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ABSTRACT

We study collisions between dust aggregates to construct a model of their structural evolution in protoplanetary
disks. We carry out three-dimensional simulations of aggregate collisions and examine their compression and dis-
ruption processes following our previous two-dimensional simulations. We take clusters of ballistic cluster-cluster
aggregation (BCCA) formed by a hit-and-stick process as initial structures and study their head-on collisions with the
use of realistic binding forces. Our numerical results indicate that the energy criteria for compression and disruption
of BCCA clusters are consistent with previous two-dimensional simulations. For aggregate compression at a collision,
we succeed in obtaining a scaling law in which the gyration radius of the resultant aggregate is proportional to E�0:10

imp ,
where Eimp is the impact energy. Furthermore, we derive an ‘‘equation of state’’ of aggregates which reproduces the
scaling law for compression. The equation of state is useful for describing the density evolution of dust aggregates
during their growth.

Subject headinggs: circumstellar matter — dust, extinction — methods: n-body simulations —
planetary systems: formation — planetary systems: protoplanetary disks

1. INTRODUCTION

The structural evolution of dust aggregates is a key for under-
standing planetesimal formation processes in protoplanetary
disks. Planetesimals form through collisions between dust aggre-
gates composed of a large number of submicron particles and/or
gravitational instability of the dust layer in themidplane of the disks
(e.g., Goldreich & Ward 1973; Weidenschilling & Cuzzi 1993).
Dust aggregates cannot prevent themselves from growing by mu-
tual collisions in the early growth stages of planetary system for-
mation. In such growth processes, coupling of dust with disk gas
plays an important role in the orbital motion of dust aggregates
(e.g., Adachi et al.1976;Weidenschilling1980,1984; Nakagawa
et al.1981; Tanaka et al. 2005). The degree of coupling with disk
gas is determined by the surface-to-mass ratios of dust aggre-
gates, which depend on their collisional history. Therefore, it is
important to reveal the evolution of aggregate structures during
collisional growth.

A high degree of coupling leads to a significantly low impact
velocity (<1mm s�1) between aggregates andmakes their struc-
ture very fluffy. Actually, in such a low-velocity collision, aggre-
gateswould just stickwithout any compression, resulting in clusters
of ballistic cluster-cluster aggregation (BCCA) with a fractal di-
mension between�1.5 and�2 (Meakin1991;Mukai et al.1992;
Krause & Blum 2004; Paszun & Dominik 2006). When such
BCCA clusters grow and their impact energies become large
enough, they begin to be compressed. Once aggregates are com-
pressed, the surface-to-mass ratios are reduced and then the im-
pact velocities increase, resulting in further compaction of the
aggregates. In extremely high velocity collisions, aggregates
would be disrupted. Hence, it is necessary to clarify when and
how aggregates are compressed or disrupted during their collisions.

Several studies on dust growth took into account the structural
evolution (e.g., Ossenkopf1993;Weidenschilling&Ruzmaikina
1994; Kempf et al. 1999; Blum 2004; Ormel et al. 2007). How-
ever, dust structures in their models are too oversimplified to
construct a realistic model of dust growth. A further study of the
structural evolution requires a thorough examination of com-

pression and disruption of dust aggregates. Sirono (2004) and
Schäfer et al. (2007) performed numerical simulations of dust col-
lisions by means of a smoothed particle hydrodynamic code.
They showed that the compressive strength of dust should be
less than its tensile strength for sticking and growing of dust.
Their dust is expressed by a continuum medium, which requires
a fracture model and an equation of state (EOS) to simulate
compression and disruption of aggregates. They used an EOS
of aggregates of toner particles applicable to the density range
k0.1 g cm�3 for relatively compact aggregates. On the other
hand, the density of BCCA clusters we consider is lower than
this density range by several orders of magnitude. One needs an
EOS applicable to such low-density aggregates.
Dominik & Tielens (1997) carried out two-dimensional (2D)

numerical simulations of aggregate collisions.1 They modeled
particle interactions in detail and calculated the motion of each
particle directly in their simulation. Table 1 summarizes the de-
pendence of collisional outcomes on the impact energyEimp they
obtained, whichwe call the ‘‘DT recipe.’’ The recipe is expressed
in terms of three parameters, Eroll, Ebreak, and nk . The energy
necessary to roll a particle by 90

�
on the other particle in contact

is denoted by Eroll and is given by

Eroll ¼ 12�2�R�crit; ð1Þ

where � is the surface energy, R ¼ (1/r1 þ 1/r2)
�1 is the reduced

radius of the particles of radii r1 and r2, and �crit is the critical rolling
displacement (Dominik & Tielens 1995, 1997; Wada et al. 2007).
The energy necessary to break one contact, Ebreak, is given by

Ebreak ’ 1:54Fc�c; ð2Þ

where Fc ¼ 3��R is the force needed to separate two particles in
contact and �c is the critical compression length between the

1 Exactly speaking, their simulations were not purely 2D; they did not sim-
ulate motion of disks but spheres moving in a plane.
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particles in contact (Chokshi et al. 1993; Wada et al. 2007). We
define nk as the number of contacts in aggregates before impact.
The numerical simulation of Dominik & Tielens (1997) is limited
to 2D and head-on collisions of one type of BCCA-like initial
structure containing as few as 40 particles. Developing a new nu-
merical code, we extended their numerical simulations of 2D
aggregate collisions by using various initial structures of BCCA
clusters composed of a large number (up to 2048) of particles
(Wada et al. 2007).We confirmed the criteria byDominik&Tielens
(1997) for maximum compression and catastrophic disruption of
the collisional aggregates. In addition, we found empirical scal-
ing laws for the gyration radius and the number of contacts of
resultant aggregates formed after collisions. Although the DT
recipe seems to explain the experimental results of small aggregate
(�60 particles) collisions byBlum&Wurm (2000), it is insufficient
to model the structural evolution of dust aggregates in proto-
planetary disks.

In this paper, we carry out three-dimensional (3D) simulations
of aggregate collisions, using the numerical code developed in
Wada et al. (2007). The results from 3D simulations will provide
us with a more realistic model for the structural evolution of dust
aggregates. The scaling laws and the ‘‘EOS’’ of aggregates ob-
tained from an analysis of the numerical results will be applicable
to the study of the growth of dust to planetesimals. Sirono &
Greenberg (2000) formulated an EOS of aggregates analytically,
assuming that the aggregates consist of periodically arranged
chains of particles. For more realistic aggregates, the numerically
derived EOSwill be useful. It is of course difficult to directly sim-
ulate collisions of large aggregates, say, of a cm size, consisting of
more than billions of submicron particles. Therefore, we will
reveal the dependence of collisional outcomes on the number of
particles composing aggregates and then extrapolate the results to
larger sizes.

