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ABSTRACT

Recent observations with the Hinode Solar Optical Telescope display an active region prominence whose fine
threads oscillate in the vertical direction as they move along a path parallel to the photosphere. A seismological
analysis of this event is carried out by taking advantage of the small radius of these structures compared to the
total length of magnetic field lines, i.e., by using the thin-tube approximation. This analysis reveals that the
oscillatory period is only slightly modified by the existence of the flow and that the difference between the period
of a flowing thread and a static one is below the error bars of these observations. Moreover, although it is not
possible to obtain values of the physical parameters, a lower bound for the Alfvén speed (ranging between 120
and 350 km s ) is obtained for each of the threads. Such Alfvén speeds agree with the intense magnetic fields�1

and large densities usually found in active region prominences.

Subject headings: MHD — Sun: oscillations — Sun: prominences — waves

1. INTRODUCTION

Solar prominences are cold ( K) plasma structures4T ∼ 10
embedded in the much hotter solar corona. The prominence
material is much denser than its surroundings and, since it stays
suspended in the corona longer than the free-fall time, some
force must counteract the downward force of gravity. Such an
action is thought to be of magnetic origin and one of the pre-
vailing ideas is that the prominence plasma lies on a dip of the
magnetic field lines and that the field-line curvature provides
the required upward force (e.g., Anzer & Heinzel 2007). A
common feature of many prominences is that when observed
with subarcsecond resolution a complicated internal structure
manifests: prominences are composed of many thin, parallel
threads embedded in material which does not emit or absorb
in prominence spectral lines. The thread plasma often flows
along the magnetic field at speeds comparable to or larger than
the local sound speed (Lin et al. 2005).

Prominence temperatures can usually be well determined by
spectroscopic means, but other parameters are not so well-
known or change widely between different prominences. Tand-
berg-Hanssen (1995) and Patsourakos & Vial (2002) give a
compilation of various density determinations in prominences
and show that this parameter varies by at least 2 orders of
magnitude (namely from to cm ). Magnetic fields9 11 �310 10
show the same dispersion of values and range from a few G
to 20–30 G in quiescent prominences (e.g., Bommier et al.
1994; Merenda et al. 2006; Gunár et al. 2007) and even higher
values in active region prominences.

Given the difficulties in determining prominence parameters,
prominence seismology has been put forward as an alternative
method to probe the nature of these structures (see Oliver &
Ballester 2002; Banerjee et al. 2007 for some reviews of this
topic). The present work describes a seismological application
to data obtained with the Hinode Solar Optical Telescope
(SOT).
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2. OBSERVATIONS

The Hinode SOT observations analyzed in this work have
been described in detail by Okamoto et al. (2007). The data
show an active region limb prominence composed of a myriad
of thin horizontal threads that flow parallel to the photosphere.
Some of these threads display vertical oscillations as they flow
and these oscillations are synchronous, i.e., each thread moves
entirely with a constant phase. The main features of the moving
threads and their oscillations are given in Table 1 of Okamoto
et al. (2007) and summarized in our Table 1, so we only remark
that these are thin structures whose width and length range
from 360 to 660 km and from 1700 to 16,000 km, respectively.
The period and the velocity amplitude of the vertical oscilla-
tions are in the range 135–250 s and 8–22 km s , while the�1

horizontal flow velocity varies between 15 and 46 km s . A�1

prominence thread is a cold plasma condensation that occupies
a segment of a much longer magnetic tube. In the present case
it is not easy to directly measure the length of such magnetic
tubes, although Okamoto et al. (2007) estimate that the wave-
length of the oscillations is at least 250,000 km and so the
minimum length of the magnetic tubes is 125,000 km. Another
estimation of this quantity can be obtained as follows: the
oscillating threads lie parallel to the photosphere across the
field of view of the SOT (which is 80,000 km wide), so that
the full length of magnetic field lines is at least 80,000 km plus
twice the vertical distance between the threads and the photo-
sphere, which from Table 1 is at least 12,400 km. All this amounts
to a minimum magnetic tube length of 100,000 km.

