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GRAVITATIONAL ENERGY AS DARK ENERGY: CONCORDANCE OF COSMOLOGICAL TESTS
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ABSTRACT

We provide preliminary quantitative evidence that a new solution to averaging the observed inhomogeneous
structure of matter in the universe may lead to an observationally viable cosmology without exotic dark energy.
We find parameters which simultaneously satisfy three independent tests: the match to the angular scale of the
sound horizon detected in the cosmic microwave background anisotropy spectrum; the effective comoving baryon
acoustic oscillation scale detected in galaxy clustering statistics; and Type Ia supernova luminosity distances.
Independently of the supernova data, concordance is obtained for a value of the Hubble constant which agrees
with the measurement of the Hubble Key team of Sandage and coworkers. Best-fit parameters include a global
average Hubble constant km s�1 Mpc�1, a present epoch void volume fraction of ,�1.2 �0.12H p 61.7 f p 0.760 �1.1 v0 �0.09

and an age of the universe of billion years as measured by observers in galaxies. The mass ratio of�0.714.7�0.5

nonbaryonic dark matter to baryonic matter is , computed with a baryon-to-photon ratio that is in con-�2.53.1�2.4

cordance with primordial lithium abundances.

Subject headings: cosmological parameters — cosmology: observations — cosmology: theory — dark matter —
large-scale structure of universe

Online material: color figures

The apparent acceleration in present cosmic expansion is
usually attributed to a smooth “dark energy,” whose nature
poses a foundational mystery to physics. Our standard LCDM
cosmology, with a cosmological constant L as dark energy, fits
three independent observational tests: Type Ia supernovae (SNe
Ia) luminosity distances; the angular scale of the Doppler peaks
in the spectrum of cosmic microwave background (CMB) tem-
perature anisotropies; and the baryon acoustic oscillation scale
detected in galaxy clustering statistics. In this Letter we provide
preliminary evidence that these same tests can all be satisfied
in ordinary general relativity without exotic dark energy, within
a model (Wiltshire 2007a, 2007b) which takes a new approach
to averaging the observed structure of the universe, presently
dominated by voids.

Recently a number of cosmologists have questioned whether
cosmic acceleration might in fact be an artifact of replacing
the actual observed structure of the universe by a smooth fea-
tureless dust fluid in Einstein’s equations (for a review see
Buchert 2007). The specific solution to the averaging problem
we investigate here (Wiltshire 2007a) realizes cosmic accel-
eration as an apparent effect that arises in the decoupling of
bound systems from the global expansion of the universe. In
particular, gradients in the kinetic energy of expansion, and
more importantly, in the quasi-local energy associated with
spatial curvature gradients between bound systems and a vol-
ume-average position in freely expanding space, can manifest
themselves in a significant difference in clock rates between
the two locations. This difference is negligible in the early
universe when the assumption of homogeneity is valid, but
becomes important after the transition to void dominance, mak-
ing apparent acceleration a phenomenon registered by observ-
ers in galaxies at relatively late epochs.

Galaxies and other objects dense enough to be observed at
cosmological distances are bound systems, leading to a selec-
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tion bias in our sampling of cosmic clocks. Since the clock
rates within bound systems are closely tied to a universal finite
infinity scale (Ellis 1984; Wiltshire 2007a), gross variations in
cosmic clock rates are not directly observable in any obser-
vational test yet devised. However, relative to observers in
bound systems an ideal comoving observer within a void would
measure an older age of the universe, and an isotropic CMB
with a lower mean temperature and an angular anisotropy scale
shifted to smaller angles.

A systematic variation in clock rates between bound systems
and the volume average, which we will find to be 38% at the
present epoch, seems implausible given the familiarity of large
gravitational time dilation effects occurring only for extreme
density contrasts, such as with black holes. However, cosmol-
ogy presents a circumstance in which conventional intuition
based on static Newtonian potentials can fail, because space-
time itself is dynamical and the definition of gravitational en-
ergy is extremely subtle. The normalization of clock rates in
bound systems relative to expanding regions can accumulate
significant differences, given that the entire age of the universe
has been available for this to occur.

