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ABSTRACT

We present recipes to diagnose the fireball of gamma-ray bursts (GRBs) by combining observations of e� pair
signatures (the pair annihilation line and the cutoff energy due to the pair creation process). Our recipes are largely
model-independent and extract information even from the nondetection of either pair signature.We evaluate physical
quantities such as the Lorentz factor, optical depth, and pair-to-baryon ratio only from the observable quantities. In
particular, we can test whether the prompt emission of GRBs comes from the pair/baryonic photosphere or not. The
future Gamma-Ray Large Area Space Telescope (GLAST ) satellite will provide us with good chances to use our rec-
ipes via either detection or nondetection of pair signatures.

Subject headinggs: gamma rays: bursts — gamma rays: theory — plasmas

1. INTRODUCTION

Gamma-ray bursts (GRBs) are among the most mysterious
objects in the universe. Various models have been suggested, but
no conclusive picture of them has yet been obtained (see reviews
in, e.g.,Mészáros 2006; Zhang 2007). One of the leadingmodels
is the optically thin internal shock model, in which the prompt
emission is explained by electromagnetic radiation from rela-
tivistic electrons accelerated in internal shocks (see, e.g., Rees &
Mészáros 1994). Another leadingmodel is the photospheric emis-
sionmodel, in which the prompt emission comes from the photo-
spheric radius rph at which the Thomson optical depth is unity,
i.e., � ¼ 1 (see, e.g., Rees &Mészáros 2005). The possibility that
a fireball contains copious e� pairs (a pair-dominated fireball)
is also discussed by many authors. In particular, we recently pro-
posed that the pair photosphere is unstable and that it is capable
of generating the observed nonthermal spectrumwith high radia-
tive efficiency (Ioka et al. 2007). The existence of copious pairs
can extend the photosphere compared to the baryonic photosphere,
which is determined by baryon-related electrons. Such pairs could
be produced via dissipation processes such as internal shocks and
magnetic reconnection.

Prompt gamma rays are typically radiated at�100 keV. Obser-
vationally, even more high-energy photons have been detected
by the EGRET detector. Such high-energy emissions are theo-
retically expected due to radiation processes such as synchrotron
and/or inverse Compton emission. Sufficiently high-energy pho-
tons cannot avoid the pair-production process, which leads to a
cutoff energy due to pair creation. On the other hand, there may
be many pairs that can be seen as pair-annihilation lines via the
pair-annihilation process (Ioka et al. 2007; Pe’er & Waxman
2004; Pe’er et al. 2006). The futureGLAST satellite will be a suit-
able detector to observe such pair signatures, as a pair-annihilation
line and/or cutoff energy.

Obviously, such pair signatures convey important information
about GRB fireballs. For example, the cutoff energy due to pair
creation carries information about the bulk Lorentz factor of a
fireball. This possibility has already been investigated by several
authors (Baring&Harding 1997; Lithwick&Sari 2001; Razzaque
et al. 2004). However, there are few studies focusing on both the
pair-annihilation line and the cutoff energy due to pair creation.

In this paper, we propose that by combining these two pair
signatures, we can get more information about the GRB fireball
(x 2). Even if we cannot detect either pair signature, the non-
detection itself provides information (x 3). We show that obser-
vations of pair signatures can allow us to evaluate the Lorentz
factor, the optical depth of a fireball, and the pair-to-baryon ratio,
among other quantities. In particular, we derive these relations
only from observable quantities, and make analyses as model-
independent as possible. Our recipes are especially productive in
testing the pair photospheric emission model (x 4).

Throughout the paper, we assume that we know the gamma-
ray spectrum in the wide energy range (e.g., the high-energy spec-
tral index �, etc.), the source redshift z from other observations,
and hence the luminosity "L" at given observed energy " from
the observed flux (see Fig. 1).

2. DIAGNOSING THE FIREBALL
BY e� PAIR SIGNATURES

Let us assume that we can find a pair-annihilation line in the
spectrum of the prompt emission (Fig. 1), which typically peaks
at