We here focus on the simplest case, namely, head-on collisions
of nonrotating 3D BCCA clusters as the first step of our study on
3D aggregate collisions. Head-on collisions will create the most
compressed aggregates. The influence of rotation (Paszun &
Dominik 2006) and offset collisions (Sirono 2004; Schäfer et al.
2007; Wada et al. 2007) on collisions of aggregates will be stud-
ied in a future work.

In the next section, we briefly describe our numerical code, the
parameters used in our simulation, and the initial structures of
aggregates. We show our results of 3D simulation for aggregates
composed of up to 16,384 particles in x 3. We focus on com-
pression and disruption of the aggregates. We will derive scaling
laws for the gyration radius and the number of contacts of the
resultant aggregates from our numerical results. In x 4 we derive
an EOS of aggregates from the scaling law for compression.Here,
the EOSmeans a relation between the pressure (or the strength) of
aggregates and their bulk density. We compare the EOS with that
derived analytically by Sirono & Greenberg (2000). Our EOS is
applicable to a macroscopic description of aggregate compression.
Our macroscopic description will be further tested by Suyama

et al. (2008), who directly calculate the growth of aggregates by
successive collisions using the same numerical code as that used
in the present paper. A summary is given in x 5.

2. NUMERICAL MODEL AND PARAMETERS

We perform 3D simulations of aggregate collisions by the use
of the particle interaction model and the numerical code devel-
oped byWada et al. (2007). Here, we briefly describe our numer-
ical code, the parameters used in our simulation, and the initial
structures of aggregates.

We directly calculate the motion of each particle, taking into
account all mechanical interactions between particles in contact.
The contact theory of adhesive elastic spheres determines the inter-
actions for each degree of motion (normal motion, sliding, rolling,
and twisting). Normal to the contact plane of two particles, a re-
pulsive or an attractive force acts on themdepending on the distance
between the centers of the two particles (Johnson et al. 1971;
Johnson 1987). Forces and torques against sliding, rolling, and
twisting are also exerted on the contact particles (Dominik &
Tielens 1995, 1996).

To describe the forces and the torques, Wada et al. (2007)
introduced a potential energy, which assures the energy conser-
vation in the elastic regime with high accuracy in the numerical
simulations. The potential U consists of the potentials for each
degree of motion such that

U ¼ Un(� )þ Us(z )þ Ur(x )þ Ut(f); ð3Þ

where Un, Us, Ur, and Ut are the potential energies for the mo-
tions of normal direction, sliding, rolling, and twisting, respec-
tively. These potentials are functions of each displacement (the
normal compression distance �, the sliding displacement z, the
rolling displacement x, and the twisting angle f; see Fig. 2 of
Wada et al. 2007). Differentiation of U by each displacement yields
the forces and the torques exerted on the particles in contact (see
Wada et al. 2007 for detail).

Energy dissipation occurs at the moments of contact and sep-
aration of particles because of excitation of elastic waves (Chokshi
et al.1993). In our model, the amount of energy dissipated in these
moments is given by 0:847Fc�c for the contact and 0:089Fc�c for
the separation (Wada et al. 2007). When the displacements due to
sliding, rolling, and twisting exceed the elastic limits, the mechan-
ical energy is also dissipated. The amount of energy dissipation is
proportional to the critical displacements (see eq. [1]). The most
important critical displacement is the critical rolling displacement
�crit in low-velocity collisions, because aggregates are compressed
through rollingmotion, onwhichmost energy is dissipated. How-
ever, �crit has a large uncertainty ranging from 2 to 328 (Dominik
&Tielens1995; Heim et al.1999). In our simulation, therefore, we
put �crit as a parameter and set �crit ¼ 2, 8, or 30 8.

We consider aggregates composed of a large number of spher-
ical particles with radius of r1 ¼ 0:1 �m made of quartz or ice.
Material parameters used in the calculation are shown in Table 2.
As initial aggregates before collisions, we prepare 3D BCCA
clusters produced by successive ‘‘head-on’’ sticking of two iden-
tical aggregates in the following procedure: (1) prepare an aggregate
composed of i particles (initially i ¼ 2), (2) copy this aggregate and
make the copy oriented in a randomly chosen direction, (3) by
head-on sticking of these two, make a new aggregate composed
of 2i particles, (4) continue the procedure (1)Y(3) until an aggre-
gate composed of N0 particles is produced. The number of par-
ticles composing the initial clusters is set to N0 ¼ 512, 2048, or
8192 (see Fig. 1). The relation between the number of particlesN0

TABLE 1

Recipe for the Outcomes of Aggregate Collisions

Proposed by Dominik & Tielens (1997)

Energy Collisional Outcome

Eimp ’ 5Eroll ........................... First visible restructuring

Eimp ’ nk Eroll ......................... Maximum compression

Eimp ’ 3nk Ebreak .................... Loss of one particle

Eimp k10nk Ebreak ................... Catastrophic disruption
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and the gyration radius rg;BCCA of the BCCA clusters produced by
such a procedure is expressed as

N0 �
rg;BCCA

r1

� �df
; ð4Þ

where df is the fractal dimension of the clusters (e.g., Mukai et al.
1992). We find that df for BCCA clusters made by ‘‘head-on’’
collisions is 1.99 as shown in Figure 2. Strictly speaking, such
clusters are different from common hit-and-stick BCCA clusters
produced by random offset sticking of two clusters of the same
mass and different structures (e.g., Smirnov 1990). However, the
fractal dimension of the BCCA clusters we produced is close to
that of the common BCCA clusters. For a statistical study of nu-
merical results, we choose 10 types of initial BCCA clusters pro-
duced by the procedure stated above.

The number of contacts in a BCCA cluster is given by nk ¼
N0 � 1. The aggregates consisting of 512 particles are used to
investigate the dependence of collisional outcomes on the ma-
terials and the critical rolling displacement �crit. We also use the
aggregates of 2048 and 8192 particles in the case of ice and
�crit ¼ 8 8 to see the dependence on the number of particles.

We perform simulations of head-on collisions of two identical
BCCA clusters in the center-of-mass system. The impact energy
Eimp is given by Eimp ¼ (1/2)Ntotalm1(uimp/2)

2, where Ntotal is the
sum of the number of particles of two colliding aggregates,m1 is
the mass of one particle, and uimp is the relative impact velocity.
We change uimp from 0.024 to 57 m s�1 for collisions of ice ag-
gregates and from 0.0096 to 5.7m s�1 for quartz to cover the whole
region ranging from no restructuring to catastrophic disruption.

3. RESULTS

In our analysis of collisional outcomes (see Fig. 3 for example),
we examine the gyration radius, the number of contacts, and the
number of particles of the merged aggregates to see the com-
pression process and the degree of disruption.We take the average
of 10 numerical results for initial aggregates having different struc-
tures produced by sticking aggregates with random orientations
(see x 2).