In this Letter we find best-fit parameters for the two-scale
fractal bubble (FB) model (Wiltshire 2007a, 2007b). The two
scales represent voids, and the filaments and bubble walls which
surround them, within which clusters of galaxies are located.
The geometry within finite infinity regions in the bubble walls
is assumed to be spatially flat, but the geometry beyond these
regions is not spatially flat. The relationship between the ge-
ometry in galaxies and the volume-average geometry within
our present horizon volume is fixed by the assumption that the
regionally “locally” measured expansion is uniform despite var-
iations in spatial curvature and clock rates. This provides an
implicit resolution of the Sandage–de Vaucouleurs paradox
(Wiltshire 2007a): the “locally” measured or “bare” Hubble
flow is uniform, but since clock rates vary it will appear that
voids expand faster than walls when referred to any single set
of clocks.

As observers in galaxies, our local average geometry at the
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boundary of a finite infinity region is spatially flat, with the
metric

2 2 2 2 2 2ds p �dt � a (t)[dh � h dQ ]. (1)F w w wI

Finite infinity regions are contained within filaments and bubble
walls. These walls surround voids, where the metric is not given
by equation (1) but is negatively curved, with local scale factor

. The average geometry is determined by a solution of theav

Buchert equations (Buchert 2000), with average scale factor
, where and are the re-3 3 3ā p f a � f a f K 1 f p 1 � fwi w vi vi wi viv

spective initial void and wall volume fractions at last scattering,
when the assumption of homogeneity is justified by the evi-
dence of the CMB and the Copernican principle. It takes the
form

2 2 2 2 2¯ ¯ ¯ds p �dt � a (t)dh � A(h, t)dQ , (2)

where the area function A is defined by a horizon-volume av-
erage (Wiltshire 2007a). The time-parameter differs from thet
wall time t of equation (1) by the mean lapse function dt p

. The geometry (2) does not match the local geometryḡ(t)dt
in either the walls or void centers.

When the geometry (1) is related to the average geometry
(2) by conformal matching of radial null geodesics it may be
rewritten

2ā2 2 2 2 2¯ ¯ds p �dt � [dh � r (h, t)dQ ], (3)F w2I ḡ

where . Two sets of cosmological1/3 �1/3¯ ¯r { g (1 � f ) f h (h, t)w wi wv

parameters are relevant: those relative to an ideal observer at
the volume-average position in freely expanding space using
the metric (2), and conventional dressed parameters using the
metric (3). The conventional metric (3) arises in our attempt to
fit a single global metric (1) to the universe with the assumption
that average spatial curvature and local clock rates everywhere
are identical to our own, which is no longer true. One conse-
quence is that the dressed matter density parameter differsQM

from the bare volume-average density parameter accordingQ̄M

to .3 ¯¯Q p g QM M

The conventional dressed Hubble parameter H of metric (3)
differs from the bare Hubble parameter of metric (2) ac-H̄
cording to

d d
�1¯ ¯¯ ¯ ¯ ¯ ¯H p gH � g p gH � g g. (4)

dt dt

Since the bare Hubble parameter characterizes the uniform
“locally measured” Hubble flow, its present value coincides
with the value of the Hubble constant that observers in galaxies
would obtain for measurements averaged solely within the
plane of an ideal local bubble wall, on scales dominated by
finite infinity regions. The numerical value of is smaller thanH̄
the global average H, which includes both voids and bubble
walls. Equation (4) thus also quantifies the apparent variance
in the Hubble flow below the scale of homogeneity. Local
measurements across single voids of the dominant size, di-
ameter 30 h�1 Mpc (Hoyle & Vogeley 2004), should give a
Hubble “constant” which exceeds the global average by anH0

amount commensurate with . As voids are dominant¯H � H0 0

by volume, an isotropic average will produce a Hubble “con-
stant” greater than . This average will steadily decrease fromH0

its maximum at ∼30 h�1 Mpc until the scale of homogeneity
(∼100 h�1 Mpc) is reached: a “Hubble bubble” feature (Tomita
2001; Jha et al. 2007).

We report the results of three independent cosmological tests.
We use the exact solution (Wiltshire 2007b) to the Buchert
equations with boundary conditions at the surface of last scat-
tering, , consistent with observations of the CMB.z � 1100i

