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ABSTRACT

Both core accretion and disk instability appear to be required as formation mechanisms in order to explain the entire
range of giant planets found in extrasolar planetary systems. Disk instability is based on the formation of clumps in a
marginally gravitationally unstable protoplanetary disk. These clumps can only be expected to contract and survive to
become protoplanets if they are able to lose thermal energy through a combination of convection and radiative cool-
ing. Here we present several new three-dimensional, radiative hydrodynamics models of self-gravitating proto-
planetary disks, where radiative transfer is handled in the flux-limited diffusion approximation. We show that while
the flux-limited models lead to higher midplane temperatures than in a diffusion approximation model without the flux
limiter, the difference in temperatures does not appear to be sufficiently high to have any significant effect on the
formation of self-gravitating clumps. Self-gravitating clumps form rapidly in the models both with and without the
flux limiter. These models suggest that the reason for the different outcomes of numerical models of disk instability by
different groups cannot be attributed solely to the handling of radiative transfer, but rather appears to be caused by a
range of numerical effects and assumptions. Given the observational imperative to have disk instability form at least
some extrasolar planets, these models imply that disk instability remains as a viable giant planet formation mechanism.

Subject headings: accretion, accretion disks — hydrodynamics — instabilities —
planetary systems: formation — solar system: formation

1. INTRODUCTION

Observations of protoplanetary disks around T Tauri stars
traditionally imply disk masses in the range of 0.01-0.1 M
(Kitamura et al. 2002). However, these disk masses may well be
underestimated by as much as a factor of 10 (Andrews & Williams
2007). In addition, young stellar objects are likely to have had
even higher disk masses at ages younger than typical T Tauri stars
(a few Myr), as their protostellar disks transitioned into proto-
planetary disks. Combined with the need for planet formation
theorists to prefer increasingly higher disk masses in order to ac-
count for the timely formation of gas giants by core accretion
(e.g., Inabaetal. [2003] suggest a 0.08 M, disk, while Alibert et al.
[2005] considered disks as massive as 0.1 M,,), it is becoming clear
that at least some protoplanetary disks are likely to have experi-
enced a phase of gravitational instability, which might have led
to the rapid formation of gas giant planets by the disk instability
mechanism (e.g., Boss 1997; Mayer et al. 2002). The absence of
IR excesses in ~65% of the youngest stars observed by Spitzer
suggests that the majority of protoplanetary disks dissipate on time-
scales of ~1 Myr or less (Cieza et al. 2007). While core accretion
models can be constructed that permit giant planet formation times
less than 1 Myr (Chambers 2006), other assumptions can require
formation times of several Myr (e.g., Inaba et al. 2003; Alibert
et al. 2005).

Considering that estimates of the frequency of gas giant planets
around G dwarfs with orbits inside ~20 AU range from ~20% to
~40%, there is a need for at least one robust formation mecha-
nism for gas giant planets. It is important to note that both core
accretion and disk instability appear to be needed to explain the
range of extrasolar planets detected to date. Core accretion would
seem to be the preferred mechanism to form giant planets with
very large inferred core masses. For example, HD 149026b has
been inferred to have a core mass of ~70 M, with a gaseous
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envelope of ~40 M, (Sato etal. 2005), although the formation of
this planet is hard to explain even by core accretion (Ikoma et al.
2006). Disk instability would seem to be the preferred mechanism
for forming gas giants in very low metallicity systems (e.g., the
M4 pulsar planet, where the metallicity [Fe/H] = —1.5 [Sigurdsson
et al. 2003], and perhaps the giant planets orbiting HD 155358
and HD 47536, both of which have [Fe/H]= —0.68 [Cochran
et al. 2007]). While disk instability is somewhat insensitive to
metallicity (Boss 2002), recent models have suggested that higher
metallicity could aid in the formation of giant planets by disk in-
stability (Mayer et al. 2007). Disk instability also appears to be
needed to form gas giant planets around M dwarf stars (Boss
2006b), although the situation regarding formation by core accre-
tion is unclear at present (Laughlin et al. 2004; cf. Kornet et al.
2006).