3.1. Gyration Radius

The gyration radius rg of an aggregate is defined by

rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

jxi � xM j2
s

; ð5Þ

where xi is the position vector of particle i, xM is that of the
center of mass of the aggregate, and N is the number of particles
in the aggregate. The gyration radius is a measure of the ag-
gregate size, which changes by restructuring or compression (see
Fig. 3).
Figure 4 shows the gyration radius of aggregates after a col-

lision as a function of the impact energy Eimp. The gyration radius
rg is normalized by r1N

1/3
large, where Nlarge is the number of parti-

cles in the largest aggregate formed by a collision. If the aggre-
gate is disrupted, rg is calculated for the largest fragment. For

TABLE 2

Material Parameters

Material

�

(mJ m�2)

E

(GPa) �

�m
( kg m�3)

Ice.......................... 100 7 0.25 1000

Quartz.................... 25 54 0.17 2600

Notes.—We have that � is the surface energy, E is Young’s modulus, � is
Poisson’s ratio, and �m is material density. All the data except for the � of ice are
the same as used in Dominik & Tielens (1997). The datum of � of ice is taken
from Israelachvili (1992).

Fig. 1.—Examples of initial BCCA clusters. These aggregates collide with each other horizontally. Each aggregate consists of 512, 2048, or 8192 identical particles.
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each parameter set, we performed 10 runs for different initial
structures and obtained averaged values of rg.

First, we focus on the collisions of aggregates consisting of
512 particles to see the influence of the material properties on the
outcomes (Fig. 4a). We see that for Eimpk0:1Eroll the gyration
radius decreases with increasing impact energy irrespective of
the material parameters. The slope (power-law index) of the de-
creasing portion is about�0.1. For Eimp � (0:1Y1)nkEroll, rg stays
at a low value, indicating that compression of the aggregate ceases.
This agrees with the criterion of maximum compression in the DT
recipe. For Eimpk (0:1Y1)nkEroll, the aggregates are disrupted and
rg/(r1N

1/3
large) tends to scatter and increase with increasing Eimp. This

indicates that disrupted fragments are no longer compact compared
to the maximum compressed aggregates.

Although the change in the gyration radius appears to have
almost the same trend irrespective of the material properties, the
data for high �crit (e.g., �crit ¼ 30 8) deviate from the slope at
relatively low Eimp. This early deviation implies that the colli-
sional aggregates are disrupted before being fully compressed.
Material dependence of the degree of maximum compression
will be discussed in x 3.2.

Figure 4b shows the dependence of rg on the mass of ag-
gregates. We find the same trend as that of 512 particles for large

aggregates composed of 2048 and 8192 particles. Namely, rg
begins to decrease at Eimp � 0:1Eroll and attains its minimum at
Eimp � (0:1Y1)nkEroll; the slope of rg is also about �0.1. A dif-
ference appears in the absolute value of rg, that is, rg becomes
large with increasing the number of particles in spite of the nor-
malization by r1N

1/3
large.

In order to scale the absolute values of the gyration radius rg,
we change the normalization of rg. Figure 5 shows rg normalized by
r1N

1/2:5
large instead of r1N

1/3
large. With this normalization, our nu-

merical results are completely scaled in the compression regime
of 0:1ErollPEimpP 0:1nkEroll for all Ntotal, the sum of the num-
ber of particles of two colliding aggregates. The scaling law is
expressed as

rg

r1N 1=2:5
¼ Eimp

0:15NEroll

� ��0:10

; ð6Þ

where we use nk ’ Ntotal and set Nlarge ¼ Ntotal � N , because we
deal with collisions in the compression regimewithout disruption.

We explain the scaling law from equation (6) in a similar way
as in Wada et al. (2007). From 2D numerical simulations of ag-
gregate collisions, we obtained a scaling law

rg

rg;comp

¼ Eimp

bNEroll

� ���

; ð7Þ

using a simple model illustrated in Figure 6. Here, � and b are
constants. Equation (7) is applicable to 3D collisions as well. As
seen in Figure 6, the compression begins at Eimp ¼ b0Eroll (b

0 is
another constant) and rg decreases from rg;BCCA, the gyration ra-
dius of initial BCCA clusters. AsEimp increases further, the com-
pression ceases atEimp ¼ bNEroll, where rg ¼ rg;comp. The exponent
� is determined so that the line passes the point (Eimp; rg) ¼
(b0Eroll; rg;BCCA). Denoting the fractal dimension of the initial
BCCA clusters (’2) by df and that of the aggregates compressed
to the maximum extent by dc , we have the gyration radii of them,

rg;BCCA ’ r1N
1=df ; ð8Þ

rg;comp ’ r1N
1=dc : ð9Þ

Then, the exponent � is given by

� ¼ 1

df
� 1

dc
; ð10Þ

Fig. 3.—Examples of collisional outcomes: (a) no restructuring (uimp ¼ 0:024 m s�1 and Eimp ¼ 0:01Eroll) and (b) maximum compression (uimp ¼ 13 m s�1 and
Eimp ¼ 0:19nkEroll). Both resultant aggregates are composed of 16,384 ice particles of 0.1�m radiuswith �crit ¼ 88. The gray ring for each aggregate indicates the size of
the gyration radius.

Fig. 2.—Number of particles N0 in 3D BCCA clusters against their gyration
radius rg normalized by the particle radius r1. The circles represent the averaged
data with error bars of 1 	, obtained by using 10,000 BCCA clusters produced by
head-on sticking. A fitting line (for N0 � 32) indicated by the solid line is given
by N0 ¼ 1:04(rg/r1)

1:99.
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where we assume b0 ¼ b referring to the numerical results (see
Fig. 5). Then, the line of rg is expressed as

rg

r1N1=dc
¼ Eimp

bNEroll

� ���

: ð11Þ

In the previous 2D simulations, we obtained � ¼ 1/1:57�
1/dc ¼ 0:137, which implies dc ’ 2 for 2Dcompressed aggregates
(Wada et al. 2007). On the other hand, comparing equations (6)

and (11), we have � ¼ 0:10, b ¼ 0:15, and dc ’ 2:5 in the pres-
ent 3D simulations. The result of dc ’ 2 in the 2D simulation
indicates that 2D aggregates can be compressed to the limit. On
the other hand, 3D aggregates are not compressed to the limiting
value of dc ¼ 3. Indeed, Figure 5 shows that the gyration radii of
compressed aggregates are distributed above the line of � ¼ 1/6
(i.e., corresponding to dc ¼ 3), indicating that it is hard to com-
press 3D aggregates to the limit. This analysis suggests that 3D
aggregates maintain a relatively fluffy structure of dc ’ 2:5 even
if they are compressed to the maximum extent by collisions.

Fig. 4.—(a) Gyration radius of the largest fragment, rg, as a function of the impact energyEimp. The vertical axis is rg normalized by r1N
1/3
large. Each line corresponds to each

parameter set: quartz or ice, �crit ¼ 2, 8, or 30 8. In this figure, the number of particles of the aggregates before impact is fixed to N0 ¼ 512. The outputs are averaged over
different initial aggregates produced by random numbers. The vertical dotted lines indicate Eimp ¼ 0:1Eroll and 0:1nk Eroll, from left to right. The gray line is a fitting line
expressed by rg/(r1N

1/3
large) ¼ 1:6½Eimp/(0:15NEroll)��0:10

(see also eq. [14]). (b) Same as (a), but the results are plotted for ice aggregates of N0 ¼ 512, 2048, and 8192 and
�crit ¼ 8 8. The vertical dotted lines with labels indicate Eimp ¼ 0:1Eroll for N ¼ 1024, 4096, and 16,384.