"ann ’
�

1þ z
mec

2: ð1Þ

This expression is valid as long as pairs forming a pair-annihilation
line are nonrelativistic. This is a reasonable assumption, since
the cooling time of sufficiently relativistic pairs tcool due to mag-
netic and/or photon fields is usually much shorter than the pair-
annihilation time tann. However, we note that the line would
be broadened by a dispersion of the Doppler factor. Therefore,
gamma rays due to pair annihilationwill be observed as a ‘‘bump’’
rather than a ‘‘line.’’ There are several possible causes for line
broadening. First, the order unity distribution of the Lorentz fac-
tor in the emission region can broaden the line by order unity
even when pairs are nonrelativistic in the comoving frame.
Second, the order unity line broadening may also be caused by
observing a section of the emission region with an opening angle
�1/� rather than a small spot, so that the Doppler factor toward
the observer is different by order unity between the center and the
edge of the observed emission region. Third, the order unity
variation of the Lorentz factor may also occur within the dy-
namical time. Recent observations may suggest that the emission
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is radiatively very efficient (Ioka et al. 2006; Zhang et al. 2007),
and efficient internal dissipation may make the fireball radiation-
dominated. If it is, the Lorentz factor will increase as � / r, and
the Lorentz factor will vary by order unity within the dynamical
time. Therefore, we can expect that all three effects may broaden
the line by order unity.

The total luminosity of the pair-annihilation line Lann (Coppi
& Blandford 1990; Svensson 1982), the kinetic luminosity of
pairs L� , and the kinetic luminosity of baryons Lp are given by

Lann ’
3

8
nþn��Tc(2mec

2)(4�r 2�0)�2; ð2Þ

L� ¼ n�c(2mec
2)(4�r 2)�2; ð3Þ

Lp ¼ npc(mpc
2)(4�r 2)�2; ð4Þ

respectively. Here r is the emission radius, �0 is the comoving
width of the emission region, and nþ ¼ n� , n� ¼ n� þ np, n� ,
and np are the comoving density of positrons, electrons, e� pairs,
and baryon-related electrons, respectively. We have assumed that
most of the sufficiently relativistic pairs cool down in the dynam-
ical time. Combining expressions of Lann and L� leads to

Lann ’
3

16
L��� 1þ np

n�

� �
; ð5Þ

where �� ’ 2n��T�
0 denotes the optical depth against pairs.

Pair-creation processes such as �� ! eþe� and e� ! eeþe�

prevent sufficiently high-energy photons from escaping the source.

Usually, the most important pair-creation process is �� ! eþe�

(Razzaque et al. 2004). The optical depth for this process, ��� ,
at some energy " can be evaluated for a given photon spectrum.
The elaborate evaluation of ��� is possible if we know the spec-
trum in detail (see, e.g., Coppi & Blandford 1990; Baring 2006;
Baring &Harding 1997; Gupta & Zhang 2008). Here we assume
a power-law photon spectrum for simplicity, i.e., with the lu-
minosity "L"(") ¼ L0("/"0)

2�� for � > 2. Then, we have (Gould
& Schréder 1967; Lightman & Zdziarski 1987; Svensson 1987;
Lithwick & Sari 2001; Baring 2006)

���(") ’ �(�)n�("� > "̃)�T�
0;

"̃ ¼ (�mec
2)2

(1þ z)2"

� �
; ð6Þ

where the comoving density of photons whose energies are larger
than "̃ is given by

n�("� > "̃ ) ¼ L0

4�r 2�c"0(1þ z)

Z
"̃

d"�
"0

"�
"0

� ���

; ð7Þ

and "̃ is the energy of a photon that interacts with the photon
of energy " at the pair-creation threshold. Here �(�) is a numer-
ical factor that depends on the photon index (Gould & Schréder
1967; Lightman & Zdziarski 1987; Svensson 1987; Coppi &
Blandford 1990; Lithwick & Sari 2001; Baring 2006; Gupta &
Zhang 2008), and �(�)/(� � 1) decreases with �; its values are
�(�) ¼ 11/90 ’ 0:12 and �(�) ¼ 7/75 ’ 0:093 for � ¼ 2 and
3, respectively.3 For the isotropic photon distribution with an
infinite power law, we can use �(�) ’ 7(� � 1)/ 6�5/3(� þ 1)

� �
for 1 < � < 7 (Svensson 1987; Baring 2006). Note that L0 is
related to the observed (time-resolved) flux "F"(") by

"F"(" ¼ "0) ¼
L0

4�d 2
L

; ð8Þ

where dL is the luminosity distance to the source. Unless a fire-
ball is completely thin, where all the photons can escape without
attenuation, the cutoff energy "cut exists due to the pair-creation
process �� ! eþe�, where ���("cut) ¼ 1 (Fig. 1). With equa-
tion (3), ���("cut) ¼ 1 is rewritten as