Based on all of these observations and detections, then, the main
theoretical questions would seem to be whether there is a forma-
tion mechanism that can account for the majority of extrasolar
planets, and if so, which mechanism it is. In order to answer these
questions, theorists have been busily examining core accretion
and disk instability in increasingly greater detail. Core accretion
has been subjected to considerably greater scrutiny than disk in-
stability, given that it has been the generally accepted mechanism
for giant planet formation for almost three decades, dating back
to Mizuno (1980), whereas disk instability is only a decade old as
a serious alternative to core accretion (Boss 1997) and is just now
beginning to be investigated sufficiently to discover its strengths
and weaknesses.

Theorists studying disk instability are divided into two distinct
camps, those whose numerical models support the possibility of
forming giant planets by this means (e.g., Boss 1997, 2000, 2001,
2002, 2004, 2005, 2006a, 2006b, 2007; Mayer et al. 2002, 2004,
2007), and those whose numerical models (e.g., Pickett et al. 2000;
Cai et al. 2006; Boley et al. 2006, 2007a, 2007b) or analytical
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arguments (e.g., Rafikov 2007) do not. The reason for this basic dif-
ference in outcomes is presently unclear and may be a combination
of many effects (Nelson 2006; Boss 2007), such as numerical
spatial resolution, gravitational potential solver accuracy, use of
artificial viscosity, degree of stellar irradiation, detailed radiative
transfer effects, and spurious numerical heating.

Recently attention has been focused on the role of radiative
losses from the surface of the disk. A disk instability is likely to
be stifled if the optically thick clumps that form are unable to lose
at least some of the thermal energy produced by compressional
heating during contraction to protoplanetary densities. While verti-
cal convection appears to be able to cool the disk midplane (Boss
2004; Boley et al. 2006; Mayer et al. 2007; Rafikov 2007), this
thermal energy must eventually be radiated away at the disk’s
surface. Models employing the flux-limited diffusion approxima-
tion have been presented by Boley et al. (2006, 2007a) and Mayer
et al. (2007), reaching opposite conclusions regarding the possi-
bility of disk instability forming protoplanets. The treatment of
radiative boundary conditions for the disk differs for each group.
Boley et al. (2006) fit an atmosphere to the flux originating from
the interior of the disk. Mayer et al. (2007) assume blackbody
emission at the disk surface (for particles defined as being on the
surface), while the present models use an envelope bath with a
fixed temperature, typically 50 K.

With the exception of a single test model mentioned in passing
by Boss (2001), all of the author’s disk instability models since
Boss (2001) have employed diffusion approximation radiative
transfer without a flux limiter, for reasons of computational per-
formance. We present here three new models that explore in some
detail the effects of including a flux limiter in disk instability mod-
els, in the hopes of helping to decide if this particular numerical
choice is responsible for the distinct disparity in outcomes of disk
instability models.

2. NUMERICAL METHODS

The calculations were performed with a code that solves the
three-dimensional equations of hydrodynamics and radiative trans-
fer, as well as the Poisson equation for the gravitational potential.
This code has been used in all of the author’s previous studies of
disk instability and is second-order accurate in both space and
time (Boss & Myhill 1992).

The equations are solved on a spherical coordinate grid with
N, =101, Ny =23 in /2 > 6 > 0, and N, = 512. The radial
grid is uniformly spaced with Ar = 0.16 AU between 4 and
20 AU. The 6 grid is compressed into the midplane to ensure ad-
equate vertical resolution (A@ = 0.3° at the midplane). The ¢ grid
is uniformly spaced, and the central protostar is assumed to move
in such a way as to preserve the location of the center of mass of
the entire system. The number of terms in the spherical harmonic
expansion for the gravitational potential of the disk is Ny;,, = 48.
The Jeans length criterion is monitored to ensure that numerical
artifacts do not form.

The boundary conditions are chosen at both 4 and 20 AU to
absorb radial velocity perturbations. Mass and momentum that
enter the innermost shell of cells at 4 AU are added to the central
protostar and so removed from the hydrodynamical grid, whereas
mass and momentum that reach the outermost shell of cells at
20 AU pile up at the boundary.

3. FLUX-LIMITED DIFFUSION APPROXIMATION

All of the author’s disk instability models since Boss (2001)
have employed radiative transfer in the diffusion approximation,
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through the solution of the equation determining the evolution of
the specific internal energy £:

9(pE) . _ . 4 4
o + V- (pEv)=—pV-v+V {%V(UT) ,

where p is the total gas and dust mass density, ¢ is time, v is the
velocity of the gas and dust (considered to be a single fluid), p is
the gas pressure, x is the Rosseland mean opacity, o is the Stefan-
Boltzmann constant, and 7'is the gas and dust temperature. The
energy equation is solved explicitly in conservation law form, as
are the four other hydrodynamic equations.