3. THEORETICAL ANALYSIS OF THREAD OSCILLATIONS

Since every thread displays a distinct period of oscillation
it is reasonable to assume that its dynamics can be studied by
isolating each of these structures from the others. Moreover,
curvature and the nonlinear terms in the MHD equations are
neglected and the low-b limit is used. Thus, it will suffice to
consider the transverse vibrations of a straight magnetic tube
embedded in the corona and with a flowing segment consisting
of dense, prominence plasma.

We then adopt an equilibrium model (Fig. 1) consisting of
a cylinder of length embedded in a uniform corona with2L
density . The plasma in the cylinder flows with speed andr vc 0

consists of a dense, middle section representing the observable
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TABLE 1
Summary of Geometric and Wave Properties of Vertically

Oscillating Flowing Threads

Thread
2W

(km)
v0

(km s�1)
P
(s)

V
(km s�1)

H
(km)

1 . . . . . . 3600 39 174 � 25 16 18,300
2 . . . . . . 16000 15 240 � 30 15 12,400
3 . . . . . . 6700 39 230 � 87 12 14,700
4 . . . . . . 2200 46 180 � 137 8 19,000
5 . . . . . . 3500 45 135 � 21 9 14,300
6 . . . . . . 1700 25 250 � 17 22 17,200

Notes.—Summary of geometric and wave properties of vertically
oscillating flowing threads analyzed by Okamoto et al. (2007).

is the thread length, its horizontal flow velocity, P the oscil-2W v0

latory period, V the oscillatory velocity amplitude, and H the height
above the photosphere.

Fig. 1.—Sketch of the magnetic and plasma configuration used to represent
a flowing thread (shaded volume) in a thin magnetic tube. The two parallel
planes at both ends of the cylinder represent the photosphere.

thread in the Hinode SOT data, and an evacuated part of coronal
material. These two regions have uniform densities and .r rp e

The plasma flow inside the magnetic tube results in the ad-
vection of the density structure with speed . We assume thatv0

at the thread occupies the center of the magnetic tube,t p 0
so the density along the tube can be expressed as

r if Fz � v tF ≤ W,p 0r(z, t) p (1){r if Fz � v tF 1 W,e 0

where is the length of the thread and the z-axis points along2W
the tube, with the position of its middle point andz p 0

its end points. The magnetic field B0 is the same insidez p �L
and outside the cylinder and parallel to its axis.

The dynamics of the threads is studied taking into account
that the ratio of the thread radius to the total length of field
lines is a very small quantity, below for all threads, so�210
the thin-tube approximation can be considered. A simple way
to derive the equation governing the transverse oscillations is
to follow the procedure of Dymova & Ruderman (2005) who
studied the normal modes of a structured magnetic cylinder,
such as the present one, for . It is only necessary tov p 00

include the two ingredients that are absent in that study: the
flow inside the magnetic tube (which leads to the substitution
of by inside the cylinder)�/�t �/�t � v · � { �/�t � v �/�z0 0

and the fully time-dependent situation [which prevents us from
considering the time dependence ]. It is worth men-exp (iqt)
tioning that the terms coming from the equilibrium flow can
be ignored because, as noted by Dymova & Ruderman (2005),
inside the cylinder the terms with derivatives along the tube,

, are much smaller than those with radial or azimuthal�/�z
derivatives. We then arrive at the remarkable result that the
flow does not appear explicitly in the equations although it is
present through the density; see equation (1). Finally, a single
differential equation that governs the transverse vibrations of
the cylinder in the thin-tube limit is obtained,

2 2� u � u2� c (z, t) p 0, (2)k2 2�t �z

where is the transverse velocity component at the tubeu(z, t)
boundary, or in other words, is the velocity componentu(z, t)
responsible for the observed lateral displacement of the threads.
In this formula, which is a generalization of equation (21) of
Dymova & Ruderman (2005), is analogous to the kink speedck

of a uniform magnetic tube and is given by 2c (z, t) pk

, where must be substituted from22B /m[r(z, t) � r ] r(z, t)0 e

equation (1).