Fig. 5.—Same as Fig. 4b, but the vertical axis is rg normalized by r1N
1/2:5
large. The

gray line is a fitting line expressed by rg /(r1N
1/2:5
large ) ¼ ½Eimp/(0:15NEroll)��0:10. The

thin solid line is the one for dc ¼ 3 and is expressed by rg/(r1N1/2:5
large

) ¼ 9:8 ;
10�3½Eimp/ 0:15NErollð Þ��0:167

.

Fig. 6.—Schematic illustration of the change in the gyration radius rg as a func-
tion of the impact energy Eimp. BCCA clusters with rg ¼ rg;BCCA begin to be com-
pressed at Eimp ¼ b0Eroll and their compressions end at Eimp ¼ bNEroll, where b

0

and b are constants. We assume b0 ’ b referring to the numerical results (Fig. 5).
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To confirm this result, we examine the number of particles
Nin(<r) within a distance r inside aggregates created in our sim-
ulation. By taking each particle’s center as an origin of measur-
ing the distance r, we count Nin(<r) for all particles and average
Nin(<r). Figure 7 plotsNin(<r) divided by r2:5 as a function of r,
indicating that Nin(<r) / r2:5 if the slope is horizontal and
Nin(<r) / r2 if the slope is �0.5. When uimp is too low to re-
structure the aggregates, they maintain initial BCCA structures
of df ¼ 2 without restructuring and result in the slope �0.5.

With an increase in uimp, the aggregates are compressed and the
slope approaches horizontal in the region of large r, namely,
from large-scale structures. For uimp ’ 13 m s�1, the aggregates
are compressed to the maximum extent, and the slope is almost
horizontal for 5r1P rP rg. This means that the aggregates still
have a fluffy structure with a fractal dimension�2.5. Furthermore,
the aggregates that are not yet fully compressed also appear to have
a fluffy structure with a fractal dimension �2.5 if we focus on the
relatively large-scale structure. The same results are obtained for
the other N. Therefore, we conclude that aggregates compressed
to the maximum extent still have a relatively fluffy structure with
their fractal dimension dc ’ 2:5.

Introducing the specific energy 
imp, the impact energy per
particle defined by


imp �
Eimp

N
; ð12Þ

equation (11) is written as

rg

r1N 1=dc
¼ 
imp

bEroll

� ���

: ð13Þ

Note that 
imp is independent of N, so that the right-hand side of
equation (13) is independent of N. Equation (13) is a scaling law
of the gyration radius of aggregates compressed by collisions in
terms of the specific impact energy 
imp. Equation (13) is ex-
pressed by

rg

r1N1=3
¼ 
imp

bEroll

� ���

N 1=dc�1=3 ð14Þ

as well. The N-dependence in Figure 4b that rg/(r1N
1/3) increases

with N is explained quantitatively by this relation.

3.2. The Number of Contacts

The number of contacts per particle in an aggregate, ncon, is
another measure of aggregate compression; ncon increases as an
aggregate is compressed. Figure 8a shows that ncon (of the largest
fragment) increases with increasing impact energy Eimp. When

Fig. 7.—Number of particles Nin(<r) within a distance r in the resultant ag-
gregates of N ¼ 16; 384;Nin(<r) normalized by r/r1ð Þ2:5 are plotted as a function
of r/r1 for various impact velocities uimp that do not cause aggregate disruption. In
countingNin(<r), we first set the origin at the center of a particle in the aggregate
and then take the average of Nin(<r) after changing the origins to the centers of all
the particles. We also take the average of the results for all collisions of initial
BCCA clusters composed of 8192 particles. The circles plotted on the lines in-
dicate the mean gyration radii. The slopes of the gray lines�0.5, 0, and 0.5 cor-
respond to the fractal dimensions of 2, 2.5, and 3, respectively.

Fig. 8.—(a) Number of contacts ncon per particle in the largest fragment after impact vs. impact energy Eimp. The simulation setting for each line is the same as in Fig. 4.
(b) Same as (a), but a log-log plot of ncon � 1 vs. Eimp/ nkErollð Þ. The gray line is expressed by ncon � 1 ¼ ½Eimp/ nkErollð Þ�0:65.
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Eimp is smaller than Eroll, ncon hardly increases from that of the
initial BCCA clusters (ncon ’ 1), indicating practically no re-
structuring. When EimpkEroll, ncon increases with Eimp through
restructuring of the aggregate due to rolling. The trend of ncon is
almost irrelevant to �crit, particle materials, and Ntotal, implying
that ncon is scaled by nkEroll. For �crit ¼ 30 8, however, ncon is
slightly larger than those for smaller �crit. This may reflect the fact
that particles with high �crit have a large possibility to be in
contact with their neighbor particles, because they can roll large
distances without energy dissipation compared to those with low
�crit. Figure 8b shows that ncon is expressed as

ncon � 1 ¼ Eimp

nkEroll

� �0:65
ð15Þ

for EimpP 0:1nkEroll. A similar relation with the power index of
0.75 was found in our 2D simulations (Wada et al. 2007). Figure 8b
also shows that ncon begins to deviate from equation (15) when
the impact energy attains�nkEbreak. This is due to disruption of the
aggregates. The degree of maximum compression depends on the
ratioEroll/Ebreak as discussed in the 2D simulations (see Fig. 8 and
Table 3). For small Eroll/Ebreak such as ice aggregates with �crit ¼
2 8, particles can be rolled a lot while keeping their contacts, so
aggregates can be compact. In contrast, for a large Eroll/Ebreak

such as quartz with �crit ¼ 30 8, the aggregates break before be-
coming compact. The ratio Eroll/Ebreak represents the difficulty of
restructuring and compression as seen in our 2D simulations
(Wada et al. 2007).

3.3. The Largest Fragment Size at Collisional Disruption

Figure 9 shows the ratioNlarge/Ntotal as a function of the impact
energy Eimp normalized by nkEbreak for collisions of aggregates
with various parameter sets. The degree of disruption is expressed
by this ratioNlarge/Ntotal. A smallNlarge/Ntotal ratio means intense
disruption of aggregates. We term the cases of Nlarge/Ntotal �
0:5 catastrophic disruptions. We see that fragmentation begins
at Eimp ’ 3nkEbreak. Catastrophic disruption occurs at Eimpk
10nkEbreak. These results are in agreement with theDT recipe that
the disruption process would be scaled by nkEbreak. However, there
seems to be a tendency for quartz aggregates to be disrupted easier
than ice. This tendency is also seen in our 2D simulations (Wada
et al. 2007). The critical velocities for catastrophic disruption,
corresponding toEimp ¼ 10nkEbreak, are�34m s�1 (�3.4m s�1)
for the ice (quartz) aggregates with a particle radius of 0.1 �m.
On the other hand, experimental studies (Poppe et al. 2000; Blum
& Wurm 2000; Wurm et al. 2005) suggested that the critical
velocity was much higher than that of the present results by an
order of magnitude. The reason for the difference in the critical ve-
locity remains unclear so far.