The final term in the energy equation represents the transfer of
energy by radiation in the diffusion approximation, which is valid
in optically thick regions of the disk. Given typical midplane op-
tical depths of ~104, the diffusion approximation should be valid
at the disk midplane and throughout most of the disk, although it
will break down at the surface of the disk. In order to ensure that
the diffusion approximation did not affect the solution in regions
where it is not valid, Boss (2001) used a simple artifice to control
the flux in the low optical depth regions of the disk: the diver-
gence of the radiative flux term was set equal to zero in regions
wherever the optical depth 7 dropped below a critical value 7,
where 7 was typically set equal to 10.

An alternative approach to treating the low optical depth regions
of disks in the diffusion approximation is to employ a flux limiter
(e.g., Bodenheimer et al. 1990). The purpose of a flux limiter is
to enforce the physical law that in low optical depth regions the
ratio of the radiative flux F to the radiative energy density e,
cannot exceed the speed of light ¢, i.e., |F| < ce,. Bodenheimer
et al. (1990) adopted a prescription for enforcing this constraint
based on the flux limiter proposed by Levermore & Pomraning
(1981) for the situation where scattering of light is negligible. The
Levermore & Pomraning (1981) flux limiter is based on a heuris-
tic argument leading to an approximation consisting of a rational
function that uses a polynomial involving gradients of the radia-
tion energy density. They then tested their formulation against an
exact solution for planar geometry, i.e., one-dimensional radia-
tive transfer. Their flux limiter has been employed by Boley et al.
(2006) and Mayer et al. (2007) in their disk instability calcula-
tions, with differing results, as well as in the molecular cloud col-
lapse models of Whitehouse & Bate (2006).

The author’s diffusion approximation code is derived from a
code that handles radiation transfer in the Eddington approxima-
tion (Boss 1984; Boss & Myhill 1992). In this code, the energy
equation is solved along with the mean intensity equation, given

by

lLV- <LVJ> J=-B,
3 kp Kp

where J is the mean intensity and B is the Planck function (B =
oT*/). The mean intensity J is related to the radiative energy
density e, by J = ce, /4, while the net flux vector H is given by
H = F/4r. Hence, the statement of physical causality |F| < ce,
is equivalent to |H| < J. The Eddington approximation version
of the code does not calculate H directly, but rather V « H, as this
quantity is used in the code to calculate the time rate of change of
energy per unit volume due to radiative transfer, L, through

L=—47V-H = 4—7TV- (LVJ>
3 Kp
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Fic. 1.—Equatorial density contours for model F1 after 325.8 yr of evolution.

The disk has an outer radius of 20 AU and an inner radius of 4 AU. Hashed re-

gions denote clumps and spiral arms with densities higher than 10710 g cm 3.

Density contours represent factor of 2 changes in density.

in optically thick regions (Boss 1984). Hence, it is convenient to
apply the physical causality constraint |H| < J in another form.
Using the equation for L, one finds

1
H=—-——VJ.
3kp

The constraint |H| < J then becomes

4
—WVJ' <A4nJ.
3kp

This constraint is then evaluated in a convenient but approximate
manner by effectively taking the divergence of both sides of this
equation, resulting in a constraint on L that

L=

4 1
Ty. (—VJ>‘<4WV-J|,
3 Kp

where J is a pseudovector with J as components in all three di-
rections. In the diffusion approximation, J = B. In practice, then,
L is calculated for each numerical grid point, and if |L| exceeds
|47V « J|, L is set equal to |47V + J| but with the original sign of
L (i.e., preserving the sense of whether the grid cell is gaining or
losing energy through radiative transfer).

Boss (2001) noted in passing that a model where this flux limi-
ter was employed did not result in any major changes in the prog-
ress of the disk instability models under investigation, but provided
no details or justification for this statement. The main purpose of
this paper is to return to this potentially key point, calculate sev-
eral new models with this version of flux-limited diffusion, and
compare them to a disk instability model without a flux limiter.

4. RESULTS

We now present the results of a set of three new models em-
ploying the flux limiter defined in the previous section. The three
models vary only in the value chosen for the critical optical depth
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Fic. 2.—Same as Fig. 1, but for model TE after 326.5 yr.