3.1. Oscillations of Steady Threads

At first let us neglect the observed flows. The normal modes
of a nonflowing prominence thread in the linear, low-b limit
have been studied by Dı́az et al. (2002) and Dymova & Rud-
erman (2005). Such structure supports Alfvén and fast waves.
The first ones cause azimuthal (i.e., torsional) motions and so
do not disturb the cylinder axis. Therefore, Alfvén modes are
not the origin of the detected oscillations. Regarding fast waves,
the only solution that gives rise to a displacement of the cylinder
axis is the kink mode; hence it provides the most natural in-
terpretation for the observed oscillations.

Of the two studies just mentioned, that of Dymova & Rud-
erman (2005) provides us with the simplest dispersion relation
because of the thin-tube approximation. The frequency of the
kink mode is given by the smallest positive root of their equa-
tion (27), in which , , , ande p r /r c p r /r l p W/L Q pe c p c

, with q the frequency and the coronal Alfvén speed.qL/v vAc Ac

The Alfvén speed in the thread and the evacuated parts of the
tube are and , where 2�1/2 �1/2v p e v v p c v v pAe Ac Ap Ac A

has been used. According to Dymova & Ruderman2B /(mr )0 0

(2005) the kink mode frequency is practically constant for
(see their Fig. 4). This result thus implies that, if0.6 ≤ e ≤ 2

the densities in the corona and in the evacuated part of the loop
are similar, then can be taken without loss of generality.e p 1
With this approximation equation (27) of Dymova & Ruderman
(2005) reduces to

2 1 � c� �tan [Q(1 � l)] � cot Ql p 0. (3)( )
1 � c 2

The observations of Okamoto et al. (2007) provide us with
two useful quantities: the oscillatory period (from which q is
computed) and the thread length (equal to in our model).2W
On the other hand, equation (3) results in a single value of Q
once c and l are fixed and so it seems that this seismological
problem has a unique solution. One must bear in mind, how-
ever, that the dimensionless variables c and l actually hide five
dimensional variables ( , and ) and thus there arer , r , L, W vc p Ac

infinite solutions. Still, some information can be extracted if
we proceed as follows: let us start by selecting a thread from
Table 1 and let us fix a total length of the magnetic tube, for
which we have estimated a minimum value of 100,000 km, or

km. Thus, L and W are known and so l can beL ≥ 50,000
determined. Next, let us fix the density ratio, , andc p r /rp c

let us calculate the smallest positive root, Q, of equation (3).
Now the definition of Q can be used to determine the coronal
Alfvén speed, , where P is the period,v p qL/Q p 2pL/(QP)Ac

given in Table 1. Finally, the Alfvén speed in the prominence
is obtained, . Hence, this procedure gives a�1/2v p c vAp Ac
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Fig. 2.—Dependence of the Alfvén velocity in the thread ( ) as a functionvAp

of the coronal Alfvén velocity ( ) for two of the threads (top, thread 2;vAc

bottom, thread 6) studied by Okamoto et al. (2007). In each panel, from bottom
to top, the curves correspond to a length of magnetic field lines of 100,000,
150,000, 200,000, and 250,000 km, respectively. Asterisks, diamonds, trian-
gles, and squares correspond to density ratios of the thread to the coronal gas

, 50, 100, 200.r /r � 5p c

unique pair of values , for each pair of ; in otherv v L, cAc Ap

words, if we impose a length of magnetic field lines and the
density ratio, c, for a given thread, then the coronal and prom-
inence Alfvén speeds are well determined. To display the results
of this analysis we keep L fixed and vary the density ratio, c,
between a value slightly larger than 1 (extremely tenuous
thread) and 1000 (very dense thread), and then plot as avAp

function of for this range of c. Note that although the coronalvAc

and thread densities cannot be computed from their respective
values of the Alfvén speed because the magnetic field strength
is unknown, the density of prominence plasmas is typically 2
orders of magnitude larger than that of the corona, which cor-
responds to c of the order of 100.