In Figure 9, the degree of disruption is shown to be almost
independent of the aggregate size Ntotal, while in our 2D simu-

lation, aggregates tend to be harder against disruption with in-
creasing Ntotal (Wada et al. 2007). However, detailed inspection
shows that disruption occurs slightly easier for Ntotal ¼ 16; 384
than for Ntotal � 4096. This may be dependent on the initial struc-
ture (and collision direction) of aggregates. If the collision cross
section is large, disruption occurs at many points widely distrib-
uted in the aggregates and they tend to split into several fragments.
The influence of the initial structure for large aggregates is also
observed in our 2D simulation, but is weaker in the 3D simulation
than in the 2D. The size dependence on the degree of disruption
would not be important for 3D aggregate collisions.

3.4. Mass Distribution of Fragments

Figure 10 shows cumulative mass distributions of fragments
produced by disruption of aggregates for various impact veloci-
ties, namely, the number of fragments heavier than a given mass.
We plot the mass distributions for the collisions of aggregates
consisting of 8192 particles, by averaging the results of 10 runs to
make the resolution as high as possible. At low impact velocities
the distributions are almost flat, because low-velocity collisions
produce only a few small fragments. A large number of fragments
are produced with increasing impact velocity, so that the mass
distributions tend to approach a power law. The distributions seem
to be expressed by two power laws having the slope ��2 for
small fragments (P10 particles) and��0.5Y1 for relatively large
fragments (k10 particles). Such distributions indicate that there
remain a few large fragments, while a large number of small
fragments are produced by the collisions for the impact energies
Eimp < 20nkEbreak. The distribution may be represented by a sin-
gle power law for collisions with Eimp 320nkEbreak. Collision
simulations for higher velocity and the larger clusters are re-
quired for more thorough discussion.

4. PRESSURE OF AGGREGATES

In this section we develop a macroscopic description of ag-
gregate compression by introducing the internal ‘‘pressure’’ of
aggregates. We determine the pressure of aggregates based on
the obtained scaling law of the gyration radius. In our numerical

TABLE 3

Critical Displacement �crit for Rolling and Characteristic Energies

Material

�crit
(8) Eroll/(Fc�c) Ebreak/(Fc�c) Eroll/Ebreak

Ice.............. 2 2.98 1.54 1.94

8 11.9 1.54 7.73

30 44.8 1.54 29.1

Quartz........ 2 28.7 1.54 18.6

8 115 1.54 74.7

30 430 1.54 279

Fig. 9.—Ratio of the number of particles in the largest fragment, Nlarge, to the
total number of particles, Ntotal, as a function of the impact energy Eimp. The sim-
ulation setting for each line is the same as that shown in Fig. 4.

WADA ET AL.1302 Vol. 677



results, the gyration radius rg, or the volume V, of the resultant
aggregate decreases with increasing impact energy Eimp. We as-
sume that the dependence of V on Eimp is described by the re-
lation given by

dEimp ¼ �P dV : ð16Þ

The coefficientP can be regarded as the ‘‘pressure’’ (or the strength)
of the aggregate. Exactly speaking, since the impact energy is
dissipated irreversibly in aggregate compression, P is not a usual
pressure and is a measure of strength of the aggregate against
compression at the impact. In the present paper, however, we call
P the pressure of aggregates for convenience. If the pressure is
expressed as a function of the bulk density � of an aggregate, we
obtain an ‘‘equation of state’’ (EOS) of an aggregate, which is
applicable to the description of aggregate compression. The vol-
ume of an aggregate is approximately given by

V � r3g : ð17Þ

We also define the specific volume of an aggregate as v � V /N .
From the scaling law of the gyration radius (eq. [13]), v is pro-
portional to 
�3�

imp N
�(1�3/dc), where 
imp ¼ Eimp/N is the impact

energy per particle. That is, the specific volume is not an ‘‘in-
tensive variable’’ but depends on N. Using equation (16), we ob-
tain P as

P ¼ � d
imp

dv
/ v�(3�þ1)=(3�)N (3�dc)=(3�dc): ð18Þ

This indicates that P is not an intensive variable, either. For a
macroscopic description of aggregate compression, the pressure
and the specific volume should be intensive variables as they are
in the usual thermodynamics. To make the specific volume and
the pressure intensive variables, we introduce a new concept of
volume having the dimension of length to the power dc as is seen
in x 4.1.

4.1. Equation of State in Terms of the Fractal Variables

For an aggregate with a characteristic radius rc (Mukai et al.
1992) and a fractal dimension dc, we define its ‘‘fractal volume’’
Vf by

Vf � Ardcc : ð19Þ

The coefficient A is given by

A ¼ �dc=2

� 1þ dc=2ð Þ ; ð20Þ

for a spherical aggregate of the fractal dimension dc, where �(z)
is the �-function. For dc ¼ 2:5, A is 3.69, slightly less than 4�/3
for a 3D compact sphere. For a homogeneous sphere with radius
rc, the gyration radius rg is given by

r2g ¼
R
r2 dV 0

fR
dV 0

f

¼
R rc
0

r2rdc�1 drR rc
0

rdc�1 dr
¼ dc

dc þ 2
r2c ; ð21Þ

where V 0
f � Ardc . Eliminating rc from equations (19) and (21),

the fractal volume is expressed as

Vf ¼ Vf ;1
rg

r1

� �dc
; ð22Þ

where Vf ;1 ¼ A(r1 dc þ 2ð Þ=dc½ �1/2)dc . Since rg is proportional to
N 1/dc according to the scaling law from equation (13), Vf is pro-
portional to N. Thus, Vf is an extensive variable. Using equa-
tion (22), the specific fractal volume (i.e., the fractal volume per
particle) vf is given by

vf �
Vf

N
¼ Vf ;1

rg

r1N 1=dc

� �dc
: ð23Þ

Substituting the scaling law from equation (13) into the above
equation, we have

vf ¼ Vf ;1

imp

bEroll

� ��(dc�df )=df

; ð24Þ

where b ¼ 0:15 (see x 3.1). Note that vf is an intensive variable.
The fractal density of an aggregate, �f , is defined by