Terit» D€low which the term calculating the time rate of change of
energy per unit volume due to radiative transfer, L (effectively
the divergence of the radiative flux), was set equal to zero. The
three models employed 7.t = 0.1, 1.0, 10.0. In practice, all three
of these models evolved in very much the same manner, so fig-
ures will only be shown for the model with 7., = 1.0, termed
model FL1. The three models are all continuations in time of
model HR of Boss (2001), starting at a time of 322 yr of evolu-
tion in model HR, and continuing for up to another 8 yr of evolu-
tion (N% clump orbital period). The new models are compared
to model TE of Boss (2007), which used diffusion approxima-
tion radiative transfer, but without the flux limiter, and which also
started from model HR of Boss (2001) after 322 yr of evolution.

The results for models FL1 and TE at a time of 326 yr of evo-
lution are shown in Figures 1 and 2, respectively. The midplane
density contours for the two models are very similar, especially
so for the highest density regions (cross-hatched). The densest
spiral arms and clumps that exist at this phase of the evolution are
located between 6 and 8 o’clock in Figures 1 and 2, with maxi-
mum densities of ~1.6 x 10~ g cm™> occurring in the clumps at
6:30 o’clock.

Figures 3 and 4 depict the temperature and optical depth pro-
files as a function of vertical height above the midplane, along
the A coordinate direction, starting from the cells with the maxi-
mum densities in models FL1 and TE, respectively. Two different
evaluations of the optical depth are plotted, namely, the optical
depth in the radial direction (the value used in evaluating all ra-
diative transfer effects, including L and 7, in model TE and all
previous models by the author, including the flux-limiter test men-
tioned by Boss 2001), and the optical depth in the f-direction,
which was used for evaluating L and 7 in the three new models.
The decision of using an optical depth 7 dependent only on the
radial coordinate direction was originally made in order to enforce
consistency with spherically symmetric calculations of protostel-
lar cloud collapse, the problem that initially motivated the devel-
opment and testing of this radiative hydrodynamics code (e.g.,
Boss & Myhill 1992; Myhill & Boss 1993). Figures 3 and 4 show
that these two different evaluations of 7 do not differ greatly from
each other, varying by no more than a factor of 6 at the same
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Fic. 3.—Log of the optical depth (dashed lines) and temperature (solid line)
as a function of distance above the midplane for model FL1 after 325.8 yr of evo-
lution. The profiles are along the 6 coordinate, starting at the location of the maxi-
mum density in the midplane. The long-dashed line gives the optical depth in the
O-direction, starting with zero at the rotational (symmetry) axis, while the short-
dashed line gives the optical depth in the radial direction, starting with zero at the
outer edge of the spherical computational volume.

vertical height. Given the spatial resolution in the 6 coordinate,
the differences in the two evaluations of where 7 = 7, typically
differ by less than one vertical cell. Improving this treatment of
7 in a three-dimensional code may require the use of an angle-
dependent ray-tracing radiative transfer routine, which would be
prohibitively computationally expensive. Alternatively, one could
imagine using a weighted mean 7 derived from the values of 7 in
the three coordinate directions. Nevertheless, it is apparent from
Figures 3 and 4 that the surface of the disk, defined as where
T ~ %, falls at a vertical height of ~1.6—1.7 AU in both models.

log T or log 7 at I =30 K =129

height in AU

Fic. 4—Same as Fig. 3, but for model TE after 326.5 yr.
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Fic. 5.—Temperature (linear scale) as a function of distance above the
midplane for model FL1 after 325.8 yr of evolution, plotted as in Fig. 3.

Figures 5 and 6 are perhaps the most important for discerning
the effects of the flux limiter, showing the vertical temperature
profiles over the maximum density clumps in Figures 1 and 2 for
models FL1 and TE. While the temperature differences are hard
to discern when plotted on a log scale (Figs. 3 and 4), on a linear
scale it is clear that in the flux-limiter model (FL1), there is a
much steeper vertical temperature gradient near the surface of the
disk than in the model without the flux limiter (TE), as might be
expected. (Note that in both models, the temperature is assumed
to fall to 50 K in the disk’s envelope [e.g., Chick & Cassen 1997].)
In spite of this steeper rise below the disk’s surface, however, in
both models FL1 and TE the profile flattens out near the disk
midplane and approaches essentially the same value of ~100 K,

150

100 — T
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Fic. 6.—Same as Fig. 5, but for model TE after 326.5 yr.
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Fic. 7.—Equatorial density contours for model FL1 after 329.6 yr of evolu-
tion, plotted as in Fig. 1.

with model FL1 being less than 2 K hotter than model TE at the
midplane. This similarity in thermal behavior is consistent with
the similarities in the density evolution seen in Figures 1 and 2.

