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ABSTRACT

We consider the radiative feedback processes that operate during the formation of the first stars. (1) Photodisso-
ciation of H2 in the local dark matter minihalo occurs early in the growth of the protostar but does not affect sub-
sequent accretion. (2) Ly� radiation pressure acting at the boundary of the H ii region that the protostar creates in the
accreting envelope reverses infall in the polar directions when the star reaches�20Y30M� but cannot prevent infall
from other directions. (3) Expansion of the H ii region beyond the gravitational escape radius for ionized gas occurs at
masses �50Y100 M�. However, accretion from the equatorial regions can continue since the neutral accretion disk
shields a substantial fraction of the accretion envelope from direct ionizing flux. (4) At higher stellar masses,�140M�
in the fiducial case, photoevaporation-driven mass loss from the disk, together with declining accretion rates, halts the
increase in the protostellarmass.We identify this process as themechanism that determines themass of Population III.1
stars (i.e., stars with primordial composition that have not been affected by prior star formation). The initial mass func-
tion of these stars is set by the distribution of entropy and angular momentum. The Appendix gives approximate solu-
tions to a number of problems relevant to the formation of the first stars: the effect of Rayleigh scattering on line profiles
inmedia of very large optical depth, the intensity of Ly� radiation in very opaquemedia, radiative acceleration in terms
of the gradient of a modified radiation pressure, the flux of radiation in a shell with an arbitrary distribution of opacity,
and the vertical structure of an accretion disk supported by gas pressure with constant opacity.

Subject headinggs: cosmology: theory — early universe — stars: formation
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1. INTRODUCTION

There has been substantial recent progress in our theoretical
understanding of how the first stars formed (Bromm & Larson
2004). In marked contrast to the case for contemporary star for-
mation, the initial conditions for the formation of the first stars
are believed to be relatively well understood: they are determined
by the growth of small-scale gravitational instabilities from cos-
mological fluctuations in a cold dark matter universe. The first
stars are expected to form at redshifts z � 10Y50 in dark matter
halos of mass�106M� (Tegmark et al. 1997). In the absence of
any elements heavier than helium (other than trace amounts of
lithium) the chemistry and thermodynamics of the gas are very
simple (Abel et al. 2002, hereafter ABN02; Bromm et al. 2002).
There are no dust grains to couple the gas to radiation emitted by
the protostar. There are no previous generations of stars to roil the
gas out of which the stars form, nor is there any radiation other
than the cosmic background radiation. Existing calculations have
assumed that there were no significant primordial magnetic fields,
thereby eliminating a major complication that occurs in contem-
porary star formation. However, even in the absence of significant
primordial fields, it is possible that magnetic fields could have
been generated in the accretion disk surrounding a primordial pro-
tostar (Tan & Blackman 2004), although even in this case the
magnetic fields become dynamically important only after the star
formation process is well underway, and they do not affect the
initial conditions. Given this relative simplicity, there is some con-
fidence in the results of numerical simulations that have followed
the collapse of cosmological scale perturbations down to almost

stellar dimensions (ABN02; Bromm et al. 1999; Yoshida et al.
2006; O’Shea &Norman 2007). This confidence is strengthened
by the fact that it appears to be the microphysics of H2 cooling
that determines the types of baryonic structures that are formed,
and not, for example, the details of the initial power spectrum of
fluctuations in dark matter density. The results of these simula-
tions suggest that the initial gas cores out of which stars form are
quite massive, Mcore � 100Y1000 M�.

The observational imprint of the first stars depends on their
mass: these stars were likely to be of critical importance in reion-
izing the universe, in producing the first metals, and in creating
the first stellar-mass black holes. The number of ionizing photons
emitted per baryon depends on the stellar mass for m� P 300M�
(Bromm et al. 2001). The hardness of the radiation field is also
sensitive to the mass (e.g., Tumlinson & Shull 2000; Schaerer
2002), so that He reionization can be affected. The effectiveness
of the first stars in enriching the intergalactic medium (IGM)with
metals and in producing the first stellar-mass black holes also de-
pends sensitively on the mass of the star. A potential simplifica-
tion in assessing these effects is that massive primordial stars are
thought to have much smaller mass-loss rates than contemporary
massive stars (Kudritzki 2002), so that the mass at core collapse
should be quite similar to the initial mass. However, Meynet et al.
(2006) have argued that if rotation is allowed for, then mass loss
can be significant. Heger &Woosley (2002) showed that stars ex-
ploding as supernovae above about 260 M� and between 40 and
140 M� should collapse directly to black holes, and they argued
that such stars would provide relatively little metal enrichment.
However, Ohkubo et al. (2006) followed the collapse and explo-
sion of 500 and 1000M� stars in two dimensions and concluded
that a substantial amount of metals could be ejected; they pro-
posed that such supernovae could produce intermediate-mass
black holes. Heger & Woosley (2002) also showed that for
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140 M� P m� P 260 M�, the pair instability leads to explosive
O and Si burning that completely disrupts the star, leaving no
remnant and ejecting large quantities of heavy elements. Such
supernovae produce a dramatic odd-even effect in the nuclei pro-
duced. Stars below �40 M� are expected to form neutron stars,
withmore normal enrichment rates. In principle, metallicity deter-
minations from high-redshift absorption-line systems (Schaye
et al. 2003; Norman et al. 2004) or from very metal-poor local
stars (Beers & Christlieb 2005) can constrain the initial mass
function ( IMF) of the early generations of stars. Indeed, based
on observations such as these, Daigne et al. (2004) argue that
the stars responsible for reionizing the universe mostly likely had
masses P100 M�, and Tumlinson (2006) concludes that stars
above 140 M� could have contributed at most 10% of the iron
observed in extremely metal-poor stars (those with ½Fe/H� <
10�3; Beers & Christlieb 2005).

In discussing the formation of the first stars, the terms ‘‘first
stars’’ and ‘‘Population III stars’’ are often used interchangeably,
but this can lead to confusion. To be precise, we follow the con-
ventions suggested by one of us at the First Stars III conference
(O’Shea et al. 2008) and define Population III stars as those stars
with a metallicity sufficiently low that it has no effect on either
the formation or the evolution of the stars. The value of the crit-
ical metallicity for star formation, i.e., the value below which the
metals do not influence star formation, is uncertain, with estimates
ranging from�10�6 Z� if the cooling is dominated by small dust
grains that contain a significant fraction of the metals (Omukai
et al. 2005) to�10�3.5 Z� if the cooling is dominated by the fine-
structure lines of C and O and there is negligible H2 (Bromm &
Loeb 2003); if H2 cooling is included, Jappsen et al. (2007) argue
that there is no critical metallicity for gas-phase metals. It is pos-
sible that values of the metallicity even less than 10�6 Z� could
significantly affect the evolution of primordial stars (G. Meynet
2007, private communication). Among Population III stars, we
distinguish between the first and second generations, termed Pop-
ulation III.1 and III.2, respectively: the initial conditions for the
formation of Population III.1 stars are determined solely by cos-
mological fluctuations,whereas those for Population III.2 stars are
significantly affected by other stars. It is likely that Population III.1
stars have a primordial composition, since it is hard to see how
the gas out of which they form could be contaminated by even
trace amounts of metals without having been affected by radia-
tion from the star that produced the metals. Stars affect the initial
conditions for the formation of Population III.2 stars primarily by
radiation, both ionizing radiation and Lyman-Werner band radia-
tion that destroys H2 molecules. The latter reduces the cooling ef-
ficiency of the gas, allowing compression to heat up to the point
that it begins to become collisionally ionized; shocks associated
with H ii regions and supernova remnants can also ionize the gas.
Once the gas has been partially ionized, HD cooling can become
important, reducing the characteristic star formation mass (Uehara
& Inutsuka 2000). Greif & Bromm (2006) use the term ‘‘Popula-
tion II.5’’ to describe stars that form from gas in which HD cooling
is important, whereas in our terminology these would be Popula-
tion III.2 stars, but we believe that it is better to describe all es-
sentially metal-free stars as ‘‘Population III.’’ It should be noted
that our definition of Population III.2 stars includes all Popula-
tion III stars that were significantly affected by previous genera-
tions of star formation, even if that did not result in significant
HD production. Those Population III.2 stars that form out of gas
that is enriched in HD will typically be less massive than Popu-
lation III.1 stars, by about a factor of 10 according to Greif &
Bromm (2006). They infer that Population III.1 stars are relatively
rare, constituting about 10% by mass of all Population III stars.

In this paper we wish to estimate the characteristic mass of the
first generation of stars (Population III.1). Even if they are rela-
tively rare, they are critical in setting the initial conditions for the
star formation that followed and therefore in determining the re-
ionization of the universe and the production of the first metals
and the first stellar-mass black holes. For contemporary star for-
mation, it is believed that the IMF is set by a combination of gravi-
tational fragmentation in a turbulent medium (Elmegreen 1997;
Padoan &Nordlund 2002) and feedback effects. The characteristic
stellar mass is of order the Bonnor-Ebert mass, mBE / T 3/2/�1/2.
However, not all of the initial core mass is incorporated into the
final star, since contemporary protostars have powerful outflows
that eject some of the core mass (Nakano et al. 1995; Matzner &
McKee 2000). There are a number of feedback effects that oc-
cur in contemporary massive star formation (Larson & Starrfield
1971), particularly radiation pressure on dust and photoionization
associated with the growth of an H ii region. It remains unclear
whether the upper limit on the contemporary IMF is set by feed-
back or by instabilities that afflict very massive stars.
The clumps out of which the first stars form have total masses,

including darkmatter, of order 106M�; these objects are typically
referred to asminihalos. Cooling by trace amounts of H2 generally
leads to the formation of a gravitationally unstable core of baryonic
mass�102Y103 M� (ABN02). In contrast to contemporary star-
forming regions, the turbulence in this gas is subsonic, due to the
higher temperatures and the lack of internal and external sources
of turbulence. As a result, gravitational fragmentation ismuch less
effective: indeed, numerical simulations show no evidence for it
(e.g., ABN02; Yoshida et al. 2006; but see Clark et al. 2008), and
analytic calculations (Ripamonti & Abel 2004), including those
that consider disk fragmentation (Tan & Blackman 2004), show
no evidence for fragmentation either. It therefore appears that the
mass of the first stars is likely to be set by feedback effects.
Feedback effects can be classified as either radiative or kinetic.

Kinetic feedback includes protostellar outflows andmain-sequence
winds. In contemporary star formation, outflows are believed to
be hydromagnetically driven; in this paper we assume that the
magnetic fields associated with the protostar are too weak or too
tangled to drive a strong outflow (for amore extensive discussion
of the effect of these outflows see Tan& Blackman 2004). Due to
the absence of metals, main-sequence winds are very weak in the
absence of rotation (Kudritzki 2002), although they could be-
come important in the later stages of evolution if the star is rapidly
rotating. Since we are primarily interested in the early stages of
evolution of the star, we neglect kinetic feedback (i.e., outflows
and winds).
Radiative feedback includes radiation pressure, photoioniza-

tion heating, and photodissociation. Radiation pressure can be due
to continuum radiation or to resonance line scattering; the contin-
uum radiation pressure can be due to electron scattering or to pho-
toionization. Photoionization also leads to heating, which unbinds
gas beyond the gravitational radius rg� Gm�/c2s , where cs is the
isothermal sound speed of the gas. If the gas is initially in a disk,
this process is termed photoevaporation. Finally, photodissocia-
tion destroys H2, the dominant coolant in neutral primordial gas.
Most previous work has focused on the effects of continuum

radiation pressure and photoionization heating in limiting the
mass of primordial stars. Omukai & Palla (2001, 2003) focused
on electron scattering, which leads to the Eddington limit on an
accreting mass. For the case of spherical accretion at a rate of
4:4 ; 10�3 M� yr�1, radiation pressure first becomes important
at around 80 M�, leading to a dramatic swelling of the stellar
surface. This, however, is a transient effect because an important
part of the luminosity is due to accretion, which is reduced by the
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increase in the stellar radius. Only at masses around 300M� does
the internal luminosity become very close to the Eddington value,
leading to runaway expansion of the star and, presumably, the
end of accretion. Omukai & Palla (2003) considered a range of
accretion rates. They found that if the accretion rate is smaller
than 4:4 ; 10�3 M� yr�1, then the total luminosity remains sub-
Eddington and the star continues to grow along themain sequence
to arbitrarily large masses. On the other hand, if the accretion rate
is somewhat larger than this critical rate, the Eddington limit be-
comes important at around 100 M�. Accretion at a rate based on
the settling motions in the core of ABN02 is slow enough that the
Eddington limit does not affect the final mass. However, these
models ignored the influence of other protostellar feedbackmech-
anisms on the infalling envelope. These models also assumed
spherical symmetry, which leads to much larger photospheric
radii and thus a softer radiation field than in the more realistic
case of disk accretion (see x 7 in Tan &McKee 2004, hereafter
Paper I ).

Omukai & Inutsuka (2002) considered the combined effects
of photoionization heating and continuum radiation pressure due
to photoionization in the infalling envelope. They show that there
is a critical stellar mass at which the hydrogen-ionizing luminosity
is sufficient to create an H ii region, which rapidly spreads to large
distances where its thermal pressure becomes dynamically im-
portant in slowing infall. However, the ionizing radiation force
decelerates the inflowing gas, raising the gas density and there-
fore reducing the radius of the H ii region. For spherical inflow,
this mechanism is so effective that the radius of the H ii region re-
mains well below the gravitational radius rg, stopping any mass
loss. They concluded that with this effect, there was no limit on
protostellar masses below 1000M�. Without this radiation force,
they predicted a mass limit of order 300M�. As seen below, these
conclusions are sensitive to the assumption of spherical accretion.

In Paper I wemodeled the growth of a primordial protostar from
very small to large masses. We included the effects of rotation of
the infalling gas, which led to the formation of an accretion disk
around the protostar. The goal of this paper is to determine when
the energy output from the protostar is sufficient to halt accre-
tion and set the final stellar mass. This is an extremely complicated
problem, the full solution of which requires three-dimensional
hydrodynamical simulations that include the generation, propa-
gation, and dynamical influence of radiation. Furthermore, these
simulations must resolve a large range of scales: the protostar is
of order 10 R�, while the size of the quasi-hydrostatic core that
encloses�1000M� is of order 1 pc, several million times greater.
The demands on the timescale are even greater: the simulation
may have to follow the evolution of the star over its lifetime
�2Y3 Myr (Schaerer 2002) while at the same time following
the dynamics of an accretion disk with a characteristic timescale
as short as 104 s. The numerical simulations of ABN02 were able
to resolve an even greater range of radii, but it will be some years
before it is possible to meet the required dynamical range in time-
scales. As a result, we shall develop simple analytic models for
the feedback interaction that we hope will provide a useful first
step.

We begin our discussion with a review of the results of Paper I
in x 2. Feedback effects are then considered in the approximate
order in which they becomemanifest. In x 3 we briefly discuss the
effects of photodissociation. Ly� radiation pressure feedback is
considered in x 4 and in several appendices. The feedback from
ionizing photons that can create an H ii region is considered in x 5.
After discussing shadowing by accretion disks in x 6 and an ap-
pendix, the feedback due to disk photoevaporation is considered

in x 7. Figure 1 gives an overview of these feedback processes
occurring near the protostar. Finally, our conclusions are sum-
marized in x 8.

2. REVIEW OF PAPER I: PROPERTIES AND EVOLUTION
OF PRIMORDIAL PROTOSTARS

The radiative output from a protostar depends on the temper-
ature and luminosity of its emitting components, which are the
star itself (stellar photosphere), the boundary layer of the accre-
tion disk with the star, and the larger scale accretion disk. The
luminosity of the star depends mostly on its mass. The size of
the star then determines its temperature. The size of the star and
the accretion rate determine the radiative properties of both the
boundary layer and the accretion disk, since emission from the
latter is dominated by the inner regions.