�f � m1N

Vf

¼ m1

vf
¼ �f ;1

rg

r1N1=dc

� ��dc

¼ �f ;1

imp

bEroll

� �(dc�df )=df

ð25Þ

with

�f ;1 ¼
m1

Vf ;1
: ð26Þ

The fractal density is also an intensive variable.
Defining the ‘‘fractal pressure’’ of an aggregate, Pf , by

d
imp ¼ �Pf dvf ð27Þ

Fig. 10.—Mass distributions of fragments produced by disruption at colli-
sions of aggregates consisting of 8192 particles. The vertical axis represents the
cumulative number of fragments heavier than a given mass (i.e., the number of
particles). The plotted data are averaged over 10 runs for each impact velocity.
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in analogy to equation (16), we obtain

Pf ¼ � d
imp

dvf

¼ df

dc � df

bEroll

Vf ;1

vf
Vf ;1

� ��dc=(dc�df )

ð28Þ

from equation (24). Note that Pf is an intensive variable because
vf is intensive. It should be noted that the dimension of Pf is not
N m�2. The fractal pressure is also expressed in terms of �f as

Pf ¼
df

dc � df

bEroll�f ;1
m1

�f
�f ;1

� �dc=(dc�df )

ð29Þ

from equations (25) and (26). We call equation (29) the ‘‘EOS
of an aggregate.’’ For df ¼ 2 and dc ¼ 2:5, the EOS is reduced
to

Pf ¼ 4
bEroll�f ;1

m1

�f
�f ;1

� �5
: ð30Þ

Equations (28) and (29) are equivalent to the scaling law from
equation (13).

4.2. Comparison with Other Equations of State

Using the volume and the density of an aggregate given by

V ¼ 4

3
�r3c ¼ 4

3
�

ffiffiffi
5

3

r
rg

 !3

; � ¼ m1N

V
; ð31Þ

instead of the fractal volume and the fractal density, we can de-
rive an expression of the pressure in the ordinary sense. Here we
set df ¼ 2 and dc ¼ 2:5. As described in the Appendix, the or-
dinary pressure P of an aggregate is given by

P ¼ � dEimp

dV
¼ 10

3

3

5

� ��5
bEroll�m

m1

�

�m

� �13=3
N 2=3; ð32Þ

where �m is the material density. As shown above, P depends not
only on the density � of the aggregate but also on its size N. Fig-
ure 11 plots the P-� relation given by equation (32) for variousN,
where the upper limit of � corresponding to the maximum com-
pression [rg/(r1N

1/dc ) ¼ 1] is given by (see Appendix)

�max ¼
3

5

� �3=2
�mN

�1=5: ð33Þ

Sirono & Greenberg (2000) analytically obtained the com-
pressive and the tensile strengths of aggregates as a function of
the relative density �̂ ¼ �/�m. They considered aggregates con-
sisting of periodically connected particle chains. The interaction
between particles in contact is the same as those used in the
present paper. According to them, the compressive strength PSG

is determined by the rolling resistance when the relative density
is low ( �̂P0:3) and is given by

PSG ¼ 24��r1�crit Nc � 1ð Þ
l 2 l � 2r1ð Þ Nc � 3ð Þ ð34Þ

with

�̂ ¼ 4�r31 3Nc � 5ð Þ
3l 3

; ð35Þ

where Nc is the number of particles of radius r1 constituting a
chain of length l. The relation between Nc and l is given by

Nc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2r1
� 1

� �2
þ l

2r1

� �2s
þ 1: ð36Þ

Since we focus on very fluffy aggregates of �̂ < 0:1, we plot PSG

given by equation (34) for r1 ¼ 0:1 �m, � ¼ 100 mJ m�2, and
�crit ¼ 28 in Figure 11. Aggregates consisting of particle chains
are expected to be strong against compression, because the force
in the direction of particle connection can be well supported by
the chains. In consequence, the pressure P obtained from our nu-
merical simulations is lower than PSG in most ranges of �̂. Blum
et al. (2006) experimentally measured the compressive strength
of aggregates produced by random ballistic deposition of SiO2

spheres of radius 0.76 �m. The relative density of their aggre-
gates is higher than �0.15. The compressive strength PB that
they measured is also plotted in Figure 11. For high density
(k0.2), PB is close to PSG and P derived theoretically. For low
density, on the other hand, there is a lack of experimental data,
and thus, experiments in these densities are strongly encouraged
to compare with our results.
One may expect that the upper limit of P is close to the tensile

strength of aggregates, because they are disruptedwhen the pres-
sure exceeds their tensile strength.Greenberg et al. (1995) evaluated

Fig. 11.—Pressure, compressive strength, and tensile strength of aggregates
as a function of relative density �/�m. The thick dashed and dotted lines represent
the pressure P for variousN formulated in this study (eq. [32]). The solid line PSG

is the theoretical compressive strength given by Sirono & Greenberg (2000). The
thin dashed linePB is the compressive strength of aggregates composed of spher-
ical SiO2 particles measured by Blum et al. (2006). The thin dotted line TG is the
tensile strength given by Greenberg et al. (1995). Here, we assumed aggregates
consisting of ice particles of r1 ¼ 0:1 �m and �crit ¼ 2 8.
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the tensile strength TG of an aggregate to be a total adhesive energy
per unit volume of the aggregate and obtained

TG ¼ nconNEbreak

V
¼ nconEbreak�m

m1

�

�m
; ð37Þ

where Ebreak is regarded as the adhesive energy per pair of par-
ticles in contact. The TG-� relation is plotted in Figure 11 for ice ag-
gregates with ncon ¼ 1:5, which is approximately the maximum
value derived from our numerical simulations (see Fig. 8 in x 3.2).
In Figure 11, P is always less than TG for all N, although P may
slightly exceed TG for a higher value of Eroll. The pressure of ag-
gregates, therefore, has a limit around their tensile strength given by
equation (37), indicating that aggregates are compressed without
disruption until P equals TG as shown by Sirono (2004).

In summary, the present P-� relation describes compression
of a fluffy dust aggregate in a wide range of pressures. When the
density of aggregates is low enough, the pressure P of the aggre-
gates is smaller than PSG, because initial BCCA clusters and their
slightly restructured ones are much more fragile than regularly
arranged particle chains. For well-compressed aggregates, P be-
comes larger than PSG, because the number of contacts ncon be-
comes larger than that of the chain structure for which ncon ’ 1.
Increases in P and � stop when P ’ TG, since disruption pre-
vents aggregates from further compression.