The models assume that the disk is immersed in an envelope
bath at 50 K. The specific internal energy of the envelope gas in
cells with densities less than 10712 g cm ™3 is recalculated each
time step from the internal energy equation of state, using the as-
sumed envelope temperature of 50 K and the envelope density at
each grid cell. The specific internal energy is thus forced to track
the temperature profiles displayed in Figures 5 and 6 and so to
merge smoothly with the assumed envelope thermal bath. This
assumption can lead to either the gain or the loss of internal en-
ergy, depending on whether the envelope cell had a temperature
lower than or greater than 50 K before the envelope temperature
constraint was applied. It is important to note that while the hand-
ling of the disk’s surface is directly linked to the ability of the disk
to cool itself by radiation into the infalling envelope, this surface
treatment has relatively little effect on the cooling of the mid-
plane by convective-like motions, as the driver for these motions
is the vertical temperature gradient near the disk’s midplane, not
the disk’s surface. Figure 5 in Boss (2004) shows that the regions
of convective instability according to the Schwarzschild criterion
are concentrated near the disk midplane, in spite of the fact that the
midplane is forced to be convectively stable by the assumption of
equatorial reflection symmetry.

Figures 7 and 8 display the results of both models after another
4 yr of evolution, at ~330 yr, the maximum time to which model
FL1 was evolved. It is evident again from these figures that the
models continued to evolve in a highly similar manner. In order to
quantify this, the dense clumps seen at 7:30 o’clock in Figures 7
and 8 were evaluated in detail. For model FL1, this clump had a
maximum density of 1.2 x 10 g cm— and contained a mass of
0.24 My within regions with a density no less than 1/30 of the max-
imum density. This mass exceeds the Jeans mass of 0.23 M; for
this clump, implying that it is gravitationally bound. The ratio of
thermal energy to gravitational energy for the clump is 0.84. The
equivalent spherical radius of the clump was 0.38 AU, which is
smaller than the critical tidal radius of 0.49 AU, implying stabil-
ity against tidal forces. For comparison, the corresponding clump
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Fic. 8.—Same as Fig. 7, but for model TE after 330.3 yr.

in model TE had a maximum density of 1.5 x 10-9 g cm 3, con-

taining a mass of 0.30 M|, compared to a Jeans mass of 0.24. The
ratio of thermal energy to gravitational energy for this clump is
0.77. The equivalent spherical radius of this clump was 0.39 AU,
also smaller than the critical tidal radius of 0.52 AU. While model
TE yielded a clump at this time that was 25% more massive than
in model FL1, both models produced apparently self-gravitating
clumps that could go on to form gas giant protoplanets. The es-
timated orbital eccentricities and semimajor axes are 0.033 and
11.3 AU for the clump in model FL1 and 0.004 and 11.3 for the
model TE clump at ~330 yr: both clumps are on roughly circular
orbits at this time.

Evidently the clumps in both models are only marginally grav-
itationally bound and marginally tidally stable, as shown by the
fact that they tend to disappear within an orbital period or less.
Calculations with even higher spatial resolution have shown that
the clumps become better defined as a result (Boss 2005), sug-
gesting that in the continuum limit, the clumps should survive to
become protoplanets. An adaptive mesh refinement code will
be needed to properly investigate the long-term survival of such
clumps.

Figures 9 and 10 display the midplane temperature distributions
for models FL1 and TE at the same times as the density distribu-
tions shown in Figures 7 and 8. The distributions are again highly
similar, at least in the outer disk and in the clump-forming region.
However, the region of the model FL1 disk inside about 6 AU
does appear to be considerably more nonaxisymmetric than in the
case of model TE, which is very nearly axisymmetric inside 6 AU.
Evidently use of the flux limiter can lead to significantly stronger
nonaxisymmetric variations in the temperature field. However,
these temperature changes have little effect on the clump-forming
region of the disk, as the inner disk is the hottest region of the disk,
with the midplane temperature rising to over 630 K at the inner
boundary at 4 AU, sufficiently high to ensure gravitational stabil-
ity (Q > 1). Clumps do not form in the inner region in these models
because of the high inner disk temperatures in the initial radial
temperature profile.