The luminosity distance, , and angular di-�1¯¯d p g a (1 � z)rL 0 0 w

ameter distance, , are referred to the effective2d p d /(1 � z)A L

dressed geometry (3). We take an initial relative velocity dis-
persion between walls and voids, and an initialh p 0.99999ri

void volume fraction at the time of last scat-�5 �210 ! f ! 10vi

tering. The results are insensitive to variations of hri and forfvi

physically reasonable priors on account of the existence a
tracker solution (Wiltshire 2007b) to which all solutions tend,
to within 1% by redshifts of . The solutions are thenz � 37
effectively specified by two independent parameters, which
may be taken to be the global average Hubble constant andH0

the present void volume fraction .fv0

We have tested the luminosity distance of the FB model
against the Riess et al. (2007, hereafter R07) gold data set of
SNe Ia and find that for 182 data points and 2 degrees of
freedom the best-fit , i.e., a of approximately2 2x p 162.7 x
0.9 per degree of freedom, which is a good fit. We have per-
formed a Bayesian model comparison of the FB model against
a flat LCDM model with priors 55 km s�1 Mpc�1 ≤ H0 ≤ 75
km s�1 Mpc�1, . This gives a Bayes factor of0.01 ≤ Q ≤ 0.5M0

in favor of the FB model, a margin which is “notln B p 0.27
worth more than a bare mention” (Kass & Raftery 1995) or
“inconclusive” (Trotta 2007). Thus the fit of the two models
to the R07 gold data set is statistically indistinguishable.

The R07 gold data set omits data in the “Hubble bubble”
below redshifts of . In the LCDM model, there is noz ≤ 0.023
clear theoretical rationale for this; it is merely observed em-
pirically that a significant reduction in the inferred Hubble
constant occurs at the Hubble bubble scale (Jha et al. 2007).
In the FB model the Hubble bubble is expected as a feature.

In Figure 1 we display the residual difference Dm p
, in the standard distance modulus,m � m m pFB empty

, of the best-fit FB model from that of a coast-5 log (d ) � 2510 L

ing Milne universe of the same Hubble constant, H p 61.70

km s�1 Mpc�1, and compare the theoretical curve with binned
data from the R07 gold data set. Apparent acceleration occurs
for positive residuals in the range . It should be notedz � 0.9
that the exact range of redshifts corresponding to apparent ac-
celeration also depends on the value of the Hubble constant of
the Milne universe distance modulus used to compute the re-
sidual. In the FB model the magnitude of the gradient of the
theoretical residual of Figure 1 by redshift is less than that for
comparable LCDM models. This reflects the fact that the dis-
tance modulus approaches that of a Milne universe at late times.

Statistical confidence limits for the SNe Ia data are displayed
as the oval contours in the center of Figure 2, in the (H , Q )0 M0

parameter space. The dressed density parameter is used here,
since it is the one whose numerical value is likely to be closest
to that of a FLRW model, and is thus most familiar. Note that

(Wiltshire 2007b).1 1 3 ¯Q � (1 � f )(2 � f ) p (2 � f ) QM0 v0 v0 v0 M02 8

In Figure 2 we also overplot parameter ranges for which two
independent cosmological tests have been applied. The first test
is the effective angular diameter of the sound horizon, which
very closely correlates with the angular scale of the first Dopp-
ler peak in the CMB anisotropy spectrum. It is often stated
that the angular position of the first peak is a measure of the
spatial curvature of the universe. However, this deduction relies
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Fig. 1.—Difference in the distance modulus, , withm p 5 log (d ) � 2510 L

in units Mpc, of the FB model with km s�1 Mpc�1,d H p 61.7 Q pL 0 M0

, from that of an empty coasting Milne universe, with the same value of0.326
. The R07 gold data set of 182 SNe Ia is binned using the criterionH0

, where n is the number of data points, and the width of then Dz p 5.8 Dzi i i

ith bin. The first bin boundary is set at , as “Hubble bubble” pointsz p 0.023
with are excluded. Our bins differ very slightly from those used inz ≤ 0.023
Fig. 6 of R07: the single outlier point at falls in its own bin. Thisz p 1.755
point, which falls below the theoretical curve, is not shown here, but is included
in the analysis. We use the original distance moduli reported at http://2x

braeburn.pha.jhu.edu/∼ariess/R06/sn_sample, without the suggested system-
atic subtraction of 0.32 mag, as we follow the Cepheid calibration of Sandage
et al. (2006). The boxes show the standard statistical errors for the binned data
using the reported uncertainties, which already account for luminosity correc-
tions in the MLCS2k2 reduction (Jha et al. 2007). The whiskers indicate how
the residuals move relative to the horizontal axis for the 2 j limits on withH0

fixed: light gray corresponds to the 2 j upper bound, and darkQ p 0.326M0

gray to the 2 j lower bound. The overlap in these two regions has been colored
black. [See the electronic edition of the Journal for a color version of this
figure.]