The size of the star depends on the accretion rate during its
formation history. At lower masses there is a balance in the size
set by the need to radiate the luminosity, which is mostly due to
accretion,with a photospheric temperature that is likely to be close
to�6000 K because the opacity due to H� rapidly declines in this
temperature regime. Under the assumption of spherical accretion,
Stahler et al. (1986) found the protostellar radius to be

r� ’ 90:8m0:27
�;2 ṁ

0:41
�;�3 R� m�;2 P 0:1

� �
; ð1Þ

wherem�;2 � m�/(100 M�) and ṁ�d;�3 � ṁ�d /(10
�3 M� yr�1).

For the accretion rates typical of primordial star formation we
see that the size is very large. For more massive protostars there
is a transition once the star is about as old as its local Kelvin-
Helmholtz time, and then contraction proceeds toward the main-
sequence size, where accretion can continue. In Paper I we found
that for typical conditions, the protostar reached itsmain-sequence
radius at about 100M�. According to Schaerer (2002), this radius
is

r� ’ 4:3m0:55
�;2 R� (main sequence) ð2Þ

to within 6% for 0:4 � m�;2 � 3.
Thus, almost all the radiative stellar properties depend on just

two parameters: the stellar mass and the accretion rate. Note that
in principle these properties also depend on the angular momen-
tum of the infalling gas, since if there was no rotation, then spher-
ical accretion implies very high gas densities near the protostar,
affecting the location of its photosphere. However, for any realis-
tic amount of angular momentum, a disk forms whose size is
much larger than r�, and the star’s properties no longer depend
on the rotation of the core from which the star forms.

The accretion rate of Population III protostars depends on the
density structure of the gas core at a point when the star starts to
form. This density structure is set by the balance of thermal pres-
sure and self-gravity, which in turn depends primarily on the cool-
ing properties of molecular hydrogen. This cooling creates almost
isothermal cores at T ’ 200 K with an outer bounding density of
about 104 cm�3, which is the critical density of H2 cooling transi-
tions (for H2 molecules interacting with atomic H). In fact, the
temperatures increase to several hundred kelvin in the inner parts
of the core because of the reduced cooling efficiency above the
critical density. These basic features have been confirmed by nu-
merical studies (ABN02; Bromm et al. 2002; O’Shea & Norman
2007). The trigger for dynamical collapse is thought to be the
rapid formation of H2 by three-body collisions at high densities
�1010 cm�3, since this then dramatically increases the cooling
rate in this region.
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ABN02 carried their calculations almost to the point of protostar
formation, and at this time gas was flowing inward subsonically
almost everywhere (except for 0:1 M� P M P 1 M�, where the
inflow was slightly supersonic). Shu’s (1977) expansion wave
solutions for protostellar accretion are based on the assumption
that the inflow velocity at this time is zero. Hunter (1977) gen-
eralized these solutions and showed that there is a discrete set
of self-similar solutions that begin at rest at t ¼ �1 and have a
constant infall velocity at the time of protostar formation (t ¼ 0).
One of these solutions, the Larson-Penston solution (Larson 1969;
Penston 1969), has supersonic inflow (Mach number of 3.3 at
t ¼ 0); this solution is clearly inconsistent with the numerical
results. In fact, the accretion flow appears to be a settling solu-
tion regulated by H2 cooling. Only one of Hunter’s solutions
corresponds to mildly subsonic inflow (Mach number of 0.295
at t ¼ 0), comparable to that found by ABN02, and this is the
solution adopted in Paper I. This solution has a density that is

1.189 times greater than a singular isothermal sphere at t ¼ 0, and
the accretion rate is 2.6 times greater.
Hunter’s (1977) solution applies to an isothermal gas. Omukai

& Nishi (1998) and Ripamonti et al. (2002) have numerically
calculated accretion rates for primordial protostars and showed
that the accreting gas is isentropic with an adiabatic index
� ’ 1:1 due to H2 cooling; i.e., each mass element satisfies the
relation P ¼ K�� with the ‘‘entropy parameter’’ K ¼ const. In
hydrostatic equilibrium, such a gas settles into a polytropic con-
figuration, which in general has P(r)¼ Kp�(r)

�p . For an isentro-
pic gas, we have �p ¼ � and Kp ¼ K. In Paper I we presented
an analytic model for the protostellar accretion rate for isen-
tropic gas. We allowed for the existence of an accretion disk
around the protostar with a significant fraction of the stellar
mass,

m�d ¼ m�þ md � 1þ fdð Þm�; ð3Þ

Fig. 1.—Overview of the accretion geometry and feedback processes involved in primordial star formation. Top left: Cross section of the accretion geometry: the
dashed lines show streamlines of the rotating, infalling gas, with figure of revolution from each streamline separating 10% of the total infall from this hemisphere. The
aspect ratio of the accretion disk is realistic, while the size of the star has been exaggerated for clarity. Top right: The shaded region around the star shows the extent of the H ii

region, which at this relatively early stage is still confined inside the gravitational radius for the escape of ionized gas, rg. Ly� radiation pressure feedback should be strong
enough to prevent accretion in the polar directions.Bottom left: The stellarmass and ionizing luminosity have grown, and theH ii region is just in the process of breaking out of
the accretion flow. Once a significant volume beyond rg is ionized, accretion from these directions is expected to be shut off. Bottom right: Final stage of accretion involves
shadowing of the equatorial region from stellar ionizing flux by the disk, which at the same time is photoevaporated. The competition between this photoevaporative outflow
and the residual accretion rate sets the final mass of the star. [See the electronic edition of the Journal for a color version of this figure.]
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with a fiducial value for the disk mass fraction fd ¼ 1
3. Follow-

ing McKee & Tan (2002, 2003), we wrote the accretion rate as

ṁ�d ¼ ��
m�d
tA

; ð4Þ

where �� is a numerical constant of order unity and tA ¼
(3�/32G�)1/2 is the free-fall time of the gas (measured at t ¼ 0).
For gas that is in hydrostatic equilibrium at t ¼ 0, McKee & Tan
(2002) showed that �� ’ 1:62� 0:96/(2� �p) to within about
1% for 0 < �p � 1; we have since verified that this is valid for
�p P 1:2. To our knowledge, Hunter’s self-similar solutions start-
ing at t ¼ �1 have not been generalized to the nonisothermal
case.3 In Paper I we therefore assumed that the accretion rate for
the � ¼ 1 case is 2.6 times greater than that for hydrostatic initial
conditions, just as in the isothermal case.

Feedback from the star, whether due to winds, photoioniza-
tion, or radiation pressure, can reduce the accretion rate onto the
star. We define a hypothetical star-disk mass, m�d;0, and accre-
tion rate, ṁ�d;0, in the absence of feedback. In this case, the star-
disk mass equals the mass of the core out of which it was formed,
m�d;0 ¼ M (r). The instantaneous and mean star formation effi-
ciencies are

��d �
ṁ�d
ṁ�d;0

; ð5Þ

�̄�d �
m�d

m�d;0
¼ m�d

M
: ð6Þ

In our previous work, we assumed that the star formation effi-
ciency was constant, so that ��d ¼ �̄�d . In the present work, we
find that significant feedback does not set in until the star is fairly
massive, so that we must distinguish the instantaneous and mean
values. In Paper I we found that the accretion rate onto the star-
disk system is

ṁ�d ¼ 0:026
��dK

015=7

M=M�ð Þ3=7

" #
M� yr�1; ð7Þ

where

K 0 � P=��

1:88 ; 1012 cgs
¼ T 0

eA

300 K

� �
104 cm�3

nH

� �0:1
ð8Þ

is a measure of the entropy of the accreting gas. Here T 0
eA � T þ

��2
turb/k is an effective temperature that includes the effect of tur-

bulent motions; we have added a prime to the TeA defined in
Paper I to distinguish it from the effective temperature of a radiat-
ing atmosphere. Expressing the accretion rate in terms of the stellar

mass, which equations (3) and (6) imply is m� ¼ �̄�dM /(1þ fd),
we find

ṁ�d ¼ 0:026
��d �̄

3=7
�d K 015=7

1þ fdð Þ3=7 m�=M�ð Þ3=7

" #
M� yr�1: ð9Þ

With K 0 ¼ ��d ¼ �̄�d ¼ 1, this result is in good agreement with
the results of Omukai&Nishi (1998) andRipamonti et al. (2002);
since their one-dimensional calculations did not allow for disks,
this comparison is made for fd ¼ 0. Note that this agreement vali-
dates our use of the Hunter mildly subsonic solution to infer the
accretion rate. If ��d ¼ 1 (i.e., no feedback) and fd ¼ 1

3
, then the

accretion rate onto the star+disk is

ṁ�d;�3 ! 3:20
K 015=7

m
3=7
�;2

 !
; ð10Þ

where henceforth it will be understood that numerical evalua-
tions denoted by ‘‘!’’ have ��d ¼ 1 and fd ¼ 1

3
. In this case the

accretion rate onto the star (which may be primarily through the
disk) is 3

4
of this [since ṁ� ¼ ṁ�d /(1þ fd)].

Our estimate of the accretion rate is somewhat above that
estimated byABN02, but this is to be expected since their calcula-
tion stopped prior to the formation of the protostar. Indeed, at the
time at which the protostar first forms (t ¼ 0), the accretion rate
at any finite radius r [i.e., ṁ(r) ¼ 4�r 2�jvrj] in a self-similar, iso-
thermal collapse is smaller than the value it has at times t > r/cs,
where cs is the isothermal sound speed. Equivalently, at a given
time, the accretion rate at radii rk cst is less than that at small
radii, rTcst. In the Shu (1977) solution for the collapse of a sin-
gular isothermal sphere, the accretion rate at a given time is zero
outside the expansionwave at r ¼ cst; inside the expansionwave,
the accretion rate smoothly increases to 0:975c3s /G as r ! 0. For
the Larson-Penston solution, the accretion rate at a given time
t > 0 increases from 29c3s /G at large radii (r 3 cst) to 47c3s /G
at small radii (rTcst). For Hunter’s mildly subsonic solution,
which we have suggested is closest to the numerical simula-
tions, the accretion rate increases from 0:70c3s /G at large radii to
2:58c3s /G at small radii (Hunter 1977), an increase of a factor of
3.7. This demonstrates that caution should be exercised in in-
ferring accretion rates at late times from those measured at early
times, which is commonly done in simulations (e.g., ABN02;
Yoshida et al. 2006; O’Shea & Norman 2007).

The age of the star when it reaches a mass m� is (Paper I)

tyr ¼ 27
1þ fd

�̄�d

� �10=7
K 0�15=7 m�

M�

� �10=7
! 2:92 ; 104K 0�15=7m

10=7
�;2 ; ð11Þ

where tyr � t/(1 yr) and where it is the mean star formation ef-
ficiency �̄�d that enters. The resulting stellar mass is

m� ! 0:075K 01:5t 0:7yr M�: ð12Þ

Bromm & Loeb (2004) have carried out a three-dimensional
simulation of the accretion onto the protostar for the first 104 yr,
and for K 0 ¼ 1 our result is within a factor of �2 of theirs for
this time period. (However, it should be noted that an extrapola-
tion of their result to times beyond 5 ; 104 yr gives a mass less
than half our estimate of the mass of the star plus disk. It remains
to be determined whether such an extrapolation is valid.)

3 Fatuzzo et al. (2004) have given a comprehensive discussion of self-similar
accretion solutions that start at t ¼ 0, allowing for inflow velocity, overdensity
relative to hydrostatic equilibrium, and nonisentropic gas (� 6¼ �p). Although they
do not treat the time prior to protostar formation, their isothermal results for t > 0
are consistent with Hunter’s, as expected. For the nonisothermal case, Fatuzzo et al.
(2004) present results for gas that is inflowing at r ! 1, but these are not self-
similar in that the accretion rate depends onwhere the integration begins (F. Adams
2004, private communication). However, it is possible to generalize their treatment
so that theMach number of the inflow is constant. Presumably the overdensity and
infall Mach number of the � ¼ 1:1 analog of the mildly subsonic Hunter solution
are similar to those of the isothermal solution; if they are exactly the same, then the
accretion rate would be about 2.0 times that for the case of hydrostatic initial con-
ditions, somewhat less than the isothermal value of 2.6.
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With this estimate of the protostellar mass, it is possible to cal-
culate the maximum possible mass a primordial star could have.
Schaerer (2002) has calculated themain-sequence lifetimes of pri-
mordial stars with no mass loss for m� � 500 M�, and his results
are accurately described by the expression tms ’ 2:7m�0:24

�;2 Myr
for 100 M� Pm� P 500 M�. If we assume that the accretion is
not limited by any feedback processes (��d ¼ 1), that Schaerer’s
results can be extrapolated to higher masses, and that accretion
during the relatively short postYmain-sequence phase is negligi-
ble, then we find

m�;max ¼
Z tms

0

ṁ� dt ’ 1900
1

1þ fd

� �0:86
K 01:28 M�

! 1500K 01:28 M�: ð13Þ

The maximum possible stellar mass is thus controlled by the
value of the entropy parameter of the core.

In Paper I we also considered the effect of rotation. Rotation of
the infalling gas has a dramatic effect on the evolution of the pro-
tostar, since it leads to much smaller photospheric radii and cor-
respondingly higher temperatures and accretion luminosities. We
parameterized the rotation in terms of

fKep �
v rot rsp
� �

vKep rsp
� � ; ð14Þ

the ratio of the rotational velocity to the Keplerian velocity mea-
sured at the sonic point at rsp. ABN02 found fKep� 0:5 indepen-
dent of radius, so we adopt this as a fiducial value.We then showed
that the accreting gas formed a disk with an outer radius

rd ¼ 1:92 ; 1016
fKep

0:5

� �2
m�d;2

�̄�d

� �9=7
K 0�10=7 cm ð15Þ

! 2:78 ; 1016
fKep

0:5

� �2 m
9=7
�;2

K 010=7 cm: ð16Þ

3. PHOTODISSOCIATION FEEDBACK

As the protostar grows inmass, it begins to emit copious amounts
of nonionizing ultraviolet radiation (far-ultraviolet [FUV] radia-
tion), as shown in Figure 2. This radiation can photodissociate
the H2 that is critical for cooling the accreting gas (Omukai &
Nishi 1999; Glover & Brand 2001); its dynamical effects are con-
sidered in the next section.

Once the molecular coolants in the accreting gas are destroyed,
the adiabatic index rises from � ’ 1:1 to � ¼ 5/3. If the gas were
able to continue contraction, it would heat up until the temperature
became high enough (T � 104 K) to excite the Ly� transition.
For T k104 K, the adiabatic indexwould then drop back to about 1.

