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ABSTRACT

We investigate the tidal interactions of a red giant with a main-sequence star in the dense stellar core of globular
clusters by the smoothed particle hydrodynamics method. Two models of 0:8 M� red giants with surface radii 20 and
85 R� are used with a 0.6 or 0:8 M� main-sequence star treated as a point mass. We demonstrate that even for the
wide encounters in which the two stars fly apart, the angular momentum of orbital motion can be deposited into the red
giant envelope to such an extent as to trigger rotationalmixing and to explain the fast rotation observed for the horizontal
branch stars, and also that sufficientmass can be accreted on themain-sequence stars to disguise their surface convective
zone with the matter from the red giant envelope. On the basis of the present results, we discuss the parameter de-
pendence of these transfer characteristicswith nonlinear effects taken into account and derive fitting formulae to give the
amounts of energy and angular momentum deposited into the red giant and of mass accreted onto the perturber as
functions of the stellar parameters and the impact parameter of the encounter. These formulae are applicable to the
encounters not only of the red giants but also of the main-sequence stars and are useful in the study of the evolution
of stellar systems with the star-star interactions taken into account.

Subject headinggs: accretion, accretion disks — hydrodynamics — methods: numerical — stars: horizontal-branch —
stars: Population II

Online material: color figures

1. INTRODUCTION

In the core of globular clusters, it is thought that star-star inter-
actions play an important role because of very high stellar density
and relatively low velocity (Hills & Day 1976). There is growing
evidence for the modifications of stellar properties and popula-
tions under the influence of close encounters and collisions. For
example, the overabundance of low-mass X-ray binaries and
millisecond pulsars is regarded as consequent on tidal captures
of an environment star by neutron stars and on the exchange
encounters involving a neutron star (Fabian et al. 1975; Hills
1976); the smaller relative frequency of red giants in the core is
attributed to the deprival of their envelope during close encoun-
ters with environment stars (Djorgoski et al. 1991; Beer &Davies
2004). Blue stragglers, which are main-sequence stars more mas-
sive than the turnoff stars, may result from a direct collisional co-
alescence and/or binary merge of two or more stars (Leonard
1989; see Mapelli et al. 2006; Leigh et al. 2007 and references
therein for recent works); see also reviews by Bailyn (1995),
Hut et al. (2003), and Ferraro (2006). In particular, the inflation
of the number of known blue stragglers, boosted by the obser-
vations using the Hubble Space Telescope (Ferraro et al. 1997,
1999, 2003, 2004; Paltrinieri et al. 2001; Sabbi et al. 2004; Beccari
et al. 2006;Warren et al. 2006), suggests that a significant fraction
of stellar populations undergo such encounters with neighboring
stars. Recent observations with Chandra indicate a link between
the number of X-rays binaries and the stellar encounter rates in
globular clusters (Pooley et al. 2003; Pooley & Hut 2006).

Furthermore, there is a long-standing problem of large star-to-
star variations in the surface abundances of light elements such as
C, N, O, Ne, Mg, and Al. Some giants in globular clusters exhibit
the anomalous surface abundances that cannot be explained in
terms of nucleosynthesis and material mixing in the stars within

the current standard framework of stellar evolution (e.g., see re-
views by Kraft 1994; Da Costa 1997). Since these anomalies are
observed only in globular clusters but not from field giants in the
Galactic halo, it is natural to search for their origin(s) in the dif-
ferences between the environment in the globular clusters and in
the Galactic halo and, hence, to consider them as evidence of the
star-star interactions. In fact, Fujimoto et al. (1999) have proposed
a scenario for the formation mechanism of these abundance ano-
malies involving hydrogen shell flashes in red giants, as a result of
internal mixing, triggered by the deposition of angularmomentum
into their envelopes during a close encounter with other stars. It
is demonstrated that this extramixing model can reproduce the
observed relationship such as correlation and scatter in the ano-
malous abundances of Na and Al and the Mg-Al anticorrelation
(Aikawa et al. 2001, 2004).
Recently, similar abundance variations have been found among

unevolved turnoff and subgiant stars (Gratton et al. 2001). It is
true that the variations and anticorrelations between CN and CH
bands have been reported not only for giants but also for stars of
the upper main sequence, which may be taken to suggest the
presence of abundance anomalies in unevolved stars (Suntzeff
& Smith 1991; Briley et al. 1992; Cannon et al. 1998; Cohen 1999).
It has been argued that these facts refute the evolutionary sce-
nario that the abundance anomalies are produced during the evo-
lution along the giant branch and favor the primordial scenario
that the stars were born of gas already subject to the anomalous
abundances (e.g., Sneden et al. 2004). As a possible compromise,
recycling scenarios have been proposed in which the inhomoge-
neity is due to the surface pollution from accreting the ejecta of
anomalous abundances from the erstwhile asymptotic giant branch
(AGB) stars of intermediate masses (Thoul et al. 2002) or in
which the second-generation stars were born from the gas polluted
with the ejecta of AGB stars (D’Antona 2004; D’Antona & Caloi
2004). Ventura et al. (2001) argue that the burning at the bottom
of the convective zone in low-metallicity AGB stars can produce
the observedO-Na andMg-Al anticorrelations.On the other hand,
Fenner et al. (2004) cast doubt on the relevance of AGB ejecta to
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the observed anomalies. In addition, the scenarios involve serious
difficulties both in the mass supply and in the overabundances of
CN and s-process elements, attendant with the third dredge-up
during the evolution; the amount of mass ejecta necessary to
cover and disguise the surface convection of giants may well ex-
ceed the total envelopemass that can be ejected from the erstwhile
AGB stars, and the enrichment of s-process elements is never
observed (James et al. 2004).

For the evolutionary scenario, it can also be argued that the
abundance anomalies are printed onto the surface of unevolved
stars through the mass transfer during the close encounters with
such giants that have already developed the abundance anomalies;
the anomalous abundances are themselves attributed to the de-
position of angular momentum into the convective envelope
of giants during prior close encounters with environment stars
(Shimada et al. 2003). The surface convection of Population II
main-sequence stars contains masses of 3 ; 10�3 M� near the
turnoff (e.g., see Fujimoto et al. 1995), and hence, the accretion
of mass of this order may suffice to disguise their surface abun-
dances with those of accreted matter. The evolutionary scenario,
with star-star interactions during the red giant branch (RGB) taken
into account, is free from the above difficulties and has a fair pros-
pect of giving a satisfactory explanation to these inhomogeneous
anomalies. Recently, the helium production by this extramixing
mechanism is discussed (Suda et al. 2007) in relation to the split-
ting of the main-sequence branch, observed from ! Cen (Bedin
et al. 2004) and from NGC 2808 (Piotto et al. 2007).

One of the aims of this paper is to investigate whether the
orbital angular momentum can be transferred into the envelope
of a giant from the orbital motion and whether the main-sequence
star can accrete the envelope mass from giants enough to disguise
their surface layer with the accreted matter through star-star in-
teractions. It is argued that the rotation-induced mixing requires
(differential) rotation of �0.01 times the local critical rate from
the energetic viewpoint (e.g., see Fujimoto et al. 1999), although
the proper theory is yet to be established. From the observa-
tions, the horizontal branch (HB) stars are known to display a
bimodal distribution of rotation velocity with the fastest rotators at
velocity vrot sin i k 30 km s�1 (where i is the inclination angle of
the spin axis) on the cooler side of the HBwhere TeA < 15;000 K
(Peterson 1983; Peterson et al. 1995; Cohen & McCarthy 1997;
Behr et al. 2000a, 2000b; Recio-Blanco et al. 2002). If we neglect
the angular momentum loss during the transition to the HB, such
rapid rotations require angular momentum corresponding to the
rotation rate of the order of � ’ 0:01�rg at the tip of the RGB
(�rg being the critical rotation rate at the surface). This poses a
problem of the origin of angular momentum, since in the low-
mass stars, the angular momentum is effectively extracted by
magnetic braking during the main-sequence phase and by mass
loss during the red giant phase (e.g., see Recio-Blanco et al. 2002;
Suda & Fujimoto 2006).

The star-star interactions have been proposed as the mecha-
nism(s) to form the unusual stellar objects discussed above and
have been studied by many authors. Among the analytical ap-
proaches, Fabian et al. (1975) first presented an idea and evaluated
the possibility that the low-mass X-ray binaries are produced
through tidal dissipation during the two-body encounters involv-
ing a neutron star or low-mass black hole. Press & Teukolsky
(1977) developed the linear perturbation theory of the two-body
tidal capture mechanism to derive a general formula for the
amount of orbital energy deposited into the oscillatory modes
of the stellar envelope during a periastron passage. Lee&Ostriker
(1986) and McMillan et al. (1987) worked out the cross sections
for the binary formation via tidal capture of a main-sequence star

and McMillan et al. (1990) worked out that of a red giant. These
studies are, however, limited to the linear regime and cannot deal
with the nonlinear effects such as the mass transfer between the
stars and the mass loss from the stars owing to large deformations
of the stars by tidal forces.

In order to estimate the nonlinear effects during the close
encounters, numerical simulations are necessary. Among the
numerical approaches, most studies have been devoted to un-
derstanding the resultant offspring of the stellar interactions.
Simulations of tidal encounters have been performed for various
combinations of stars, e.g., a main-sequence star and a red giant
star (Benz & Hills 1991), a neutron star and a main-sequence
star or a red giant star in an attempt to explain the formation of the
low-massX-ray binaries and themillisecond pulsars (Davies et al.
1992; Rasio& Shapiro 1991; Davies 1995; Lee et al. 1996), main-
sequence stars in encounters and collisions, aiming at the forma-
tion of blue stragglers (Lai et al. 1993; Lombardi et al. 2002), and
a red giant star and a neutron star in relation to the formation of
pulsars or ultracompact X-ray binaries (Rasio & Shapiro 1991;
Lombardi et al. 2006). These studies have been performed ex-
clusively by using the smoothed particle hydrodynamics (SPH)
method, except for the encounters involving a massive black hole
and a star, which were calculated by using a three-dimensional
Euler hydrodynamic code (Khokhlov et al. 1993a, 1993b). Re-
cently, SPH simulations have been applied to the evolution of a
giant planet through the tidal interactions with a Sun-like star
(Faber et al. 2005; Ivanov & Papaloizou 2004).