4.3. Description of Aggregate Compression
with the Fractal Pressure

In x 4.2we derived the EOS of aggregates compressed by an im-
pact with Eimp large enough to restructure and compress the ag-
gregates.We show that the fractal pressure given by equation (28)
also reproduces the rg-Eimp relation (Fig. 5) in the lowest Eimp

region of no restructuring.
Consider an initial BCCA cluster of specific fractal volume

vf ;BCCA compressed by a collision with specific energy 
imp. In
view of equation (27), we assume that the resultant specific frac-
tal volume vf is determined byZ 
imp

0

d
0imp ¼ �
Z vf

vf ;BCCA

Pf (v
0
f )dv

0
f : ð38Þ

Substituting Pf given by equation (28) into equation (38) and
integrating both sides, we have


imp

bEroll

¼ vf
Vf ;1

� ��df =(dc�df )

� vf ;BCCA
Vf ;1

� ��df =(dc�df )

: ð39Þ

Using equations (8) and (23), we obtain the gyration radius as a
function of 
imp to be

rg

r1
¼ 1

N
þ 
imp

bEroll

� ��(1=df�1=dc)

N1=dc : ð40Þ

It is readily seen that equation (40) is an extension of the scaling
law from equation (13). In Figure 12 we plot equation (40) for
N ¼ 1024, 4096, and 16,384 with b ¼ 0:15 (see x 3.1). Note that
equation (40) reproduces the numerical results fairly well even
for the energy range of 0 � EimpPEroll. Therefore, the EOS is ap-
plicable to a wide range of the impact energy so long as the dis-
ruption does not occur. The validity of equation (38) will be
examined by Suyama et al. (2008), who directly calculate growth
of aggregates by successive collisions.

Recently, Ormel et al. (2007) modeled a change in the volume
of aggregates at collisions. They introduced the enlargement

parameter� defined by� ¼ V /V �. Here, V is the aggregate vol-
ume that reproduces its geometrical cross section, and V � is the
volume if the aggregate is closely packed. We take V ¼ 4�r3g /3
to compare their model with our numerical results and V � ¼
4�r31N /3 (a factor 1/0:74 should multiply this if one considers
close packing). Then, � is expressed by

� ¼ rg

r1

� �3
1

N
: ð41Þ

Following Ormel et al. (2007) we calculate the change in rg for a
collision of two identical BCCA clusters of mass N /2, with
df ¼ 2 and the enlargement parameter �1 as follows. If the im-
pact energyEimp is less thanEroll, a hit-and-stick collision occurs,
and the fractal dimension of the resultant aggregate is unchanged.
For Eimp � Eroll, Ormel et al. (2007) assume that the degree of
compression of aggregates due to collisions scales linearly with
Eimp, and the enlargement parameter � changes with Eimp as

�� 1 ¼ 1� Eimp

NEroll

� �
�1 � 1ð Þ: ð42Þ

Given the gyration radius of the aggregates before collision,
rg;BCCA;1 ¼ r1(N /2)1/df , equations (41) and (42) yield rg of the
resultant aggregate. The model of Ormel et al. (2007) gives

rg

r1

¼

N1=df ; Eimp < Eroll;

N1=3 1þ 1� Eimp

NEroll

� �
N

2

� �(3�df )=df

�1

" #( )1=3
; Eimp � Eroll;

8>><
>>:

ð43Þ

which is plotted in Figure 13 forN ¼ 1024, 4096, and 16,384 with
df ¼ 2. Each line has a discontinuity at Eimp ¼ Eroll, because

Fig. 12.—Gyration radius rg of the largest fragment as a function of impact
energy Eimp. The gray lines represent eq. (40) forN ¼ 1024, 4096, or 16,384, un-
der the condition of df ¼ 2, dc ¼ 2:5, and b ¼ 0:15.

SIMULATION OF DUST AGGREGATE COLLISIONS. II. 1305No. 2, 2008



Ormel et al. (2007) neglected newly created empty space produced
at the moment of sticking for Eimp � Eroll. Figure 13 shows that
the model of Ormel et al. (2007) gives a much lower degree of
compression than that of our numerical results for ErollPEimpP
NEroll. This is due to the assumption that the compression pro-
ceeds linearly with impact energy. Around Eimp � NEroll, rg given
by the model of Ormel et al. (2007) rapidly decreases to the
minimum r1N

1/3, which is much less than that of our numerical
results. The difference in the degree of maximum compression
can be resolved if V � is replaced by the volume at the maximum
compression, 4�(r1N

1/dc )3/3.
The collision cross section 	 is used to solve a coagulation

equation for growth of dust aggregates using the coagulation
equation (see Blum 2006 for a review). Several kinds of ‘‘radii’’
of an aggregate are proposed as a representative of aggregate
size, such as, toothing radius and geometrical radius (Ossenkopf
1993; Ormel et al. 2007). Here, we use the gyration radius rg as a
representative of the aggregate size, because we already have the
useful scaling formula of gyration radius (eq. [40]). Because of
the limitations of our numerical simulations, we give the collision
cross section 	 under the following assumptions: (1) the mass
distribution of aggregates is monodisperse and (2) the rg of the
resultant aggregates are given by equation (40) including offset
collisions. Then, the collision cross section is given by

	 ¼ � 2rg
� �2¼ 4�r21

1

N
þ

m1u
2
imp

8bEroll

 !�2(1=df �1=dc)

N 2=dc : ð44Þ

To obtain the cross section applicable to a wide range of con-
ditions, it is necessary to study the collisions of aggregates of
different sizes and structures and arbitrary offset collisions.

5. SUMMARY

We carried out numerical simulations of head-on collisions
of 3D BCCA clusters to study the compression and disruption

processes in their growth. We used the numerical code devel-
oped in our previous study (Wada et al. 2007) and examined the
collisions of 3D BCCA clusters composed of 512, 2048, and
8192 particles.
The compression process is represented by changes in the

gyration radius rg and the number of contacts of aggregates ncon.
The gyration radius of BCCA clusters (with the fractal dimen-
sion df ’ 2) decreases with increasing impact energy, reflecting
aggregate compression. We obtained a scaling law for the gy-
ration radius of the compressed aggregate as (for EimpPbNEroll)

rg ¼ r1N
1=dc

1

N
þ Eimp

bNEroll

� ��(1=df �1=dc)

; ð45Þ

where dc is its fractal dimension and b ’ 0:15. This holds irre-
spective of both material properties and the critical rolling dis-
placement �crit. The scaling law is confirmed by the numerical
result that the compressed aggregates, even not fully compressed,
appear to have a fractal structure with a fractal dimension dc if we
focus on relatively large-scale structure. Maximum compression
occurs when the impact energy is nearly equal to the energy
necessary to roll all contacts, Eimp � (0:1Y1)nkEroll. This is con-
sistent with the results of 2D simulations performed byWada et al.
(2007) and Dominik & Tielens (1997). The compressed ag-
gregates have a fractal structure with dc ’ 2:5, suggesting that 3D
dust aggregates remain a relatively fluffy structure even if they are
compressed to amaximum extent by collisions. For the number of
contacts per particle, we also obtain an empirical relation as (for
EimpPnkEbreak)

ncon ¼ 1þ Eimp

nkEroll

� �0:65
: ð46Þ

Our results show that catastrophic disruption producing frag-
ments of various mass occurs when the impact energy becomes
greater than �10nkEbreak as in the previous 2D simulations
(Dominik&Tielens1997;Wada et al. 2007). There is a tendency
that the degree of disruption for aggregates composed of a large
number of particles depends on their initial structures such as
anisotropy of the collision cross section. However, this tendency
is weaker in the 3D simulations than in the 2D.
We obtained an equation of state (EOS) of aggregates com-

pressed by head-on collisions. If the EOS is written in terms of
the density and the pressure of aggregates in the ordinary sense,
it depends on the number of particles constituting the aggre-
gates. In contrast, in terms of the fractal density �f and the fractal
pressure Pf the EOS is independent of the number of particles
and is expressed by