Can the protostar continue to accrete when � ’ 5/3? If one
considers the related problemof the gravitational stability of poly-
tropic gas spheres, one might be led to conclude that accretion
would stop: polytropic stars are stable against gravitational col-
lapse for � > 4/3 (Shapiro & Teukolsky 1983, p. 145), and the
same is true for polytropic gas clouds even if �p< 4/3 (McKee
&Holliman 1999).However, there is a crucial distinction between
collapse onto a protostar and the contraction of a gas cloud prior to
protostar formation, and that is the presence of the central proto-
star, which is effectively a mass singularity. The stability analyses
cited above assumed that there was no mass singularity at the
origin. When one is present, the problem is analogous to that of
Bondi accretion, the accretion of nonYself-gravitating gas onto

a star; this can occur for � ¼ 5/3 (e.g., Shapiro&Teukolsky 1983,
pp. 412Y420). The problem of protostellar accretion, which in-
cludes the self-gravity of the gas, has been considered by Fatuzzo
et al. (2004) for a wide range of conditions. They showed that
gravity dominates over pressure close to the protostar, so that ac-
cretion can occur, provided that � < 5/3. It is straightforward to
see why: in supersonic inflow, the density scales as � / r�3/2, so
that the temperature T / r�3(��1)/2 rises more slowly than the ki-
netic energy per unit mass /r�1 provided that � < 5/3. They
demonstrated that the accretion rate for a singular, initially isother-
mal sphere with � ¼ 1:6 is only slightly smaller than for the case
in which � ¼ 1.
The argument of Fatuzzo et al. (2004) applies to the inner,

supersonic region of infall. What about the outer, subsonic re-
gion? There the density varies as a higher power of radius (e.g.,
for v infall ¼ const, � / r�2), so that pressure can overcome gravity
at a lower value of �. To see this more quantitatively, consider the
case of a singular isothermal sphere with � 6¼ 1. Assume that the
initial density of the sphere is� times greater than the equilibrium
value. If the gas is flowing inward at a velocity�v1 far from the
protostar [i.e., at large values of the similarity variable x, which is
just r/(cst) in the isothermal case], then v varies as

v ¼ �v1 � 2 �� 1ð Þ
x

� 4� 3�ð Þv1
x2

þ : : : ð17Þ

(Fatuzzo et al. 2004; we have corrected a typo in the last factor).
Thus, for � > 4/3, pressure forces will tend to decelerate the flow;
however, this can be overcome by a suitable overdensity �. We
have confirmed this by numerical integration of the equations
given by Fatuzzo et al. (2004): for v1> 0 and � � 4/3, accre-
tion is possible for � � 1; for 5/3 � � > 4/3, accretion is pos-
sible provided that � exceeds some threshold. For primordial
star formation, we estimate �p ¼ 1:1 and v1/cs ’ 0:3Y0:5; ac-
cretion can occur in this case for � ¼ 5/3 for � > 1:16 and 1.28,

Fig. 2.—Evolution of Lyman-Werner photon luminosity from the fiducial
model of primordial star formation, including effects of stellar feedback. The to-
tal (solid line) and contributions from the protostellar surface (long-dashed line),
boundary layer (short-dashed line), and accretion disk from r < 10r� (dotted line)
are shown. [See the electronic edition of the Journal for a color version of this
figure.]
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respectively. These overdensities are quite modest (for example,
the Hunter [1977] subsonic infall solution has v1/cs ¼ 0:295 and
� ¼ 1:189), so we anticipate that photodissociation should not
prevent protostellar accretion. The value of the overdensity is
likely to vary from one protostar to another, however, so it is pos-
sible that in some cases it would be too small to permit accretion.
In such cases the infalling gas would decelerate; once it is station-
ary, however, it could resume accretion when it is overtaken by an
expansionwave, as shown byFatuzzo et al. (2004). Our numerical
calculations show that the increase in � from 1.1 to 5/3 has only a
minor effect on the accretion rate, diminishing it by less than 20%.
We conclude that photodissociation of molecular coolants by the
protostar does not have a significant effect on its accretion rate.

On the other hand, collapsing cores that do not contain a pro-
tostar, but that are close enough to a protostar that their molecular
coolants are destroyed, will cease collapsing if their central tem-
perature is low enough (<104 K) that � exceeds 4/3. Thus, FUV
emission from the first stars is potentially quite effective at sup-
pressing star formation in their vicinity. We can estimate the dis-
tance over which star formation is suppressed from the work of
Glover & Brand (2001). As in Paper I, we assume that the core is
in approximate hydrostatic equilibrium and is characterized by
an entropy parameter K. We find that the time to dissociate H2 is
less than the free-fall time tA if the core is within a distance

D ¼ 24
SLW

1049 s�1

� �
10�3

x2

� �
fabs fdiss

0:01

� �� �1=2
1

n̄
21=40
4 K 01=4

pc

ð18Þ

of the protostar, where SLW is the photon luminosity in the Lyman-
Werner bands, x2 is the fractional abundance of H2, fabs is the frac-
tion of the Lyman-Werner flux absorbed by the H2, fdiss is the
fraction of absorptions that result in dissociation, and n̄ is themean
density of H nuclei. Thus, even a 100 M� star, which has SLW ’
1049 s�1, can suppress star formation in an existing core only if the
core is relatively nearby. A more detailed analysis by Susa (2007)
comes to the same conclusion. Ahn & Shapiro (2007) model both
dissociation and ionizing feedback and also find a relatively weak
suppression of Population III.2 star formation by neighboringPop-
ulation III.1 stars. Whalen et al. (2008) have presented multi-
dimensional numerical simulations of these processes.

4. Ly� RADIATION PRESSURE

The second feedback effect of FUVradiation is radiation pres-
sure acting on the Lyman absorption series in the infalling neutral
gas. This effect has been considered previously by Oh & Haiman
(2002), who studied feedback effects in halos with virial tem-
peratures above 104 K, which are more massive than those we
consider. They concluded that Ly� radiation pressure could be
important but did not find any constraint on the mass of the star
that could form. Our work improves on theirs in several respects:
we include stellar continuum photons injected away from line
center, as well as Ly� photons emitted in the H ii region; we al-
low for Rayleigh scattering; we include the limitations on the
radiation pressure set by two-photon emission and by the black-
body constraint; and we allow for the effects of rotation in the in-
falling gas.

Since conditions are very opaque, the Ly� radiation can be
considered to be isotropic. The Ly� radiation pressure is then

P� ¼
1

3
u� ¼

4�J�
3c

; ð19Þ

where u� and J� are the energy density and mean intensity of the
Ly� radiation. The estimation of J� is complicated by the fact that
Ly� photons can diffuse in frequency as well as in space, and that
at the optical depths we are considering, the transfer is dominated
by the dampingwings of the line profile (Adams 1972). This prob-
lem is far too difficult to treat analytically for the geometry and dy-
namics that we are using to model the protostellar accretion. We
therefore make the following substantial approximations when
evaluating J� at the outer boundary of the H ii region, rH ii (which
may be at the surface of the protostar), and at a particular polar an-
gle: (1) The axially symmetric geometry can be replaced by an
equivalent slab geometry. The effects of spherical divergence are
incorporated by normalizing the mean intensity to the flux at rH ii.
The slab column is set equal to 20% of that in the infalling gas
based on the discussion in Appendix C. (2) The anisotropy in the
optical depth can be accounted for by taking the harmonic mean
of the opacity,

1

	̄eA
¼ 1

A

Z
dA

	(r)
ð20Þ

(see Appendix D). In practice, the escape of photons is primarily
controlled by the minimum optical depth, which is in the polar
direction, so in our numerical models we evaluate 	̄eA with a col-
umn density that is 20% of the column in the vertical direction
from the point of interest. (3) Finally, we assume that the effect of
the velocity field can be approximated by a Doppler line profile
of suitable width (see below).

The propagation of resonance line photons in very opaquemedia
has been treated by a number of authors (Adams 1972; Harrington
1973; Hummer & Kunasz 1980; Neufeld 1990). Let the mean
optical depth in the line be

	̄ ¼ 1

�
D

Z
	
 d�
: ð21Þ

In terms of the normalized frequency x � �
/�
D, we have 	x ¼
	
 ¼ 	̄�x, where �x is the line profile. In the Doppler core, the line
profile is �x ’ exp(�x2)/

ffiffiffi
�

p
; in the damping wings it is �x ’

a/(�x2), where a is the ratio of the natural line width to theDoppler
width. In applications, we generally have aT1, and in that case
the optical depth at line center, 	0, is related tomean optical depth
by 	0 ¼ 	̄�0 ¼ 	̄ /

ffiffiffi
�

p
. The opacity is �x ¼ �̄�x, and the mean free

path is ‘x ¼ 1/�x.
As shown by Adams (1972), resonance photons escape in a

single longest excursion from line center. After n scatterings, the
escaping photon has a frequency shift xe ’ n1/2 and it has traveled
a distance n1/2‘e ’ n1/2/(�̄�e), where ‘e ¼ ‘(xe), etc. In order for
the photon to escape, this distance must be the size of the region,
L ¼ 	̄L/�̄. This implies n1/2 ’ 	̄L�e and xe ’ 	̄L�e, which in turn
gives the characteristic frequency of the escaping photons as xe �
(a	̄L)

1/3. The total path length traversed by the escaping photons is
about n1/2L. As a result, we expect the mean intensity to exceed
the incident intensity by a factor of about n1/2 � (a	̄L)

1/3.
The velocity field has contributions from thermal motions, tur-

bulent motions, and the overall flow. Thermal and microturbulent
velocities are naturally included in�vD. In the cases we consider,
the overall flow is highly opaque, so it generally does not con-
tribute to the random walk of the photons. If the velocity width
of the flow�vf (including macroturbulence) is small compared
to the line width of the escaping photons, �ve ’ (a	̄eA)1/3�vD
(from Neufeld 1990), then the flow has negligible effect on the
escape of the photons. On the other hand, if �vf 3 �ve, then
the effective column density of the gas is reduced. For exam-
ple, in the simple case in which the velocity varies linearly with
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the column density, photons will interact with only a fraction
�ve/�vf of the gas. If �ve0 is the linewidth in the absence of any
flow velocity, then one can show that the effective column density
is reduced by a factor of about (�ve0/�vf )

3/2 from the total value.
In our numerical models we always set �vD ¼ 12:9 km s�1, the
value appropriate for T ¼ 104 K gas, the assumed temperature of
the infalling neutral gas near the protostar. We set �vf equal to
half the difference in radial velocities of the inner and outer edges
of the slab. If �ve0 > �vf , which is not usually the case, we re-
duce the effective column by the factor (�ve0/�vf )

3/2.
Appendix B describes the general enhancement in the intensity

of photons that are trapped by the Ly� damping wings and, if the
columns are very large, by the opacity due to Rayleigh scattering.
Thus, photons from the protostellar continuum, outside the fre-
quency interval defined by xe, can contribute to the radiation pres-
sure. The enhancement in intensity leads to an increase in the
radiation pressure so that the momentum transferred from the ra-
diation to the gas is F/c in each optical depth.As shown inAppen-
dix B, the isotropic component of the radiation pressure is

Prad; iso ¼
4�Jiso
3

¼ 4�

3

Z
d
imin

(
B
i ;

8:25N
1=3
eA;20�v

�2=3
D;6 F
i=cð Þ

min 1; 2:62N
1=3
eA;20�v

�2=3
D;6

� 	
þ 5:41 x̂2i =f 
ið Þ½ �þ � x̂ið Þ

)
;

ð22Þ

where NeA;20 � NeA/(10
20 cm�2) and B
i is the intensity of a

blackbody with a temperature equal to that at the protostellar
surface. When this limit is evaluated for the reprocessed Ly�
photons, the intensity is limited to that of a blackbody at the tem-
perature of the ionized gas in the H ii region (see x B3). This ex-
pression is valid provided that 	̄eA k 1/a, corresponding to NeA k
1016�v 2D;6 cm

�2 for Ly�.
What is the condition for the radiation pressure to halt the ac-

cretion?We assume that the accreting gas is inside the sonic point,
so that the gas pressure is negligible. For steady, radial flow, the
equation of motion of the gas is

�v
dv

dr
¼ � dPrad; iso

dr
� �Gm�

r 2
; ð23Þ

sincewe have shown in Appendix C that the radiative force can be
represented by the gradient of the isotropic component of the radi-
ation pressure.We assume that the radiation pressure builds up rap-
idly over a distance small compared to the radius r; this is justified
below. Then constancy of the mass flux implies �v ’ const. If the
radiative force is to stop the flow in a small distance, then the grav-
itational force must be negligible in comparison. We then have

d

dr
�v2þ Prad; iso

� �
’ 0; ð24Þ

so that �v2þ Prad; iso ’ const in the deceleration region. When
gas enters this region, the radiation pressure is small and v ’ vA,
the free-fall velocity; as the gas decelerates, the radiation pressure
rises and v drops. The inflowwill be halted if the radiation pres-
sure at the inner edge of the deceleration region is Prad; iso ¼

�A v
2
A, where �A is the density in the freely falling gas.

4 We have
verified this simple argument by solving for the flow in the case
that the flux varies as r�kF , with kF > 2; such a faster than spher-
ical falloff in the flux is expected when the density distribution is
not spherically symmetric, so that flux will escape into regions of
lower opacity (as in the case of the ‘‘flashlight effect’’; Yorke &
Bodenheimer 1999). We find that the radiation pressure required
to halt the infall is within about 10% of �A v

2
A for kF > 2:5: In or-

der to reverse the inflow and eject the matter, the radiation pres-
sure must be twice this, Prad; iso ¼ 2�v2A. Of course, a steady radial
flow cannot reverse direction. To see that the factor of 2 is re-
quired, one can imagine that the flow is inward over half the sky
and outward over the other half; to maintain the same accretion
rate, the density would have to be twice as large. If the gas is ini-
tially in a disk, there is no infall to start with and the pressure re-
quired for ejection is �v2Kep ¼ �v2A/2.
We evaluate this criterion along the polar axis at the edge of

theH ii region, which is where the ram pressure of infalling gas is
a minimum and where breakout should occur first (Fig. 3). At
low values of fKep the breakout does not occur until the star has
reached several hundred solar masses as the photosphere is very
large and cool, producing little FUV flux. At reasonable values of
fKep k 0:1, polar breakout can occur relatively early, at�20M�.
This is the point in the protostellar evolution when the star is start-
ing its rapid contraction to themain sequence, and the surface tem-
perature and luminosity are thus rising. For these values of fKep
the densities and ram pressures become significantly greater as the
sight linemoves away from the pole. By the time that the radiative
flux from the star is large enough to reverse the flow in these direc-
tions, a polar cavity would have been blown out, thus reducing the
enhancement in the radiation pressure due to trapping of photons.
Thus, although Ly� radiation pressure can act to reduce the effi-
ciency of accretion, we expect it to be unable to stop it. Even the
reduction of the accretion efficiency is likely to be relatively

Fig. 3.—Protostellar mass scale at which Ly� radiation pressure becomes
twice the ram pressure of the infalling gas at the edge of the H ii region along the
polar direction as a function of fKep. At this point the radiation pressure is expected
to reverse the accretion in the polar direction and evacuate a polar cavity, through
which Ly� photons can escape. Thus, this feedback mechanism will act to reduce
the efficiency of accretion but will not significantly impede the growth of the star,
sincemost mass is accreted from directions away from the polar axis. [See the elec-
tronic edition of the Journal for a color version of this figure.]

4 Jijina & Adams (1996) have given an alternative criterion based on treating
the radiative force per unit mass as the gradient of a potential. Their approach is
appropriate when one knows the spatial variation of the force in advance, which
is not the case here. One can show that the two approaches are equivalent if the
radiative force per unit mass falls off rapidly with r.
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modest, since even a small polar cavity can dramatically reduce
the radiation pressure in the H ii region. In the following sec-
tions we consider other feedback mechanisms that are more ef-
fective at limiting accretion, although they do so at higher masses.
When following the stellar evolution to these masses, we assume
that the reduction in accretion efficiency due to Ly� feedback is
negligible.

5. IONIZING FEEDBACK AND BREAKOUT
OF THE H ii REGION

5.1. Photoionization Heating

Extreme ultraviolet (h
 > 13:6 eV) radiation from the proto-
star can ionize infalling neutral gas, creating an H ii region. The
temperature of the ionized gas is�2:5 ; 104 K, based on themod-
els of Giroux & Shapiro (1996) and Shapiro et al. (2004) with
stellar spectra. The thermal pressure P � �c2 of the ionized re-
gion is typically much greater than that in neutral gas of the same
density because of the elevated temperatures and sound speeds:
ci ¼ 11:6(Ti/10

4 K)1/2 km s�1. The pressure gradients created at
this ionized-neutral boundary can become steep enough to cause
the H ii region to expand and to dramatically reduce the accretion
of gas to the star. In this section we attempt to calculate the point
in the protostellar evolution at which this transition occurs. This
problem has been considered previously by Omukai & Inutsuka
(2002). The new feature in our treatment is that we allow for the
rotation of the infalling gas, which can significantly reduce the
density near the protostar. As seen below, this completely changes
the evolution of the H ii region.