The former hydrodynamic simulations, especially those of the
tidal encounters between a red giant and a main-sequence star by
Davies et al. (1991), have been carried out with a relatively small
number of SPH particles and for a limited range of parameters.
Their results are thought to be subject to limitations arising from
low mass resolutions, since the mass involved in the interac-
tions decreases as the periastron distance increases, and the SPH
method may not give a valid description of such situations where
mass scales are as small as that allotted to each particles. In our
problems of surface pollution, we deal with the accretion of mass
�10�3 M�. Simulations with finer mass resolutions, and hence
with larger particle numbers, are necessary to investigate such
encounters involving the transfer of mass of this order. It is also
desirable to perform simulations for a wide range of parameters,
such as the periastron distance, the red giant models in different
evolutionary stages, and the mass ofmain-sequence stars, in order
to obtain realistic and general information about the character-
istics of the tidal interactions.

In this paper we first carry out simulations of tidal interactions
between a red giant and a main-sequence star by using the SPH
method.Wemake a detailed analysis of the amounts of energy and
angular momentum transferred from the orbital motion to the os-
cillation and spin of the red giant and the amount ofmass lost from
the red giant and accreted onto the main-sequence stars. Based
on the numerical experiments, we then attempt to clarify the pa-
rameter dependence of these characteristics and to formulate the
quantitative outcome as simple functions of the stellar parameters
and impact parameter of encounters. The present results are ap-
plied to investigate the relevance of the scenario in which the
star-star interactions give rise to the abundance anomalies ob-
served among not only giants but also main-sequence stars in
globular clusters. The derived formulae will be useful for per-
forming simulations of dynamical evolution of stellar systems
with the effects of stellar interactions taken into account.

The organization of the paper is as follows. In x 2 we describe
our numerical methods, including the setup of the initial con-
ditions, the models of the red giant, the treatment of accretion,
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and the determination of the viscosity of red giant models. In x 3
we present the results from our simulations with the discussion of
the nonlinear effects of tidal interactions. In x 4 we derive fitting
formulae for the energy and angularmomentumdeposited into the
envelope of the red giants and the mass accreted onto the main-
sequence stars during the tidal encounters. The conclusions follow
in x 5, with the discussion about the application to the globular
clusters.

2. METHOD OF NUMERICAL COMPUTATIONS

In the present work we use the three-dimensional, SPH code,
originally developed by Benz (Benz 1990; Benz et al. 1990)
and extended byBate et al. (1997). The variable smoothing length
is adopted with the hierarchical tree method, originally written by
Press (1986) to make a list of the particles in the closest neigh-
borhood of a particle. The kernel and the integrating method in
our code are respectively the standard cubic spline kernel and a
second-order Runge-Kutta-Fehlberg integrator with individual
time steps for each particle (Bate et al. 1997).

In our cases, the timescale of periastron passing is much shorter
than the Helmholtz-Kelvin timescale in the envelope [�HK ’
1:5 ; 104(Rrg /20 R�)

�1(Lrg /L�)
�1 yr, where Rrg is the surface

radius of the red giant]. Accordingly, we assume the adiabatic
relation for the gas in the envelope of red giants. In actuality, the
code takes into account the change of the entropy due to viscous
dissipation, although it may have only a minor effect, since we
deal with the tidal interactions at large distances, not accom-
panied by large shock dissipation.

Our SPH code uses the standard form of artificial viscosity
with two free parameters �SPH and �SPH, which respectively
control the strength of the shear and bulk viscosity components
and that of a second-order, von NeumannYRichtmyer-type vis-
cosity (Monaghan & Gingold 1983). It is known that the linear
artificial viscosity can be reduced to the Shakura-Sunyaev vis-
cosity prescription in the continuous limit; Meglicki et al. (1993)
derived a relation which connects the viscous force with the
linear artificial viscous parameter �SPH. If the density varies on
a length scale much larger than the velocity, the shear viscosity,
�, is written in terms of the artificial viscosity parameter �SPH,
in the form

� ¼ (1=10)�SPHcsh; ð1Þ

where cs is the isothermal sound velocity and h is the smoothing
length (Okazaki et al. 2002). In the envelope of red giants, on
the other hand, we may relate the shear viscosity to the eddy
viscosity of convective motions, �eddy, evaluated at

�eddy ¼ vconvlmix: ð2Þ

where vconv is the averaged velocity of convective elements and
is estimated from themixing length theorywith themixing length,
lmix. For a red giant model of mass 0:8 M� and the metallicity
½Fe/H � ¼ �1:5, the eddy viscosity is found to be nearly constant
around �eddy ’ 7 ; 1015 cm2 s�1 in the envelope when the radius
�20 R� and the luminosity �100 L� (see, e.g., Suda&Fujimoto
2006). Since csh ’ 7 ; 1017 cm2 s�1 on average for the red giant
models constructed with SPH code (see below), we may approx-
imate the eddy viscositywith a choice of �SPH ¼ 0:1.We perform
the simulations with two values of the linear artificial viscosity
parameter, �SPH ¼ 1:0, which is of common use, and �SPH ¼ 0:1
in order to see the effects of viscous forces. As for the nonlinear
artificial viscosity parameter, we follow the usual prescription and
set �SPH ¼ 2�SPH (Bate et al. 1997).

2.1. Initial Conditions and Approximations

Our simulations consist of two steps, i.e., we first make the
initial models of red giants in hydrostatic equilibrium with SPH
particles and then follow the encounter with a main-sequence star.
Our red giant models are constructed with a total of 50,000 SPH
particles of equal mass in the envelope and the core approxi-
mated by an appropriate external potential, while themain-sequence
star is treated as a point mass. We start the encounter simulations
by placing a red giant and a main-sequence star at a separation of
5Rrg. Their relative velocity at this distance is calculated from the
relative velocity at infinity, assumed to be v1 ¼10 km s�1 in this
work, and the impact parameter. The red giants are assumed to be
not rotating initially. We set the total mass atMrg ¼ 0:8 M� and
adopt two models at the different evolution stages, one with the
core massMcore ¼ 0:32 M� and the surface radius Rrg ¼ 20 R�
and the other withMcore ¼ 0:48 M� and Rrg ¼ 85 R�; the mass
of one SPH particle is 0:96 ; 10�5 and 0:64 ; 10�5 M�, respec-
tively. The former model is taken to have the same model param-
eters as the model from Benz & Hills (1991) and Davies et al.
(1991) who use 7132 SPH particles of unequal masses, and the
latter corresponds to the structure realized near the tip of the RGB.
For the main-sequence star, we take two different masses of
Mms ¼ 0:6 and 0:8 M�.

2.2. Red Giant Models

The envelope structure of the red giant can be reproduced by
placing the envelope mass under the influence of the gravity of
the core, modeled as a sphere of uniform density, according to
Fujimoto & Tomisaka (1992). By solving the equations of hy-
drostatic equilibrium with an additional gravity g of the core,
expressed as

g ¼
�GMcorer=R

3
core; r � Rcore;

�GMcore=r
2; r > Rcore;

�
ð3Þ

with the core radius Rcore, we determine the density distribution
of the red giant envelope; see Appendix A for details. For the
equation of state, we assume the polytrope of P ¼ K�(1þ1=N)

with the polytropic index N ¼ 1:5, which corresponds to the
adiabatic equation of state with the adiabatic exponent � ¼ 5/3;
the polytropic constant K stands for the specific entropy of the
monatomic ideal gas.
Figure 1 shows the density distributions in the envelope of red

giants, thus obtained, for the models with different surface radii of
Rrg ¼ 20 and 85 R�. When the radius and the density are nor-
malized with the surface radii Rrg and the envelope density �env ¼
Menv /R

3
rg , two density distributions become nearly identical ex-

cept inside of the core, which is a feature of red giant structure
unless the mass in the envelope is much smaller than the core
mass (Fujimoto & Tomisaka 1992). In this figure we also plot
the density distribution in the red giant by taking the model from
the evolutionary calculation (Suda & Fujimoto 2006) for com-
parison, which exemplifies that the analytic models can repro-
duce the envelope structure of red giants very well. Moreover,
we compare the models with different core radii of Rcore ¼ 0:026
and 2 R� to demonstrate that the assumed core radii hardly affect
the structure outside the core of r > 2 R� and, in particular, in
the outer envelope that may take a main part in tidal deformations,
while the central density differs greatly by a factor of 4:6 ;105.
In our simulations, we therefore set Rcore ¼ 2 R� to reduce the
number of particles injected into the innermost region. The initial
models of red giants for the SPH simulation are constructed by
distributing particles according to these envelope solutions and
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then by relaxing them into hydrostatic equilibrium with an ar-
tificial damping force on the particles. The relaxed distribution
of SPH particles is also shown in the figure; it reproduces the
structure of the red giant envelope very well except for the very
surface layer of mass less than �0:0001 M� because of mass
resolutions, where the variable smoothing length, h, �0:1Rrg.

2.3. Accretion onto the Main-Sequence Star

We assume that the main-sequence star, treated as a point
mass perturber, accretes any SPH gas particles that enter within
the accretion radius, racc, which is defined as half the Roche lobe
radius, RL, calculated under the assumption of a circular orbit at
an instantaneous separation,D, between the main-sequence star
and the red giant, and is given by

racc ¼ 0:5RL ¼ 0:5D(0:38þ 0:2 log q); ð4Þ

in which the expression for RL is valid for the mass ratio 0:3 <
q ¼ Mms/Mrg < 20 (Paczynski 1971). A factor of 0.5 is adopted
in order for the main-sequence star not to artificially accrete un-
bound particles that happen to enter its Roche lobe. We have
confirmed that the number of accreted particles is nearly the
same with a smaller accretion radius racc ¼ 0:1RL. As for the
accreted SPH particles, the mass, momentum, and angular mo-
mentum that they carry are added to the point mass of the main-
sequence stars.

