fluxes (computed in step 6 in 2D and step 7 in 3D). It only becomes important in shocks, and for grid-aligned shocks it results in the
dissipation in the transverse directions being comparable to that added in the direction of shock propagation. In 3D the H-correction
generalizes to a nine-point average (oneH in each orthogonal plane). We find the HLL-type fluxes are less susceptible to the carbuncle
instability, but are still affected by it in some circumstances. The H-correction can be added to HLL-type solvers by making the
appropriate modification to the wavespeeds bþ and b� defined in equations (53) and (54).

Use of the H-correction is only required for flows with strong, grid-aligned shocks (for most applications with Athena it is not
needed). The results of the Noh strong shock test described in x 8.5 show the H-correction is extremely effective at eliminating the
carbuncle instability. In fact a variety of forms for the correction were proposed by Sanders et al. (1998; see their eq. [9]). Tests using
planar shocks in 2D subject to the carbuncle instability showed little difference between the formulations suggested by Sanders et al.,
thus we have chosen to adopt only the version described above.
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