As in Paper I, we approximate the density distribution of the
infalling gas by the Ulrich (1976) solution. The gas is assumed to
be spherically symmetric far from the protostar, and each mass
element conserves its angular momentum as it falls ballistically
toward the star. Terebey et al. (1984) showed that this solution
matches on to an expansion wave solution for the gravitational
collapse of a singular isothermal sphere. The resulting density
distribution is

� ¼ ṁ�d �; rð Þ
4�r 3=2 2Gmð Þ1=2

; ð25Þ

where � ¼ cos �,

 �; rð Þ ¼ 2

1þ �=�0

� �1=2
1

�=�0þ 2�2
0 rd=rð Þ

; ð26Þ

and � 0 is the value of � far from the protostar. The two angles
are related by

rd

r
¼ �0� �

�0 1� �2
0

� � ; ð27Þ

which shows that �0 > �: the gas converges toward the disk
plane. Ulrich assumed that the disk had negligible mass, so that
m ¼ m� in equation (25). In our case, m varies smoothly from
m�d to m� as r shrinks from being much greater than rd to being
much less than rd . This variation in the mass acting on the in-
falling gas leads to small, unknown deviations from the Ulrich
solution. In view of the necessarily approximate nature of the so-
lution and the fact thatm�d andm� differ by only a factor of 4/3 in
the fiducial case, we set m ¼ m�d in applying equation (25).

The density factor  depends on both the current direction co-
sine, �, and the initial one, �0, with the two being related by the

cubic equation (27). In our analysis, it is convenient to have an
approximation for inwhich the dependence on�0 is eliminated:

 ’ 2

1þmax � 2=3; 1� 
ð Þ

� �1=2

;
1

0:5 
 � 1þ 3 
 � 1j jð Þ þ 3�2=3min 1; 
ð Þ
; ð28Þ

where 
 � rd/r. This is exact for all r at � ¼ 0, where� ¼ �0 ¼ 1,
and at � ¼ �/2, in the plane of the disk. It is also exact at r ¼ rd
for all �. For r < rd it is accurate to better than 20%; for r > rd, it
is accurate to within a factor of 2. To simplify our results, we ap-
proximate this further for r P 0:5rd and take

 � 2

1þ �

� �1=2
r

2rd
r P 0:5rdð Þ: ð29Þ

This approximation is quite accurate at � ¼ 2
3
(better than 20%

for r � rd), but it deteriorates away from there, underestimating
the density by a factor of �2 in the plane for r ¼ 1

2 rd (the accu-
racy improves as r decreases). Nonetheless, it suffices to give an
analytic estimate for the behavior of the H ii region.

5.1.1. Early Evolution of the H ii Region

H ii regions are bounded by ionization fronts. Ionization fronts
that move faster than about 2ci with respect to the neutral gas,
where ci is the isothermal sound speed of the ionized gas, are
termed ‘‘R type’’; such fronts have little dynamical effect (Spitzer
1978). However, if the velocity of the front slows below 2ci, a
shock forms in front of the ionization front and the velocity of the
front into the shocked gas falls to ’c2n /2ci, where cnTci is the
isothermal sound speed of the shocked neutral gas; such ioniza-
tion fronts are termed ‘‘D type.’’ When the H ii region first forms,
it is embedded in gas falling inwardwith a velocity vA3 2ci. As a
result, the ionization front is initially R type, and the radius of the
H ii region, rH ii, is determined by ionization balance.

Since the density of the infalling gas depends on the angle �
relative to the axis of rotation, rH ii depends on angle also.We de-
termine this radius in the sector approximation, in which ioni-
zations balance recombinations in each element of solid angle:

dS

d�
¼ S

4�
¼
Z rH ii

r�

r 2� 2ð Þnenp dr; ð30Þ

where S is the rate of emission of ionizing photons and �(2) ’
2:6 ; 10�13T�0:8

4 cm3 s�1 is the recombination rate to the excited
states of ionized hydrogen. In writing equation (30), we have
made three approximations. First, we have assumed that the rate
of emission of ionizing photons is much greater than the rate of
accretion of hydrogen atoms so that ionizations and recombina-
tions are very nearly in balance (note that advection of neutral
H into the H ii region is allowed for in the numerical models). For
a mass accretion rate of 10�3M� yr�1 the hydrogen accretion rate
is about 3 ; 1046 s�1. The mass at which the ionizing photon lu-
minosity exceeds this value depends on fKep; for the fiducial case
of fKep ¼ 0:5, this occurs at about m� ’ 20M�. Second, we have
assumed that in the outer parts of the H ii region, where the helium
is singly ionized for stellar temperatures�105 K, each recombina-
tion of He+ results in one H ionization, whereas it actually results
in about 2

3
of an ionization at the relevant densities (>104 cm�3;

Osterbrock 1989, pp. 23Y29). In fact, the abundance of He is suf-
ficiently small (�0.08) that we henceforth neglect it in our an-
alytic estimates (however, we do not neglect its contribution to
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the mass density, nor is it neglected in the numerical calcula-
tions). Finally, we have ignored photoionization from the n ¼ 2
level of H, so that our calculation somewhat underestimates the
size of the ionized region, although this is not very important at
the densities resulting from realistic values of fKep.

With the density distribution given by equation (25), equa-
tion (30) becomes

S ¼ � 2ð Þṁ2
�d I

8��2
HGm�d

� Scr I ; ð31Þ

where �H ¼ 2:20 ; 10�24 g is the mass per hydrogen and

I �
Z rH ii

r�

 2 �; rð Þ
r

dr: ð32Þ

We have setm ¼ m�d in equation (25) in accord with the discus-
sion following equation (27). Equation (31) reduces to that of
Omukai & Inutsuka (2002) for  ¼ ln (rH ii/r�) (and if �H is re-
placed bymp, ṁ�d by ṁ�, and m�d bym�). As shown by Omukai
& Inutsuka (2002), an H ii region in an r�3/2 density profile is
confined to the vicinity of the star for S P Scr and expands to ex-
ponentially large distances as S increases above Scr. Numerically,
we have

Scr ¼ 3:07 ; 1050 2:5

T4

� �0:8 ṁ2
�d;�3

m�d;2
photons s�1

! 2:36 ; 1051
2:5

T4

� �0:8
K 030=7

m
13=7
�;2

photons s�1: ð33Þ

By comparison, the ionizing luminosity of a Population III star
is

S ’ 7:9 ; 1049�Sm
1:5
�;2 photons s�1; ð34Þ

which for �S ¼ 1 is a fit to Schaerer’s (2002) results for the ion-
izing luminosity of main-sequence primordial stars; the fit is ac-
curate to within about 5% for 60 M�Pm�P 300 M�. As shown
in Paper I, the ionizing luminosity can be less than the main-
sequence value (�S < 1) when the star is still contracting toward
the main sequence, and it can be greater when it is accreting while
on the main sequence; for the case illustrated in Paper I, �S P 2. If
the accretion rate is not reduced by feedback effects, S would not
exceed Scr until m�> 275K 014/47 M� for T4 ¼ 2:5. However, as
seen below, rotation makes the factor I small and allows the H ii

region to expand until it is almost as large as the disk even when
the mass is less than this.

At early times we have rH iiTrd so that we can use the
approximation given by equation (29) for the density. As a result,
we find

S

Scr
¼ I ’ 1

4 1þ �ð Þ
rH ii

rd

� �2
: ð35Þ

With equations (33) and (34), we then obtain

rH ii

rd
¼ 1:01 1þ �ð Þ1=2 1þ fdð Þ1=2�1=2S

T4

2:5

� �0:4 m1:25
�;2

ṁ�d;�3

ð36Þ

! 0:37 1þ �ð Þ1=2�1=2S

T4

2:5

� �0:4m47=28
�;2

K 015=7 : ð37Þ

Recall that ‘‘!’’ indicates that we have taken m�d ¼ (4/3)m�.
We see that for m�;2 P 1we have rH ii P 0:5rd , so that our approx-
imation for the density, equation (29), is reasonably accurate at
early times. The radius of the H ii region is then

rH ii ¼ 5:40 ; 1015 1þ �ð Þ1=2�1=2S

T4

2:5

� �0:4
fKep

0:5

� �2

;
1þ fdð Þ31=14m3

�;2

K 025=7 cm m�;2 P 1
� �

; ð38Þ

where we have set the star formation efficiencies ��d and �̄�d equal
to unity andwhere we havemade the approximation 83/28 ’ 3 in
the exponent of m�;2. As the stellar mass increases above 100M�,
the approximation for the density, equation (29), increasingly over-
estimates the density except near the equator; as a result, the radius
of the H ii region, rH ii, becomes larger than the value given in
equation (38) except near the plane of the disk, where the high
density traps the H ii region. As remarked above, for S > Scr,
which occurs form�;2 > 2:75, if the accretion continues unabated
by feedback, rH ii increases exponentially with S (Omukai &
Inutsuka 2002).

5.1.2. Later Evolution of the H ii Region: Suppression of Accretion

According to equation (38), the radius of the H ii region ex-
pands on the protostellar evolution timescale �104 yr, which is
far longer than the dynamical time rH ii /2ci � 102 yr. As a result,
the velocity of the ionization front relative to the infalling gas is
very nearly equal to the free-fall velocity. The first phase of evo-
lution of the H ii region ends when it expands to the point that the
radius becomes comparable to the gravitational radius,

rg�
G�Eddm�d

c2i
¼ 3:92 ; 1015�Edd

2:5

T4

� �
m�d;2 cm; ð39Þ

where we have taken the gravitating mass to be m�d . Here we
have allowed for the decrease in the radiation pressure due to
electron scattering through the factor

�Edd � 1� L

LEdd

; ð40Þ

where LEdd ¼ 4�Gmc/�T is the Eddington limit. In Paper I we
found that L/LEdd � 0:6Y0:8 form ¼ m� � 102 M� , which cor-
responds to �Edd ’ 0:2Y0:4. Equations (38) and (39) relate the
protostellar mass to rH ii /rg,

m�;2 ¼ 0:85
�
1=2
EddK

025=14

1þ �ð Þ1=4 1þ fdð Þ17=28�1=4S

" #

;
2:5

T4

� �0:7
0:5

fKep

� �
rH ii

rg

� �1=2
: ð41Þ

Keep in mind that this relation is valid only form�;2 P 1, so that
fKep cannot be small. This condition is satisfied insofar as the
simulations of ABN02 are representative of the angular momen-
tum of the accreting gas, since they give fKep � 0:5.
When the H ii region expands to the point that vA ¼ 2ci, a

shock front forms and the ionization front becomes D type; this
occurs at rH ii ¼ rg /2. The accretion rate through the H ii region
will begin to decrease at this point. Since the shocked neutral gas
is denser than the ionized gas in the H ii region, the accelerating
expansion of the shocked shell is subject to the Rayleigh-Taylor
instability, and as a result it is difficult to estimate by how much
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the accretion is reduced. While the shell is moving slowly, it can
fall onto the disk and accrete that way. However, once the shocked
shell is moving faster than the local free-fall velocity, it seems un-
likely that any significant further accretion can occur. To obtain an
approximate upper limit on the accretion through the H ii region,
we assume that, from a given direction, the accretion is unim-
peded until the H ii region has expanded to a radius equal to rg.
Because of the declining density distribution in the infall enve-
lope, the H ii region is expanding relatively rapidly at this stage
and so soon ionizes a large region beyond rg, which we expect
leads to a substantial reduction in accretion rate from the affected
directions. This approximation needs to be checked with multi-
dimensional radiation hydrodynamical simulations. It is impor-
tant to bear in mind that this suppression of the accretion occurs
only in the ionized gas. Gas in the shadow of the accretion disk
around the star can continue to accrete, as discussed below.

In Figure 4 we show the geometry of the H ii region near the
point of polar breakout of the ionized gas beyond rg. In this cal-
culation the protostellar evolution has been followed as described
in Paper I, but now including the effects of a reduction in accretion
rate once the H ii region breaks out beyond rg. This has only just
started to occur at the point of the evolution shown in the figure.
We have assumed that there is negligible reduction in the accretion
rate because of the Ly� radiation feedback since we expect its ef-
fects to be limited to relatively small angles around the polar axis.
The extent of the H ii region is calculated using the sector approx-
imation using the density distribution model of Ulrich (1976) as
described above. We include the effect of electron scattering, but
not force due to photoionization, which is discussed below. The
effect of radiation pressure due to photoionization is strongest for
purely radial infall, so its neglect is not critical for the models pre-
sented here. We do allow for advection of neutrals into the H ii

region, although they are not very important by the time the pro-
tostar is �100M�. A temperature of 2:5 ; 104 Kwas adopted for

the ionized gas, which affects the value of rg. Note that in Figure 4
we have assumed an infinitely thin accretion disk. The polar and
equatorial breakout conditions are shown as a function of fKep in
Figure 5. Once the protostar has reached the masses indicated by
the ‘‘Equatorial’’ line in this figure, we do not expect accretion to
be able to proceed from directions that have a direct line of sight
to the protostar, i.e., those directions that are not shielded by the
accretion disk. Thus, in most cases we do not expect H ii region
breakout to set the final mass of the star, but rather to cause a de-
crease in accretion efficiency that starts to become important at
about 50M� in the fiducial case. The actual reduction in accretion
efficiency depends on the thickness of the accretion disk, to be
discussed below (x 6).

We can compare the analytic prediction for H ii region break-
out (eq. [41]) with our numerical calculation, which for the fidu-
cialmodel ( fKep ¼ 0:5,K 0 ¼ 1, T4 ¼ 2:5, fd ¼ 1

3
) finds breakout

in the polar direction at a mass of 45.3M�. At this point the total
H-ionizing luminosity is S49 ¼ 2:78 so that�S ¼ 1:15 and the bo-
lometric luminosity is 5:95 ; 105 L� so that �Edd ¼ 0:59. With
these values, the analytic estimate for the mass at which polar
(� ¼ 1) H ii region breakout (rH ii ¼ rg) occurs (eq. [41]) is
44.7 M�, in excellent agreement with the numerical value. In
Figure 5 we see that the mass at which the H ii region breaks out
does not scale as a simple power of fKep. This is because �Edd

and �S vary with stellar mass, especially for m� P 100 M�.

5.2. Radiation Pressure due to Photoionization

Continuum radiation is dynamically coupled to the gas in the
H ii region, both through Thomson scattering and through pho-
toionization. Since the H ii region is optically thin to Thomson
scattering, it effectively reduces the force of gravity by a factor
�Edd ¼ 1� L/LEdd, which as discussed above is �0.2Y0.4 for

Fig. 4.—Geometry of the H ii region (shaded ) assuming the sector approx-
imation (see text) during the breakout phase for the fiducial model with K 0 ¼ 1
and fKep ¼ 0:5. The protostar is at (0, 0) and the disk is in the z ¼ 0 plane. At this
stage, the star hasm� ¼ 45M� and a total ionizing photon luminosity of S49; tot ¼
2:78, of which S49; acc ¼ 0:50 comes from accretion. The H ii region has just re-
cently expanded beyond rg (at 94 AU) in the polar direction. The geometry of
several accretion streamlines is shown by the dashed lines. [See the electronic edi-
tion of the Journal for a color version of this figure.]