In spite of the basic agreement after ~8 yr of evolution, one
must wonder what would happen on the much longer timescales
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Fic. 9.—Equatorial temperature contours for model FL1 after 329.6 yr of evo-
lution, plotted as in Fig. 1, with temperature contours representing factor of 1.26
changes in temperature.

that must be considered in deciding whether these clumps could
survive to form gaseous protoplanets. In order to address this
question, Figures 11 and 12 show the time evolutions of the volume-
averaged midplane temperatures and total midplane thermal en-
ergies for both models. The intention is to discern if there are any
trends evident over 8 yr of evolution that could be used to decide
the extent to which these two models might diverge if they could
be evolved arbitrarily farther in time. Figures 11 and 12 reveal no
such evidence for divergence: both of these quantities, when plot-
ted for the entire midplane region (Fig. 11), or only for the region
from 6.5 to 13 AU of most interest for disk instability (Fig. 12),
show that the two models evolve in very similar manners and

Fic. 10.—Same as Fig. 9, but for model TE after 330.3 yr.
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FiG. 11.— Volume-averaged midplane temperatures (triangles and solid lines)
and total midplane Eyeqma (circles and dashed lines) for model FL1 ( filled symbols)
and model TE (open symbols) as a function of time in years. Temperatures are
given in K and the total thermal energy in units of 103° ergs.

give no hint that their evolutions might turn out to be signifi-
cantly different if evolved even further in time.

The models with the flux limiter run considerably slower than
models without a flux limiter, since in order to maintain a stable
solution of the energy equation with explicit time differences, a
smaller time step (often 1% of the Courant time step) had to be
employed. This fact is evident from Figures 11 and 12, which plot
disk quantities every 10,000 time steps for models FL.1 and TE: it
is clear from the density of plot symbols that model FL1 required
many more time steps to evolve for the same period of time as
model TE. The flux-limiter models each required roughly 1 yr of
machine time on a dedicated Alpha workstation to run for only
up to 8 yr of model evolution time; i.e., the models were being
calculated only 8 times faster than the disks were evolving in
model time, a situation similar to current weather prediction
models.
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Fic. 12.—Same as Fig. 11, but only for radial distances of 6.5—13 AU in the
midplane.



No. 1, 2008

2\\\‘\\\‘\\\‘\\\‘\\\l

[N
o
|
|

1 amplitude

m

0 <0 40 60 80 100

radial cell number

Fi. 13.— Amplitudes of the m = 1 mode in a spherical harmonic expansion
of the midplane density distribution as a function of radial distance in the disk, with
radial cell number 1 located at 4 AU and cell number 100 located at 20 AU. The
amplitudes for model FL1 ( filled symbols) and for model TE (open symbols) are
shown at 328.2 and 328.3 yr, respectively.

Rather than attempt to run these models significantly further in
time, then, one can address the question of the extent to which the
flux limiter is having a long-term effect on the disk by examining
more closely the evolution of the innermost disk, where the shorter
orbital periods mean that the calculation has effectively been
evolved for more dynamical times, i.e., for closer to a full orbital
period. In order to be more quantitative than is possible by pre-
senting only density and temperature contour plots, Figure 13
shows the amplitudes of the m = 1 mode in the spherical harmonic
representation of the midplane density distribution, as a function
of radial distance, for models FL1 and TE. The time shown in Fig-
ure 13 was chosen in order to be as late as possible in the evolution
of model FL1, yet as close as possible in time to model TE (data
files are only stored every 10,000 times steps, so the times avail-
able for cross comparison are quite limited as a result). Figure 13
shows that the amount of nonaxisymmetry in the two models is
nearly identical in the clump-forming region and beyond (outer %
in radius) but is still reasonably well correlated even in the inner-
most disk. At some radii, model FL1 has a higher m =1 ampli-
tude than model TE, and the opposite is true at other inner disk
radii. Figure 13 shows that the degree of nonaxisymmetry is well
correlated in both models, even in the innermost disk where or-
bital periods are the shortest, suggesting that the innermost disk
shows little or no tendency for diverging in behavior, at least over
these timescales, as a result of the flux limiter.