3. RESULTS OF SIMULATIONS

We have carried out 25 simulations of a tidal encounter with
a red giant of mass 0:8 M� and a main-sequence star by varying
the impact parameter, b, for eight sets of parameter combina-
tions with the two different red giant models, the two different
main-sequence stars, and the two choices of artificial viscosity
parameters. The model parameters are summarized with model
identifiers in Table 1. We adopt relatively heavy main-sequence
stars of mass 0.8 and 0:6 M�, based on the fact that the mass seg-
regation may proceed to enhance the abundance of relatively
massive stars in the cluster cores where the close encounters
are expected to occur more frequently because of larger stellar
density. In this table we give the periastron distance, rp, instead of
the impact parameter b, which is given for a hyperbolic orbit as

b2 ¼ r2p 1þ 2G(Mrg þMms)=rpv
2
1

� �
; ð5Þ

where v1 is the relative velocity before the encounter and is set
to be v1 ¼ 10 km s�1 in the present work. We also define the
ratio, �, between the critical angular velocity, �rg, of rotation at
the initial surface of the red giant and the angular velocity,�pass,
for the circular orbit at the periastron distance, rp, as a measure
of the closeness of encounter,

� ¼ �rg

�pass

¼ Mrg

Mrg þMms

� �1=2
rp

Rrg

� �3=2
; ð6Þ

following Press & Teukolsky (1977). In addition, we give the
characteristic results of simulations, the energy and angular mo-
mentum transferred into the red giants from the orbital motions
and the masses accreted onto the main-sequence stars and lost
from the systems; also listed are the periods, semimajor axes, and
eccentricities of orbital motions for the models that yield bound
systems, and the models that end up with positive orbital energy
are denoted as flyby.

Figure 2 gives the snapshots showing the variations of surface
density, �, projected on the orbital plane for model a8rg1 (Rrg ¼
20 R�,Mms ¼ 0:8 M�, �SPH ¼ 1:0, rp /Rrg ¼ 1:75 or � ¼ 1:64);
the contours, separated by 0.2 dex, are plotted in the range of
10Y0.001 times the average surface density, �env ¼ Menv /�R

2
rg,

and open circles denote the accretion radius of the main-sequence
star. Numerals in the right bottom corner give the elapsed time
from the onset of the simulation in units of the dynamical time-
scale, �rg ¼ (R3

rg /GMenv)
1=2, definedwith the envelopemass of the

red giant as in Davies et al. (1991). On each panel, open and filled
squares mark the gas particles, initially situated on two separate
shells on the orbital plane, as indicators of stellar rotation.

As the main-sequence star approaches, the tidal bulge is raised
on the surface layer of the red giant and grows toward the main-
sequence star. The oscillations of l ¼ 2 f-modes are predomi-
nantly excited as predicted from the linear perturbation theory.
In the outer shells of a few 10% in mass fraction, the deforma-
tions greatly elongated toward the perturber develop into the
nonlinear regime, as seen from the filled squares; in the interior,
on the other hand, the perturbations remain small in the linear
regime, as observed from the location of the open squares, and
the gas almost stays at rest in the still, deep interior. The outer
deformations cannot keep pace with the motion of the perturber,
as it is accelerated because the timescale of passage of the per-
turber is comparable to that of oscillatory motions and the rotation
rate of the red giant is initially small. The lag of tide develops as

Fig. 1.—Distribution of density in the envelope of red giants, normalized with
respect to the envelope mass and radius (Menv ¼ Rrg ¼ 1) as a function of nor-
malized radius. Solid and long-dashed curves denote the models of the same core
radius of Rcore ¼ 2 R� with the same total mass 0:8 M�, different surface radii
Rrg ¼ 20 and 85 R�, and different core masses Mcore ¼ 0:32 and 0:48 M�, re-
spectively, while dashed curve denotes the model with the same surface radius
Rrg ¼ 20 R� and the same core massMcore ¼ 0:32 M� with the same total mass
0:8 M� and a different core radius Rcore ¼ 0:026 R�, for comparison. Dash-dotted
curve denotes a stellar model of Rrg ¼ 19:8 R� and Mcore ¼ 0:362 M�, taken
from the evolutionary calculation of a star with mass 0:8 M� and the metallicity
½Fe/H � ¼ �1:5 by Suda & Fujimoto (2006). Asterisks represent the density dis-
tribution of the SPH model with Rrg ¼ 20 R� for the radii at intervals of 2 R�
with two additional ones near the center and surface. [See the electronic edition
of the Journal for a color version of this figure.]
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the perturber approaches the periastron. Later around a time of
6:5 �rg after the periastron passage, the gas streaming out of
the red giant starts to accrete onto the main-sequence star, now
separated by D ’ 4Rrg.

At the same time, there appears an interesting nonlinear feature
in the vicinity of the surface of the red giant star. As a result of
the l ¼ 2, f-mode oscillations, a density ditch is formed near the
interface of upward and downward motions, as seen from the
panels in the middle row of Figure 2. Figure 3 shows an enlarged
picture of the velocity structure when the ditch is formed. Since
the expanded mass elements gain larger tidal torque than the
compressed mass elements, the former overtakes the latter while
contracting to form an eddylike velocity structure of counter-
clockwise rotation. The rotation of Lagrangian shells and the
resultant deposition of angular momentum into the red giant star
due to the tidal torque proceed spectacularly in the surface region,
dominated by the nonlinear effects. Such features can no longer
be the case in the linear theory, although the mass involved in
the nonlinear deformations is small, as seen from the movement
of the open squares. Similar nonlinear effects are reported by
Khokhlov et al. (1993a) who study tidal encounters between a
polytropic star and a black hole, although they assume large pe-
riastron distances, and hence, the deformations remain nearly
axial symmetric without mass transfer, which is different from
our case.

This model illustrates an example that ends with the forma-
tion of a bound system after the encounter, as seen fromTable 1.
In model e8rg1 with the same parameters but for the smaller
shear viscosity of �SPH ¼ 0:1, the deformations are identical

during the earlier phase of time 0Y5�rg to those in Figure 2, and
the effect of smaller viscosity is plainly discernible only in the
deeper ditch that develops after six time units. Accordingly, there
are only small differences in the results in Table 1. This suggests
that the transfer of energy and angular momentum is attributed
solely to the phase lag of the deformations, dynamically generated
in the red giant envelope behind the perturber passage. The inter-
actions to exchange these quantities predominantly occur near
the periastron passage of the smallest separation while the de-
formations are still growing. On the other hand, the effects of
viscosity become important only after the deformations contract
to generate a strong shear near the stellar surface, and hence, the
value of viscosity hardly affects the transfer characteristics.
Themodels of larger impact parameters such asmodel c8rg1 of

� ¼ 2:4 result in a flyby encounter. The nonlinear deformations in
the outer shells of the red giant are weaker than those of themodel
of the closer encounter � ¼ 1:64 in Figure 2. Because of the
slower angular velocity of the perturber, the tidal bulge stretched
out toward the perturber is relatively slimmer to form a chimney-
like structure. The ditch and the eddylike structure, generated on
the surface, are also in smaller scales.
The encounter with a less massive perturber results in smaller

transfer characteristics, a part of which is due to a larger peri-
astron passing time, �, when compared at the same periastron
distance.Model c6rg1 of Mms ¼ 0:6 M� and rp ¼ 2:00Rrg (� ¼
2:14) exhibits a similar chimneylike structure as model b8rg1 of
the massive perturber with the same periastron distance, but the
surface deformations are slightly smaller because of larger �. The
overall transfer characteristics lie between those of two massive

TABLE 1

Parameters and Characteristic Results of Encounter Simulations

Model �SPH

Mms

(M�)

rp
(Rrg) �

�E(tE)

(GM 2
rg /Rrg)

�Lrg(tE)

(MrgR
2
rg�K)

Macc(tE)

(M�)

Mloss(tE)

(M�)

Torb
(yr) e

a

(AU)

Red Giant Model of Rrg ¼ 20 R�

a8rg1.................. 1.0 0.8 1.75 1.64 1.86E�2 2.6E�2 6.70E�3 5.09E�4 4.19 0.95 3.04

b8rg1 ................. 1.0 0.8 2.00 2.00 8.19E�3 9.2E�3 2.91E�3 1.92E�5 22.99 0.98 9.4

c8rg1.................. 1.0 0.8 2.25 2.40 3.09E�3 3.8E�3 5.47E�4 0.0 Flyby . . . . . .

d8rg1 ................. 1.0 0.8 2.50 2.80 9.48E�4 1.4E�3 0.0 0.0 Flyby . . . . . .

e8rg1.................. 0.1 0.8 1.75 1.64 1.88E�2 2.6E�2 6.93E�3 5.47E�4 4.09 0.95 2.99

f8rg1 .................. 0.1 0.8 2.00 2.00 8.32E�3 9.2E�3 2.97E�3 4.80E�5 22.01 0.98 9.17

g8rg1 ................. 0.1 0.8 2.25 2.40 3.19E�3 3.9E�3 5.37E�4 9.60E�6 Flyby . . . . . .

h8rg1 ................. 0.1 0.8 2.50 2.80 1.00E�3 1.4E�3 0.0 0.0 Flyby . . . . . .

a6rg1.................. 1.0 0.6 1.50 1.40 2.35E�2 3.3E�2 5.81E�3 1.14E�3 1.86 0.92 1.69

b6rg1 ................. 1.0 0.6 1.75 1.75 1.12E�2 1.4E�2 2.95E�3 1.44E�4 7.25 0.96 4.18

c6rg1.................. 1.0 0.6 2.00 2.14 4.33E�3 5.0E�3 8.06E�4 9.60E�6 91.9 0.99 22.8

d6rg1 ................. 1.0 0.6 2.25 2.55 1.41E�3 1.9E�3 9.60E�6 0.0 Flyby . . . . . .

e6rg1.................. 0.1 0.6 1.50 1.40 2.37E�2 3.3E�2 5.97E�3 0.0 Flyby . . . . . .

Red Giant Model of Rrg ¼ 85 R�

a8rg2.................. 1.0 0.8 1.41 1.18 2.49E�2 3.3E�2 6.66E�3 2.22E�3 60.3 0.97 18.0

b8rg2 ................. 1.0 0.8 1.80 1.70 9.29E�3 1.1E�2 3.20E�3 2.50E�4 Flyby . . . . . .

c8rg2.................. 1.0 0.8 1.88 1.82 7.18E�3 9.3E�3 2.51E�3 1.82E�4 Flyby . . . . . .

d8rg2 ................. 1.0 0.8 2.00 2.00 4.71E�3 5.2E�3 1.57E�3 5.02E�6 Flyby . . . . . .
e8rg2.................. 1.0 0.8 2.12 2.18 3.25E�3 3.5E�3 8.83E�4 1.28E�5 Flyby . . . . . .

f8rg2 .................. 1.0 0.8 2.45 2.71 8.79E�4 1.1E�3 1.92E�5 0.0 Flyby . . . . . .

g8rg2 ................. 0.1 0.8 1.41 1.18 2.49E�2 3.3E�2 6.66E�3 2.22E�3 60.3 0.97 1.80

h8rg2 ................. 0.1 0.8 1.80 1.70 9.18E�3 1.1E�2 3.52E�3 2.24E�4 Flyby . . . . . .
i8rg2 .................. 0.1 0.8 2.00 2.00 4.71E�3 5.5E�3 1.56E�3 6.4E�6 Flyby . . . . . .

a6rg2.................. 1.0 0.6 1.41 1.27 1.68E�2 2.3E�2 3.56E�3 1.13E�3 142.2 0.98 3.04

b6rg2 ................. 1.0 0.6 1.65 1.60 8.84E�3 1.2E�2 2.20E�3 3.26E�4 Flyby . . . . . .
c6rg2.................. 1.0 0.6 1.88 1.95 4.11E�3 4.8E�3 4.80E�4 2.56E�4 Flyby . . . . . .
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perturber models, model b8rg1 with � ¼ 2:00 and model c8rg1
with � ¼ 2:40.