Fig. 5.—Mass scales of H ii region breakout as a function of the rotation
parameter fKep. The lower dashed line marked ‘‘Polar’’ shows the mass scale of
the protostar at which the H ii region reaches rg ( based on star plus disk mass)
along the rotation axis of the protostar. The upper dashed linemarked ‘‘Equatorial’’
shows the mass scale of the protostar when the H ii region reaches rg in a direction
just above the disk plane (0:9�/2 from the rotation axis). Note that this condition for
equatorial H ii region breakout ignores the effects of reduced accretion rates from
prior polar H ii region breakout, although such effects are accounted for in the full
feedback+evolution models presented below. [See the electronic edition of the
Journal for a color version of this figure.]
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m�;2 � 1. At distances large enough that the mass acting on the
gas ism�d , L/LEdd is reduced by a factor 1þ fd. Keep in mind that
the decrease in the effective gravity due to electron scattering re-
duces the accretion rate of ionized gas only; it does not affect the
accretion of neutral gas outside the H ii region onto the disk.

Every photoionization results in a transfer of momentum h
i/c
to the gas, where h
i is the mean energy of the photons that ion-
ize the gas. The importance of radiation pressure associated with
photoionization has long been appreciated in studies of active
galactic nuclei (AGNs) and X-ray sources (e.g., Tarter &McKee
1973); Haehnelt (1995) pointed out its importance in the forma-
tion of the first galaxies, andOmukai& Inutsuka (2002) discussed
its role in the formation of the first stars. They showed that, under
the assumption of perfect spherical symmetry, radiation pressure
would have the counterintuitive effect of reducing the size of the
H ii region, thereby eliminating any feedback effect on the growth
of the protostar. Since photoionizations are balanced by recombi-
nations, the radiative force is given by�(2)n2

p (h
i/c). Generalizing
their treatment to include electron scattering, we find that this ra-
diative force balances the effective gravity at a critical density ncr
given by

� 2ð Þn2
cr

h
i
c

� �
¼ �Edd�crGm�d

r 2
; ð42Þ

so that

ncr ¼ 2:15 ; 106�Edd

T4

2:5

� �0:8
m�d;2

r 216
cm�3; ð43Þ

where we have assumed a typical ionizing photon energy of
1:5 ; 13:6 eV. For gas accreting in free fall (i.e., it enters the
H ii region at a velocity that is unaffected by radiation pressure),
this corresponds to a critical radius

rcr ¼ 2:36 ; 1014�2
Edd

T4

2:5

� �1:6 m3
�d;2

ṁ2
�d;�3

cm ð44Þ

! 5:49 ; 1013�2
Edd

T4

2:5

� �1:6 m27=7
�;2

K 030=7 cm: ð45Þ

Even for �Edd ¼ 1, this radius is typically a few AU in size, and
the infall velocity is highly supersonic relative to the sound
speed of the ionized gas. Omukai & Inutsuka (2002) showed
that as the ionizing flux from the protostar increased, the radius
of the H ii region would increase until it approached rcr. As it
did so, the inflow velocity would drop, the density would rise,
and the accreting gas would be able to absorb a larger number of
ionizing photons. In fact, the accretion flow inside rcr could ab-
sorbmore ionizing photons than any star could emit. As a result,
the H ii region would remain trapped at small radii and the gas
would continue to accrete supersonically onto the star. It is not
clear that this flow would be stable in three dimensions, how-
ever, since a fluctuation that placed an element of ionized gas at
r > rcr would result in a net outward force on the gas.

Angular momentum in the accreting gas changes this picture
completely: the density of the infalling gas is reduced inside the
disk radius rd (eq. [16]), which is generally much larger than rcr:

rd

rcr
¼ 509

K 020=7

�2
Edd

� �
T4

2:5

� ��1:6
fKep

0:5

� �2
m

�18=7
�;2 : ð46Þ

For typical masses m� � 102 M� , the disk radius is larger than
rcr only for very low rotation, fKep P 0:02�Edd. Repeating the

analysis that led to equation (45) with the density appropriate for
rotating infall (eqs. [25] and [29]), we find

rcr ’ 22=3 1þ �

2

� �1=3
r
1=3
cr; spherical r

2=3
d ð47Þ

’ 5:5 ; 1015�2=3
Edd

1þ �

2

� �1=3
fKep

0:5

� �4=3

;
T4

2:5

� �0:53 m
15=7
�;2

K 050=21 cm; ð48Þ

where rcr; spherical is the critical radius for spherical infall (eq. [45]).
This result shows that in a rotating infall, the critical radius beyond
which radiation pressure dominates the effective gravity is inter-
mediate between the critical radius in the spherical case and the
disk radius. Comparison with equation (39) shows that in the ro-
tating case, the critical radius is comparable to the gravitational
radius, where pressure effects can drive the outward expansion of
the H ii region. It therefore appears that for typical values of the
rotation, radiation pressure due to photoionization cannot result
in the confinement of the H ii region; correspondingly, feedback
by the H ii region cannot be curtailed by this effect.

6. DISK SHADOWING

An optically thick accretion disk is able to shield part of the
outer accretion flow from direct protostellar feedback. In order to
determine how effective this shielding is, wemust know the thick-
ness of the accretion disk. With a few significant exceptions (e.g.,
Paczyński &Bisnovati-Kogan 1981;Meyer &Meyer-Hofmeister
1982; D’Alessio et al. 1998), almost all the work on accretion
disks has gone into determining their radial structure; the vertical
structure is generally integrated over. Here we estimate the thick-
ness of the disk under the assumption that it is geometrically thin
but very optically thick. We neglect convective and turbulent
transport in the disk, which D’Alessio et al. (1998) found to be
small for the cases they considered. We focus on the inner parts
of the disk, where self-gravity is unimportant (Tan & Blackman
2004). For simplicity, we neglect heating of the disk by irradia-
tion from the central source; our estimate of the disk thickness is
thus a lower limit to the true thickness.
The radial structure of the disk is governed by the equations

of energy conservation and of angular momentum conservation.
Energy conservation gives the emergent flux as (Paper I)

F0 ¼
ṁ�

4�$

@

@$

5

3
�̄th þ �̄I

� �
þ 3Gm�ṁ� f

8�$ 3
ð49Þ

� �I
3Gm�ṁ� f

8�$3

� �
: ð50Þ

Here

f � 1� $0

$

� 	1=2
ð51Þ

is the factor that embodies the boundary condition that angular
momentum cannot be transferred across a surface on which the
angular velocity has no gradient;$0 is the cylindrical radius at
which @�/@$ vanishes, which we take to be equal to the stellar
radius. The dimensionless factor �I describes the advection of
thermal and internal energy in the disk and is generally less than
unity.
To evaluate the angular momentum transfer in the disk, we

adopt the �-disk model of Shakura & Sunyaev (1973), in which
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the transverse stress in the disk is proportional to the pressure,
w$� ¼ �(3/2)�P (we have included the factor 3/2 to conform
with convention; Frank et al. 1995). The equation describing an-
gular momentum transport is then

ṁ�� f ¼ 6��

Z zs

0

P dz; ð52Þ

where zs is the height of the surface of the disk.
The vertical structure of the disk is governed by three equations.

First is the first moment of the radiative transfer equation,

@Prad

@ z
¼ � ��FF

c
; ð53Þ

where �F is the flux-weighted mean opacity per unit mass and
F(z) is the radiative flux. We assume that the effective optical
depth for true absorption, 	� ¼ (	abs	scatt)

1/2, is much greater than
unity so that the gas is approximately in LTE (Shakura& Sunyaev
1973; Artemova et al. 1996). Then Prad ’ 1

3
aT 4 and �F ’ �R,

where �R is the Rosseland mean opacity per unit mass, so that
equation (53) reduces to the equation of radiative diffusion,

@T

@ z
¼ � 3�R�F

16�T 3
: ð54Þ

The second equation describes the growth of the flux due to
viscous dissipation,

@F

@ z
¼ ��Iw$�$

@�

@$
¼ 9

4
�I��P ð55Þ

(Shu 1992). We have included the factor �I to allow for the re-
duction in the flux by the advection of internal energy. In addition
to the factor (3/2)�I , equation (55) differs from the expression
adopted by Shakura & Sunyaev (1973) in that it has @F/@z / P
rather than/�. One can show, however, that the height of the disk
is very insensitive to this change. Integration of equation (55) to-
gether with equation (52) leads directly to the energy equation (50).

Finally, we have the equation of hydrostatic equilibrium,

@P

@ z
¼ � �Gm�z

$3
; ð56Þ

where the pressure P includes both gas pressure and radiation
pressure,

P ¼ Pg þ Prad ¼
�kT

�
þ 4�T 4

3c
: ð57Þ

For a primordial gas with a helium fraction of 0.079, the mean
mass per particle is

� ’ 1:32mH

1:08þ xe
¼ 2:20 ; 10�24

1:08þ xe
g; ð58Þ

where xe � ne/nH is the ionization fraction relative to hydrogen;
for a fully ionized primordial gas, � ¼ 0:98 ; 10�24 g. With the
aid of equation (54), the equation of hydrostatic equilibrium
becomes

@�

@z
¼ kT

�

� ��1

�Gm��z

$3
þ ��RF

c
1þ 3kc�

16��T 3

� �� �
: ð59Þ

This is a two-point boundary value problem, in which F ¼
F0 at the surface of the disk and F ¼ 0 at the midplane. We as-
sume that the disk is very opaque, so that we can neglect the flux
generated above the photosphere; we can therefore apply the
surface boundary conditions at the photosphere, located at zph.
Since we have assumed that the disk is opaque and are neglect-
ing irradiation, the surface temperature is small compared to the
central temperature; as a result, the scale height near the surface
is small and zph ’ zs. The temperature at the photosphere is the
effective temperature, which is related to the emergent flux by
F0 ¼ �T 4

eA.
We have addressed this problem both analytically and numer-

ically. The case of pure radiation pressure is trivial to treat ana-
lytically, since hydrostatic equilibrium gives

�RF

c
¼ Gm�z

$ 3
; ð60Þ

which is true throughout the disk. At the surface of the disk (which
is denoted zsr for a radiation-pressure supported disk) this gives

zsr ¼
�R; s F0$

3

Gm�c
; ð61Þ

where �R; s is the opacity at the disk surface.With the aid of equa-
tion (50), this becomes

zsr ¼
3�I�R; s
8�c

� �
ṁ� f ð62Þ

¼ 8:77 ; 1010
�R; s
�T

� �
�I ṁ�;�3 f cm; ð63Þ

where we assume that ṁ� ¼ ṁ�d /(1þ fd) ! 3
4
ṁ�d and where

�T ¼ (ne/�)�T ¼ 0:35 g cm�2 is the opacity due to electron scat-
tering for fully ionized primordial gas. Note that the thickness of a
radiation-supported disk depends only weakly on radius through
the factor f ¼ 1� ($0/$)1/2 and possibly through a variation in
the opacity at the surface.

The case of a disk supported by gas pressure is more compli-
cated and is discussed in Appendix E for the case of constant
opacity. There we show that the height of such a disk is

zsg ’ 1:21 ; 1010
�I �̄R
��2�T

� �1=10 $

R�

� �21=20 ṁ�;�3 f
� �1=5

m
7=20
�;2

cm;

ð64Þ

where we have normalized � to a typical value of 0.01. In the
above expression, we have replaced the constant opacity in the
derivation in Appendix E with a suitable mean value. Observe
that the height of a disk supported by gas pressure scales almost
linearly with$, so that the aspect ratio is approximately constant.

Numerical solution of the structure equations shows that
when both radiation pressure and gas pressure are important, the
approximation

zs ’ z5=4sr þ z5=4sg

� 	4=5
ð65Þ

is accurate to better than 10% over the range 10�4 P �P 10�2,
�R ’ �T, 10

4 KP TeA P 106 K, and 0:01P zsr/zsg P 10, pro-
vided that the opacity is constant.

We have also solved the equations for the vertical structure of
the disk numerically with a realistic opacity variation with density
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and temperature ( Iglesias & Rogers 1996). We follow the disk
structure during the course of the protostellar evolution (i.e., as
m�, ṁ�, and r� evolve). We adopt an �-viscosity parameter of
0.01, typical of values associated with the magnetorotational
instability (Balbus & Hawley 1998; Tan & Blackman 2004),
although the disk thickness is not very sensitive to this choice.
An example of the vertical disk structure is shown in Figure 6
for a location at 10R� around a 100M� main-sequence star, ac-
creting at 2:4 ; 10�3 M� yr�1, i.e., the fiducial rate from aK 0 ¼ 1
core with no reduction due to feedback. The numerical value of
zs/$ is 0.33. This compares with an analytic estimate based on
equation (65) of 0.31, where we adopted �R; s ¼ 0:75 cm2 g�1

and �̄R ¼ 0:6 cm2 g�1 (Fig. 6).
The radial variation in the density scale height and disk sur-

face height for the above model is shown in Figure 7. Note that
zs/$ is approximately constant with$. For simplicity, in our nu-
merical models we evaluate zs/$ at a radial location $ ¼ 10R�
and use this to evaluate the fraction of the sky shielded by the
disk. In the example shown in Figures 6 and 7, zs/$ ¼ 0:33 at
this location, and the fraction of the sky shadowed by this disk
photosphere is fsh ¼ 0:31. If the matter at infinity were spheri-
cally distributed in the envelope, then this would be the approx-
imate accretion efficiency once the H ii region had expanded to
large distances (and assuming that all material in the shadow of
the disk remained neutral). Note that the disk model in the nu-
merical example given above is somewhat thicker than would be
present around a 100M� star accreting from a K 0 ¼ 1 core, since
the accretion rate would have been reduced by feedback. Our nu-
merical models of the growth of the protostar account for such
effects self-consistently.

7. DISK PHOTOEVAPORATION

As we have seen, in the presence of rotation the various feed-
back mechanisms discussed above will first disrupt infall in the
polar direction and may leave behind much of the material in the
equatorial plane. Material close to the plane will be shielded from
the feedback effects by the formation of an accretion disk. How-

ever, this gas is subject to disk photoevaporation, and accretion
will cease when the photoevaporation rate exceeds the accretion
rate onto the star-disk system.
To estimate when this criterion is reached, we apply the model

of Hollenbach et al. (1994) to estimate the rate of photoevapo-
ration from the disk. This rate is calculated assuming a steady
disk with no infall from above or below. The diffuse ionizing flux,
reprocessed through the flared atmosphere of the disk, illuminates
and ionizes material near and beyond rg. Hollenbach et al. (1994)
considered the possibility that the disk would be flattened due to a
stellar wind, but we use the results of their weak wind case. The
photoevaporation rate is calculated via

ṁevap ¼ 2�H v

Z 1

rg

2�n0 rð Þr dr; ð66Þ

where the flow velocity, v, is set equal to the ionized gas sound
speed, ci ¼ 18:4(T4 /2:5)1/2 km s�1, and n0 is the density of ion-
ized gas at the base of the ionized disk atmosphere. Their analysis
gives

ṁevap ¼ 4:1 ; 10�5S
1=2
49 T 0:4

4 m
1=2
�d;2 M� yr�1: ð67Þ

As they acknowledge, this result is quite approximate, and a nu-
merical study of this problem would be worthwhile. For primor-
dial stars with an ionizing luminosity given by equation (34), the
photoevaporation rate becomes

ṁevap ¼ 1:70 ; 10�4�
1=2
S 1þ fdð Þ1=2 T4

2:5

� �0:4
m

5=4
�;2 M� yr�1:

ð68Þ

There are two corrections that could be applied to this result.
First, Begelman et al. (1983) and Woods et al. (1996) showed
that for analogous winds fromAGN disks, the flow can start from
radii well inside rg. Numerically integrating the expression given
by Woods et al. (1996), we find that mass loss inside rg increases

Fig. 6.—Vertical structure of the accretion disk at r ¼ 10r� ’ 43R� form� ¼
100 M�, K

0 ¼ 1, fKep ¼ 0:5, and no reduction in accretion efficiency due to
feedback.