The results for two of the six threads investigated by Oka-
moto et al. (2007) are plotted in Figure 2; the other four threads
have also been studied and lead to qualitatively similar results
to those of this figure. The leftmost point of the curves cor-
responds to , that is, to a thread density slightly largerc � 1
than the coronal one (this point is not visible because it falls
outside the range of the vertical axis). As a consequence, the
solution is obtained. When the density ratio is in-v � vAp Ac

creased from this minimum value we move along each curve
toward higher coronal Alfvén speeds. The left part of all curves
displays a rapid variation of , but for larger values of c thevAp

Alfvén speed in the thread stabilizes at an approximately con-
stant value, in spite of the unrealistically large coronal Alfvén
speeds attained in these plots. From these results it is clear that
a lower limit for the Alfvén speed in the threads can be es-
tablished. For a length of magnetic field lines of 100,000 km
this lower bound is between 200 and 350 km s , with an�1

exceptional lower value of 120 km s for thread 6. These�1

values of are consistent with a strong magnetic field, e.g.,vAp

50 G, and a large density, of the order of (1–8) # 1011

cm , but also with a weaker magnetic field and lower density�3

[10 G and (0.4–3) # 1010 cm , for example].�3

3.2. Oscillations of Flowing Threads

Next, the flowing motion of the threads is included in our
model and again is considered for simplicity. Equationr p re c

(2) has been integrated numerically using the code PDE2D
(Sewell 2005). The large photospheric inertia in front of coronal
perturbations is taken into account by imposing the boundary
conditions at . The initial conditions for u andu p 0 z p �L

must be carefully chosen in order to excite only the global�u/�t
transverse motions. This is accomplished by imposing the nor-
mal mode profile at , given by equation (24) of Dymovat p 0
& Ruderman (2005) once the frequency is computed from
equation (3); this condition for is accompanied byu(z, t p 0)

. The normal mode profile is more easily�u/�t(z, t p 0) p 0
computed when the density is symmetric about the center of
the tube, and this is the reason for choosing the thread initially
placed in the tube center at in equation (1). The durationt p 0
of the numerical simulations is chosen so as to prevent the
thread material from reaching the photosphere, and this typi-
cally corresponds to 4–6 kink mode periods. A uniform grid
of 3000 points in the z-direction is used in all simulations,
which ensures a minimum of 50 grid points in the thread.

The numerical code has been run for each thread, whose length,
flow speed, and oscillatory period are given in Table 1, and for
the parameter values (length of magnetic field lines, density
ratio, and coronal and thread Alfvén speeds) corresponding to
the symbols in Figure 2. We first set and so expect tov p 00

obtain the whole tube oscillating in the kink mode if the code

works well. A representation of u versus z for different times
shows that the whole thread oscillates in phase, which is con-
sistent with the kink mode being excited by the initial pertur-
bation. In addition, the power spectra of u at various fixed
positions present a strong power peak at a frequency that per-
fectly matches that of the kink mode. We are thus confident
about the performance of our numerical code.

To assess the importance of the flow motion on the oscil-
latory period the above simulations are repeated with takenv0

from Table 1. Again it is found that the tube oscillates bodily
in phase as it moves at the flow speed . The period is de-v0

termined from the position of the peak in the power spectrum
of the signal at a given point and then compared to the period
given in Table 1. In § 3.1 the values in this table were used
to obtain the results of Figure 2, so any difference between the
observed periods and those from the simulations with v (0

comes from the thread flow. Our main conclusion here is0
that all the numerical simulations yield a period of transverse
oscillations that is slightly smaller than that of the kink mode.
The largest influence of the flow on the period is for short
magnetic tubes and, for a given tube length, the largest devi-
ations from the case occur for the largest density ratios,v p 00

although it stops increasing for c of the order of 100. For
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example, taking a total length of the magnetic tube of 100,000
km and this difference ranges between 3% andr /r p 200p c

5% for the six threads. For longer magnetic tubes this relative
difference becomes even smaller. When these numbers are com-
pared with the error bars of the period in Table 1, whose min-
imum value is 6.8%, it turns out that including the flow in the
theoretical calculations leads to variations in the period that are
undetectable with the cadence used to obtain the data.