The encounters with red giants at later evolutionary stages
are exemplified by the models of the larger radius, Rrg ¼ 85 R�.
When models with the same encounter closeness parameter �
are compared, the overall characteristics of interaction, i.e., the
structure of mode oscillations, the development of deformations,
and the accretion process, are very similar in all models, despite
the large difference in the physical distance scales. This is attrib-
utable to the nature of the envelope structure of red giants, i.e.,
to the self-similar density structure, as shown in Figure 1. The
resultant transfer characteristics also turn out to be very similar
when we subtract the effects of the smaller envelope mass.

The overall features of gas streaming are as follows. For small
periastron distances as in these encounters, the nonlinear effects in
the tidal interactions are important and the surface density profile
becomes highly asymmetric in the outer shells of red giants. As
the perturber approaches the periastron, the tidal bulge is excited
in the red giant and elongated, first directed to the perturber. Since
it cannot catch up with the motion of the perturber because of
initially slow rotation, gas particles from the surface of the red
giant chase after the perturber to gain the energy and angular
momentum. Some of them eventually get captured by the grav-
itational potential of the perturber after the periastron passage.
On the other hand, most of gas involved in the tidal bulge falls
back onto the red giant with gained angular momentum, which
produces a nonlinear feature of eddylike structure in the surface
region. Even in the case of binary formations, the orbit is highly

Fig. 3.—Velocity vectors, plotted on the density contour map of the panel at
time 7:0�rg from Fig. 2.

Fig. 2.—Variations in the surface density, projected on the orbital plane, during the encounter for case a8rg1 (Rrg ¼ 20 R�, � ¼ 1:64,Mms ¼ 0:8 M�, and � ¼ 1:0).
Each panel shows a snapshot of contour lines at intervals of 0.2 dex in the logarithmic scale over the range of 10Y0.001 times the average surface density, �env ¼
Menv /�R

2
rg. The origin is set at the center of mass, and numerals in the right bottom corner indicate the time in units of dynamical timescale, �rg ¼ (R3

rg /GMenv)
1=2. Filled and

open squares indicate representative SPH particles initially located on the shells that contain 95% and 70% of total mass including the core mass in the interior, respectively.
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eccentric, and hence, as two stars go away from each other the
tidal bulge becomes slender.

3.1. Nonlinear Deformations and the Evolution
of Differential Rotation

The transfer of orbital energy and angular momentum to
the red giant is characterized by the following three timescales:
(1) the periastron passing timescale of the main-sequence star,
�pass (=1/�pass), which is related to the variation of the external
perturbing force; (2) the dynamical timescale of the envelope
of the red giant, �dyn (=1/�rg), which is related to the stellar os-
cillations in response to the external force; and (3) the viscous
timescale in the envelope of the red giant, �vis (=R

2
rg /�eddy), which

is caused by the convective eddy in the red giant envelope. In
our case, �dyn P �passT�vis. For a slowly rotating red giant, the
tidal bulge tends to fall behind the accelerated motion of the
perturber, and hence, a tidal lag is formed dynamically to carry
the energy and angular momentum from the orbital motion into
the oscillatory motions and rotation of the red giant envelope. The
viscosity plays secondary roles in the transfer of energy and
angular momentum, as seen in Table 1. The accreted mass also
depends little on the assumption of viscosity. Furthermore, we
see that the accreted mass takes nearly the same values regard-
less of the difference in the red giant models when compared
among the models with similar values of �E/(GM 2

rg /Rrg), instead
of the encounter closeness parameter �. This is indicative that
the mass accretion is determined by the same process of energy
deposition.

Figure 4 shows the time variations of angular velocity,�shell,
relative to its Keplerian angular velocity, �rg ¼ (GMrg /R

3
rg)

1=2,
averaged over the gas particles in the three Lagrangian rings on
the orbital plane, initially located at the shells which contain
95%, 90%, and 80% of the mass of the red giant (including the
core mass). The tidal torque excites the oscillations of �shell of
periods �2�rg, corresponding to the l ¼ 2,m ¼ �2 f-mode. As
the perturber approaches, the oscillations develop precipitously
to reach the maximum strength near the periastron passage (at
t ’ 4:5�rg and 3:0�rg for the models with Rrg ¼ 20 and 85 R�,
respectively) with greater amplitudes and longer durations in
the outer shells. Accordingly, the turnover of rotation velocity is
delayed in the outer shell, and at the same time, the mean rotation
velocity of oscillation increases in the prograde direction, re-
flecting the injection of angular momentumdue to the tidal torque,
which is stronger in outer shells. The amplitudes and mean values

of oscillations are greater for closer encounters. Between the
different red giant models with the same closeness parameter �,
the model with the larger radius entails smaller variations in the
rotation rate, normalized with respect to the characteristic ro-
tation rate, �shell /�rg; this is true even if we take into account
the fact that the shell of the same mass fraction is 50% deeper
in the envelope because of the smaller envelope mass. It should
be noted however that the net amount of angular momentum
transferred is larger, although only slightly, for the red giant
model of larger radius because of the larger critical angular
momentum (R2

rg�rg).
As for the effects of viscosity on the time variations of �shell, the

largest one appears in the difference in the minimum value after
the periastron passage; for the smaller viscous parameter, it de-
creases to be smaller, and along with the phase delay of outer
shells, the eddylike structure of counterclockwise flow becomes
stronger, as stated above. The time of minimum �shell coincides
nearly with the time of the strongest eddy in Figure 2. Stronger
shear produced by the eddylike structure in turn enhances the dis-
sipation and inward transport of angularmomentum; in Figures 2a
and 2a 0 we see the amplitudes of oscillations in the outer two
shells get smaller in the second and later cycles for the models
of smaller viscosity, although the overall similarity holds, in
particular, in the shifts of mean values of oscillations.
Figure 5 illustrates the evolution of the radial distribution of

angular velocity, averaged over the gas particles between cylin-
ders, perpendicular to the orbital plane, with the outer and inner
radii separated by 0:1Rrg. The outermost layer is first accelerated
and pulled the most outward to run after the perturber of angular
velocity �pass at the periastron passage (’0:61�rg around the
time �6�rg). Then the deposited angular momentum is redis-
tributed gradually into the interior. By�40�rg, most of the interior
up to the radius R ’ 1:1Rrg tends to rotate uniformly while there
remains differential rotation in the outer expanded layer of lower
density. For the smaller viscosity parameter of � ¼ 0:1, the vis-
cous process works slightly more slowly, and a uniform rotation
is reached only in the interior of R P 0:8Rrg by �40�rg with
stronger differential rotation in the outer shells. The timescale
for the transfer of angular momentum inside the red giants is
shorter than that estimated from the eddy viscosity, the latter of
which is �1 yr and 10 yr for the case of �SPH ¼ 1:0 and 0.1,
respectively, while �rg ¼ 0:02 yr. This also indicates that the
nonlinear effects, seen from Figure 3, must mainly contribute
to the redistribution of the angular momentum.

Fig. 4.—Time variations of angular velocity,�shell, averaged over particles in Lagrangian rings on the z ¼ 0 orbital plane, initially located at the shells, the interior of
which contains 95%, 90%, and 80% of the mass of the red giant (including the core mass); the vertical axis is the angular velocity normalized with respect to the
Keplerian value at the initial surface [�rg ¼ (GMrg /R

3
rg)

1=2], and the horizontal axis is time in units of �rg ¼ 1/�rg. (a) Model a8rg1; (a0, b) Models e8rg1 and b8rg1, which
differ from (a) in the viscous parameter and in the encounter closeness parameter, respectively; (c) Model b8rg2 with the red giant model of larger surface radius.
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3.2. Transfer of Energy and Angular Momentum
and Mass Accretion

We evaluate the change in the orbital energy,�E, from the dif-
ference of the kinetic and potential energy as

�E(t)¼ 1

2
�0v

2
1 � 1

2
�v2 � GMrgMms

r

� �
; ð7Þ

where � is the reduced mass, r and v are the relative distance and
velocity, respectively, and the subscript 0 denotes the quantities
before the encounter. We may well assume that the change in the
orbital energy is equal to the energy transferred to the red giant,
since the energy carried away by the particles that escape from the
system is much smaller and escaped mass is smaller than accreted
mass by nearly an order of magnitude as seen from Table 1.

The total angular momentum,�L, transferred into the red giant
is estimated by summing up the specific angularmomentum for all
the particles constituting the red giant envelope around the core,

�L(t) ¼
X
i

mi(ri � rrg)(vi � vrg); ð8Þ

where mi, r i, and v i are respectively the mass of the ith gas
particle and its position and velocity vectors, and r rg and v rg
are the position and velocity vectors of the core of the red giant,
respectively. We exclude from the summation the gas particles
which have accreted onto the main-sequence star and those which
have escaped from the system; the latter particles are defined as
satisfying the following two conditions: (1) the total energy, i.e.,
the sum of the thermal, kinetic, and potential energy, of a gas
particle is positive; and (2) the radial velocity is positive when
measured from the center of mass.

Figures 6 and 7 show the time variations of orbital energy and
angular momentum (Eorb ¼ �0v

2
1 ��E and Lorb ¼ �0bv1�

�L), respectively, for the 20 R� models. As the periastron is
approached, both decrease rapidly and reach the minimum after
the periastron passage. Then, they turn to increase gradually to
resume the loss of up to�28% in the largest case and approach

asymptotic constant values. Figure 8 shows the time variation
of mass, Macc, trapped by the perturber; the beginning of mass
accretion coincides with when the orbital energy and angular
momentum hit the minimum, and the increase in the accreted
mass follows the curves of the latter’s recovery. This indicates
that the orbital energy and angular momentum once received by
the surface matter are slowly returned back to the orbital motion
by the accretion process.