Fig. 7.—Radial dependence of the aspect ratio of the disk surface, zs/$, and
disk density vertical scale height, h/$, form� ¼ 100M�,K

0 ¼ 1, fKep ¼ 0:5, and
no reduction in accretion efficiency due to feedback.
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the total mass loss by a factor of 1.5. On the other hand, radiation
pressure due to electron scattering reduces the effective mass by a
factor �Edd � 0:3 (eq. [40]). Since the mass-loss rate scales as the
square root of the gravitational mass, this reduction approximately
cancels the increase due tomass loss from the inner disk.We there-
fore adopt the Hollenbach et al. (1994) estimate of ṁevap for our
analytic and numerical estimates.

Accretion onto the star will cease shortly after the photoevap-
oration rate exceeds the accretion rate onto the star-disk system,
which is given by equation (9). From equation (68), we find that
the resulting maximum stellar mass is

maxm� f ;2 ¼ 6:3
�
28=47
�d �̄

12=47
�d �

14=47
S K 060=47

1þ fdð Þ26=47
2:5

T4

� �0:24
: ð69Þ

Recall that ��d is the instantaneous star formation efficiency, i.e.,
the ratio of the accretion rate onto the star to the rate that would
have occurred in the absence of feedback. In the present case,
this ratio is just the shadowing factor, fsh, introduced in the last
section. In the numerical solution described below, we keep track
of ��d as a function of time; for the analytic case, we make the
simple approximation that the shadowing sets in when the stellar
mass reachesm1, so that ��d ¼ 1 until the mass of the central star
reaches m1 and ��d ¼ fsh thereafter. It is then straightforward to
show that

�̄�d ¼
fsh

1� 1� fshð Þ m1=m�dð Þ ; ð70Þ

provided thatm�d � m1. Note that the average efficiency �̄�d ¼ 1
at the onset of shadowing (m�d ¼ m1) and that �̄�d ! fsh at late
times m�d 3 m1. Normalizing fsh to a typical value of 0.2 from
the results of x 7 and allowing for smaller accretion rates due to
feedback, we find

maxm� f ;2 ¼ 1:45K 060=47 2:5

T4

� �0:24
fsh

0:2

� �28=47 �̄�d
0:25

� �12=47
;

ð71Þ

where we have set the ionizing luminosity factor �S ¼ 1 and the
disk mass fraction fd ¼ 1

3
; we have normalized �̄�d to a value of

0.25, which is approximately correct for K 0 ¼ 1 and for m1 ’
50M� as found in x 5.1.2 and m�d ¼ 200M�. This analytic es-
timate therefore suggests that for the fiducial case (K 0 ¼ 1) the
mass of a first-generation star should be of order 140 M�. We
now confirm this with more accurate numerical integrations.

We evaluate the photoevaporative mass-loss rate in our nu-
merical model with feedback (Fig. 8). The accretion rate is re-
duced as the H ii region, with T ¼ 2:5 ; 104 K, expands to rg
and beyond, although accretion is assumed to continue from di-
rections shielded by the photosphere of the accretion disk. The
disk and protostellar structure and feedback are calculated self-
consistently given this evolution in the accretion rate. Beyond
about 45 M� the accretion efficiency starts to be reduced below
unity. By about 137 M� the evaporative mass-loss rate has be-
come greater than the accretion rate and we then expect very lim-
ited growth of the protostar. We identify this mass scale as our
fiducial estimate for the initial mass of the first stars. At this stage

Fig. 8.—Feedback-limited accretion: fiducial case. The evolution of the ac-
cretion rate vs. protostellar mass is shown for the fiducial model ( fKep ¼ 0:5,
K 0 ¼ 1, Ti ¼ 25;000 K) in the cases of ‘‘no feedback’’ and ‘‘with feedback.’’ In
the latter, the accretion efficiency is reduced as the H ii region expands to rg and
beyond. However, accretion is allowed to continue from directions that are shad-
owed by the disk photosphere. The disk structure and protostellar structure and
feedback are calculated self-consistently given the evolution in ṁ�. Also shown
is the photoevaporative mass-loss rate, ṁevap, which starts once the H ii region
has broken out in the equatorial direction and grows as the ionizing flux in-
creases. We see that this mass-loss rate becomes greater than the accretion rate
at m� ’ 137 M�, and we identify this mass scale as our best estimate of initial
mass scale of the first stars. [See the electronic edition of the Journal for a color
version of this figure.]

Fig. 9.—Feedback-limited accretion: effect of ionized gas temperature and
accretion rate. The fiducial model ( fKep ¼ 0:5, K 0 ¼ 1, Ti;4 ¼ 2:5 K) shown in
Fig. 8 is compared to models in which one parameter has been changed: a model
with Ti;4 ¼ 5 and two models with K 0 ¼ 0:5 and 2. The dashed lines show the
accretion rate to the star, ṁ�, and the solid lines show the photoevaporative mass-
loss rate, ṁevap. The change in temperature causes relatively minor differences,
while the change in K 0, equivalent to a change in ṁ� of factors of 4.4 above and
below the fiducial level, leads to roughly a factor of 2.4 change in the final stellar
mass. Note that the increase in ṁ� for theK

0 ¼ 0:5 case at around 35M� is due to
a thickening of the inner accretion disk as the star contracts down to its main-
sequence configuration and assumes that material at large distances still remains
to be accreted in the enlarged shadowed region. [See the electronic edition of the
Journal for a color version of this figure.]
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fsh ’ 0:19 and �S ¼ 1:37.5 This estimate of themass at which ac-
cretion ends agreeswell with the analytic estimate of equation (71).

We investigate the sensitivity of this result to the ionized gas
temperature by setting this equal to 50,000K (Fig. 9). This causes
the H ii region to break out sooner and the disk photoevaporative
mass-loss rate to be higher. However, with the other parameters
unchanged (K 0 ¼ 1, fKep ¼ 0:5), this has only a modest effect on
the final mass, reducing it from 137 to 120 M�.

We also consider the effect of changing the entropy param-
eter of the initial core by factors of 2 to higher and lower values
(K 0 ¼ 0:5, 2) (Fig. 9). This corresponds to a change in accretion
rate of factors of 4.4 since ṁ� / (K 0 )15/7. H ii region breakout is
accelerated/delayed by about a factor of 2 in protostellar mass
by these changes. The final stellar mass set by disk photoevap-
oration shows a slightly broader range of factors of 2.4 smaller/
greater than the fiducial value. This is consistent with equa-
tion (69), which would predict a change of a factor of 2.4 if the
disk thickness was constant and accretion ionizing luminosity
negligible.

Finally, we explore the effect of changing the core rotation.
Figure 10 shows models with fKep ¼ 0:0625, 0.125, 0.25, 0.5,
and 0.75 for K 0 ¼ 1 and Ti ¼ 25;000 K. Cores with higher rota-
tion rates have lower densities in the infall envelope near the star
so the H ii region can break out more easily. However, for rota-
tion parameters fKep k 0:25 thismakes little difference to the final
mass, which is set by the balance between (inner) disk-shadowed

accretion and photoevaporative mass loss. For smaller rotation
parameters ( fKep P 0:125) the process of H ii region breakout
does play an important role in setting the mass scale at which the
accretion rate is truncated to be smaller than the photoevapora-
tive mass-loss rate. However, given the results of numerical sim-
ulations of primordial core formation (O’Shea &Norman 2007),
it appears that these low values of rotation are very rare.

8. CONCLUSIONS

Recent numerical studies have indicated that the initial condi-
tions for primordial star formation are dense, massive gas cores
in approximate hydrostatic and virial equilibrium. These physical
properties are set mostly by the microphysics of H2 cooling and
not by the initial cosmological density perturbations.
We have described the rate of collapse of these gas cores as a

function of the entropy parameter of the gas, K, and the amount
of mass that already collapsed. This accretion rate is very large,
so that once an optically thick protostellar core forms, the star
grows very quickly.
We have developed a simplified method for modeling proto-

stellar evolution and applied the appropriate accretion rate for
primordial protostars. Themethod allows for the treatment of ac-
cretion of gas with angular momentum, so that part of the accre-
tion occurs via a disk. Using a realistic degree of rotation for the
initial gas core, we find that, after the protostar has grown to about
a solarmass, essentially all of the accretion flow is via the disk and
conditions at the protostar are optically thin, in contrast to the
spherical case. This means that the radiation field that the accre-
tion envelope is exposed to is significantly hotter so that ioniza-
tion and FUV radiation feedback can become important.
We considered the impact of the protostellar feedback on the

infalling envelope. Again rotation is important because it mod-
ifies the density distribution in the vicinity of the star. First, we
discussed the effects of photodissociation of H2, the primary cool-
ant. We showed that this does not stop accretion if the protostar
has already begun to form, but it can suppress star formation in the
vicinity (cf. Glover &Brand 2001). Next, we considered radiation
pressure feedback due to resonant scattering of FUV radiation in
the Ly� damping wings. As a result of the high column densities
of neutral gas around the H ii region, this radiation is trapped and
the pressure amplified by large factors. This radiation pressure be-
comes larger than the ram pressure of the infalling gas in the polar
directions for stellar masses of order 20 M�. However, once the
infall is reversed at the poles, the Ly� photons can escape and the
accretion in other directions proceeds unimpeded. We then con-
sidered the growth of the ionized region. Once the expansion ve-
locity of this region exceeds the free-fall velocity, the accretion is
halted. This typically occurred at about 50Y100 M�, although it
took much larger masses for cases with little angular momentum.
The ionized gas is confined to the region above the disk, however,
so accretion can continue in the shadow of the disk. Evaluating
this, we found that shadowing permitted accretion to continue at
a rate of about 20%Y30% of that in the absence of the H ii region.
Allowing for photoevaporation of the disk, we found that the final
stellar mass is about 140 M� in the fiducial case.
Table 1 summarizes how the mass scales set by protostellar

feedback depend on model parameters. The final mass of a Pop-
ulation III.1 star depends fairly sensitively on the entropy param-
eter of the accreting gas [i.e., approximately as (K 0 )1:3], which in
turn determines the overall accretion rate to the star+disk, but
not very much on core rotation (for fKep k 0:25) or ionized gas
temperature (Ti). At very low values of core rotation, H ii region
breakout is delayed until high protostellar masses, at which

5 Note that only about 10% of this excess H-ionizing photon production rate
is due to accretion. The remainder is due to our assumption that the spectrum of
the protostar can be approximated as a blackbody, rather than the more detailed
stellar atmosphere models of Schaerer (2002).

Fig. 10.—Feedback-limited accretion: effect of rotation. The fiducial model
( fKep ¼ 0:5, K 0 ¼ 1, Ti;4 ¼ 2:5 K) shown in Fig. 8 is compared to models in
which only the rotation parameter fKep has been changed: fKep ¼ 0:0625, 0.125,
0.25, and 0.75. Smaller rotation parameters result in higher polar gas densities in
the infall envelope and thus delayed H ii region breakout (Fig. 5). However, for
fKep k 0:25 this has relatively little effect on the final mass, which is set by disk
photoevaporation (note the convergence of the fKep ¼ 0:25, 0.5, and 0.75models).
At smaller rotation parameters the process of H ii region breakout plays an impor-
tant role in setting the mass scale at which the accretion rate is truncated to be
smaller than the photoevaporative mass-loss rate. [See the electronic edition of
the Journal for a color version of this figure.]
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point the disk photoevaporation rate soon exceeds the residual
disk-shadowed accretion rate. However, these small values of fKep
are not very likely to occur in nature.

The final masses predicted by our model overlap the range of
masses necessary to produce pair instability supernovae, 140Y
260 M� (Heger & Woosley 2002). Rotation may lower these
limits (S. Woosley 2007, private communication). The lack of
the expected nucleosynthetic signature of such supernovae in the
abundance patterns of very metal-poor halo stars (Tumlinson
et al. 2004) could indicate that such massive Population III.1
stars were relatively rare or that they tended to enrich regions
not probed by typical halo stars, perhaps the centers of larger
galactic halos. The conclusion by Scannapieco et al. (2006) that
Population III star formation should be fairly widespread in re-
gions now probed by Galactic halo stars can be reconciled with
the abundance pattern observations if most of this star forma-
tion leads to either Population III.1 stars from relatively low en-
tropy (K 0 P 1) gas cores or Population III.2 stars that also have
a mass scale below the pair instability threshold (see also the
study by Greif & Bromm 2006). Further work is required to de-
termine the range of prestellar core parameters, primarily K 0 and
fKep, exhibited in cosmological simulations, in order to predict the
frequency of pair instability supernovae.

One may ask how the feedback mechanisms we have consid-
ered relate to those that operate in contemporarymassive star forma-
tion. We note that the maximum mass attained in our fiducial
model of Population III.1 star formation is very similar to that in-
ferred observationally in local massive star clusters (e.g., Figer
2005). However, after decades of study, it remains unclear
whether the maximummass of stars forming today is set by feed-
back or instabilities in very massive stars (Larson & Starrfield

1971).Herewe have argued that themaximummass of primordial
stars is set by feedback. The primary differences in the feedback
processes then and now are as follows:

1. Dust.—In contemporary star-forming regions, dust destroys
Ly� photons, eliminating them as a significant pressure. On the
other hand, the dust couples the pressure of the UV continuum
radiation to the gas very effectively, and it remains to be deter-
mined whether this limits the final mass of the star; e.g., Yorke
& Sonnhalter (2002) find that it does, whereas Krumholz et al.
(2005a) have not found evidence that it does. Dust also affects
the evolution of H ii regions, absorbing a significant fraction of
the ionizing photons in dense H ii regions (Spitzer 1978), thereby
reducing the H ii feedback discussed in x 5 and the photoevapo-
ration in x 7.

2. Magnetic fields.—In contemporary protostars, magnetic
fields drive powerful protostellar winds that drive away a signifi-
cant fraction of the core out of which the star is forming (Matzner
& McKee 2000). The cavities created by these winds allow ra-
diation to escape from the vicinity of the protostar, significantly
reducing the radiation pressure (Krumholz et al. 2005b). Tan &
Blackman (2004) considered the influence of such outflows on
Population III.1 cores, concluding that the instantaneous effi-
ciency of accretion could be reduced by a factor of about 2 from
the no-feedback case in an isotropic core by the time the star
reached 100M�. However, these outflows would not confine ion-
izing feedback from the star at these masses; so much of the gas
that could be expelled by outflows would have already been dis-
rupted by H ii region breakout. We conclude that outflows would
have a relativelyminor effect on the results presented here and that
the masses of the first stars are mostly influenced by radiative
feedback. See Tan & McKee (2008) for further discussion.

3. Stellar temperatures and luminosities.—Primordial stars
were significantly hotter than contemporary stars, resulting in sig-
nificantly greater ionizing luminosities. In addition, the accretion
rates of primordial massive stars are much greater, at least initially,
than those of contemporary massive stars (McKee & Tan 2002,
2003). Future calculations will show whether feedback can be as
effective in setting themaximummass of contemporary stars as we
have argued that it is for primordial stars.
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APPENDIX A

LINE PROFILE WITH RAYLEIGH SCATTERING

A complication that occurs in our problem is that the column density can become so large that Rayleigh scattering is important.
From Jackson (1975, p. 802), we find that in general the scattering cross section can be expressed as

� 
ð Þ ¼ �̄�
D�1
; ðA1Þ

TABLE 1

Mass Scales of Population III.1 Protostellar Feedback

K 0 fKep

Ti
(104 K)

m�;pb
a

(M�)

m�; eb
b

(M�)

m�; evap
c

(M�)

1............................ 0.5 2.5 45.3 50.4 137d

0.75 2.5 37 41 137

0.25 2.5 68 81 143

0.125 2.5 106 170 173

0.0626 2.5 182 330e 256

0.5 5.0 35 38 120

0.25 5.0 53.0 61 125

0.5......................... 0.5 2.5 23.0 24.5 57

2.0......................... 0.5 2.5 85 87 321

a Mass scale of H ii region polar breakout.
b Mass scale of H ii region near-equatorial breakout.
c Mass scale of disk photoevaporation limited accretion.
d Fiducial model.
e Thismass is greater thanm�; evap in this case because it is calculatedwithout al-

lowing for a reduction in ṁ� during the evolution due to polar H ii region breakout.
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where

�̄ � 1

�
D

Z
� 
ð Þ d
; ðA2Þ

�1
 ¼
1

�

� �
4
 4=
 2

0

� �
�=4�ð Þ


 2
0 � 
 2

� �2 þ 4
 6=
 4
0

� �
�=4�ð Þ2

; ðA3Þ

and� is the total spontaneous transition rate out of the upper and lower levels of the transition. For the simple case of a two-level atom
(which can be used for Ly�), � ¼ A21 is the Einstein A-coefficient for the transition. Physically, �1
 is the line profile for scattering by
an individual atom; the line profile for a gas, �
 , is obtained by convolving �1
 with a Maxwellian distribution.