1 ¼ ���("cut) ’
L0

L�
�� f ("cut;�); ð9Þ

where

f ("cut;�) ’ �(�)
�mec

2

(1þ z)"0

Z
"̃cut

d"�
"0

"�
"0

� ���

: ð10Þ

Note that we may arbitrarily take "0 by adjusting L0. We also
note that "cut is larger than "ann, as long as "cut is determined by
the pair-creation process �� ! eþe� (and we have also assumed
that electrons and positrons are accelerated enough to emit high-
energy photons with " > "cut via, e.g., synchrotron or inverse

3 When we assume an isotropic photon spectrum with an infinite power law,
we have �(� ¼ 2) ¼ 11/90 ’ 0:12. This value is obtained by various authors,
e.g., Gould & Schréder (1967), Svensson (1987), Baring (2006), and Gupta &
Zhang (2008). Lithwick & Sari (2001) adopt a factor of 2 smaller value, as dis-
cussed in Zhang & Mészáros (2001).

Fig. 1.—Schematic picture of the GRB spectrum, showing the observable
quantities of pair signatures [Lann, L0, "0, "cut, "ann ’ �mec

2/(1þ z), and � ]. The
recipes to constrain the physical quantities of a GRB fireball using only observ-
able quantities are as follows. ( I ) The case where we can observe both the pair-
annihilation line and the cutoff energy due to pair creation, i.e., "ann, Lann, and
"cut; if we also know the kinetic luminosity of baryons Lp, we can measure � , �� ,
and n� /np from eqs. (14), (16), and (17). Without Lp, we obtain the inequalities
(18) from Lp > 0, while we have an upper limit on � and lower limits on �� and
n� /np from the assumption LpPL� by replacing Lp with L� in eqs. (14), (16), and
(17). If the inequality (13) is satisfied, the fireball is pair-dominated, � � �� ,
and we can use eqs. (11) and (12) instead of eqs. (14) and (15). ( II ) The case
where we only observe "cut, not Lann and "ann; with Lp, we can set upper limits
on � , n� /np, and �� by replacing Lann with L0 �mec

2/(1þ z)"0½ �2�� in eqs. (14),
(16), and (17). Without Lp, we obtain the inequality (20) from Lp > 0, while
we set an upper limit on � from LpPL� by replacing Lp and Lann with L� and
L0 �mec

2/(1þ z)"0½ �2�� , respectively, in eq. (14). � < (1þ z)"cut/mec
2½ � should

be acquired by other means. ( III ) The case where we only observe Lann and "ann,
not "cut; we regard the observed maximum energy "max as the lower limit on the
true cutoff energy "cut . With Lp, we can set upper limits on � and �� as well as a
lower limit on n� /np by replacing fcut with fmax � f ("max;� ) in eqs. (14), (16),
and (17). Without Lp, we obtain the inequality (22) from Lp > 0, while we obtain
an upper limit on � as well as a lower limit on n� /np from LpPL� by replacing
Lp and fcut with L� and fmax, respectively, in eqs. (14) and (16). Such arguments
can be also applied to the completely thin fireballs. ( IV) The recipes ( I )Y( III ) are
especially valuable to test the pair photospheric emission model. The inequalities
(18), (20), and (22) are useful to constrain �� . This model gives �� � 1 in case I,
and eq. (24) if Lann is comparable to the underlying continuum emission. The pho-
tospheric radius can also be estimated.
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Compton radiation processes). This is because an assumed pho-
ton spectrum has � > 1 (which is typically expected for prompt
emission), and hence the photon number density decreases with
photon energies. Therefore, photons with "P "ann do not have
enough target photons with "̃k "ann to be attenuated at "cutP "ann.
Otherwise, the created pairs would make the optical depth �
larger than unity. In this case, the cutoff energy is determined by
the Compton down-scattering process rather than the pair-creation
process for the assumed spectrum (see, e.g., Lithwick & Sari
2001). Although we hereafter focus on cases where "cut is de-
termined by the pair-creation cutoff, there are possibilities of
"cutP "ann for � k 1. We may be able to check "cutP "ann and
� k 1, if we can observe the Lorentz factor � by other means as
well as the cutoff energy "cut. We would expect that high-energy
gamma rays come from the region where � � 1, as long as the
dissipation continues until r � rph and the emission from r � rph
is not negligible. This is because high-energy gamma rays from
the region where � 31 are significantly down-scattered. We
would also expect that the GRB radiative efficiency is small
(contrary to the observations) if the prompt emission comes only
from � 31, since almost all the energy goes into the afterglow.
We also note that in some models, such as the slow dissipation
scenario (Ghisellini & Celotti 1999), high-energy photons with
" > "cut may not be produced, because electrons and positrons
are not accelerated enough (Pe’er et al. 2006).