At the end of our simulations, the motions of the two stars tend
to settle in asymptotic orbits, and the characteristics no longer
change.We present the values of�E(tE),�L(tE), andMacc(tE) at
the end of our simulation at t ¼ tE ¼ 20�rg or 40�rg in Table 1.
The deposited energy and angular momentum into the red giant
envelope increase precipitously with decreasing periastron dis-
tance, and for rp P 2Rrg, both of them become appreciable in
comparison with the gravitational binding energy and the angular

Fig. 5.—Evolution of radial distribution of angular velocity, averaged over
the particles that reside temporally between the cylinders, separated by 0:1Rrg

on the orbital plane, for model b8rg1;�rg [=(GMrg /R
3
rg)

1=2] is the critical rotation
velocity at the initial surface of the red giant, and the time is designated in the
box in units of dynamical time of �rg ¼ (R3

rg /GMenv)
1=2.

Fig. 6.—Time variations in the orbital energy, Eorb ¼ (1/2)�0v
2
1 ��E.

Filled and open symbols denote the models of �SPH ¼ 1:0 and 0.1, respectively.
A legend for the symbols is provided in the figure.

Fig. 7.—Time variations in the orbital angular momentum, Lorb ¼ �0bv1�
�Lrg. A legend for the symbols is provided in the figure.
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momentum corresponding to the critical rotation of red giants,
respectively. The angular momentum of �L(tE) k 0:01Irg�rg

(where Irg is the moment of inertia of the red giant) can be
deposited, which is necessary to explain such fast rotators as
observed for the HB stars in the globular clusters. The accreted
mass onto the main-sequence stars also shows a similar tendency,
amounting to be comparable with the mass in the surface con-
vective zone of main-sequence stars near the turnoff stars in the
globular clusters (�0:003 M�; see, e.g., Suda & Fujimoto 2006).
As the perturber mass decreases by 25% from Mms ¼ 0:8 to
0:6 M�, the deposited energy and angular momentum decrease
by a factor of 1.6Y2.2, and the accreted mass decreases by a
slightly larger factor of 2.3Y2.5. When the two red giant models
are compared at the same encounter closeness parameter �, the
interactions tend to be weaker for red giant models of larger
radius, when normalized with respect to their radii, giving smaller
�E(tE)/(GM

2
rg /Rrg) and �L(tE)/(GM

3
rgRrg)

1=2, although the dif-
ferences remain less than a factor of 2. This is attributable mainly
to the smaller envelope mass involved in the tidal deformations
(decreasing by 50%) for the model of the larger radius.

In our simulations the border between the tidal capture and the
flyby, i.e., whether two stars form a bound system or fly apart
after the encounter, lies in the range of 2:14 < rp /Rrg < 2:25 for
20 R� and 1:41 < rp /Rrg < 1:65 for 85 R�, respectively. Our
tidal capture limit is somewhat larger than that obtained from
the linear analysis by McMillan et al. (1990) who give the range
rp /Rrg ¼ 1:5Y1:7 for the capture of a 0:5 M� dwarf (see Table 2)
and Bailyn (1988) who give the range rp /Rrg ¼ 1:0Y2:0 for the
capture of a 1:4 M� neutron star. As for the dependence on the
red giant models, the case of 85 R� results in the flyby for closer
encounters than the case of 20 R� when compared between the
models of the same periastron distance normalized by the stellar
radius. This is due to the smaller binding energy of the envelope,
which directly affects the capture condition�E(tE) > (1/2)�0v

2
1,

as already discernible in the linear analysis by McMillan et al.
(1990). On the other hand, a larger radius causes relatively greater
effects on the angular momentum deposition and mass accretion;
for the red giants of late evolutionary stages, even the flyby en-
counters can give sufficient amounts of angular momentum and
accreted mass to explain the fast rotators of HB stars and to dis-
guise the surface of the main-sequence star with accreted matter.

4. PARAMETER DEPENDENCES OF TRANSFER
CHARACTERISTICS AND FITTING FORMULAE

4.1. Tidal Energy Deposition and Angular Momentum Transfer

The linear perturbation theory has been developed by Press &
Teukolsky (1977) and Lai (1997) to evaluate the transfer of energy
and angular momentum through the dynamical tides; according
to their results, the parameter dependences of these quantities are
given explicitly in equations (B7) and (B13) for the l ¼ 2 f-modes
(see Appendix B). In order to separate the effects of the secondary
mass, we may define � Ẽ and � L̃ as

�Ẽ � �E(tE)
�

GM2
rg=Rrg

� �
Mms=(Mrg þMms)
� �2n o

; ð9Þ

� L̃ � �L(tE)
�

MrgR
2
rg�rg

� �
= Mms=(Mrg þMms)
� �2n o

: ð10Þ

In the linear theory, � Ẽ and � L̃ are expressed in terms of the
transfer functions, T2(�;Q02; !02) and S2(�;Q02; !02), given in
equations (B8) and (B14) in Appendix B, respectively; here!02

andQ02 are the frequency and overlap integral of l ¼ 2, f-mode
oscillations and, for the red giants, are given by interpolation for-
mulae of equations (B10) and (B9) in Appendix B as a function
of radius. Since the l ¼ 2 modes dominate over the oscillatory
motions even in the nonlinear regime, we may utilize these trans-
fer functions and seek the fitting formulae of � Ẽ and � L̃ as a
function of � for the given models of red giants.
Further, the transfer characteristics obtained by the numerical

simulations differ also with the internal structure of red giant
models, as seen above. In the linear theory, the dependences of the
internal structure are included in the transfer functions, in partic-
ular, through the overlap integralQ02. In the tidal interactions via
the torque, the coupling is given by the moment of inertia of the
envelope, since the core acts as an inert source of gravity. As a
corollary, the transfer functions can be scaled with the inertia of
the envelope. We define the nondimensional moment of inertia,
Ĩ , as

Ĩ �
Z

4�r4� dr=MrgR
2
rg ’ 0:15(Menv=Mrg); ð11Þ

for the red giant models. The approximation in the rightmost
member in equation (11) follows from the similarity of the en-
velope structure in the red giants when normalized with respect
to the surface radius and the envelope mass, as shown in Figure 1.
For a main-sequence model of polytrope N ¼ 1:5, we have
Ĩ �

R
4�r4� dr/MmsR

2
ms ’ 0:2.

TABLE 2

Tidal Capture Limits

Mms

(M�)

Rrg

(R�) �cap

rpcap
(Rrg) �linearcap

r linearpcap

(Rrg)

0.6........................ 20 2.3 2.1 1.78 1.77

0.8........................ 20 2.38 2.25 1.82 1.88

1.4........................ 20 2.47 2.56 1.91 2.16

0.6........................ 85 1.5 1.58 1.14 1.31

0.8........................ 85 1.58 1.71 1.20 1.42

1.4........................ 85 1.70 2.00 1.31 1.68

Notes.—First and second columns are main-sequence mass and red giant
radius. Third and forth ones are � and rp at tidal capture limit for parameters of
first and second columns estimated from our simulations. Last two columns are
same as that of third and forth ones but are estimated from linear theory.

Fig. 8.—Time variations of the accreted mass,Macc, onto the secondary point
mass. Symbols have the same meanings as in Fig. 7.
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Figure 9 shows�Ẽ /(Ĩ /2) and�L̃/ Ĩ as a function of � for the
models with the different red giant models of radii 20 and 85 R�
(denoted by circles and squares, respectively) and with the dif-
ferent main-sequence stars of mass 0.6 and 0:8 M� (denoted by
open and filled symbols, respectively). They form a single curve
on each panel, independent not only of the perturber mass but also
of the red giant models. The models computed by Davies et al.
(1991, 1992) are also plotted in this figure; their models of a
0:8 M� red giant and 20 R� give very good agreement with
ours for the encounter not only with a 0:6 M� main-sequence
star (open triangles) but also with a 1:4 M� neutron star ( filled
triangles). The encounter with neutron stars results in slightly
smaller energy deposition (about several tenths) for close en-
counters of � P 2, which is attributable to the larger accretion

radius of the neutron star, since the accretion of larger mass onto
the perturber returns a larger portion of energy from the outer
elongated part of the red giant envelope to the orbital motion. As
for the angular momentum, the deposition is slightly smaller in
their red giant models at close encounters of � < 2 than in ours,
whichmay stem from the difference in the criterion of mass-loss
particles, giving a larger mass loss to their models, or from larger
radii of red giant, used in the normalization, with taking into
account the swell of the red giants during the encounter.

In the top panel of Figure 9 we also plot the results for the
encounter simulations of main-sequence stars with a neutron
star and with a black hole by Davies et al. (1992) and Lee et al.
(1996) and for the encounter of a N ¼ 1:5 main-sequence star
with a black hole by Khokhlov et al. (1993a). We approximate
the main-sequence star with a polytrope of index N ¼ 1:5 and
take Ĩ ¼ 0:2. These models fall very closely along the same curve
as our models and seemingly compose a single group despite the
difference not only in themass of the main-sequence stars but also
in the mass ratio. The models by Lee et al. (1996) give slightly
smaller values than those by Davies et al. (1992) which may
stem from the different criteria and treatment of the particles that
accrete onto the neutron star. The models by Khokhlov et al.
(1993a) give slightly larger values than those by Davies et al.
(1992) which may stem from the neglect of the accretion effect.

This convergence may be related to the fact that the ratio, �!02,
between the timescale of periastron passage and the timescale of
envelope oscillations decreases to near unity in the nonlinear re-
gime for small �. A similar tendency in which the dependence
on the stellar models becomes weaker for smaller � is also dis-
cernible in equations (B7) and (B13) from the linear perturbation
theory. These results for the linear regime are also plotted in this
figure, and the comparisonwith the results of the nonlinear regime
indicates that the latter effect enlarges the deposition of energy
and angular momentum by a factor of several and up to 10, while
it becomes saturated and slightly dwindles for smaller � < 2 be-
cause of the mass accretion onto the perturber.