Finally, Figures 14 and 15 show the effects of the flux limiter on
the convective energy fluxes in models FL1 and TE at ~330 yr.
The vertical convective energy flux is calculated as in Boss (2004)
as the product of the local vertical velocity, cell area, specific in-
ternal energy, and cell density. Figures 14 and 15 plot this flux for
a conical surface at a fixed angle of 0.3° above the disk’s mid-
plane (i.e., the J = 2 cells in the 6 coordinate). The convective
flux must vanish at the midplane as a consequence of the assumed
equatorial symmetry of the models; if this constraint were to be
lifted, more vigorous convective fluxes are to be expected (e.g.,
Ruden et al. 1988). These two figures show that application of
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Fic. 14.—Logarithm of the vertical convective flux (cgs units) as a function
of radial distance for model FL1 at 329.6 yr. Values are plotted for a conical sur-
face 0.3° above the midplane, where the fluxes must vanish. Positive fluxes refer
to upward transport, while negative fluxes correspond to downward transport.

the flux limiter has no obvious systematic effects on the vertical
convective fluxes near the midplane, where the need for convec-
tive cooling is most severe; the overall patterns of upwelling and
downwelling regions are quite similar in both models.

5. DISCUSSION

These models have shown that the flux limiter has relatively
little effect on the evolution, at least during a phase when the disk
has already begun forming strong spiral arms and clumps. The
question arises as to what would happen if the flux limiter was ap-
plied earlier in the evolution of the disk, prior to the formation of
highly nonaxisymmetric structures. The model noted in passing

20 [~ !

2

+/— log flux for J

20 -

radius in AU

Fic. 15.—Same as Fig. 14, but for model TE at 330.3 yr.
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by Boss (2001) began at an earlier time than in the present models,
after 141 yr of evolution instead of after 322 yr, and so tested the
effects of the flux limiter at such an earlier phase. Unfortunately,
the data files from the Boss (2001) flux-limiter model no longer
exist, as the models were run in 2000 and stored on a hard disk
that has since failed. Hence, it is not possible to present those re-
sults in the detail presented here, a fact that motivated calculation
of the models in this paper. The flux-limiter model from Boss
(2001) was compared to a non—flux-limiter model by visual in-
spection of density contour plots, as in Figures 1 and 2 and in Fig-
ures 7 and 8 in the present paper, with the conclusion being that
there were no significant differences apparent in the degree of
clumpiness in the two models. While purely a qualitative judgment,
these results suggest that the role of the flux limiter is similarly
limited both early and late in the development of a phase of disk
instability.

Boley et al. (2006, 2007a) have presented the results of a series
of tests of their radiative hydrodynamics code on a “toy problem™
(the plane-parallel gray atmosphere) with sufficient assumptions
to permit an analytical solution for the temperature distribution.
Their toy problem assumes an infinite slab, making the problem
the same as a one-dimensional Cartesian atmosphere. This toy
problem is well suited to their cylindrical coordinate code, as their
vertical (z) cylindrical coordinate is effectively a one-dimensional
Cartesian coordinate, and by freezing motion in the radial direc-
tion (Boley et al. 2006) and applying suitable boundary condi-
tions at the disk edges, the Boley et al. (2006) code can be used to
simulate a plane-parallel atmosphere.

Boley et al. (2006) . . . challenge all researchers who pub-
lish radiative hydrodynamics simulations to perform similar tests
or to develop tests of their own and publish the results.” While
it would be ideal to be able to undertake the same tests as those
examined by Boley et al. (2006, 2007a), the fact that their tests
assume a plane-parallel atmosphere makes them unsuitable for a
spherical coordinate code, which has no Cartesian coordinate. The
closest analog coordinate for the present code would be the 6
coordinate, but trying to reproduce a plane-parallel atmosphere
solution with spherical coordinates places the spherical coordinate
code at a distinct disadvantage from the beginning, as any attempt
to study a plane-parallel atmosphere with such a code will imme-
diately introduce corrugations in all variables in each azimuthal
(r, 0)-plane. One could perhaps average over the entire disk to try
to remove these corrugations, but the nonuniform 6 grid spacing,
designed to represent realistic protoplanetary disks, not plane-
parallel slabs, would result in highly variable effective spacings
in the vertical direction, which would further complicate the anal-
ysis. Studying the performance of the current radiative hydrody-
namics code on the Boley et al. (2006, 2007a) tests in an unbiased
manner requires writing a new one-dimensional radiative hydro-
dynamics code based on the same numerical assumptions as the
present three-dimensional spherical coordinate code. Writing and
testing such a code, even before trying the Boley et al. (2006,
2007a) tests, is a nontrivial task, as no such code exists. Writing
such a code to perform the Boley et al. (2006, 2007a) tests would
be a worthy goal for future work.