2.1. Closure Relations for the Pair-dominated Fireball

Now let us assume a pair-dominated fireball, np < 2n� . Then
we can solve equations (5) and (9) for the two unknown quan-
tities �� and L� as

� � ��’ 16

3

Lann

L0 f ("cut;�)

� �1=2
ð11Þ

L�’ 16

3
L0Lann f ("cut;�)

� �1=2
: ð12Þ

Remarkably, the above two quantities are expressed only in terms
of observable quantities [Lann, L0, "0, "cut, "ann ’ �mec

2/(1þ z),
and � ], so we can evaluate �� � � and L� . Note that we have
not assumed the frequently used relation r � 2��0, which is
expected in the internal shock model. Because we have not spec-
ified themodel, our recipes are largelymodel-independent in that
sense.

The absence of �T in equations (11) and (12) just comes from
the fact that the pair-annihilation, pair-creation, and Compton
scattering are all basic two-body interaction processes with cross
section ��T. Ambiguities arising from the transformation be-
tween the comoving frame and observer frame are canceled, be-
cause the transformation between the two frames is the same for
L0, L� , and Lann.

Equations (11) and (12) are useful because they enable us to
estimate � � �� and L� from observational quantities only, al-
though there will be possible uncertainties due to, e.g., observa-
tional difficulties in evaluating "cut, "ann, and Lann. In Figures 2
and 3, we demonstrate that we can obtain information on � for a
given burst (especially a given pulse). Observations of pair sig-
natures will enable us to plot the point in such a figure and to
compare it with lines expressing optical depths. Of course, a line
for a given � is different among bursts with different parameter
sets. However, we could see the tendency of the distribution of
the optical depth for some bursts (or pulses) with a similar param-
eter set. In this case, lines for a given optical depth can be ex-
pressed as ’’a band’’ with a finite width. We think that the plot
without lines for optical depths may also be useful. More and
more observations of pair signatures will allow us to plot points
with optical depths in the "cutYLann plane.

The assumption np < 2n� can be checked a posteriori by the
observations. From equations (3) and (4), we have the condition
for the fireball to be pair-dominated,

mpL�

meLp
’ 2n�

np
> 1; ð13Þ

which can be checked if we can measure Lp from other obser-
vations. For example, we could obtain Lp � LAGp , where LAGp is
the kinetic luminosity of baryons estimated from the afterglow
observations. Note that the inequality (13) just means that the

Fig. 2.—Relation between the cutoff energy "cut and total luminosity of a pair
annihilation line Lann for a given optical depth � . Lines are calculated by exploit-
ing eqs. (10) and (14). Parameters used are Lp ¼ 1050 ergs s�1, L0 ¼ 1051 ergs s�1,
"0 ¼ 102:5 keV, � ¼ 102:5, � ¼ 2:2, and z ¼ 0:1. In this case, the fireball is pair-
dominated in this figure, and we can use eq. (11) instead of eq. (14). The shaded
region shows � k1, where photons suffer from Compton scattering. If we can
obtain necessary quantities such as Lann in the scheme of Fig. 1, we can estimate �
by plotting observational quantities in this figure. Note that "cut should be larger
than "ann ’ �mec

2/(1þ z) for typical photon spectra, as long as "cut is determined
by the pair-creation process.

Fig. 3.—As in Fig. 2, but for Lp ¼ 1052 ergs s�1. In this case, the fireball is
not pair-dominated for sufficiently small "cut, given fixed � . When the fireball
is baryon-dominated, we cannot expect a pair-annihilation line. As pairs become
dominant, Lann increases sharply.
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pair photospheric radius should be larger than the baryonic pho-
tospheric radius, i.e., rph;� > rph; p. In particular, we have a
closure relation �� ’ 1 for prompt emission arising from a pair
photosphere.

The kinetic luminosity of baryons may be usually less than the
observed gamma-ray luminosity, LpPL� , as inferred by recent
observations that the prompt emission is radiatively very efficient
(Ioka et al. 2006; Zhang et al. 2007). It is not very convincing yet,
since we cannot measure the precise GRB energy at present. But
once it is observationally established, we will obtain the useful
sufficient condition. If the sufficient condition, mpL� /meL� > 1,
is satisfied, we can justify pair-dominance in the inequality (13)
by observations. This sufficient conditionwill be useful, as we do
not need to evaluate Lp.