We may take advantage of the convergence in the nonlinear
regime to evaluate the transfer characteristics for other red giant
models and to seek the fitting formulae that express�E(tE) and
�L(tE) in terms of model parameters. We define the critical ro-
tation energy and angular momentum of model stars as Ecrit ¼
(1/2)Ĩ(GM 2

rg
/Rrg) and Lcrit ¼ ĨMrgR

2
rg�

2
rg, respectively, with the

dependence on the moment of inertia taken into account, and
assume the following fitting formulae that converge to the results
of linear theory for distant encounters,

�E(tE)
�

Ecrit MP=(Mrg þMP)
� �2n o

¼ 2=Ĩ
	 


��4T2(�;Q02; !02) 1þ exp a1�
2 þ b1� þ c1

	 
� �
;

ð12Þ

�L(tE)
�

Lcrit MP=(Mrg þMP)
� �2n o

¼ 1=Ĩ
	 


��4S2(�;Q02; !02) 1þ exp a2�
2 þ b2� þ c2

	 
� �
;

ð13Þ

where MP is the perturber mass. For the red giant models of
various evolutionary stages, the transfer functions are computed
with the estimates of !02 and Q02 from equations (B9) and (B10)
in Appendix B. For the main-sequence stars, the values of!02 and
Q02 are taken from Lee &Ostriker (1986) for a polytrope of index
N ¼ 1:5. We may determine the coefficients in these formulae
by applying the fitting procedure with the nonlinear least-squares

Fig. 9.—Deposited energy and angular momentum, normalized by the inertia,
�Ẽ/0:5Ĩ (top) and �L̃/ Ĩ (bottom) from the orbital to stellar internal motions are
plotted as a function of the encounter closeness parameter � for the red giantmodels
of radius 20 and 85 R� (circles and squares) with the main-sequence perturber of
mass 0.6 and 0:8 M� (open and filled symbols). Also plotted are the results by other
authors: a red giant of mass 0:8 M� and radius 20 R� with main-sequence stars
of mass 0.4 and 0:6 M� and with a neutron star of mass 1:4 M� by Davies et al.
(1991, 1992; inverted filled, open, and filled triangles); a 0:8 M� main-sequence
star with a neutron star of mass 1:4 M� by Davies et al. (1992; inverted open
triangles); 0.2, 0.3, 0.5, and 0:7 M� main-sequence stars with a 1:4 M� neutron
star by Lee et al. (1996; plus signs, crosses, asterisks, and waning moons); a
polytrope with a black hole by Khokhlov et al. (1993a, 1993b; windmills). Thin
solid, dotted, and dash-dotted curves denote the fitting curves given in eqs. (12)
and (13) for 20, 40, and 85 R�, respectively, and the dashed curve denotes eqs. (15)
and (16), while thick curves denote the corresponding results derived from the
linear theory. See text for details.
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Marquardt-Levenberg algorithm to our data plotted in Figure 9 for
the red giant models of radii 20 and 85 R�. The fitting curves are
plotted in the figure, which converges into a unique relationship in
the nonlinear regime for the red giant models of different radii.
The fitting curves for themodels with other radii (core masses) are
also derived by adopting the same data in the nonlinear regime, as
shown for the model of 40 R� in Figure 9. These fitting param-
eters, thus obtained for the various red giantmodels, are expressed
as the second-order polynomials of radius as

a1 ¼ �7:8 ; 10�5(Rrg=R�)
2 þ 9:6 ; 10�3(Rrg=R�)� 0:66;

b1 ¼ 9:0 ; 10�5(Rrg=R�)
2 � 0:028(Rrg=R�)þ 3:7;

c1 ¼ �5:4 ; 10�4(Rrg=R�)
2 þ 0:077(Rrg=R�)� 4:6;

a2 ¼ �4:6 ; 10�6(Rrg=R�)
2 þ 0:00104(Rrg=R�)� 0:05945;

b2 ¼ 2:6 ; 10�4(Rrg=R�)
2 þ 0:0127(Rrg=R�)þ 1:02;

c2 ¼ 2:2 ; 10�4(Rrg=R�)
2 þ 0:036(Rrg=R�)� 1:42: ð14Þ

Furthermore, in the nonlinear regime, the deposited energy
and angular momentum during the encounters may be given
simply as the functions of � in the form

�E(tE) ¼ Ecrit MP= Mrg þMP

	 
� �2
; exp 2:718� 0:761� � 0:386�2

	 

; ð15Þ

�L(tE) ¼ Lcrit MP= Mrg þMP

	 
� �2
; exp 3:735� 2:237� � 0:040�2

	 

; ð16Þ

which are plotted in this figure by dashed curves. Note that they
coincide with the expressions obtained above in equations (12)
and (13) for close encounters of � P 4 and P10, respectively.
These formulae are applicable not only to the encounter of red
giants but also to that of main-sequence stars of arbitrary mass
and radius as long as the stellar mass is small enough for the
surface convection to develop deep enough to be approximated
by a polytrope of index N ¼ 1:5.

4.2. Accreted Mass onto Main-Sequence Stars

During the encounter, matter near the very surface may gain a
lot of energy and angular momentum from the orbital motion to
expand and eventually be captured by the perturber. The matter
accreted onto the perturber returns the acquisitions back to the or-
bital motion, whichmay reduce the transfer of energy and angular
momentum at small � < 2, as stated above. As seen from Table 1,
the accretedmass,Macc(tE), turns out to be nearly the same among
the models with similar values of �E(tE)/(GM

2
rg /Rrg) regardless

of the radius of the red giants. This is indicative that the amount
of accreted mass is related to the deposited energy. In this section
we study the relationship between the accreted mass and other
physical quantities and attempt to express the accreted mass as a
function of the model parameters.

In the case of a star filling the Roche lobe in a close binary,
Paczynski & Sienkiewics (1972) argue that the mass transfer
rate is related to the excess,�R, of stellar radius over the Roche
lobe under the assumption of a polytrope; the principal part of
parameter dependences of the transfer rate (see their eq. [A21])
is approximated by

Ṁ � 4�A2 GM

A

� �Nþ0:5
Mrg

M

� �Nþ1:5

K�N �R

RL

� �Nþ1:5

; ð17Þ

where A and M are the separation and total mass of the binary
system, respectively. Here we neglect the weak dependence on
the mass ratio and, in particular, take the Roche radius RL /A �
0:38 (cf. eq. [4]). Although the flow is not in the steady state in
our case, the timescale of flow through the inner Lagrangian point
is slower than the dynamical timescale of the stellar envelope, and
hence, we may assume the same dependences for the accreted
mass. Further, since the orbit is eccentric and not circular, it is
difficult to estimate�R/RL exactly. And yet, it seems natural for
�R/RL to be related to the deposited energy, and we may well
assume the following relation,

(d	L=dr)�RL

GM=R rg

¼ �RL

RL

R rg

RL

� f
�E

GM 2
rg=Rrg

 !
; ð18Þ

where taking account of the work against the gravitational
potential (	L) at the Roche lobe surface and the right most term
indicates the left ones will be approximated by a functional
form of the deposited energy. By using the relation between the
polytropic constant K and the stellar surface characteristics in
equation (A7), we then have

Ṁ � Mrg

Mrg

Menv

� �N�1 �3
rg

�2
pass

f
�E

GM 2
rg=Rrg

 !Nþ1:5

; ð19Þ

where we have replaced the orbital angular velocity by the instan-
taneous angular velocity, �pass [=(GM /A3)1

=2], of the circular
orbit at the periastron distance. Consequently, multiplying equa-
tion (19) by the periastron passage time ���1

pass and putting
N ¼ 1:5 leads us to

Macc �Mrg(Menv=Mrg)
�1=2�3f �E= GM2

rg=Rrg

� �� �3
: ð20Þ

Figure 10 shows the accreted mass, Macc(tE), divided by
Mrg(Menv /Mrg)

�1=2�3, against �E(tE)/(GM
2
rg /Rrg). It is clearly

seen that our numerical results, denoted by open and filled circles
and squares, form a unique relationship, indifferent to the mass
of the perturber and to the red giant model; a power-law relation
is discernible in the range of �E(tE) > 3 ; 10�3GM

2
rg /Rrg. For

smaller �E(tE), the accreted mass tends to drop off from the

Fig. 10.—Accreted mass, multiplied by the root of the mass fraction of the
envelope of the red giant and divided by the third power of the encounter closeness
parameter, �, as a function of the energy, �E(tE), deposited into the red giant
envelope. Symbols are the same as in Fig. 9, and solid curve represents a power-
law fitting. See text for details.
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power-law relationship because of the low mass resolution due
to the limited number of gas particles; in actuality, only a few
gas particles are accreted around �E(tE) �3 ; 10�3GM 2

rg /Rrg.
In Figure 10 we plot the results of the simulations by Davies et al.
(1991, 1992) and Lee et al. (1996) and find that their values also
fall very closely onto the same relationship for relatively large
deposited energy, while the lower mass resolution in these earlier
simulations (7500 and 9185 SPH particles, respectively) causes
the deviation at smaller�E(tE)/GM

2
rg /Rrg. If these results for the

encounter with main-sequence stars are included, the power re-
lationship holds in the range of mass accretion over 4 orders of
magnitude or more.

The power-law fitting to equation (20) yields

Macc

Mrg

¼ 3:5
Menv

Mrg

� ��1=2

�3
�E(tE)

GM 2
rg=Rrg

" #1:93
; ð21Þ

which gives the accreted mass as a function of the model param-
eters along with the fitting formula of�E(tE) from equation (12)
or from equation (15). This relation implies that �R/RL /
�E1:93=3. We show the comparison between this relation and
the results of simulations in Figure 11 as a function of �, which
is more useful than that of �E(tE). It shows a good agreement
for both the red giant models. Since we may regard the devi-
ations for large � (k2.5) as due to the low resolution in mass in
the simulations, this gives a reasonable fitting for the accreted
mass as a function of � for any given set of the model param-
eters of encounters.

5. CONCLUSIONS AND DISCUSSION

We have performed the SPH simulations of tidal encounters
of red giants with environment stars and investigate the charac-
teristics of stellar interactions for a variety of sets of parameters,
the evolutionary stages of the red giant, the mass of the per-
turber stars, and the assumed strength of viscosity, as well as the
orbital parameters of the encounter. Based on our results and the
other extant models, we discuss the dependences of interactions
in the nonlinear regime on the stellar and encounter parameters
and propose formulae to describe the energy and angular mo-

mentum deposition to red giants and the mass accretion onto the
perturber stars in simple and convenient forms as a function of
these parameters. Our main quantitative results are as follows.