We now develop an accurate approximation for �1
. Defining

f 
ð Þ � 4
 4


 2
0 
0 þ 
ð Þ2

; ðA4Þ

which is unity at line center, we have

�1
 ¼
1

�

� �
�=4�ð Þ f 
ð Þ

�
 2 þ 
=
0ð Þ2 �=4�ð Þ2 f 
ð Þ
ðA5Þ

’ 1

�

� �
�=4�ð Þ f 
ð Þ

�
 2 þ �=4�ð Þ2
: ðA6Þ

The approximation of dropping the factor (
/
0)
2 f (
) in the denominator has an error of order �/(4�
0) ¼ A21/(4�
0), which is less

than 10�6 for Ly�. At low frequencies (
T
0), we have �1
 / f (
) / 
 4, the standard frequency scaling for Rayleigh scattering.
In terms of the normalized frequency shift x � �
/�
D, we have �(x) ¼ �̄�1x, where

�1x ¼
1

�

af 
ð Þ
a2 þ x2

� �
ðA7Þ

and a � �/(4��
D). For Ly�, a ¼ 6:04 ; 10�4/�vD;6, where �vD;6 � �vD/(10
6 cm s�1). The line profile for a gas, �x, is the same

as this in the line wings (x31). We conclude that the line profile in the damping wings is given by

�x ’
af 
ð Þ
�x2

x 31ð Þ: ðA8Þ

The correction to the usual expression for the damping profile is given by the factor f (
), which drops to 0.5 at 
 ¼ 0:80
0. The rela-
tion between 
 and x is given by





0
¼ 1þ x�
D


0
¼ 1þ 3:33 ; 10�5�vD;6 x; ðA9Þ

where the final expression is for Ly�.
The optical depth at a frequency labeled by x is 	x ¼ 	̄eA�x. For Ly�,

	̄eA ¼ 1:34 ; 10�13NeA=�vD;6 ðA10Þ

(Neufeld 1990), where NeA is the effective column density of H i (see eq. [20]). Thus, in the damping wings of Ly� we have

	x ¼ 2580
NeA;20 f 
ð Þ
�v2D;6 x

2

" #
x 31ð Þ: ðA11Þ

The frequency 0:8
0, where f (
) ¼ 0:5, corresponds to x ¼ 6000/�vD;6. In order to have optical depth unity at this point, the column
density must be NeA � 3 ; 1024.

APPENDIX B

ENHANCEMENT OF Ly� INTENSITY IN AN OPTICALLY THICK MEDIUM

Here we derive the increase in Ly� intensity relative to the optically thin limit due to the trapping of photons in regions of high
column densities, such as the neutral gas around the protostellar H ii region. This factor was used in x 4 for the calculation of the Ly�
radiation pressure feedback, and some of the symbols in this appendix are defined there. We first consider the case of pure scattering
and then include the effect of destruction by two-photon emission.
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B1. CASE OF PURE SCATTERING

We follow the treatment of Neufeld (1990), which extended earlier work by Harrington (1973). He considered a uniform, planar
slab of thickness 2	̄L, with the origin at the center of the slab. A planar source of photons located at 	̄s produces an incident flux Fi in
each direction; he normalized to Fi ¼ 1

2
. We assume that there is no absorption. First, consider the case in which the photons are

injected at line center (xi ¼ 0). The frequency-integrated intensity at a point 	̄ in the slab is

J 	̄ ; xi ¼ 0ð Þ
2Fi

¼ 3

2

� �1=2
4a	̄L
�

� �1=3
F 	̄ � 	̄ 0s

2	̄L

� �
� F 2	̄L � 	̄ � 	̄ 0s

2	̄L

� �� �
; ðB1Þ

where

F wð Þ ¼
ffiffiffi
6

p
� 1=3ð Þ

12�7=3

X1
n¼1

cos n�wð Þ
n4=3

: ðB2Þ

In general,

	̄ 0s � 	̄s 1� 2

3	̄L�i

� �
; ðB3Þ

where �i ¼ �(xi) is the line profile at the injection frequency; we have assumed that the photons are injected at line center, so that
�i ¼ �0 is not small.We further assume that 	̄ 0s ’ 	̄s, which is valid provided that�	̄s � 	̄L � 	̄s3 1, i.e., the source is not too near the
edge of the slab.

For the case in which the source is at the center of the slab (	̄s ¼ 0), the intensity at the center of the slab is

Js xi ¼ 0ð Þ ¼ J 0; xi ¼ 0ð Þ ¼ 24=3�1
� 	 � 1=3ð Þ
 4=3ð Þ

22=3�8=3

� �
a	̄Lð Þ1=3Fi ¼ 0:4362 a	̄Lð Þ1=3Fi; ðB4Þ

as originally found by Harrington (1973). This has the same scaling as expected from the heuristic argument given in x 4: in the ab-
sence of any scattering, the mean intensity would be J ¼ Fi/2� (assuming isotropic emission), so the mean intensity is indeed en-
hanced by a factor of order (a	̄L)

1/3.
Next, consider the case in which the source is near the edge of the slab but, in view of the smallness of the Ly�mean free path, still

at a large optical depth from the edge (	̄ 3�	̄s 31). The maximum intensity occurs at 	̄s and is proportional to

F 0ð Þ� F �	̄s
	̄L

� �
¼

ffiffiffi
6

p
� 1=3ð Þ

12�7=3

X1
n¼1

1� cos n��	̄s=	̄Lð Þ
n4=3

: ðB5Þ

Approximating the sum by

2

Z 1

0

dn n�4=3 sin2
n��	̄s
2	̄L

� �
¼ �� � 1

3

� �
cos

�

6

� �
��	̄s
	̄L

� �1=3
ðB6Þ

(Gradshteyn & Ryzhik 1965, p. 447), we find

Js xi ¼ 0ð Þ ¼ 0:518 a�	̄sð Þ1=3Fi ¼ 0:411 a	̄eAð Þ1=3Fi; ðB7Þ

where the effective optical depth is 	̄eA ¼ 2�	̄s (eq. [20]) for the case in which the source is close to one edge. Note that this agrees
quite well with our Ansatz, equation (20), since when the result for a source near the edge is expressed in terms of 	̄eA, it is nearly
the same as that for a source near the center (eq. [B4]).

Neufeld’s results are valid only in the limit in which a	̄L k 103, so that the transfer is completely determined by the damping wings.
Hummer & Kunasz (1980) show that for smaller optical depths, there is an intermediate regime in which J /Fi is about constant. They
define a quantity �HK � ��̄D/	̄L, where the density � is assumed to be constant and whereD is the mean distance traveled by an escap-
ing photon. As shown by Ivanov (1970), this is (4�/2	̄L Fi)

R
J d	̄ , which in turn is proportional to Js/Fi. For the case 1k�vD;6 k 0:1

(corresponding to 104 Kk T k 102 K), the results of Hummer & Kunasz (1980) imply that �HK and therefore Js/Fi are within about
0.1 dex of their values at a	̄L ¼ 450 for 103 k a	̄L k 1. We assume that the same behavior obtains in terms of 	̄eA for a source near the
edge of the slab. Thus, for 	̄eA k 1/a ¼ 1660�vD;6, we have

Js

Fi











xi

’ 0:411 a	̄eAð Þ1=3

min 1; a	̄eA=450ð Þ1=3
h i : ðB8Þ

For 450k a	̄eA k 1, this gives Js/Fi ’ 3:15. The condition a	̄eA k 1 for the validity of equation (B8) corresponds to column densities
NeA k 1016�v2D;6 cm

�2.
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This result is valid for Ly� photons produced by the H ii region, since such photons are very near line center. Stellar FUV photons
are not restricted to line center, but fortunately Neufeld has evaluated the intensity for an arbitrary injection frequency. Since his re-
sults for this case are somewhat complicated, we evaluate the intensity far from line center and then smoothly join the result onto the
result we have found above. If the injection frequency is large compared to the diffusion frequency [xi3 (a	̄eA)

1/3], then the photons
scatter approximately coherently. The intensity in this case can be found either from Neufeld’s general results6 or from a simple solu-
tion to the radiative transfer equation. We normalize the injection frequency,

x̂i �
xi

a	̄eAð Þ1=3
; ðB9Þ

so that photons injected with x̂iT1 are in the diffusion regime and those with x̂i 31 are in the coherent scattering regime. In the latter
case, we find

Js;iso

Fi











xi

¼ 3

4�
�i	̄eA ¼

3

4�2

� �
a	̄eAð Þ1=3f 
ð Þ

x̂2i
x̂i31ð Þ; ðB10Þ

where f (
) is the Rayleigh scattering factor defined in equation (A4). We have put the subscript ‘‘iso’’ on the mean intensity to in-
dicate that it has been derived under the assumption that the medium is optically thick at the frequency xi so that the photons are
isotropic. Sufficiently far in the line wings, equation (B10) shows that Js; iso goes to zero. This approximation is developed further in
Appendix C. If several lines contribute to the opacity at a given frequency, then the right-hand side of equation (B10) should be summed
over the lines, since it is the total opacity that governs the mean intensity.

We are now in a position to join the result for the frequency diffusion (eq. [B7]) to that for coherent scattering in the far wings of the
line (eq. [B10]). Taking the harmonic mean of these results, we obtain an expression that is approximately valid for all injection
frequencies:

Js; iso

Fi











xi

’ 0:411 a	̄eAð Þ1=3

min 1; a	̄eA=450ð Þ1=3
h i

þ 5:41 x̂2i =f 
ð Þ½ �
: ðB11Þ

Note that the numerical coefficient has been chosen to agree with the case of a source near the edge of a cloud, which is the one most
relevant to our problem. The intensity is half that at line center for an injection frequency x̂i ¼ 0:43 [for a	̄eA > 450 and f (
) ’ 1].

B2. EFFECT OF TWO-PHOTON EMISSION

In the absence of dust or molecular hydrogen, the dominant destruction processes for Ly� photons are collisional de-excitation
(which we ignore) and two-photon emission following a collisional transition from the 2p to the 2s state. Ly� photons can also be de-
stroyed by photoionization out of the n ¼ 2 state, but since another Ly� photon is created after the ion recombines, the net destruction
by this process vanishes.

Consider a one-dimensional slab of gas with a central source of Ly� photons. Let � be the probability of two-photon emission per
scattering. Then in the limit of large optical depth, the mean intensity at the source is (Harrington 1973)

Js xi ¼ 0ð Þ ¼ 0:396 a=�ð Þ1=3Fi; ðB12Þ

which is quite close to the result with no absorption (eq. [B4]) with the replacement 	̄L ! 1/�. Thus, two-photon emission prevents the
mean intensity from increasing once �	̄L k 1.We join this result onto the expression for the case in which the source is not at the center
and there is no absorption (eq. [B8]) by writing

Js xi ¼ 0ð Þ ¼ 0:411 a	̄eAð Þ1=3

min 1; a	̄eAð Þ1=3
h i

þ �
; ðB13Þ

with

� ¼ 1:04 �	̄eAð Þ1=3: ðB14Þ

To determine the destruction probability �, we need to know the population of the 2s state. In statistical equilibrium, this is

n2s

n2p
¼ 1

3

1

1þ ne; cr=ne

� �
; ðB15Þ

6 The numerical coefficient in Neufeld’s eq. (2.30) is too small by a factor of 3, as confirmed by the author (D. A. Neufeld 2003, private communication).
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where

ne; cr �
A2s1s

q2s2p
¼ 1:55 ; 104 cm�3 ðB16Þ

is the critical density for the 2s ! 2p transition, A2s1s ¼ 8:23 s�1 is the two-photon emission rate from the 2s state, and q2s2p ¼ 5:31 ;
10�4 cm3 s�1 is the collisional rate coefficient for electron and proton collisions from the 2s state to the 2p state (Osterbrock 1989).
Collisional de-excitation from 2s to 1s is much slower and may be neglected in determining this population ratio. The probability per
scattering of destroying a Ly� photon by two-photon emission is then

� ¼ n2s A2s1s

n2p A2p1s

¼ 4:4 ; 10�9

1þ ne; cr=ne
: ðB17Þ

Collisional de-excitation to the 1s level competes with this process for ne k 108 cm�3, but we assume that ne is less than this so that we
can ignore this process. Inserting this result into equation (B14), we find that the factor that gives the effect of two-photon emission is

� ¼
0:405 NeA;20=�vD;6

� �1=3
1þ ne; cr=ne
� �1=3 : ðB18Þ

We see that at high electron densities (ne 3 ne; cr), two-photon emission reduces the Ly� intensity by a factor that depends only on the
column density and the velocity dispersion. Although the large column densities of H i needed to make this process important occur in
regions of neutral hydrogen, one can show that photoionization out of the n ¼ 2 state is generally sufficiently effective that ne k ne; cr
in the H i just outside the H ii regions of massive primordial stars. As a result, we have

� ’ 0:405 NeA;20=�vD;6
� �1=3

: ðB19Þ

This destruction process operates only for photons that can diffuse to the center of the line, which is where most of the scatterings
take place. For stellar FUV photons, we assume that this occurs only for photons within a frequency range (a	̄eA)

1/3�
D, or jx̂ij< 1, so
that � depends on x̂i:

� x̂ið Þ ¼
�; x̂ij j< 1;

0; x̂ij j> 1:

�
ðB20Þ

B3. THE BLACKBODY CONSTRAINT

We have one last constraint to impose: the intensity we calculate must be less than the appropriate blackbody intensity B
. The Ly�
photons produced by the H ii region have a complicated line profile that is concentrated in a frequency range �2(a	̄eA)1/3�
D. For
these photons, we require that the intensity in this frequency range be less than that of a blackbody at the temperature of the H ii region,

J�;H ii ¼ min 2 a	̄eAð Þ1=3�
DB
� TH iið Þ; 0:411 a	̄eAð Þ1=3F�;H ii

min 1; a	̄eA=450ð Þ1=3
h i

þ �

8<
:

9=
;: ðB21Þ

For stellar photons, the intensity is limited by the blackbody intensity at the stellar surface, B
(T�) ¼ F
�/�:

J��; iso ¼
Z

d
imin B
i T�ð Þ; 0:411 a	̄eAð Þ1=3Fi 
ið Þ
min 1; a	̄eA=450ð Þ1=3
h i

þ 5:41 x̂2i =f 
ð Þ½ � þ � x̂ið Þ

8<
:

9=
;: ðB22Þ

The subscript ‘‘iso’’ indicates that J��; iso is that part of the stellar radiation that has been isotropized by scattering (see Appendix C).
The factor in the denominator ensures that although the integral is taken over the entire spectrum of the star, it is only that part near the
resonance line that contributes.

APPENDIX C

ESTIMATE OF THE RADIATION PRESSURE

In opaque media, the force exerted by radiation can be treated as an isotropic pressure, just like gas pressure. If the medium is not
opaque, however, the radiation pressure tensor is not diagonal, and radiation pressure does not behave like gas pressure. For example,
in the optically thin limit, the radiation pressure declines as r�2, yet the associated force per unit volume is negligible. Here we intro-
duce an approximation to the radiation pressure tensor that separates out the isotropic part and show that the radiative force is the
gradient of this pressure.