2.2. More General Relations

As shown in previous subsections, the signatures of pair an-
nihilation and creation are useful as a diagnostic tool of pair-
dominated fireballs in GRBs. However, the fireball cannot be
pair dominated where the inequality (13) is not satisfied. Taking
into account the term np/n� ’ 2meLp/mpL� in equation (5), we
can derive the quadratic equation for L� from equations (5) and
(9), and generalize equations (11) and (12) as

� ’ 16

3

Lann

L0 fcut
þ

m2
eL

2
p

m2
p L

2
0 f

2
cut

 !1=2

; ð14Þ

L� ’ 16

3
L0Lann fcut þ

m2
e

m2
p

L2p

 !1=2

� me

mp

Lp; ð15Þ

where we have defined fcut � f ("cut;�), and � ’ (2n� þ
np)�T�

0 ¼ �� (1þ np/2n� ) is the optical depth of the emission
region. We can also evaluate the pair-to-baryon ratio and the
optical depth against pairs as

2n�

np
’ 1þ

16m2
p LannL0 fcut

3m2
eL

2
p

 !1=2

� 1; ð16Þ

�� ’ meLp

mpL0 fcut
1þ

16m2
p LannL0 fcut

3m2
e L

2
p

 !1=2

� 1

2
4

3
5: ð17Þ

Compared to equations (11) and (12), we need additional infor-
mation on the amount of baryons, Lp, to obtain � , L� , and �� . If
we take the no-pair limit 2n�Tnp in equations (14), (15), and
(17), we find that � does not depend on Lann, and L� ; �� ! 0, as
expected.

Even if we cannot estimate Lp, we have useful constraints only
from pair signatures. First, we can show

�� <
16

3

Lann

L0 fcut

� �1=2

< �: ð18Þ

The above inequalities can be derived by exploiting Lp > 0 for
equations (14) and (17), respectively. Therefore, observations of
pair signatures give us an upper limit on the optical depth for
Compton (or Thomson) scattering from pairs. In particular, we
can exclude the pair photospheric emission model when we
have ��T1. Second, with LpPL� , we can observationally set
an upper limit on � as well as lower limits on �� and 2n� /np by
replacing Lp with L� in equations (14), (16), and (17).

3. CASES FOR LIMITED OBSERVATIONS

3.1. The Case of Nondetected Pair-Annihilation Lines

We can gain some information about the fireball even if a pair-
annihilation line is not observed. The nondetection of the pair-
annihilation lines means that

LannP "L"("ann) ¼ L0
�mec

2

(1þ z)"0

� �2��

: ð19Þ

If we can measure Lp, we can set upper limits on � , 2n� /np,
and �� by replacing Lann with L0 �mec2/(1þ z)"0½ �2�� in equa-
tions (14), (16), and (17).
Even when we cannot estimate Lp, the inequalities (18) where

Lp > 0 is used yield a looser constraint on the optical depth from
pairs as

�� P
16

3fcut

�mec
2

(1þ z)"0

� �2��
( )1=2

: ð20Þ

If the right-hand side of the above inequality is smaller than
unity, i.e.,

"cut 3
16(� � 1)

3�(�)

� �1= ��1ð Þ �

1þ z

� �
mec

2;

we can exclude the pair photospheric emission model. If we
use LpPL� instead of Lp > 0, we obtain an upper limit on � by
replacing Lp and Lann with L� and L0 �mec

2/(1þ z)"0½ �2��
, re-

spectively, in equation (14).
Note thatwehave implicitly assumed that� is already determined

by another means. At least we have 1 � � < (1þ z)"cut/mec
2.

We can estimate � from ���("cut) ¼ 1 in equation (6) if we give
the emission radius r. For example, r may be estimated from the
frequently used relation r � 2�2c�tdecay/(1þ z), where the de-
cay time of a pulse �tdecay is basically determined by the angular
spreading timescale (Baring & Harding 1997; Lithwick & Sari
2001). The possible thermal emission component may be also
useful in estimating � (Pe’er et al. 2007).

3.2. The Case of Nondetected Cutoff Energy

Because of the limited sensitivity of the detector, the observed
maximum energy "max may be smaller than the true cutoff en-
ergy "cut. As seen in equation (10), f (";�) increases with " for
"P "cut , as long as the cutoff energy is determined by the pair-
creation process. [More precisely, ���("); hence f (";�) typi-
cally reaches almost the maximum value around " � "̃peak for
the low-energy spectral index � P1, where "peak is the peak
energy. On the other hand, ���(") always increases with " for
� k 1.] Then, we have

f ("cut;�) k f ("max;�): ð21Þ

If we can measure Lp, we can set upper limits on � and �� , as
well as a lower limit on 2n� /np, by replacing fcut with fmax �
f ("max;�) in equations (14), (16), and (17).
Without knowing Lp, the inequalities (18), where Lp > 0 is

used, yield the looser upper limit on �� as

�� P
16

3

Lann

L0 fmax

� �1=2

: ð22Þ
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If the right-hand side of the above inequality is less than unity,
i.e.,

"max 3
16(� � 1)

3�(�)

� �1= ��1ð Þ�mec
2

1þ z
LannL

�1
0

�mec
2

1þ zð Þ"0

� �2��

;

the pair photospheric emission model is ruled out. If we use
LpPL� instead of Lp > 0, we obtain an upper limit on � as well
as a lower limit on 2n� /np by replacing Lp and fcut with L� and
f max, respectively, in equations (14) and (16).