1. We obtain both the amounts of energy and angular mo-
mentum, transferred from the orbital motion into the oscillation
and rotation of red giants, during tidal encounters by numerical
simulations. The angular momentum deposited in the red giants
can be large enough to rotate the envelope at a rate� k 0:01�rg

for the encounter of periastron distance rp /Rrg P 2:5 (or the im-
pact parameter b/Rrg P15:7) and, hence, for such encounters that
ended in the two stars flying apart. For still closer encounters, it
increases to give rotation rates significantly exceeding� ’ 0:1�rg.
Accordingly, the tidal encounter works as the source of angular
momentum necessary to trigger rotational mixing in the red giants
and also to explain the origin of fast rotators observed among the
HB stars. For the larger radius red giant model and, hence, later
stage of evolution, the transferred angular momentum increases
while the energy deposition decreases, since the transferred quan-
tities are scaled with the stellar parameters. The fitting formulae
are derived to describe these quantities as a function of the mass
and radius of red giants, subject to the perturbation, the mass of
the main-sequence stars as a perturber, and the impact parameter.
Furthermore, we show that these transferred quantities, when nor-
malized with respect to the momentum of inertia of the models,
are given solely as functions of the encounter closeness param-
eter �. Our fitting formulae agree well with the results of encounter
simulations by other authors and can even reproduce the results
for the encounters of main-sequence stars approximated to a
polytrope of index N ¼ 1:5.

2. With the aid of fine mass resolution, we demonstrate that
the main-sequence stars can capture gas from the red giant en-
velope sufficiently to disguise their surface with accreted matter
even for the encounters that ended in a flybywith an evolved red
giant. The accreted mass onto the main-sequence star as a per-
turber during the tidal encounters is shown to be in a direct re-
lationship with the energy deposition into the red giants. We also
derive the formula which predicts the accreted mass as a function
of the impact parameters for given stellar parameters and is
applicable to the encounters involving not only the red giants
but also the main-sequence stars.

The derived formulae are useful in determining the periastron
distance of the tidal capture limit for the encounters with var-
ious model parameters. They can also be useful for inquiring
whether some stellar objects in the globular clusters, for example,
the red giants and the main-sequence stars with abundance anom-
alies and the fast rotating HB stars, which cannot be explained
through the framework of the normal stellar evolution, can be
produced through the stellar interactions. In our computations,
the mass accretion rate may exceed the Eddington limit (ṀEdd ¼
4�cRms/
e) on the surface of themain-sequence star for very close
encounters, but since it remains below the Eddington limit at
the accretion radius, we may well assume that the accreted mass
mostly settles on the surface of the main-sequence stars with
loosing thermal energy. In the following, we discuss the ap-
plication of these formulae and the possibility that such stellar
objects have their origins in the stellar encounters.

5.1. Tidal Capture Limit and Comparisons with Other Works

In our simulations, the tidal capture limits, rp;cap in periastron
distance and �cap in �, are estimated from the condition that
�E(tE) ¼ (1/2)�v1(10 km s)2 with the use of equation (12) or
equation (15). Our estimates are given in Table 2 for the two red

Fig. 11.—Accreted mass, multiplied by (Menv /M1)
1=2(2/ Ĩ ½(M1M2)/M2�2)1:93,

as a function of �. Symbols are the same as in Fig. 10. Solid and dashed curves
are derived from eq. (21) and the fitting formula [eq. (12)] for the red giant models
of 20 and 85 R�, respectively (see text for details). [See the electronic edition of the
Journal for a color version of this figure.]
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giant models with the perturber masses of 0.6, 0.8, and 1:4 M�.
For the red giant of larger radius, the tidal capture limits decrease
slightly (�10%) when normalized with respect to the radius of
the red giant, but increase in the physical dimensions nearly in
proportion to the surface radius; they slightly increase with the
mass of the perturber. For the encounter of aMrg ¼ 0:8 M� red
giant with a Mms ¼ 0:6 M� main-sequence star, Davies et al.
(1991, 1992) give the periastron distances for the tidal capture
limit in the range of 2:00 < rp;cap /Rrg < 2:25, and our estimate,
rp;cap /Rrg ¼ 2:1, as seen from Table 2, resides in their range. On
the other hand, our estimates turn out to be larger by�20% than
those obtained from the linear analysis by McMillan et al. (1990)
as listed in the table.

On the other hand, Khokhlov et al. (1993a, 1993b) compute
the encounter of a polytrope star of mass M	 ¼ 0:8 M� with a
black hole of massMB 3M	 for various values of the polytropic
index (the relative velocity is 100 km s�1 at infinity). The tidal
capture limit decreases from �cap ¼ 2:75 for N ¼ 1:5 to 2.20 and
1.55 for N ¼ 2:0 and 3.0, respectively. This demonstrates that for
larger polytrope index, the energy deposition rate of the star be-
comes smaller because of the increase in the mass concentration
toward the center and because of the decrease in the moment of
inertia for a given mass and radius.

5.2. Relevance to the Origin of Stars with Anomalous
Abundances in Globular Clusters

Wemay apply our fitting formulae to examine the possibility
that the abundance anomalies observed for both red giants and
main-sequence stars in some globular clusters can be explained
in terms of the stellar interactions during the close encounters.
As the origin of these objects, we propose the following scenario.
(1) The anomalies of red giants are generated through the flash-
assisted deep mixing mechanism that is triggered by the injection
of angular momentum into their envelope during the encounter
with environment stars (Fujimoto et al. 1999). (2) The main-
sequence stars gain the abundance anomalies as a result of the
surface pollution by accreting matter from the red giants which
have already developed these anomalies. We evaluate whether
these work under the conditions prevailing in globular clusters.

As for point 1, Fujimoto et al. (1999) argue that the angular
momentumof �Lrg /Lcrit k1/100 is necessary to induce the flash-
assisted deep mixing, and the transfer of angular momentum
of this order occurs during the encounter of � P 3, and hence,
rp �2:6Rrg from our formulae. The transfer of angular momen-
tum may have relevance to the bimodal distribution of rotation
velocity that HB stars display with the fastest rotators distributed
on the cooler (redder) side of the branch, whereas the slower
rotators spread over awider range on the branch. Suda&Fujimoto
(2006) suggest that the different modes of the helium-mixing
mechanism may result according to when the stars undergo the
close encounter and the deposition of angular momentum on
the RGB and influence the HB morphology; the injection of an-
gular momentum may invoke hydrodynamical instabilities due
to differential rotation and invoke turbulent mixing to trigger the
hydrogen-flash-driven deep mixing, and the resultant helium en-
richment in the envelope accelerates the evolution of RGB. The
stars that experience the helium enrichment at an earlier epoch on
the RGB have a smaller mass of the helium core and, hence, are
located on the redder side of the HB and those with a later mixing
epoch shift to blueward; on the other hand, if the stars expe-
rience the close encounter near the tip of the RGB, the helium-
flash-driven mixing, rather than the hydrogen-flash-driven deep
mixing, takes places and causes the largest decrease of the he-
lium core so that the stars are situated at the reddest end on the

HB. If the stars experience a close encounter at an earlier stage
of the RGB, then they become slow rotators due to angular mo-
mentum loss through mass loss on the RGB and, hence, settle on
the redder side of the HB, and the stars, if experiencing it at a later
stage of the RGB, become faster rotators and settle on the bluer
side. Finally, the stars, which undergo close encounters very close
to the tip of the RGB, become the fastest HB rotators, located on
the redmost side of the branch. The close encounters at � P3 can
explain the fastest rotation rates observed from HB stars of � �
0:1�K if the angular momentum is conserved during the contrac-
tion from the RGB to the HB. While the pristine angular momen-
tum is effectively lost for such low-mass stars, such fast rotation
as observed for HB stars may be expected also from the syn-
chronization of red giants in binary systems of separation (more
than several AU), and yet, it is difficult for such binaries to sur-
vive without suffering encounters in the dense stellar environ-
ment of globular clusters (see below eq. [22]). In other words, we
may take the existence of HB stars of these fastest rotations as
evidence that such close encounters as � P 3 take place in these
clusters.
As for point 2, since the mass in the surface convective zone is

of �3 ; 10�3 M�, the accreted mass of the order of �10�3 M�
suffices to disguise the surface abundances with those trans-
ferred from the red giant envelope with anomalous abundances.
From the present results, it is possible to estimate the range of
periastron distance, �, that can allow the accreted mass of this
order at � ¼ 1:8Y2:2 and 1:5Y2:0, which correspond to rp ¼
1:9RrgY2:1Rrg and 1:7RrgY2:0Rrg, for Rrg ¼ 20 and 85 R�, re-
spectively, for masses of the main-sequence stars of 0.6 and
0:8 M�.
The timescale of tidal interactions in the environment where

the stellar density is nf pc�3 and the velocity dispersion v1, is
estimated (with the gravitational focusing taken into account,
because of low velocity dispersion of environment stars in the
core) at

�enc � 7:4 ; 109
104 pc�3

nf

100 R�

rp

;
v1

10 km s�1

M1 þM2

2 M�

� ��1

yr: ð22Þ

On this basis, the timescales of tidal encounters, which can
bring about a mass accretion of the order of 10�3 M� and an
angular momentum transfer of�Lrg /Lcrit k 1/100, are estimated
at �1:5 ; 1010 yr for 20 R� and �3 ; 109 yr for 85 R� in the
environment of nf ¼ 104 pc�3 and v1 ¼ 10 km s�1. If the tidal
interactions are responsible for these observed objects, then these
timescales are too large to explain the objects by tidal interactions
as compared with the lifetimes on the corresponding stages of red
giants, �108 yr for 20 R� and �107 yr for 85 R�, and the accu-
mulated number of close encounters, attendant with the abun-
dance anomalies, seems to be no more than a few, too small to
explain the observations even in rough estimates. In order for
the encounters to be viable, these timescales have to be shorter by
more than an order of magnitude, and accordingly, there needs
to be some mechanism(s) to enhance the frequency of tidal en-
counters in globular clusters.
Sugimoto (1996) points out the importance ofmass segregation

in modeling dynamical evolution of star clusters to explain the
observable number of millisecond pulsars in 47 Tuc; without
the mass segregation, theoretical estimation indicates that the
formation probability of a binary with a neutron star is higher
in ! Cen, which has no collapsed core, than 47 Tuc, which has
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a collapsed core, although in actuality, the former has not been
reported to contain any pulsars. Moreover, mass segregation
promotes the core collapse and makes it happen more rapidly
than in the case of a single-mass component. Portegies Zwart
et al. (2001) confirm that mass segregation enriches the core of
a star cluster in giants and white dwarfs by N-body simulations
for an open star cluster. In order to explain the observable num-
ber of giants with abundance anomalies, about a half of the total
number of giants have to experience tidal encounters with field
stars. It is necessary to see whether the mass segregation can
gather most of the giants, although not all, in the core and can
increase the two-body encounter rate bymore than an order of mag-
nitude. In addition to the mass segregation, the gravothermal os-
cillations of star clusters, which has been proposed by Bettwieser
& Sugimoto (1984) and confirmed by N-body simulation (Makino
1996), may influence the rate; since the interactions are expected
to occur in the evolutional stage near the high-density peak, it is
necessary to investigate in a correct manner how deeply and
how long such a high-density state must reach and last to affect
the encounter rates.