Fig. 2.—The 1, 2, and 3 j confidence limits (oval contours) for fits of
luminosity distances of SNe Ia in the R07 gold data set are compared to
parameters within the ( , ) plane which fit the angular scale of the soundQ HM0 0

horizon rad deduced for WMAP (Bennett et al. 2003; Spergel et al.d p 0.01
2007), to within 2%, 4%, and 6% (contours running top left to bottom right),
and to parameters which fit the effective comoving BAO scale of 104 h�1

Mpc observed in galaxy clustering statistics (Cole et al. 2005; Eisenstein et
al. 2005), to within 2%, 4%, and 6% (contours running bottom left to middle
right). [See the electronic edition of the Journal for a color version of this
figure.]

on the assumption that the spatial curvature is the same ev-
erywhere, appropriate for the FLRW models. In the present
model there are spatial curvature gradients, and we must revisit
the calculation from first principles. Volume-average negative
spatial curvature, which accords with tests of ellipticity in the
CMB anisotropies (Gurzadyan et al. 2005, 2007), can none-
theless be consistent with our local observation of the angular
scale of the first peak (Wiltshire 2007a).

Ideally we should recompute the spectrum of Doppler peaks
for the FB model. However, this requires considerable effort,
as the standard numerical codes have been written solely for
FLRW models, and every step has to be carefully reconsidered.
This task is left for future work. The test that we apply here
is to ask whether parameters exist for which the effective an-
gular diameter scale of the sound horizon matches the angular
scale of the sound horizon, rad, of the LCDM model,d p 0.01
as determined by WMAP (Bennett et al. 2003). Since there is
no change to the physics of recombination, but just an overall
change to the calibration of cosmological parameters, this is
entirely reasonable.

In Figure 2 we plot parameter ranges which match the
rad sound horizon scale to within 2%, 4%, and 6%,d p 0.01

using the calculation of the sound horizon given by Wiltshire
(2007a, § 7.2). The 2% contour would roughly correspond to
the 2 j limit if the WMAP uncertainties for the LCDM model
are maintained. As this can only be confirmed by detailed
computation of the Doppler peaks, the additional levels have
been chosen cautiously. The limits shown have been arrived
at assuming a volume-average baryon-to-photon ratio in the

range adopted by Tytler et al. (2000)�10h p (4.6–5.6) # 10Bg

prior to the release of WMAP1. With this range it is possible
to achieve concordance with lithium abundances, while also
better fitting helium abundances. This potentially resolves an
anomaly. With the 2003 WMAP1 release (Bennett et al. 2003),
the baryon-to-photon ratio was increased to the very upper
range of values that had previously been considered, largely
due to the consequence for the ratio of the heights of the first
two Doppler peaks. This ratio of peak heights is sensitive to
the mass ratio of baryons to nonbaryonic dark matter—rather
than directly to the baryon-to-photon ratio—as it depends phys-
ically on baryon drag in the primordial plasma. The fit to the
Doppler peaks required more baryons than the range of Tytler
et al. (2000) admitted, when calibrated with the FLRW model.
In the FB calibration, on account of the difference between the
bare and dressed density parameters, a bare value of Q̄ �B0

nonetheless corresponds to a conventional dressed value0.03
, and an overall mass ratio of baryonic matter toQ � 0.08B0

nonbaryonic dark matter of about 1 : 3, which is larger than
for LCDM. This would certainly indicate sufficient baryon drag
to accommodate the ratio of the first two peak heights.

The final set of contours plotted in Figure 2 relate to the
independent test of the effective comoving scale of the baryon
acoustic oscillation (BAO), as detected in galaxy clustering
statistics (Cole et al. 2005; Eisenstein et al. 2005). Similarly
to the case of the angular scale of the sound horizon, given
that we do not have the resources to analyze the galaxy clus-
tering data directly, we begin here with a simple but effective
check. In particular, since the dressed geometry (3) does pro-
vide an effective almost-FLRW metric adapted to our clocks
and rods in spatially flat regions, the effective comoving scale
in this dressed geometry should match the corresponding ob-
served BAO scale of 104 h�1Mpc. We therefore plot parameter
values which match this scale to within 2%, 4%, or 6%.