The above arguments in this subsection can be applied even
when the fireball is completely thin, i.e., the cutoff energy due to
the pair-creation process in the source does not exist. If we know
that this is the case from other means, we can replace fmax �
f ("max;�) with f ("̃peak;�) in the inequality (21) for � P 1.

4. IMPLICATIONS

In this paper, we have shown that pair signatures can provide
useful information about the fireballs in GRBs using only ob-
servable quantities. The strategy for acquiring physical quanti-
ties is summarized in the caption of Figure 1.

4.1. Examination of r and �

The determination of emission radii r is important not only
for specifying the prompt emission model, but also for various
other model predictions (e.g., neutrino production in the internal
shock model is sensitive to emission radius r; Murase & Nagataki
2006; Murase et al. 2006). After our work on pair signatures,
Gupta & Zhang (2008) recently focused on this issue of the
unknown emission radius. They re-expressed the cutoff energy
as a function of r and �. By using equations (6) and (7), we can
see that the emission radius r is obtained from observationally
determined "cut, "0, and the radiation energy of a subshell at "0,
E0 � L0�trise/(1þ z), if we know � by other means (see Fig. 4).
Here, �trise is the rise time of a pulse, which is basically determined
by the comoving width of the subshell, �0 � �c�trise/(1þ z).
Equation (1) is one way to determine �. Other means (e.g., by
using the photospheric emission component; Pe’er et al. 2007)
are also useful.

On the other hand, the emission radius can be also esti-
mated via the relation r � 2�2c�tdecay/(1þ z), as noted in x 3.1.
Once this relation is validated, we can compare the emission ra-
dius estimated from it with that determined from "cut. In other
words, we can test whether � determined by equation (9) and
r � 2�2c�tdecay/(1þ z) is consistent with � estimated from equa-
tion (1) and other means, or not. Because the derived � should be
consistent if the emission radius is the same, they will be useful
as another closure relation (see x 5). Note that we have not so
far assumed the relation r � 2��0 � 2�2c�trise/(1þ z), which is
expected in the internal shockmodel, but may not be true. In fact,
models other than the internal shock model do not always predict
r � 2��0, but can lead to r32��0.

4.2. Test of the Pair Photospheric Emission Model

As already noted, pair signatures are especially useful to test
the pair photospheric emissionmodel, in which the prompt emis-
sion comes from rph � rph;� .We canmeasure �� by equation (17)
with Lp, and an upper limit on �� by the inequalities (18) with-
out Lp. If we can observe either the pair-annihilation line or the
cutoff energy due to pair creation, an upper limit on �� is ob-
tained by equation (17) with the inequalities (19) or (21) for
known Lp, and by the inequality (20) or (22) for unknown Lp.
When the fireball is pair-dominated, i.e., the inequality (13) is
satisfied, we have � � �� . In addition, under the photospheric
emission model, we expect that high-energy gamma rays are
produced by dissipation around the photosphere (which may
occur at the subphotosphere) and emerge from the emission re-
gion at r � rph. Therefore, the pair photospheric emission model
predicts � � �� � 1 in equations (11) or (14).

When the fireball is pair-dominated, the photospheric radius
where � � �� ’ 1 can be expressed as

rph � rph;� ’ fcutL0�T

4�mec3�
3q

; ð23Þ

where q � rph/��
0, which is expected to be an order unity factor

in the internal shock model. Equation (23) is essentially the same
equation as that shown in Rees &Mészáros (2005). Note that the
relation r � 2��0 expected in the internal shock model leads to
q ¼ 2.