For the encounter with the red giants of later stages, the
pollution of main-sequence stars is possible even when the two
stars fly apart after the encounters. For the encounter that ends
in the formation of a binary, it depends on the fate of the two stars
whether the abundance anomalies imprinted onto the companions
are observable or not, and it is necessary to pursue the details of
evolution of tidally captured binaries. There are many effects that
influence the binary evolution, such as the spin-up and mode
damping rates of the red giant after the encounter, the mass
transfer to the companion at subsequent periastron passages (e.g.,
Sepinsky et al. 2007), the mass loss from the bound system, and
also the expansion of the red giant as it ascends the RGB. In
addition, we should also take into account the tidal interactions
of formed binaries with the environment stars. We may con-
ceive that the destination of a tidally captured binary is either
one component is liberated through the exchange encounter with
a third body or the two stars eventually coalesce as a result of
Roche lobe overflow. The possibility of the exchange event

depends on the evolution timescale of giants and the encounter
timescale; since the exchange encounter rate is proportional
nearly to the semimajor axis of a binary under the assumption
of the point mass limit (Heggie et al. 1996), the former is ex-
pected to occur more frequently. Accordingly, if tidal capture
of two-body encounters can contribute the modification of stellar
populations, then the exchange encounters follow at larger rates
and make greater contributions. This increase in the encounter
rates with the red giant in the binary may affect the statistics of
main-sequence stars with abundance anomalies. Furthermore,
through the exchange encounters, the red giants and HB stars,
now losing mass due to the mass loss and becoming lighter than
the heaviest main-sequence stars, can be ejected from the binary
systems to fly apart as single stars.

In summary, the enhancement of tidal interactions, necessary
to explain the observed abundance anomalies, is expected to be
provided by the formation of a high-density core due to the
gravothermal oscillations and by the mass segregations which
enlarge the fractions of stars from the upper mass end in the
core. A proper understanding of these effects waits for N-body
simulations of globular clusters with the stars of multiple mass
spectra taken into account, since star-star interactions as studied
in the present work will play a critical role. In these studies of
dynamical evolution of stellar systems, the formulae for the trans-
fer of energy, angular momentum, and accreted mass derived in
the present work serve the purpose of incorporating these effects
into the simulations. It is also necessary to pursue the binary
evolution and accurately explore the fate of red giants and sub-
sequent HB stars with the interactions with the environment stars
taken into account.

This paper is based on one of the author’s (S. Y.) dissertation
submitted to Hokkaido University, in partial fulfillment of the
requirement for the doctorate. This work has been partially sup-
ported by Grants-in-Aid for Scientific Research (15204010,
16540213, and 18104003) from the Japan Society for the Pro-
motion of Science.

APPENDIX A

THE POLYTROPE MODEL OF RED GIANT STRUCTURE

Fujimoto&Tomisaka (1992) show that the structure of a red giant can bemodeled by a combination of two polytropes with the cool
and hot components corresponding to the core and envelope, respectively. In particular, we may replace the cool component as a
sphere of uniform density (i.e., a polytrope of index N ¼ 1), since we are interested only in the envelope structure, and in this case,
the structure of hot components ensues from the following equations,

dMr

dr
¼ 4�r 2�; ðA1Þ

1

�

dP

dr
¼ � GMr

r 2
þ g; ðA2Þ

with the contribution of core gravity, g, in equation (3) taken into account.With a given envelopemass,Menv, and the surface radius, R,
we may introduce the dimensionless variables as

Mr ¼ Menv’; r ¼ R�; � ¼ �0�
N ; P ¼ P0�

Nþ1; ðA3Þ

where �0 and P0 are the density and pressure coefficients, related to the envelope mass and radius as

�0 ¼ Menv=4�R
3; P0 ¼ GM 2

env=4� (N þ 1)R4: ðA4Þ
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By using these variables, we may rewrite the equations in the nondimensional form, corresponding to the Lane-Emden equation, as

1

�2
d

d�
�2

d�

d�

� �
¼

��N � 3’core=�
3
core; � < �core;

��N ; � 
 �core;

�
ðA5Þ

where �core ¼ Rcore /R and ’core ¼ Mcore /Menv. In the above equations, we take into account the hot component in the core, but its
contribution to the envelope mass is negligible because of a small core radius.

Wemay obtain the envelope structure of red giants by solving equation (A5) for a given set of core radius andmass (�core; ’core) with
the boundary conditions

d�=d� ¼ 0; ’ ¼ 0 at � ¼ 0; � ¼ 0; ’ ¼ 1 at � ¼ 1: ðA6Þ

Several solutions are shown in Figure 1, and we see that the structures exterior to the core resemble each other as long as the core radius is
sufficiently smaller than the stellar radius (�coreT1) and unless the envelope mass is much smaller or much larger than the core mass. In
particular, we have a relation between the polytropic constant (or entropy) and the surface characteristics of the red giant analogous to the
single polytrope,

K ¼ P0

�
1þ1=N
0

¼ (4�)1=NG

N
M 1�1=N

env R3=N�1: ðA7Þ

APPENDIX B

MODEL DEPENDENCES OF TRANSFER OF ENERGY AND ANGULAR MOMENTUM
DUE TO LINEAR DYNAMICAL TIDE

The linear perturbation theory of dynamical tides has been developed to estimate the deposition of energy and angular momentum
from the orbital motion to the stellar oscillations. Press & Teukolsky (1977) derive an analytic formula for the energy deposition, and
later, Lai (1997) extends it with the stellar rotation taken into account to give the general formulae for both the energy deposition and
angular momentum transfer, which are applicable for �31. We are here concerned with the red giants that have negligible rotation
initially. Furthermore, we may well retain only a leading term of l ¼ 2 f-modes, which dominate the dynamical tides (see Lee &
Ostriker 1986).

Press & Teukolsky (1977) give the energy loss,�E, of the orbital motion into the adiabatic, nonradial oscillations for a star of mass,
M1, and radius, R1, during an encounter of periastron distance rp with a point object of mass M2, in the following formula,

�E ¼ GM 2
1

R1

M2

M1

� �2 X
l¼2;3; : : :

R1

rp

� �2lþ2

Tl(�); ðB1Þ

where the dimensionless transfer function, Tl, is defined by

Tl(�) ¼ 2�2
X
n

Qnlj j2
Xl
m¼�l

Knlmj j2 ðB2Þ

with the overlap integral, Qnl, given by

Qnl ¼
Z R1

0

r 2 dr �l(r=R1)
l�1 �Rnl(l )�

S
nl

� �
; ðB3Þ

and with the integral, Knlm, along the trajectory given by

Knlm ¼ Wlm

2�
23=2�Ilm(�!nl); ðB4Þ

Ilm( y) ¼
Z 1

0

dx 1þ x2
	 
�l

cos 21
=2y xþ x3=3
	 


þ 2m tan�1x
� �

; ðB5Þ

Wlm ¼ (�)(lþm)=2 4�

2l þ 1
(l � m)!(l þ m)!

� �1=2.
2l

l � m

2

� �
!

l þ m

2

� �
!

� �
: ðB6Þ

Here �Rnl and �
S
nl are the radial and poloidal normal mode components of the Lagrangian displacements from the unperturbed spherically

symmetric state in units of M�1=2
1 , respectively, and the symbol (�)k in equation (B6) is to be interpreted as (�1)k when k is an integer

and zero when k is not an integer. Since Tl(�) includes the stellar mode frequency, !nl, and the overlap integrals,Qnl, both determined
from the normal mode structures, �Ẽ is dependent on the mode oscillation structure of the star.
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For the leading term of the l ¼ 2 f-mode, we have the following form by separating the dependences on the mass and radius of stars as

�E2 ¼ GM2
1 =R1

	 

(M2=M1 þM2)

2��4T2(�;Q02; !02); ðB7Þ

T2(�;Q02; !02) ¼
4�

5
Q02j j2 I20(�!02)

2 þ 3

2
I22(�!02)

2 þ I2�2(�!02)
2

� �� 
: ðB8Þ

For the red giants of M1 ¼ Mrg ¼ 0:8 M�, the frequency, !02, and the overlap integral,Q02, of l ¼ 2, f-mode oscillations are obtained
by McMillan et al. (1990) who solve the perturbation equations to find the overlap integral and stellar mode frequency. We may
evaluate the values of !02 and Q02 by interpolating their results as a function of the radius in the following forms,

!02 ¼ �1:56 ; 10�4(Rrg=R�)
2 þ 0:0112(Rrg=R�)þ 1:84; ðB9Þ

Q02 ¼ 2:29 ; 10�5(Rrg=R�)
2 � 0:00352(Rrg=R�)þ 0:331: ðB10Þ

As for the angular momentum,�L, transferred from the orbit to the spin of the primary star, Lai (1997) derives a general form with
the effects of stellar rotation taken into account. In the limit of negligible initial rotation rate, it reduces to

�L ¼ GM 3
1R1

	 
1=2 M2

M1

� �2 X
l¼2;3; : : :

R1

rp

� �2lþ2

Sl(�); ðB11Þ

where the transfer function, Sl, is defined as

Sl(�) ¼ �2�2
X
n

Qnlj j2!�1
nl

Xl
m¼�l

m Knlmj j2 ðB12Þ

with the overlap integral, Qnl, and the trajectory integral, Knlm, defined above.
Then for the l ¼ 2 f-mode, we have

�L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM 3

1R1

q
M2

M1 þM2

� �2

��4S2(�;Q02; !02); ðB13Þ

where

S2(�;Q02; !02) ¼ � 12�

5

� �
Q02j j!�1

02 I22(�!02)
2 � I2�2(�!02)

2
� �

: ðB14Þ
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