FORMATION OF FIRST STARS. II. 791No. 2, 2008



The radiative force per unit volume is

frad ¼ �:= Prad ¼
1

c
��F; ðC1Þ

where Prad is the radiation pressure tensor (e.g., Shu 1991); for a frequency-dependent opacity, �F ¼
R
�
F
 . At large optical depths,

the radiation field is nearly isotropic and the radiation pressure tensor becomes diagonal, Prad ! Prad; iso I. At small optical depths, the
radiation is beamed and Prad ! (1/c)FF̂, where F̂ is a unit vector. (Note that in one dimension, the radiation is not purely beamed at
small optical depth, so there is a numerical coefficient �1 in front of F in this expression.) We then have for all optical depths

Prad ’ Prad; iso I þ
1

c
FF̂; ðC2Þ

and the radiative force is

frad ¼ �:= Prad ’ �:Prad; iso �
1

c
F̂:= F: ðC3Þ

Here we have omitted the term F = :F̂, which vanishes in the optically thin limit since then the flux does not change direction along a
ray, and which is negligible in the optically thick limit even if the flux does change direction. In the case of pure scattering, or in a
stellar atmosphere, we have := F ¼ 0, so the radiative force is then

frad ’ �:Prad; iso ¼
1

c
��F for := F¼ 0ð Þ: ðC4Þ

This is the case relevant to our problem. On the other hand, in the case of strong absorption, so that F decreases in a distance small
compared to the radius, one cannot neglect the term F̂:= F in evaluating the force.

If F is known, then Prad; iso can be determined from equation (C4) once a boundary condition is specified. We assume that there is a
surface to the gas distribution. It follows that frad / � vanishes outside the surface, so that Prad; iso must be constant there. Since the
radiation pressure vanishes at infinity, it follows that the constant must be zero. We conclude that Prad; iso ¼ 0 at the surface of the gas
distribution.

At large optical depths, the energy density of the radiation is u rad ¼ 4�J /c ¼ 3Prad. We therefore define u rad; iso � 4�Jiso/c � 3Prad; iso.
Since u rad ! F/c at small optical depths, we have urad ’ urad; iso þ F/c.

Under the assumptions of spherical symmetry and no net absorption (:= F ¼ 0), our formulation is equivalent to the closure ap-
proximation recommended by Shu (1991, pp. 43Y44). He shows that the equation for the rr component of the radiation pressure
tensor is

@Prad; rr
@r

þ 1

r
3Prad; rr� urad

� �
¼ � 1

c
��F: ðC5Þ

Shu points out that 3Prad; rr � urad ’ 2F/c, since at high optical depths F is negligible and Prad ¼ urad/3, whereas at low optical depths
Prad; rr ¼ urad ¼ F/c. With this approximation, the left-hand side of the equation becomes @Prad; rr/@r þ 2F/cr. Our formulation gives
Prad; rr ¼ Prad; isoþ F/c. Since we have assumed := F ¼ 0, we have @F/@r ¼ �2F/r in the spherically symmetric case, so that equa-
tion (C5) reduces to equation (C4).

Recall that the Ly� radiation pressure, Prad; iso in equation (22), was derived for a slab geometry.What is the appropriate value of the
column density NeA to use in this expression in a more realistic geometry? Here we determine the relation between a slab geometry
and a spherical one; in Appendix D, we generalize this to nonspherical geometries. However, it must be borne in mind that the actual
geometry of the infalling gas is far more complicated than can be represented by a simple analytic model.

What is the relation between the optical depth in one dimension and that in three dimensions that results in the same radiation pres-
sure? Let F / r�kF , with kF ¼ 0 for slab geometry and kF ¼ 2 for spherical geometry. We assume that the density in the spherical case
can be described by a power law, � / r�k� . For a constant opacity per unit mass, we therefore have

@Prad; iso
@r

¼ � �0�F0

c

r0

r

� �kFþk�

; ðC6Þ

where r0 is a fiducial radius and �0 � �(r0), etc. The optical depth from r to infinity in the spherical case is

	3D ¼ ��r

k� � 1
ðC7Þ

for k� > 1, so that the solution of equation (C6) is

Prad; iso ¼
k� � 1

k� þ kF � 1

� �
F	

c
: ðC8Þ
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In order for the radiation pressure in the slab to be the same as that in a sphere for the same value of the flux, we require

	1D ¼ k� � 1

k� þ 1

� �
	3D ¼ ��r

k� þ 1
: ðC9Þ

Since 	1D ¼ �H�NeA, we conclude that

NeA ¼
nr

k� þ 1
: ðC10Þ

For a free-fall density variation, valid for rk rd, we have k� ¼ 3/2 so that NeA ¼ 2
5
nr; inside rd , k�¼ 1

2
is a more accurate description,

so that NeA ¼ 2
3
nr.

APPENDIX D

ANISOTROPIC OPTICAL DEPTH AND SUPERCRITICAL ACCRETION

In order to estimate how Ly� photons escape from the H ii region around the protostar, we consider the following idealized prob-
lem: we assume that the radiation fills a cavity bounded by a thin, opaque shell of variable optical depth, 	(r). In this case, the flux at
the surface of the shell is approximately normal to the surface, F̂ ’ n̂, and the radiation energy density is about constant in the interior
of the shell. This model will be approximately valid for Ly� radiation once the H ii region separates from the star, since the H ii region
provides a cavity in which the optical depth due to resonance line scattering is relatively small, so that the radiation becomes ap-
proximately uniform there. Equation (C4) then gives

F rð Þ ’ �c
dPrad; iso

d	 rð Þ n̂ ’ cPrad; iso

	 rð Þ n̂: ðD1Þ

Integration over the surface of the shell gives the luminosity:

L ¼
Z

F = n̂ dA ’ cPrad; iso

Z
dA

	 rð Þ ¼
cPrad; isoA

	̄eA
; ðD2Þ

where A is the total area of the shell and 	̄eA is the harmonic mean optical depth:

1

	̄eA
� 1

A

Z
dA

	(r)
: ðD3Þ

For a spherical shell, this simplifies to

1

	̄eA
¼ 1

4�

Z
d�

	(r̂)
: ðD4Þ

We can generalize this treatment to allow for the possibility that the optical depth is small in some directions. Consider the extreme
case in which 	 ¼ 0 over a small area �A, i.e., there is a small hole in the shell. The flux emerging from this area is � times the specific
intensity, which is the same as the mean intensity J in the cavity. We therefore find

F rð Þ ¼ �J ¼ curad

4
¼ 3cPrad

4
’ 3cPrad; iso

4
	 ¼ 0ð Þ; ðD5Þ

where the last step follows since we have assumed that the average optical depth is large enough that Prad3F/c so that Prad ’ Prad; iso
(note that Prad; iso drops near the hole, but that does not affect the average value of Prad; iso since the hole is small). Combining this result
with equation (D1), we write

F rð Þ ’ cPrad; iso

	 rð Þþ 4=3
ðD6Þ

as an expression that is approximately valid for all 	 . With

1

	̄eA
� 1

A

Z
dA

	 rð Þþ 4=3
; ðD7Þ

equation (D2) is valid even if the optical depth is small in some directions. As an example, assume that 	 ¼ 0 over an area �A and
	 ¼ 	031 elsewhere. Then we have

	̄eA ¼
	0

1� �A=Að Þ þ �A=Að Þ 	0= 4=3ð Þ½ � : ðD8Þ

We require 	̄eA31 in order for our treatment to be valid, and this will be true if both 	031 and �A /AT1.
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Equations (D1) and (D2) imply that the flux at any point on the shell is then

F r̂ð Þ ¼ 	̄eA
	 rð Þ

L

A

� �
: ðD9Þ

In our problem, 	 < 	̄eA near the poles, so the flux there is enhanced over L/A since radiation originally directed at regions of high
optical depth tends to escape in regions of low optical depth. This is a quantitative expression for the flashlight effect (Yorke &
Bodenheimer 1999).

When radiation pressure is acting against gravity, it is convenient to define the critical flux as the flux that just counterbalances
gravity,

Fcrit ¼
Gm�c

r 2�
; ðD10Þ

where we have assumed spherical symmetry and where � ¼ �/� is the opacity per unit mass and � is the mean mass per particle.
The critical luminosity is then

Lcrit � 4�r 2Fcrit ¼
4�Gm��c

�
: ðD11Þ

If the opacity is due to electron scattering, the critical luminosity is the Eddington limit. We conclude that supercritical accretion, i.e.,
accretion when L > Lcrit, can occur in directions with 	 > 	̄eA since it is possible for F to be less than Fcrit in those directions:

F rð Þ
Fcrit

¼ 	̄eA
	 rð Þ

L

Lcrit

� �
: ðD12Þ

For example, an accretion disk can produce supercritical accretion since the optical depth in the plane of the disk is much larger than
that in other directions.

This argument works well in our problem because the Ly� opacity in the central regions is small due to photoionization, thereby
rendering the radiation approximately uniform there. It is more difficult to create a uniform radiation field in the case of electron scat-
tering in an ionized gas, since the opacity per unit mass is constant and it is difficult to create a thin, opaque shell around a star. None-
theless, the effective optical depth in this case is likely to be of order the harmonic mean optical depth, just as we have found for our
idealized problem.

APPENDIX E

VERTICAL STRUCTURE OF AN ACCRETION DISK SUPPORTED BY GAS PRESSURE, WITH CONSTANT OPACITY

Here we determine the height of an accretion disk supported by gas pressure under the assumption that the opacity per unit mass, �,
is constant. For a disk supported by gas pressure, the equations describing the radiation field in the disk (see x 6) can be written as

dT 4

d�
¼ 3�F

4�
ðE1Þ

(radiative diffusion), where

� �
Z zs

z

� dz ðE2Þ

is the surface density above a height z and

dF

dz
¼ F0PR zs

0
P dz

ðE3Þ

(flux generation). Since gas pressure dominates, we have P ¼ �kT /�, so that this becomes

dF

d�
¼ � F0T

�chTi
; ðE4Þ

where �c ¼
R zs
0
� dz is half the total surface density of the disk and hTi is the mass-weighted average temperature in the disk.

To obtain an approximate solution for these two equations, we set

T ’ Tc
�

�c

� �1=4
1þ � �=�cð Þ‘

1þ �

" #
; ðE5Þ
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where Tc is the central temperature. The parameters � and ‘ are to be determined; in particular, � is assumed to be small, so that

T 4 ’ T 4
c

�

�c

� �
1þ 4� �=�cð Þ‘

1þ 4�

" #
: ðE6Þ

Inserting this into equation (E1), we find

F ¼ 4�T 4
c

3	c

1þ 4 ‘þ 1ð Þ� �=�cð Þ‘

1þ 4�

" #
; ðE7Þ

where 	c � �R�c is the optical depth from the midplane to the surface. Since F ¼ 0 at the midplane, where � ¼ �c, we find

� ¼ � 1

4 ‘þ 1ð Þ : ðE8Þ

At the surface (� ¼ 0), we have F ¼ F0, so that

F0 ¼
1

1þ 4�ð Þ
4�T 4

c

3	c
ðE9Þ

and

F ¼ F0 1� �

�c

� �‘" #
: ðE10Þ

Inserting this into equation (E4) and keeping only the leading term in equation (E5) implies ‘ ¼ 5/4, so that � ¼ �1
9
. Since F0 ¼ �T 4

eA,
equation (E9) implies

Tc ¼
5

12
	c

� �1=4
TeA: ðE11Þ

This approach gives a mass-weighted mean temperature hTi¼ 4
5
Tc from equations (E4) and (E10); on the other hand, direct in-

tegration of equation (E5) gives hTi¼ (17/20)Tc. The 6% difference between these estimates for hTi is a measure of the accuracy of
our approximations.

The equation of hydrostatic equilibrium is

dP

d�
¼ g0 z

$
: ðE12Þ

Approximating T ’ Tc(�/�c)
1/4, which is typically accurate to better than 10%, we then find

P ¼ �c2gc
�

�c

� �1=4
¼ g0
$

Z �

0

z d�0: ðE13Þ

Define the characteristic scale height as

hgc �
c2gc

g0
¼ 5	c

12

� �1=4
kTeA

�g0
; ðE14Þ

where the second step follows from equation (E11). In terms of the Keplerian velocity vK ¼ (g0$)1/2, the scale height is hgc/$ ¼
(cgc/vK)

2. Since � ¼ �d�/dz, equation (E13) yields the following equation for �:

�

�c

� �1=4
d�

dz
¼ � 1

$hgc

Z �

0

z d�0: ðE15Þ

To obtain an approximate solution to this equation, we adopt the following Ansatz for �:

�

�c

� �1=4
’ 1� z

zs

� �
1þ z

2zs

� �
: ðE16Þ
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An approximate evaluation of the integral
R
z d�0 givesZ

z d�0 ’ zs�
1

3
þ 2z

3zs

� �
: ðE17Þ

Integration of equation (E15) then gives

�

�c

� �1=4
’ z2s

6$hgc
1� z

zs

� �
1þ z

2zs

� �
; ðE18Þ

which is consistent with the Ansatz provided that the height of the disk is

zsg ¼ 6$hgc
� �1=2

; ðE19Þ

where the subscript g indicates that the height is evaluated for the case in which gas pressure dominates. Shakura & Sunyaev (1973)
show that the height of the disk is �(cc/vK )$, where cc is the central isothermal sound speed. Equation (E19) implies that in a gas
pressureYdominated disk,

zsg

$
¼

ffiffiffi
6

p
cgc

vK
: ðE20Þ

In terms of the sound speed at the photosphere, cg;eA ¼ (kTeA/�)
1/2, this is

zsg

$
¼ (540	c)

1=8 cg;eA

vK
: ðE21Þ

Numerical integration of the structure equations shows that the actual height of a gas pressureYdominated disk ranges from 1:04zsg
for 	c ¼ 104 to 1:10zsg for 	c ¼ 109, so the approximations made in our analytic estimate are reasonably good.

Paczyński & Bisnovati-Kogan (1981) obtained equation (E20) through a different argument: they assumed that the disk is poly-
tropic, with P / �1þ1/n, and found that

zsg

r
¼ 2 nþ 1ð Þ½ �1=2cgc

vK
: ðE22Þ

They argued that n is likely to be between 1.5 and 3, so that 2(nþ 1) is between 5 and 8; they chose 6 as a typical value. We emphasize
that our derivation depends only on the assumption that the opacity is constant and is not based on the assumption that the gas is
polytropic.

To complete the determination of the height of a gas pressureYsupported disk, we must estimate the optical depth through half the
disk, 	c ¼ �R�c. Observe that Z zs

0

P dz ¼
Z zs

0

kT

�

� �
d� ’ khTi

�c

� �
�c; ðE23Þ

where �c is the central value of the mean molecular weight. According to the discussion below equation (E11), the average tem-
perature is hTi’ 4

5
Tc, and we adopt this value here. The fact that hTi is so close to Tc justifies setting the mean molecular weight equal

to �c, as we have done. From equation (52), we then find

	c ¼
��Rṁ� f

6�� 4=5ð ÞkTc=�c½ � : ðE24Þ

Equation (E11) then implies

Tc

TeA
¼ 25��R f

288�� kTeA=�cð Þ

� �1=5
: ðE25Þ

Using this result in equation (E20) for the height of a gas pressureYsupported disk, we find

zsg ¼ 1:21 ; 1010
�I�R
��2�T

� �1=10 $

R�

� �21=20 ṁ�;�3 f
� �1=5

m
7=20
�;2

cm; ðE26Þ

where we have normalized � to a typical value of 0.01.
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