When Lann � "L"("ann) ¼ L0½�mec
2/(1þ z)"0�2��

, the pair
photospheric emission model, under which we expect � �
�� � 1, predicts a unique relation between "cut and "ann. Equa-
tion (11) yields (after the integration over "� in eq. [10], which
is the expression of fcut),

"cut
"ann

� (� � 1)

� 2
�

16

3�(�)

� �1= ��1ð Þ
� (� � 1)

16

3�(�)

� �1= ��1ð Þ
: ð24Þ

If pairs are created by the underlying continuum photons, the
pair-annihilation line cannot exceed the continuum emission
much prominently, i.e., Lann � L0½�mec

2/(1þ z)"0�2��
( Ioka

et al. 2007; Pe’er & Waxman 2004; Pe’er et al. 2006). There-
fore, the relation (24) could be satisfied for many bursts under
the pair photospheric emission model. Superposing low-quality
spectra of many events by adjusting either "ann or "cut could help
to find the other feature in this model.

5. DISCUSSION

Although pair signatures give us useful information, caution
is warranted, because there are some uncertainties in obtained

Fig. 4.—Relation between the cutoff energy "cut and bulk Lorentz factor� for
given collision radii r. A simple power-law photon spectrum is assumed. Param-
eters used are E0 ¼ 1051 ergs, "0 ¼ 102:5 keV, and z ¼ 0:1. Note that "cutP "̃peak
is also implicitly assumed.
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quantities, and we have made several assumptions in deriving
the equations and inequalities shown in this paper.

First, we have assumed that all the photons come from the
same emission region. However, thismight not be true. Although
we assume the same emission radius for pair signatures as a first
consideration, actual emissions may not come from the same
emission radius. For example, let us consider cases where high-
energy gamma rays come from two different emission radii r1
and r2 (r1 < r2). There will be three possibilities: case A, where
the observed pair-annihilation line comes from r1, while the pair-
creation cutoff coming from r2, "cut;2 is higher than that from r1,
"cut;1; case B, where the observed pair-annihilation line comes
from r2, while the pair-creation cutoff coming from r1, "cut;1 is
higher than that from r2, "cut;2; and case C, where both the ob-
served pair-annihilation line and (higher) pair-creation cutoff come
from r1 or r2.

We can further refine these into various subcases. In case A1,
where the underlying continuum comes predominantly from r1
at "P "cut;1, we will ideally see "cut;1 coming from r1, as well as
"cut;2, which is the higher cutoff. Because we have higher ��� at
smaller r (and/or for larger E0), with a given �, the former cutoff
could be naturally lower than the latter. If we see two "cut values
in the photon spectrum (i.e., one due to "cut;1, the other to "cut;2,
which is higher), our recipes would be applied to the line and the
lower cutoff "cut;1. In case A2, the underlying continuum pre-
dominantly comes from r2 at "P "cut;2; if the outflow has similar
� at the two emission radii, we would expect that time-resolved
detailed observations could separate different emission radii; if
we can use r � 2�2c�tdecay/(1þ z), the larger emission radius r
leads to the longer �tdecay. On the other hand, if the outflow has
different � values at the two emission radii, it would be useful
to determine � independently in various ways. Although it may
be observationally difficult, other means of estimation [e.g., by
using the photospheric emission component and/or the relation
r � 2�2c�tdecay/(1þ z)] in addition to equation (1) would be
useful in enabling us to evaluate �. If emissions come from the
same emission radius, we expect that all of the � we obtain
should be consistent. In case B1, where the underlying continuum
dominantly comes from r2 at "P "cut;2, since the pair-creation
cutoff from r1 is higher, and not completely masked by the un-
derlying continuum from r2, we can see "cut;2 below "cut;1 as in
case A1. We may apply our recipes to the line and the lower
cutoff "cut;2. In case B2, where the underlying continuum dom-
inantly comes from r1 at "P "cut;1, the higher cutoff "cut;1 comes
from the inner radius r1, while "cut;2 is masked, and the observed
pair-annihilation line is generated at the larger radius r2. This
would typically require that the Lorentz factor at the outer
emission radius r2 is smaller than that at the inner emission radius
r1, because the prominent pair-annihilation line and the lower
"cut;2 would mean copious pairs and photons at r2. Therefore,
evaluation of Lorentz factors by several means would be impor-
tant. In case C1, where both pair signatures come from r1 while
the underlying continuum dominantly comes from r2 at "P "cut;2,
we can see "cut;1 above "cut;2 in principle. Hence, our recipes can
be applied to the line and higher cutoff, while if we use the lower
cutoff, we could obtain a Lorentz factor that is inconsistent with
other estimations. In case C2, where both pair signatures come
from r2 while the underlying continuum predominantly comes
from r1 at "P "cut;1, similar to case C1, we would ideally see two
"cut. We can apply our recipes to the higher cutoff, and then ob-
tain the Lorentz factor that is consistent with the estimation from
equation (1).