The best-fit cosmological parameters, using SNe Ia only, are
km s�1 Mpc�1 and , with 1 j un-�1.2 �0.12H p 61.7 f p 0.760 �1.1 v0 �0.09

certainties. Other cosmological parameters derived from these
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TABLE 1
Best-Fit Cosmological Parameters Derived from the

Independent Parameters andH f0 v0

Parameter Value

Dressed Hubble constant .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . km s�1 Mpc�1�1.2H p 61.70 �1.1

Present void volume fraction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
�0.12f p 0.76v0 �0.09

Mean lapse function .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
�0.061ḡ p 1.3810 �0.046

Bare density parameter .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
�0.060Q̄ p 0.125M0 �0.069

Conventional dressed density parameter .. . . . . . . . . . . . . . . . . . . . . . . . . . .
�0.11Q p 0.33M0 �0.16

Mass ratio of nonbaryonic dark matter to baryonic matter .. . . . .
�2.5¯ ¯ ¯(Q � Q )/Q p 3.1M0 B0 B0 �2.4

Bare Hubble constant .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . km s�1 Mpc�1�2.0H̄ p 48.20 �2.4

Effective dressed deceleration parameter .. . . . . . . . . . . . . . . . . . . . . . . . . .
�0.0120q p �0.04280 �0.0002

Age of universe measured in a galaxy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . Gyr�0.7t p 14.70 �0.5

Note.—The 1 j statistical uncertainties from SNe Ia are shown.

are shown in Table 1. Statistical uncertainties from the sound
horizon and BAO tests cannot yet be given, but should sig-
nificantly reduce the bounds on , , etc.f Qv0 M0

One striking feature of Figure 2 is that even if SNe Ia are
disregarded, the parameters which fit the two independent tests
relating to the sound horizon and the BAO scale agree with
each other, to the accuracy shown, for values of the Hubble
constant which include the value of Sandage et al. (2006).
However, they do not agree for the values of greater thanH0

70 km s�1 Mpc�1 which best fit the WMAP data (Bennett et
al. 2003; Spergel et al. 2007) with the FLRW model.

The value of the Hubble constant quoted by Sandage et al.
(2006) has been controversial, given the 14% difference from
values which best fit the WMAP data with the LCDM model
(Bennett et al. 2003; Spergel et al. 2007). However, the WMAP
analysis only constitutes a direct measurement of CMB tem-
perature anisotropies; the determination of cosmological pa-
rameters involves model assumptions. We have removed the
assumptions of the FLRW model, in an attempt to model the
universe in terms of the distribution of galaxies that we actually
observe, with an alternative proposal to averaging consistent
with general relativity. Applied to the angular diameter of the
sound horizon and the BAO scale, this leads to different cos-
mological parameters: ones that agree with the measurement
of Sandage et al. (2006).

The combination of best-fit cosmological parameters that
arises is particularly interesting. The numerical value of present
void volume fraction is identical to that of the dark-energyfv0

density fraction in the LCDM model with WMAP (SpergelQL0

et al. 2007). If the FB model is closer to the correct description
of the actual universe, then in trying to fit a FLRW model, we
appear to be led to parameters in which the cosmological con-
stant is mimicking the effect of voids as far as the WMAP
normalization to FLRW models is concerned. This it does im-

perfectly, since for a flat LCDM model , withQ p 1 � QM0 L0

the result that the best-fit value of normalized to the CMBQM0

does not match the best-fit value of for SNe Ia with theQM0

FLRW model, nor for other tests which directly probe . ForQM0

example, it has been recently noted that the values of the nor-
malization of the primordial spectrum and matterj ∼ 0.768

content implied by WMAP3 are barely compatibleQ ∼ 0.24M0

with the abundances of massive clusters determined from X-
ray measurements (Yepes et al. 2007). For the FB model, by
contrast, the dressed density parameter includes the rangeQM0

preferred in direct estimations of the conventional matter den-
sity parameter.

The integrated Sachs-Wolfe effect provides a further inter-
esting test to be determined. Since the observed signal is based
on a correlation to clumped structure (Boughn & Crittenden
2004), for large-scale averages any difference from the LCDM
expectation would largely depend on the difference in expan-
sion history of the two models. However, we might expect
foreground voids to give anisotropies below the scale of ho-
mogeneity, for which evidence is seen (Rudnick et al. 2007).

In this Letter we have offered preliminary quantitative evi-
dence, via agreement of independent cosmological tests, that
the problem of “dark energy” might be resolved within general
relativity. The differences in cosmological parameters inferred
in the LCDM and FB models—including the average Hubble
parameter and its variance, the expansion age, dressed matter
density, baryon-to-photon ratio, baryon–to–dark matter ratio,
CMB ellipticity—are such that the question as to which pro-
vides the better concordance model can be answered by future
observations and new cosmological tests.

This work was supported by the Marsden Fund of the Royal
Society of New Zealand.
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