To test the above results, obtained in the thin-tube approx-
imation, the linear, ideal MHD equations (eqs. [1a]–[1d] in
Dymova & Ruderman [2005] with the replacement of by�/�t

inside the tube) have been solved. The azimuthal�/�t � v �/�z0

dependence , with , has been imposed and soexp (imf) m p 1
a set of two-dimensional time-dependent equations has been
investigated. No further approximations are made; i.e., the thin-
tube approximation is not used and the flow is maintained in
the equations. The obtained results confirm the accuracy of the
previous calculations.

4. DISCUSSION

In this work we have performed a seismological analysis of
some oscillating threads in an active region prominence ob-
served with Hinode SOT. The horizontal threads flow along a
path parallel to the photosphere and undergo simultaneous
transverse oscillations that are interpreted as a signature of the
kink mode of the whole magnetic tube in which the thread
resides. Our numerical simulations prove that when the thread
motion is included the global transverse oscillations persist and
can be initiated by an external impulse. Therefore, the most
natural explanation for these transverse thread oscillations is
the excitation of the kink mode (see also the discussion in Van
Doorsselaere et al. 2008), rather than Alfvén waves or motions
along a helically twisted tube such as put forward by Okamoto
et al. (2007).

The available data are insufficient to derive well-constrained
values of the physical variables, although it has been possible
to establish a lower limit for the Alfvén speed in each of the
threads. This lower bound comes from the assumption of the
same minimum length for all threads, namely 100,000 km, but
it could be larger if the actual length of the magnetic tube along
which the thread flows is larger. To obtain other plasma pa-
rameters from the thread Alfvén speed one must make some
assumptions. For example, if a magnetic field strength typical
of active region prominences is used (50 G), then large densities
[(1–8) # 1011 cm ] typical of active region prominences are�3

obtained.

We have obtained a dispersion of the minimum Alfvén speed
between 120 and 350 km s that can have multiple interpre-�1

tations. On one hand, it is possible that not all threads have
the same length, as has been assumed to derive these values,
and that once the actual length is used all these values become
the same. But on the other hand, one should consider the pos-
sibility of a highly inhomogeneous prominence, in which the
magnetic field and density vary in space. This inevitably leads
to an inhomogeneous distribution of the Alfvén velocity in the
prominence, which is not surprising given the complex struc-
turing of these objects.

Another important conclusion of this work is the insensitivity
of the period to the flow velocity, which is a useless parameter
in the present seismological problem. This has allowed us to
simplify our study by considering a static situation. In addition,
the thread thickness is another parameter of little importance
given the much larger extent of the magnetic tube.

Some simplifications have been made to facilitate our the-
oretical investigation. First of all, field line curvature has been
neglected since Terradas et al. (2006) have shown that it has
little influence on the transverse vibrations of a flux tube, in
the context of coronal loop oscillations (see also Van Doors-
selaere et al. 2004). In addition, the effect of the gas pressure
in the MHD equations has been discarded since the plasma b
is much smaller than unity in the corona and in active region
prominences. Another approximation has been to neglect non-
linear terms in the MHD equations, which is justified since the
velocity amplitude of transverse oscillations (whose largest
value is 22 km s ; see Table 1) is much smaller than the Alfvén�1

speed both in the threads and in the corona.
A final comment can be made about the equilibrium model,

which does not include gravity and therefore does not take into
account the necessity of the magnetic structure being able to
support the dense prominence material. This effect has only
been included in similar flux tube models by Ballester & Priest
(1989), Schmitt & Degenhardt (1995), and Rempel et al.
(1999), but the resulting structure is unstable. Hence, there is
currently no prominence model that incorporates all relevant
physics and leads to reasonable (stable) solutions, and so using
the simpler configuration studied in this Letter is justified.
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