Therefore, we should apply our recipes to time-resolved spec-
tra, if possible, and then compare the Lorentz factors obtained by

several means in order to check the consistency. When we have
two or more cutoffs, we can select the cutoff that provides the
consistent Lorentz factor. Once we see that emissions come from
the same radius, the recipes described in this paper can be used to
obtain information about the fireballs of GRBs.
Second, we have assumed that sufficiently relativistic elec-

trons cool down rapidly, tcoolTtann, which is expected in many
models ( Ioka et al. 2007; Pe’er & Waxman 2004; Pe’er et al.
2005). However, the pair-annihilation line might come from
relativistic pairs. For example, in the slow dissipation sce-
nario (Ghisellini & Celotti 1999), e.g., as might be expected
from magnetic reconnection, the typical electron Lorentz factor
at the end of the dynamical time �cool could be larger than
unity (Pe’er et al. 2006). If �cool > 1, we should use "ann �
��coolmec

2/(1þ z) instead of equation (1), and the expression
of Lann should also be modified [where Lann is suppressed for
�cool�

2
cool/(1þ �2

cool)k 1; Svensson 1982]. In such a case, it
becomes more difficult to observe the pair-annihilation line,
since the width of the pair-annihilation line is broadened by
more than an order of unity in energy due to the broad distribu-
tions of relativistic pairs, although we can check this observa-
tionally (Svensson 1982). If we can specify the distributions of
electrons and positrons properly (e.g., thermal distributions),
we could evaluate Lann, �, and the shape of the pair-annihilation
line with elaborate observational results in the future. But where
the distributions of electrons and positrons are unknown, they
aremodel-dependent, as demonstrated in Pe’er et al. (2005, 2006),
which would cause possible ambiguities for our recipes.
Third, we have also assumed that the cutoff energy "cut is de-

termined by attenuation via �� ! eþe� in the source. However,
the attenuation due to interaction with cosmic infrared back-
ground photons should be also taken into account when "cut is
sufficiently high. This cosmic attenuation effect can make it
difficult to determine the cutoff energy at the source, "cut. The
observed maximum energy might also represent the maximum
energy of accelerated electrons. In order to evaluate "cut prop-
erly, careful analyses will be needed. The secondary delayed
emission may also be useful (Murase et al. 2007). Note that we
can apply the recipe in x 3.2 even without the true "cut.
Pair signatures may be detected by the future GLAST satellite.

However, the detection of pair-annihilation lines may be difficult
due to line broadening, as discussed in x 2. Lines are observed as
bumps, so that evaluated � and L� will have uncertainties by
some factor, due to observational difficulties in the precise deter-
mination of Lann and �. We also anticipate applying our recipes
to single pulses. Some GRBs can be regarded as single pulse
events. For example, some bright bursts such as BATSE trigger
numbers 647 and 999 exhibited relatively smooth, long, single
pulses, which are well separated from other pulses. For such
single pulses, we may expect emissions from the approximately
same emission radius, although the spectrum also shows time-
dependent evolution. Our recipes could also be applied to flares,
where wider and smoother pulses are seen (Burrows et al. 2005;
Ioka et al. 2005); a flare may be expected to come from approx-
imately the same emission radius. However, the detection of
pair-annihilation lines will be more difficult observationally,
because pair-annihilation lines from flares are typically expected
at �10 MeV if the Lorentz factor of flare outflows is �10.
Furthermore, emissions from flares will be contaminated by af-
terglow components.
The height of the pair-annihilation line may be comparable to

the underlying continuum emission. Therefore, we have to col-
lect sufficiently many photons to identify the pair-annihilation
line. For example, if the height of the pair-annihilation line is larger
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than the underlying continuum by a factor of �2, we need to col-
lect�20 photons for the 3� detection at�"ann.When the spectrum
of the prompt emission is expressed by a power law extending
to sufficiently high energies, GLAST/LAT is expected to find
�70 GRBs per year under the criterion that >10 photons per
bursts are collected for the energy threshold 30 MeV (Omodei
et al. 2006). This suggests that, if a significant fraction of GRBs
are accompanied by pair-annihilation lines, we expect good op-
portunities to see them.

We also note that there may be some uncertainties in determin-
ing "cut. Opacity skin effects can sometimes render the expo-
nential attenuation exp (����) a poor descriptor of attenuation
with 1/(1þ ���), which leads to broken power laws rather than

exponential turnovers (Baring 2006; Baring & Harding 1997).
We expect that such ambiguities could be solved by observing
the maximum energy for many events.
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