Alternatively, it is possible that a spherical coordinate version
of the Boley et al. (2006, 2007a) tests could be posed and exam-
ined with the one-dimensional spherical coordinate version of the
present code. This would also meet the request by Boley et al.
(2006) . . . to develop tests of their own and publish the results.”
This task remains for future investigation.

Finally, it should be noted that the motivation of this paper is
the same as that expressed in the Boley et al. (2006) request,
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“. . . todevelop tests of their own and publish the results.” Many
other numerical tests of the present code have been presented as
follows: spatial resolution (Boss 2000, 2005), gravitational po-
tential solver (Boss 2000, 2001, 2005), artificial viscosity (Boss
2006a), and radiative transfer (Boss 2001, 2007). It would be valu-
able for other researchers to consider their own tests of all of
these key numerical aspects.

6. CONCLUSIONS

The results presented here confirm the statement made by Boss
(2001) that the inclusion of a flux limiter in these calculations does
not lead to significantly different outcomes for the progress of a
disk instability calculation. Even with the steeper vertical temper-
ature gradient near the disk surface when a flux limiter was em-
ployed (Figs. 7 and 8), the corresponding midplane temperature
increased by no more than 2%. Similarly, Boss (2007) investigated
the effects of several other changes in the treatment of radiative
transfer in these models, finding that the numerical assumption
that had the largest effect was the relaxation of the monotonically
declining vertical temperature profile, which resulted in clumps
that were no more than a factor of 2 times less dense than when
monotonicity was enforced. For comparison, for models FL1 and
TE in Figures 7 and 8, the maximum clump densities differed by
only 25%, implying even less of a difference between models FL.1
and TE and the two models (H and TZ) from Boss (2007).

Evidently disk instability is tolerant of a range of treatments of
the radiative transfer, at least up to a point. If there is a means for a
clump to cool enough to contract, the clump will find this means
to allow its survival. In this context it is of interest to note that
analytical evaluations of disk instability (e.g., Rafikov 2007) have
been restricted to considering plane-parallel (one-dimensional)
disk models, where the entire disk midplane must be cooled, in
order to cool the disk midplane anywhere at all. In a more realis-
tic three-dimensional disk model, of the sort depicted in the pres-
ent numerical models, only the limited midplane region inside the
dense clump needs to lose thermal energy, in any direction, in
order for the clump to continue to contract and possibly survive
to become a gas giant planet. This is a considerably relaxed cri-
terion for cooling and ultimate clump survival compared to the
cooling of an entire slab of midplane gas and dust. Similarly, a
hot spot on the disk surface above a contracting clump will find it
easier to radiate away its thermal energy than if the entire disk
surface has the same vertical thermal profile as that under the hot
spot.

Given the apparent observational need for disk instability to be
able to form gas giant planets in some protostellar environments,
if flux limiters and other radiative transfer effects are not the main
reason for the discrepant outcomes in models of disk instability,
then there must be other reasons, or combinations of reasons, for
these differences, as examined and discussed in some detail by
Nelson (2006) and Boss (2007). Spurious heating of the inner disk
associated with numerical oscillations is one possible source of
these discrepancies that deserves further scrutiny (Boley et al.
2006, 2007a), as this leads to gravitational stability in the same re-
gion of the disk where clumps form in other disk instability models
(Boss 2007).

Because of the unsatisfactory nature of the theoretical under-
standing of disk instabilities at present, it is important to continue
to undertake code tests. The present models have shown that the
use of a flux limiter has relatively little effect on the evolution of
an instability during the phase when the disk is already dynam-
ically unstable. However, it is also important to investigate the
role of a flux limiter during earlier phases of evolution, before the
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disk becomes unstable, in order to learn if the flux limiter can af-
fect clump formation if applied from the very beginning of the
evolution. A new model is underway that investigates this pos-
sibility, and the results will be presented in a future paper. Other
code tests should also be sought, similar to the radiative transfer
tests advanced by Boley et al. (2006, 2007a), except for spherical
geometry instead of slab geometry, so that the present code can
be tested in a similar manner.
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