Pf ¼
df

dc � df

bEroll�f ;1
m1

�f
�f ;1

� �dc=(dc�df )

: ð47Þ

This EOS can be applied to a wide range of impact energies that
induce outcomes from no restructuring up to the maximum com-
pression. Therefore, the EOS obtained in the present study is ap-
plicable to reveal a wide range of the structural evolution of dust
aggregates in protoplanetary disks.
The resultant aggregates created in our simulation still remain

fluffy even though they are formed by head-on collisions. In real-
istic collisions, there are several factors to be taken into account
for the future. For instance, offset collisions tend to produce elon-
gated aggregates as shown by Wada et al. (2007). Rotation of

Fig. 13.—Comparison of the gyration radius rg given by our numerical results
and by a model of Ormel et al. (2007). Gyration radius rg of the largest fragment
is plotted as a function of impact energy Eimp. The three solid lines indicate rg
based on the model of Ormel et al. (2007; eq. [43] in the text) for N ¼ 1024,
4096, and 16,384.
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aggregates before a collision produces aggregates with a low
fractal dimension (Paszun & Dominik 2006). These factors will
make aggregates more fluffy than those formed in head-on colli-
sions. Therefore, we conclude that dust aggregates (and planet-
esimals) growing through their mutual collisions would have very
fluffy structures. A further study including these factors, such as
offset collisions, will be required to confirm our conclusion.
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study was supported by the Grant-in-Aid for Scientific Research
on Priority Areas ‘‘Development of Extrasolar Planetary Science’’
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MEXT, Japan, and by the Grant-in-Aid from JSPS (18540227).

APPENDIX

EXPRESSION OF THE PRESSURE IN THE ORDINARY DIMENSION

In x 4 we defined the fractal volume Vf and the fractal density �f of aggregates and derived the fractal pressure and the EOS of
aggregates, using the fractal dimension dc of maximum compressed aggregates. It is worthwhile to give an expression of the pressure
in the ordinary sense here (i.e., having its dimension of N m�2). This expression is readily obtained using the scaling law of rg.

In the sameway as in the discussion in x 4, a characteristic radius rc (Mukai et al.1992) of an aggregate having a gyration radius rg is
given by

rc ¼
ffiffiffi
5

3

r
rg; ðA1Þ

where the factor (5/3)1/2 is obtained by setting dc ¼ 3 in equation (21). The volume V of the aggregate is defined by

V � 4

3
�r3c ¼ V1

rg

r1

� �3
; ðA2Þ

where V1 ¼ (4�/3)½(5/3)1/2r1�3. Then, the specific volume v is given by

v � V

N
¼ V1

rg

r1N1=dc

� �3
N�(1�3=dc): ðA3Þ

By the scaling law (eq. [13]), rg/(r1N
1/dc ) is independent of N; thus, v is no longer an intensive variable. The density � of the aggregate

is given by

� ¼ m1

v
¼ �1

rg

r1N 1=dc

� ��3

N1�3=dc ; ðA4Þ

where �1 ¼ m1/V1. The density � is not an intensive variable, either. Since rg/(r1N
1/dc ) � 1 at the maximum compression, the max-

imum density �max becomes

�max ¼ �1N
1�3=dc : ðA5Þ

Using the definition of the fractal density �f (eq. [25]), � is expressed as a function of �f ,

�

�1
¼ �f

�f ;1

� �3=dc
N 1�3=dc : ðA6Þ

It is readily seen that �/�1 equals �f /�f ;1 if dc ¼ 3.
We define the pressure (or the strength) P of an aggregate by

d
imp ¼ �P dv: ðA7Þ

Furthermore, using equations (13), (A3), and (A4), P is given by

P ¼ � d
imp

dv
¼ 1

3�

bEroll�1
m1

�

�1

� �(3�þ1)=(3�)

N (3�dc)=(3�dc); ðA8Þ

where � ¼ 1/df � 1/dc. For df ¼ 2 and dc ¼ 2:5, one has

P ¼ 10

3

bEroll�1
m1

�

�1

� �13=3
N 2=3: ðA9Þ
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This indicates that the pressure depends on the number of particles N composing the aggregate as well as the density and increases
with increasingN for a fixed density. Given the material density of a constituent particle, �m ¼ 3m1/(4�r

3
1 ), then �1 ¼ (3/5)3/2�m and P

is written by

P ¼ 10

3

3

5

� ��5
bEroll�m

m1

�

�m

� �13=3
N 2=3 ðA10Þ

for

3

5

� �3=2
N�1=2P

�

�m
P

3

5

� �3=2
N�1=5; ðA11Þ

where the upper and lower limits of the density are given by equation (A5) and the density of BCCA structure, respectively.
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Blum, J., Schräpler, R., Davidsson, B. J. R., & Trigo-Rodrı́guez, J. M. 2006,
ApJ, 652, 1768

Blum, J., & Wurm, G. 2000, Icarus, 143, 138
Chokshi, A., Tielens, A. G. G. M., & Hollenbach, D. 1993, ApJ, 407, 806
Dominik, C., & Tielens, A. G. G. M. 1995, Philos. Mag. A, 72, 783
———. 1996, Philos. Mag. A, 73, 1279
———. 1997, ApJ, 480, 647
Goldreich, P., & Ward, W. R. 1973, ApJ, 183, 1051
Greenberg, J. M., Mizutani, H., & Yamamoto, T. 1995, A&A, 295, L35
Heim, L.-O., Blum, J., Preuss, M., & Butt, H.-J. 1999, Phys. Rev. Lett., 83,
3328

Israelachvili, J. 1992, Intermolecular and Surface Forces (2nd ed.; London:
Academic)

Johnson, K. L. 1987, Contact Mechanics (Cambridge: Cambridge Univ. Press)
Johnson, K. L., Kendall, K., & Roberts, A. D. 1971, Proc. R. Soc. London A,
324, 301

Kempf, S., Pfalzner, S., & Henning, T. K. 1999, Icarus, 141, 388
Krause, M., & Blum, J. 2004, Phys. Rev. Lett., 93, 021103

Meakin, P. 1991, Rev. Geophys., 29, 317
Mukai, T., Ishimoto, H., Kozasa, T., Blum, J., & Greenberg, J. M. 1992, A&A,
262, 315

Nakagawa, Y., Nakazawa, K., & Hayashi, C. 1981, Icarus, 45, 517
Ormel, C. W., Spaans, M., & Tielens, A. G. G. M. 2007, A&A, 461, 215
Ossenkopf, V. 1993, A&A, 280, 617
Paszun, D., & Dominik, C. 2006, Icarus, 182, 274
Poppe, T., Blum, J., & Henning, T. 2000, ApJ, 533, 472
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